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Abstract—Recent advances in cyber-physical systems, artificial
intelligence, and cloud computing have driven the wide deploy-
ment of Internet-of-things (IoT) in smart homes. As IoT devices
often directly interact with the users and environments, this
paper studies if and how we could explore the collective insights
from multiple heterogeneous IoT devices to infer user activities
for home safety monitoring and assisted living. Specifically, we
develop a new system, namely IoTMosaic, to first profile diverse
user activities with distinct IoT device event sequences, which
are extracted from smart home network traffic based on their
TCP/IP data packet signatures. Given the challenges of missing
and out-of-order IoT device events due to device malfunctions
or varying network and system latencies, IoTMosaic further
develops simple yet effective approximate matching algorithms to
identify user activities from real-world IoT network traffic. Our
experimental results on thousands of user activities in the smart
home environment over two months show that our proposed
algorithms can infer different user activities from IoT network
traffic in smart homes with the overall accuracy, precision, and
recall of 0.99, 0.99, and 1.00, respectively.

I. INTRODUCTION

Recent advances in cyber-physical systems, artificial intelli-
gence, and cloud computing have driven the rapid growth and
deployment of IoT devices in smart homes. Although there is
a rich literature in studying traffic patterns [17, 34], security
and privacy challenges [8, 9, 11, 14, 15, 20, 39], and device
events and functions [6, 7, 10, 24, 31, 33, 38] of individual IoT
devices, little effort has been devoted to exploring IoT network
traffic for inferring user activities. The accurate knowledge and
awareness of user activities in smart homes is crucial for home
safety monitoring and assisted living, e.g., a motion sensor’s
motion detection event at the front door followed by
a smart lock’s open event indicating a person entering the
home.

Towards filling this research gap, this paper introduces a
new system, namely IoTMosaic, for inferring user activities
from IoT network traffic in the smart home environment.
IoTMosaic first recognizes and generates the signatures of user
activities by characterizing each user activity with an ordered
sequence of IoT device events via controlled experiments in
smart homes. Based on the signatures of user activities, we
could search and match them from IoT device event streams
extracted from IoT network traffic for user activity inference.
However, the sequence of IoT devices events for a given
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user activity sometimes is disrupted by missing or out-of-
order device events due to device malfunctions, long end-to-
end network latencies between IoT devices and cloud servers,
and extended wake-up delays from the sleep mode of battery-
powered devices.

Given the existence of missing or out-of-order device events,
our paper formulates a new research problem of inferring user
activities with approximate user activity signature matching.
To address this problem, we develop simple yet effective
approximate matching algorithms which can identify the exact
or approximate matches with a varying number of missing
device events. In addition, we devise a heuristic trimming
strategy to resolve the conflicts caused by multiple matches of
different user activities which share overlapping device events
in their signatures.

To systematically evaluate the performance of our pro-
posed IoTMosaic system, we set up a real-world smart home
environment consisting of heterogeneous IoT devices with
various functions in a two-bedroom apartment, and identify
21 user activities that are common and crucial to home safety
and security. Our extensive experiments on the dataset which
includes thousands of user activities collected during a two-
month long period have shown that IoTMosaic is able to infer
all of these 21 user activities from the IoT network traffic with
high accuracy, precision, and recall.

The contributions of this paper are summarized as follows:
• We design and implement IoTMosaic to first profile

diverse user activities in smart homes and identify the
unique IoT device event sequences as their signatures.
Subsequently, we develop deterministic approximate sig-
nature matching algorithms for inferring user activities
from the device event sequences.

• We propose the approximate signature matching algo-
rithms with rigorous theoretical analysis to effectively
infer user activities with the flexibility of allowing miss-
ing or out-of-order IoT device events due to device
malfunctions or varying network and system latencies.

• Our two-month long experiments based on a real-world
smart home have demonstrated that our proposed algo-
rithms can infer different user activities from IoT network
traffic with the overall accuracy, precision, and recall of
0.99, 0.99, and 1.00, respectively.

The remainder of this paper is organized as follows. Sec-
tion II introduces the architecture of our proposed IoTMosaic
system. Section III describes the strategy of profiling and
generating signatures for user activities. Section IV presents
the approximate matching algorithms for user activity infer-
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Fig. 1. System architecture of IoTMosaic for inferring user activity from IoT network traffic in smart homes

ence. Section V presents the performance evaluations of our
proposed systems. Section VI discusses the related work, and
Section VII concludes this paper.

II. SYSTEM OVERVIEW AND ARCHITECTURE

A. Towards A User Activity Inference System

With the prevalence and popularity of IoT devices, a wide
range of innovative services and applications such as home au-
tomation, remote healthcare, and voice assistants are available
for homeowners. These dedicated IoT devices mostly work
independently for specific functions, e.g., a smart camera starts
recording once sensing sound or motions, and a smart lock is
opened or closed remotely via a companion smartphone app.

Many real-world user activities trigger a sequence of tem-
porally and spatially correlated events involving multiple IoT
devices. The individual device event information of each of
these IoT devices often lacks sufficient evidence to infer the
user activities and tell homeowners what happened in their
homes. For example, a delivery personnel dropping off a
package on the front door and ringing the Ring Doorbell could
trigger the motion detection event and the doorbell’s
ringing event. However, exploring correlated events and
collective insights from heterogeneous IoT devices in the
same home could reveal many important user activities. Such
automated user activity monitoring and inference system could
have many practical benefits in home safety and security,
assisted living, and remote healthcare.

Towards this end, this paper proposes the IoTMosaic system
for automatically and algorithmically inferring user activities
based on the underlying network traffic of IoT devices in
smart homes. Rather than inferring user activities directly
from the IoT network traffic, IoTMosaic first detects IoT
device events by analyzing network traffic in smart homes
by adopting one of the existing solutions [1, 31, 33]. Based
on these extracted IoT device events, IoTMosaic generates the
signatures of diverse user activities which consist of IoT device
event sequences. IoTMosaic then infers user activities using
approximate matching algorithms to accommodate missing or
out-of-order IoT device events due to device malfunctions or
varying latencies.

B. System Architecture and Components

Fig. 1 illustrates the IoTMosaic’s overall system architecture
for inferring user activity from IoT network traffic in smart
homes. IoTMosaic consists of four main components: i) IoT

network traffic collection, ii) IoT device event detection, iii)
user activity profiling, and vi) user activity inference.

The first key system component, IoT network traffic collec-
tion, leverages programmable home routers to continuously
collect, process, and analyze outgoing and incoming times-
tamped TCP/IP data packets of smart home IoT devices. For
the second component, IoT device event detection, our paper
adopts one of the state-of-the-art solutions [1, 31, 33] for
extracting IoT device events from network traffic collected by
the home routers in the first component.

The primary focus of this paper is to design and implement
the last two system components in Fig. 1, i.e., user activity
profiling and user activity inference. For learning and profiling
user activities, we first collect IoT network traffic in smart
homes while repeatedly running and labeling each user activity
as ground truth. Subsequently, we extract the sequence of IoT
device events as the signature for each user activity. The user
activity profiling component is responsible for recognizing and
generating the signatures of different user activities which are
the input of the next user activity inference component.

Towards developing the user activity inference system
component, we propose simple yet effective algorithms for
identifying user activities from IoT device events with the
tolerance of missing events. Our proposed approximate match-
ing algorithms effectively infer user activities with varying
missing device events. In case of multiple matches to different
user activities which share overlapping IoT device events, we
devise a heuristic trimming step to strategically remove some
inferred activities based on the number of missing device
events and the dependency among the signatures of user
activities.

To evaluate the performance of our proposed system, we set
up an experimental smart home environment in a two-bedroom
apartment with heterogeneous IoT devices. We systematically
evaluate our system with different user activities, mostly
related to home safety and security, in the smart home testbed.
Our extensive experiments on the labeled user activities and
network traffic data collected span over two months show that
IoTMosaic is able to accurately infer diverse user activities in
smart homes.

III. USER ACTIVITIES PROFILING

A. Detecting IoT Device Events with IoT Network Traffic

The network traffic of IoT devices plays a crucial role in
classifying the IoT device types, e.g., LG smart TV, and



detecting IoT device events, e.g., switching Philips Hue smart
lighting on or off. These individual and distinguished events
generated by IoT devices are referred to as IoT device events.
Several recent parallel studies [1, 6, 31, 33] have proposed
practical solutions to generate the traffic signatures of IoT
device events and extract IoT device events via matching such
signatures from the IoT network traffic.

In this study, we adopt the approach in [33] to first generate
the unique signature of each IoT device event with diverse
traffic features including the crucial inter-packet time interval
information in IP packets. Then we use the deterministic
algorithms developed in [33] to extract IoT device events in
our smart home environments. Table I lists the smart home
IoT devices deployed in this study and their respective device
events for learning and inferring a wide range of user activities
related to home safety and security, e.g., a person with smart
lock app access entering the home from the front door.

TABLE I
SMART HOME IOT DEVICES DEPLOYED IN THIS STUDY AND THEIR

RESPECTIVE DEVICE EVENTS

Device Name Device Event Abbreviation
Arlo Q Camera (AQ) motion detection AQmot

August Lock (AL)
WiFi (un)locking ALwlk

manual (Un)locking ALmlk

auto locking ALalk

D-Link Water Sensor (DW) water detected DWwtr

water not detected DWnwtr

Kangaroo Motion Sensor (KM) motion detection KMmot

Reolink Camera (RC) motion detection RCmot

stream on / off RCon / RCoff

Ring Doorbell (RD)
motion detection RDmot

stream on / off RDon / RDoff

ringing RDring

Ring Spotlight (RS) motion detection RSmot

motion light on / off RSon / RSoff

Smart Life Contact Sensor (SC) open / close SCopen / SCclose

Tessan Contact Sensor (TC) open / close TCopen / TCclose

TP-Link Bulb (TB) on / off TBon / TBoff

TP-Link Plug (TP) on / off TPon / TPoff

As IoT devices continue to be deployed in smart home
applications such as smart locks and surveillance cameras,
the knowledge and awareness of IoT device events have
become increasingly important for understanding the statuses
of IoT devices and detecting anomalous behaviors and attacks
towards them. More importantly, multiple IoT device events,
happening very closely in time and space, could collectively
provide valuable knowledge for inferring user activities in
smart homes. Inspired by this critical insight, IoTMosaic
explores IoT device events for understanding, profiling, and
inferring user activities in smart homes.

B. Profiling User Activities with IoT Device Event Sequences

Recognizing and tracking user activities and behaviors in smart
environments have been a long-standing research problem [25]
due to its importance in assisted living, remote healthcare, and
home safety. In this study, we consider a user activity as the
interaction between a person and the smart home environment,
e.g., an e-commerce delivery personnel pushing the smart
doorbell and leaving a package on the porch. The direct
interaction between users and IoT devices, e.g., a user opening

or closing the smart lock via the companion smartphone App,
is only considered as IoT device events (or actions) instead
of user activities. In other words, a user activity, consisting of
several human actions, could trigger one or more IoT device
events, determined by the availability and deployment of IoT
devices as well as the layout of the smart home.

Our real-world experiments with heterogeneous IoT devices
deployed in the smart home testbed have discovered that many
user activities trigger an ordered sequence of device events
from several adjacent IoT devices. For example, a person with
the physical key entering our smart home environment from
the front door triggers a series of IoT device events related to
August smart lock, Tessan Contact Sensor, Ring doorbell, Ring
Spotlight, and Alro Q Camera. It should be noted that a single
IoT device event is often unable to infer the underlying user
activities independently. However, combining and correlating
the time and space of multiple events from adjacent IoT
devices that are deployed at the nearby locations where user
activities happen potentially provide sufficient information for
extracting these user activities.
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Fig. 2. Layout of IoT device deployment in a real-world smart home. Each
IoT device is represented with its abbreviation name, cf. Table I

Fig. 2 illustrates the layout of our smart home experimental
environment in a two-bedroom apartment. Given the list of
IoT devices in Table I and the deployment of devices in
Fig. 2, we use repeated and controlled experiments to discover
and generate distinct signatures of user activities with the
sequences of IoT device events. It is important to point out
that the smart home environment setup and user activity
experiments have received official approval from our university
institutional review board (IRB).

Table II summarizes the list of 21 user activities in our smart
home testbed which are common and essential to home safety
and security. For each user activity, we repeatedly trigger it 20
times, while simultaneously collecting TCP/IP packets using
the programmable home router. To only include IoT device
events that are actually triggered by the user activity, we run all
of the experiments at this stage in a controlled environment and
ensure no other interfering IoT device events or user activities
happen at the same time. To avoid the mutual inference of user
activities, we separate the experiments of two consecutive user
activities for at least 10 minutes.

We first extract all device events from the IoT network
traffic during the experiment period where user activity U



TABLE II
USER ACTIVITIES AND THEIR SIGNATURES OF IOT DEVICE EVENT SEQUENCES

No. User Activity Device Event Sequence

1 A person without key entering the RDmot, RSmot, RDring, RDon, RDoff , ALmlk,
home from the front door (day) TCopen, TCclose, ALmlk, AQmot

2 A person without key entering the RDmot, RSon, RDring, RDon, RDoff , ALmlk,
home from the front door (night) TCopen, TCclose, ALmlk, AQmot, RSoff

3 A person with app access entering the RDmot, RSmot, ALwlk, TCopen,
home from the front door (day) TCclose, ALalk, AQmot

4 A person with app access entering the RDmot, RSon, ALwlk, TCopen,
home from the front door (night) TCclose, ALalk, AQmot, RSoff

5 A person with key entering the RDmot, RSmot, ALmlk, TCopen,
home from thefront door (day) TCclose, ALalk, AQmot

6 A person with key entering the RDmot, RSon, ALmlk, TCopen,
home from thefront door (night) TCclose, ALalk, AQmot, RSoff

7 A person ring the doorbell and leave (day) RDmot, RSmot, RDring

8 A person ring the doorbell and leave (night) RDmot, RSon, RDring, RSoff

9 A person checking the front door of the home (day) RDmot, RSmot

10 A person checking the front door of the home (night) RDmot, RSon, , RSoff

11 A person with key leaving the home from AQmot, ALmlk, TCopen, TCclose,
the front door (lock the door) (day) RDmot, RSmot, ALmlk

12 A person with key leaving the home from AQmot, ALmlk, TCopen, TCclose,
the front door (lock the door) (night) RDmot, RSon, ALmlk, RSoff

13 A person with key leaving the home from AQmot, ALmlk, TCopen, TCclose,
the front door (do not lock the door) (day) RDmot, RSmot

14 A person with key leaving the home from AQmot, ALmlk, TCopen, TCclose,
the front door (do not lock the door) (night) RDmot, RSon, RSoff

15 A person appearing in the hallway of the home KMmot, TBon

16 A person leaving the hallway of the home KMmot, TBoff

17 A person checking the living room’s camera streaming RCon, RCoff

18 A person entering the balcony from living room or
RCmotentering the living from balcony (contact sensor alarm off)

19 An person entering the home from the
SCopen, RCmotbalcony (contact sensor alarm on)

20 An person leaving the home to enter the
RCmot, SCclosebalcony ((contact sensor alarm on)

21 A person checking water leakage DWwtr, TPoff , DWnwtr, TPon

is triggered. For each IoT device event e, we compare its
timestamp, i.e., the timestamp of the first packet captured
by the smart home router which is matched to e, with the
manually-recorded timestamp of the user activity U . Given
the existence of clock synchronizations, varying end-to-end
network latencies, and automatic events, e.g., August smart
lock automatically closes the door if the door remains open
for 30 seconds after an unlock event, we consider the device
event e is actually generated by the user activity U if and only
if |e.t − U.t| ≤ Ω. In our experiments, we choose Ω as 60
seconds as the values from 60 seconds to 5 minutes achieve
similar results in mapping the relevant device event e to U .

Sorting all IoT device events associated with each user
activity U based on their timestamps leads to an ordered
sequence of IoT device events (e1, e2, . . . , en). If two or more
sequences of IoT device events happen for the same user
activity during the 20 experiments, we select the sequence
with the most occurrences. Such disparity is not observed in
our experiments, as the same user activity always triggers the
same sequences of IoT device events. We refer to the sequence
of IoT device events, (e1, e2, . . . , en), as the signature of the
user activity U , as well as the user activity itself.

Table II summarizes the signatures of all 21 user activities
with the corresponding IoT device event sequences generated
by following the above process. These signatures confirm the
feasibility of inferring user activities related to physical safety
and security in smart homes from the device events extracted
from the IoT network traffic.

IV. USER ACTIVITY INFERENCE

A. User Activity Inference Problem

Given a sequence of IoT device events S = (s1, s2, . . . , sm)
and a set of user activity signatures U = {U1, U2, . . . , Ur}
where Ui is the signature of the user activity i, we define the
user activity inference problem as inferring all user activities
that generate events in S.

The unpredictability of user activities and the missing and
out-of-order device events have created substantial challenges
for solving the user activity inference problem. In this paper,
we present the first attempt to give a heuristic solution of this
problem via finding approximate matches of the user activities’
signatures from S. Specifically, we formulate a problem called
k≤approximate signature matching and develop an optimal so-
lution for user activity inference based on algorithms designed
for solving k≤approximate signature matching problem.

B. k≤Approximate Signature Matching Problem

The edit distance (ED) between a user activity signature U
and a sequence of device events S is defined as the minimum
cost of changing S into U where 1) only the operation of
deletion from S and U is allowed, 2) deletion of an event
from U has cost 1, and 3) deletion of an event from S has
cost 0. This definition of ED is different from the classic
definition in literature in that the substitution is not a valid
operation here because a device event could be missing or out-
of-order but should not change into another event. In addition,



the costs of deleting different events from U are different due
to the varying importance of these events to U . For ease of
presentation, we set the cost of deleting any event from U
uniformly as 1.

Given a sequence of device events S = (s1, s2, . . . , sm), a
user activity signature U = (e1, e2, . . . , en), and an integer
k ≥ 0, we define a k=single-approximate signature match
as a minimal-length subsequence of S with the start index i
and end index j and ED((si, . . . , sj), U) = k, where k is the
approximation parameter.

The k=approximate signature matching problem is to
reveal the maximum number of non-overlapping k=single-
approximate matches of U in S, which is referred to as
k=approximate match.

The k≤approximate signature matching problem is to
find all the approximate matches that:
1) exist in an i=approximate match of U in S where i ≤ k;
2) if there exists a match M in i=approximate match, then
there does not exist a match M ′ in j=approximate match
where j > i and the start and end indices overlap with those
of M .

For example, if S = (a, a, b, a, c, a, b, a, a, b, a, b, c) and
U = (a, b, a, c), a 1≤approximate match of U in S includes
two 0=single-approximate signature matches (s2, s3, s4, s5)
and (s9, s10, s11, s13) and one 1=single-approximate signature
match (s6, s7, s8).

C. k≤Approximate Signature Matching Algorithm

In this section, we first present Algorithm 1 to solve the
k=approximate match problem which aims at identifying all
k=single-approximate matches of U in S. In Algorithm 1,
start records the starting index for the chunk of S that U
is matched against. C is a two-dimensional cost matrix of
size (m + 1) × (n + 1) and C records the edit distance
between two sequences Sstart,i and U0,j . The first row of
C is initialized as 0 to n since the cost of matching U to an
empty device event sequence equals to cost of deleting events
from U . The first column of C is initialized as all 0s because
the match of U can start from anywhere in S. The last column
of C indicates the edit distance between U and Sstart,i where
i = start, . . . ,m− 1.

The main idea of this algorithm is that the cost of matching
sequence U0,j in Sstart,i is the same as the cost of matching
U0,j−1 in Sstart,i−1 if si = ej . Otherwise, the cost either
equals to the cost of matching U0,j in Sstart,i−1 due to the
cost 0 of deleting si, or equals to the cost of matching U0,j−1

in Sstart,i plus 1 due to the cost 1 of deleting ej .
If Ci,n = k, we find a match of U in S that ends at si with

the approximate parameter k . We then output the indices of
the current match by backtracking the costs saved in C. Next,
we reset the cost matrix by setting the i-th row of C from 0
to n and then continue to find matches starting from Si+1.

Fig. 3 shows a running example of Algorithm 1 with
S = (a, a, b, a, c, a, b, a, a, b, a, b, c), U = (a, b, a, c), and
k = 0, respectively. In this example, s1 equals to e1

Algorithm 1: k=appxMatch(S, U, k)
Input: Device event sequence S = (s1, s2, . . . , sm), a user

activity signature U = (e1, e2, . . . , en),
approximation parameter k

Output: A list Lk of all k=single-approximate match U in
S. Each match is represented by an ordered
sequence of the indices of device events in S
matched to U

1 Lk ← ∅; start← 1;
2 for i := 0 to m do
3 Ci,0 ← 0;

4 for j := 1 to n do
5 C0,j ← j;

6 for i := 1 to m do
7 for j := 1 to n do
8 if si == ej then
9 Ci,j ← Ci−1,j−1;

10 else if Ci−1,j < Ci,j−1 + 1 then
11 Ci,j ← Ci−1,j ;

12 else
13 Ci,j ← Ci,j−1 + 1;

14 if j == n and Ci,j == k then
15 M ← ∅; p← i; q ← n;
16 while q > 0 do
17 if Cp,q == Cp−1,q−1 and sp == eq then
18 p← p− 1; q ← q − 1;
19 M.insert(p);

20 else if Cp−1,q < Cp,q−1 + 1 then
21 p← p− 1;

22 else
23 q ← q − 1;

24 Lk.insert(M);
25 for j := 1 to n do
26 Ci,j ← j; start← i;

27 output List Lk.
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Fig. 3. A running example of
Algorithm 1

which are both a, thus C1,1 =
0. s1, i.e., a, does not equal to
e2, i.e., b, therefore, C1,2 = 1
because C1,1 + 1 = 1 and
C0,2 = 2. Similarly, we de-
termine the other values in the
cost matrix C until comparing
s5 with e4 which are both c,
so C5,4 = C4,3 = 0. As we
reach the last column of the
cost matrix, and the cost value
equals to k = 0, we find a
match of U in S with the ap-
proximation parameter 0. Then
we start from C5,4 and revisit
the cost matrix to output this
match as (5, 4, 3, 2).

We continue on searching for matches from s6 until we
find another 0=single-approximate signature match ending



Algorithm 2: k≤appxMatch(S, U, k)
Input: Device event sequence S, a user activity signature U ,

approximation parameter k
Output: L = (L0, L1, . . . , Lk) where Lk is the

k=approximate match of U in S
1 Pre-process S to remove all the events in S but not in U ;
2 L0, L1, . . . , Lk ← ∅;
3 Initialize Q with (0,m− 1) as its only element;
4 for i := 0 to k do
5 T ← null;
6 while Q do
7 H ← Q.head(); D ← S[H.start,H.end];
8 Lk.append(k=appxMatch(D,U, i));
9 for each k=approximate match in Lk do

10 B ← the event sequence before M in D;
11 D ← the event sequence after M in D;
12 if B is not empty then
13 start ← starting index of B;
14 end ← ending index of B;
15 T .append(start, end);

16 if D is not empty then
17 start ← starting index of D;
18 end ← ending index of D;
19 T .append(start, end);

20 Q← T ;

21 return L.

at s13 as (13, 11, 10, 9). As a result, Algorithm 1 outputs
0=approximate match L0 = ((5, 4, 3, 2), (13, 11, 10, 9)).

Algorithm 2 presents the solution for the k≤approximate
signature matching problem. It outputs L = (L0, L1, . . . , Lk),
where Li records the i=approximate match of U in S. Each
element on Li stores the indices of the device events in S that
form the i=single-approximate match of U .

The main idea of Algorithm 2 is to start from
0=approximate match, repeatedly discover the i=approximate
match of U in S, and remove all the device events in the
i=approximate match from S until i = k. Indices of events
in S are carefully recorded that only portions of device events
in S that do not overlap with the starting and ending indices
of matches to U in the current round will be considered in
the next round. In this way, only non-overlapping matches
are selected for output and approximate matches with smaller
k are discovered before approximate matches with bigger k.
List Q is designed to save a list of a pair of starting and
ending indices for a continuous portion of S that have not
been matched in the approximate match with smaller k. The
output of Algorithm 2 with k = 3 on the running example in
Fig. 3 is L0 = ((2, 5), (9, 13)), L1 = ((6, 8)), L2 = ∅, and
L3 = ((1, 1)).

Theorem 1: The time complexity of k=appxMatch algo-
rithm is O(mn) and the time complexity of k≤appxMatch
algorithm is O(kmn) where m is the number of events in S
and n is the number of events in U .
Proof Sketch. This can be derived from the execution of the
algorithms. Details are omitted due to space limitations. □

Theorem 2: The k=appxMatch algorithm outputs the max-
imum number of non-overlapping k=single-approximate sig-
nature matches of U in S.
Proof Sketch. It has been proved in literature [16] that given
a sequence of overlapped time intervals, the greedy algorithm
which chooses an interval with the earliest finish time and
excludes all other overlapping intervals, outputs the maximum
number of non-overlapping intervals. The k=appxMatch algo-
rithm indeed outputs the match with the earliest finish time
first and it only considers non-overlapping matches. □

D. Inferring User Activities via Approximate Matching

With the k≤appxMatch algorithm, we can discover approxi-
mate matches of each user activity independently. However,
it is possible that two matches of different user activities
share overlapped device events which cause collisions and
ambiguity. Therefore, we further develop a trimming step to
remove the collisions in the device event sequences that are
matched to different user activities.

Algorithm 3: actInfer(S,U, k)
Input: A device event sequence S, an ordered sequence of

signatures of all user activities by their lengths
U = (U1, U2, . . . , Ur), k

Output: LU1 , LU2 , . . . , LUr where collisions in approximate
matches have been removed

1 for i := 0 to r do
2 LUi ← k≤appxMatch(S, Ui, k);

3 for i := 0 to k do
4 for j := 1 to r do
5 for M ∈ Li

Uj
do

6 if ∃M ′ ∈ Li′
Uj′

(i′ < i) and M ∩M ′ ̸= ∅ then
7 remove M from Li

Uj
;

8 else if ∃M ′ ∈ Li
Uj′

(j ̸= j′) and M ⊆M ′ then
9 remove M from Li

Uj
;

10 output LU1 , LU2 , . . . , LUr .

The trimming heuristics in the last step of inferring user ac-
tivities prefer a match with a smaller approximate parameter k
or a longer sequence of IoT device events in its signature. This
trimming step is designed based on the following empirical
observations from our real-world experiments:

1) The chance of missing device events in the signatures
of user activities during the matching is marginal. Thus
we always prefer matches with smaller values of k.

2) If the signature of one user activity is a subset of another
one and both of them are matched independently, the
user activity with the superset signature is preferred if
both activities are inferred at the same time.

3) If two user activities from different users have overlap-
ping device events, and these two activities happen at
the same time, then it is possible that the overlapped
events are shared by both of them. For example, if one
user is entering the home from the hallway while another



user is heading towards the kitchen through the hallway,
these two user activities will only generate one light on
event since the light will be turned on only once. Thus
this device event is shared by these two user activities
and can be mapped to both of them during the matching.

Algorithm 3 presents the pseudocode of the final algorithm
of user activity inference and outputs the set of inferred user
activities from the IoT device event streams with the simple
yet effective trimming heuristic step.

V. PERFORMANCE EVALUATIONS

A. Experiment Setup of Smart Home Environments

To evaluate our proposed algorithms of inferring user activities
from IoT network traffic, we have designed and set up a
real-world smart home environment, as illustrated in Fig. 2,
where we deployed a number of heterogeneous IoT devices. In
this smart home environment, each user activity enumerated
in Table II will trigger at least one IoT device event, thus
leading us to observe and collect IoT network traffic via the
programmable home router.

In our experiment, we use the Linksys WRT1900AC router
running the OpenWrt operating system to collect TCP/IP
packets for all the outgoing and incoming network traffic
between IoT devices and remote hosts as well as internal traffic
in the local area network (LAN) traffic between IoT devices.
For each IoT device event, we adopt the method in [33] for
generating its signature consisting of an ordered sequence of
IP packets with inter-packet time intervals. Based on these
signatures, we run the signature matching and event extraction
algorithms in [33] on the collected traffic to detect all of the
IoT device events that happened in the smart home.

For each of the 21 user activities in Table II, we first
learn and build its signature via capturing and studying the
underlying IoT network traffic while intentionally repeating
the activity with time logs, which serve as the labeled ground
truth. Extracting IoT device events from the network traffic and
correlating them with the labeled and repeated user activities
allow us to recognize and generate the signatures for all 21
user activities. To evaluate the performance of our proposed
user activity inference algorithms, we also repeatedly run
thousands of user activities at different times and days with
time logs over a two-month evaluation period. In addition, our
smart home environment continuously collects IoT network
traffic, even during the time that we are not actively running
the experiments of triggering the 21 user activities. The labeled
user activities and collected IoT network traffic provide the
valuable dataset for evaluating the correctness and accuracy
of our algorithms for inferring user activities.

Although a number of existing studies have shared smart
home IoT network traffic datasets [26, 31], none of them
include the labeled mapping between individual user activity
and the corresponding network traffic. Thus, our experiment
setup and the collected dataset will potentially provide the IoT
research community a unique dataset for understanding user
behaviors from network traffic.

B. Evaluation Metrics

To evaluate and quantify the performance of our proposed
algorithms, we use the widely used metrics, i.e., true positives
(T P), false positive (FP), false negative (FN ), and true
negative (T N ). Specifically, for a given inferred user activity
α′, if a matching real user activity α is found at the same
time from the ground truth, we consider this activity as a true
positive. However, if there is no matching user activity from
the ground truth, we consider it as a false positive. For a given
real user activity α, if the user activity inference algorithms
report a different inferred user activity, e.g., β′, or simply fail
to report an inferred user activity, we consider it as a false
negative. When the user inference algorithms do not report an
inferred user activity α′ for any real user activity other than α
in the ground truth, it is a true negative. In our experiments,
we always observe perfect true negative results, thus we leave
the true negative measures out of the experiment results.

In addition to these four measures from the confusion
matrix, we also use precision (P), recall (R), accuracy (A),
and F1 score to understand the overall quality of our user
activity inferring experiments. The precision is calculated as
P = T P

T P+FP , while the recall is R = T P
T P+FN . The accuracy

can be calculated as A = T P+T N
T P+T N+FP+FN . The F1 score

is the harmonic mean of precision and recall and can be
calculated as 2× P×R

P+R .

C. Experimental Results

Using performance evaluation metrics introduced in Sec-
tion V-B, we present the performance of our proposed user
activity inference system in three phases. In the first phase, we
present the experimental results of running the 0≤approximate
matching algorithm, i.e., requiring the exact matching of
device event sequences for all user activities. In the second
phase, we present the result of running the 1≤approximate
matching algorithm, allowing at most one missing device
event due to packet delays and losses or device malfunctions.
In the third and final phase, we add the optimization rules
to the 1≤approximate matching algorithm for substantially
improving the performance of user activity inference.

1) Phase I: 0≤approximate matching. Our experiments of
running 0≤approximate matching algorithm for inferring thou-
sands of user activities in the real-world smart home environ-
ment have shown that the overall value of accuracy, precision,
and recall are 0.96, 0.99, and 0.97, respectively, as illustrated
in columns 6 to 8 of the last row in Table III. We can observe
that most of the user activities can be detected correctly.
However, the user activity inference algorithms occasionally
fail to detect user activities #2,#4,#6,#8,#10,#11,#12,
and #14, leading to a small number of false negatives, as
shown on the fifth column of Table III.

Our in-depth investigation has discovered that nearly all
of these false negatives are caused by the “missing” Ring
Doorbell’s motion detection event from the device event
sequences of these user activities. The underlying root cause
of these “missing” events is the multiple-second long delay of
reporting these motion events by the battery-powered Ring



TABLE III
EXPERIMENTAL RESULTS OF OUR PROPOSED USER ACTIVITY INFERENCE ALGORITHMS IN THE REAL-WORLD SMART HOME ENVIRONMENT

User
#

Phase I Phase II Phase III
Act. T P FP FN A P R T P FP FN A P R T P FP FN A P R

1 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
2 115 105 0 10 0.91 1.00 0.91 115 0 0 1.00 1.00 1.00 115 0 0 1.00 1.00 1.00
3 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
4 115 106 0 9 0.92 1.00 0.92 115 0 0 1.00 1.00 1.00 115 0 0 1.00 1.00 1.00
5 113 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00
6 115 97 0 18 0.84 1.00 0.84 115 0 0 1.00 1.00 1.00 115 0 0 1.00 1.00 1.00
7 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
8 112 110 0 2 0.98 1.00 0.98 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
9 121 121 0 0 1.00 1.00 1.00 121 78 0 0.61 0.61 1.00 121 0 0 1.00 1.00 1.00

10 112 105 0 7 0.94 1.00 0.94 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
11 350 347 0 3 0.99 1.00 0.99 350 0 0 1.00 1.00 1.00 350 0 0 1.00 1.00 1.00
12 294 269 0 25 0.91 1.00 0.91 294 0 0 1.00 1.00 1.00 294 0 0 1.00 1.00 1.00
13 116 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00
14 113 98 0 15 0.87 1.00 0.87 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00
15 138 138 0 0 1.00 1.00 1.00 138 33 0 0.81 0.81 1.00 138 0 0 1.00 1.00 1.00
16 132 132 0 0 1.00 1.00 1.00 132 33 0 0.81 0.81 1.00 132 0 0 1.00 1.00 1.00
17 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
18 224 224 16 0 0.93 0.93 1.00 224 16 0 0.93 0.93 1.00 224 16 0 0.93 0.93 1.00
19 112 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00 112 0 0 1.00 1.00 1.00
20 113 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00 113 0 0 1.00 1.00 1.00
21 116 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00 116 0 0 1.00 1.00 1.00
all 2959 2870 16 89 0.96 0.99 0.97 2959 158 0 0.95 0.95 1.00 2959 16 0 0.99 0.99 1.00

Doorbell [4], leading to the out-of-order device events for
these user activities. In other words, these motion events
are simply delayed, actually not missing. However, as the
0≤approximate matching algorithm requires the exact match-
ing of device event sequences for all user activities, these cases
with out-of-order device events are reported as false negatives.

In addition to these false negatives, there are also 16 cases
of false positive for user activity #18. Our follow-up analysis
reveals that the real user activities indeed have happened as
inferred, but are not recorded in our controlled experiments.
This observation suggests that our user activity inference
algorithms could potentially monitor real-time IoT network
traffic and alert homeowners on unexpected or anomalous user
activities for home safety and other applications.

2) Phase II: 1≤approximate matching. Running the
0≤approximate matching algorithm for inferring thousands
of user activities achieves high accuracy, but returns a non-
trivial of false negatives. Therefore, in phase II we explore the
increase of the value of k in the matching algorithm for ac-
commodating the missing and out-of-order device events when
searching and matching the signatures of user activities. To
understand and quantify the performance tradeoff, specifically
false positives and false negatives with varying k, we run the
k≤approximate matching with the value of k increasing from
0 to 5. As illustrated in Fig. 4, the increase of k leads to
lower false negatives but higher false positives. In addition,
increasing k from 1 to 2, 3, 4, 5 achieves marginal improve-
ments in false negatives, but incurs significant penalties in
false positives. Therefore, we choose 1≤approximate matching
algorithms for the remaining experiment evaluations.

By setting k as 1, the approximate matching algorithm
allows at most one missing or out-of-order device event when
matching the signatures of user activities. Such flexibility
effectively addresses the challenge of the long delay of the

k=0 k=1 k = 2 k = 3 k = 4 k = 5
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500
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Fig. 4. Tradeoff analysis of false positive vs. false negatives with varying k

Ring Doorbell’s motion detection event, and significantly
improves the performance of our user activity inference system
in the smart home environment. As shown in the column 11
of Table III, the false negative measures of user activities
#2,#4,#6,#8,#10,#11,#12, and #14 drop to 0.

However, in column 10 of the same table, we also observe
the increase of false positive measures from 0 to 78, 33,
33 for user activities #9,#15, and #16, respectively. Our
follow-up analysis discovers that the signatures of all of these
three user activities (#9,#15, and #16) have a length of 2
device events. The short length of 2 device events in the sig-
natures explains the high false positives, since 1≤approximate
matching algorithm will report the matching success of one
of these activities whenever finding one single device event in
their signatures. Given the above observations, we continue
to explore optimization rules in the approximate matching
algorithm to reduce high false positives while maintaining low
false negatives during the matching process.

3) Phase III: 1≤approximate matching with optimization.
Inspired by the findings of high false positives for the short
device event sequences, we add a simple yet effective opti-
mization rule for the approximate matching algorithm. Specif-
ically, when the length of the device event sequence for a user
activity is equal to or less than a certain threshold, referred



to as θ, we only run the 0≤approximate matching algorithm
to infer such activities. The intuition of such optimization rule
lies in the observation that when the length of the device event
sequence in the user activity signature is short, the probability
of finding false positives is very high. Based on our empirical
results, we set θ as 3 in our experiments.

Accuracy Precision Recall F1 Score
0.80

0.85

0.90

0.95

1.00

Phase I

Phase II

Phase III

Fig. 5. Overall accuracy, precision, recall, and F1 scores of Phase I, Phase
II, and Phase III, respectively

As shown in columns 16 and 17 in Table III, the false
positives of user activities #9,#15, and #16 drop to 0
thanks to the simple yet effective optimization rule. The only
remaining false positives correspond to user activity #18,
which are caused by real but uncontrolled user activities
that were not recorded in our experiments. Fig. 5 compares
the overall accuracy, precision, recall, and F1 scores of run-
ning our proposed user activity inference algorithms over
three phases: 0≤approximate matching, 1≤approximate match-
ing, 1≤approximate matching with optimization, respectively.
Clearly, 1≤approximate matching with the simple and intuitive
optimization rule achieves the best performance.

In summary, our two-month long experiments have shown
that our proposed user activity inference system is able to
effectively and accurately detect and infer user activities from
IoT network traffic in smart homes. By applying the approxi-
mation matching algorithm with the simple optimization rule,
we achieve the overall values of accuracy, precision, and recall
as 0.99, 0.99, and 1.00, respectively.

VI. RELATED WORK

The wide deployment and growth of IoT devices in smart
homes in the last two decades have attracted significant
research interests in studying network traffic of IoT de-
vices [5, 19, 21, 26, 28, 29, 32, 36, 37]. These research studies
collect TCP/IP packets or network flows of IoT devices,
extract a rich set of features from these traffic data, and
provide critical insights on IoT communications patterns and
behavioral dynamics. The deep understanding of IoT traffic
fingerprints benefits a variety of applications such as anomaly
detection, security monitoring, IoT device classification, and
IoT device event detection.

Given the prevalent threats and attacks targeting IoT de-
vices [2, 3, 13, 18, 22, 23, 27, 30, 40], detecting IoT device
events has become a crucial task for IoT security [35]. For
example, a recent research [18] has presented new event-
eliminating and event-spoofing attacks on commercial wire-

less home alarm systems. Several parallel research efforts
have developed different approaches for detecting IoT devices
events [6, 24, 31, 33, 38]. For example, the studies in [6, 24]
first extract and learn various traffic features for IoT device
events, and subsequently develop machine learning classifiers
for distinguishing IoT device events. HoMonit [38] designs
a deterministic finite automaton (DFA) model to detect the
specific events for many Samsung SmartThings devices based
on the the link-layer traffic data. By studying the network layer
and transport layer network traffic data, PingPong [31] and
IoTAthena [33] develop deterministic algorithms for detecting
IoT device events using the signatures generated from TCP/IP
packets.

A few recent studies have explored the events and statuses
of IoT devices for recognizing user activities and behaviors [1,
12, 25]. For example, the researchers of [25] deploy numerous
sensors in a three-bedroom apartment and develop a hidden
Markov model (HMM) based system to recognize and track
user activities. Peek-a-Boo [1] is able to launch privacy attacks
in smart homes by passively sniffing the encrypted network
traffic over the air and utilizing machine learning approaches
to recognize six different user activities. Similarly, the study
in [12] proposes Home Automation Watcher (HAWatcher), a
semantics-aware anomaly detection system for appified smart
homes, for discovering the correlation according to semantic
information in smart homes, and exploits these correlations for
modeling a smart home’s normal behaviors. Different from
these prior work, IoTMosaic first detects IoT device events
from smart home network traffic and then recognizes and
profiles user activities to map them to their triggered IoT
device event sequences. Subsequently, IoTMosaic develops an
effective approximate matching algorithm for inferring user
activities in smart homes, which could provide homeowners
critical insights on what is happening in their homes instantly
and automatically.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes IoTMosaic for inferring user activities
from IoT network traffic. Based on the IoT device events
detected from smart home network traffic, IoTMosaic gen-
erates the signatures of diverse user activities consisting of
IoT device event sequences. Given the observation of missing
and out-of-order device events due to device malfunctions
and varying network latencies, we design the approximate
matching algorithms to capture the exact or approximate
matches of user activities’ signatures in the device event
sequence. In addition, we devise a heuristic trimming strategy
to resolve the conflicts in multiple matches of user activities
due to overlapping device events in their signatures. Our two-
month experimental results with thousands of user activities
in a real-world smart home show that our proposed algorithms
can infer different user activities with accuracy, precision, and
recall of 0.99, 0.99, and 1.00, respectively. Our future work is
centered on deploying IoTMosaic in other smart environments
and exploring the applications of the system such as home
safety and anomaly detection.
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