
1

An Effective Machine Learning based Algorithm for
Inferring User Activities from IoT Device Events

Guoliang Xue, Fellow, IEEE, Yinxin Wan, Student Member, IEEE, Xuanli Lin, Student Member, IEEE,
Kuai Xu, Senior Member, IEEE, Feng Wang, Member, IEEE

Abstract—The rapid and ubiquitous deployment of Internet
of Things (IoT) in smart homes has created unprecedented
opportunities to automatically extract environmental knowledge,
awareness, and intelligence. Many existing studies have adopted
either machine learning approaches or deterministic approaches
to infer IoT device events and/or user activities from network
traffic in smart homes. In this paper, we study the problem
of inferring user activity patterns from a sequence of device
events by first deterministically extracting a small number of
representative user activity patterns from the sequence of device
events, then applying unsupervised learning to compute an
optimal subset of these user activity patterns to infer user
activities. Based on extensive experiments with sequences of
device events triggered by 2, 959 real user activities and up to
30, 000 synthetic user activities, we demonstrate that our scheme
is resilient to device malfunctions and transient failures/delays,
and outperforms the state-of-the-art solution.

Index Terms—Machine learning, IoT device events, user activ-
ities.

1. INTRODUCTION

The ubiquitous and heterogeneous deployment of Internet
of Things (IoT) devices in smart homes has created new
opportunities to extract knowledge, awareness, and intelligence
via monitoring and understanding the devices’ interactions
with their environments and users [4, 6, 7, 9, 10, 13, 19, 20].
A number of studies focused on discovering meaningful infor-
mation from network traffic of IoT devices in smart homes,
even though much of the traffic is often encrypted over secure
wireless networks or via IoT application-level encryption. For
example, [2] and [11] adopted well-known machine learning
(ML) models to infer device events from network packets,
while PingPong [15] and IoTAthena [17] utilized deterministic
algorithms for device event extraction based on the observation
that every device event generates a repeatable sequence of
network packets.

In addition, several recent studies have explored the feasibil-
ity of inferring user activities with IoT devices in smart homes.
For example, [12] utilized an unsupervised learning method
to discover user activities based on information collected
by sensors deployed in a smart home. The study in [1]
demonstrated the possibility of passively sniffing wireless-only
network traffic of IoT devices for detecting and identifying
IoT device types and user activities in smart homes from an
adversary perspective. [18] introduced the problem of User Ac-
tivity Inference (UAI) and proposed an approximate matching-

All authors are affiliated with Arizona State University. Emails: {xue,
ywan28, xlin54, kuai.xu, fwang25}@asu.edu. This research was supported in
part by NSF grants 2007469, 1816995, and 1717197. The information reported
here does not reflect the position or the policy of the funding agency.

based algorithm to infer a multiset of user activities from the
network traffic of IoT devices, which was actively collected
at programmable home routers from a trusted home user
perspective. However, reconstructing real-world user activities
in smart homes and matching them with the ground-truth
requires an exact sequence of user activities, rather than a
multiset of user activities produced by IoTMosaic [18].

Towards this end, in this paper, we study the problems of
Events to Activities (E2A) and Events to Activity Patterns
(E2AP) from a trusted home user perspective for inferring
a sequence of user activities from a sequence of IoT device
events, which can be extracted from network traffic using
existing methods such as PingPong [15] and IoTAthena [17].
We design a two-phase scheme employing both deterministic
algorithms and machine learning techniques for solving the
E2AP and E2A problems.

In Phase 1, we compute a small number of representative
matches of the activity patterns. We prove that the solution
computed based on these representative matches is as good as
any solution that can be obtained by considering all possible
matches. In Phase 2, we present an efficient algorithm for
computing a compatible set of matches of user activity patterns
with maximum total weight, for any given weight assignment
to the matches. We then design an unsupervised learning
algorithm for computing a good set of weights. While the loss
function for our problem is non-differentiable, we design an
exact algorithm for minimizing the loss function over any one
of the weight variables. Similar to many ML algorithms that
build optimization models and learn optimal parameters [14],
we design a coordinate descent algorithm for solving E2AP
which converges in a finite number of iterations.

The main contributions of this paper are the following:
• We formulate the problem of inferring a sequence of

user activities and their patterns in smart homes from a
sequence of device events extracted from network traffic.

• We prove that one can concentrate on a small number of
representative matches of user activity patterns and design
an efficient algorithm for computing these representatives.

• We design an efficient algorithm to compute a compatible
set of matches of user activity patterns with maximum
total weight for any given weight assignment. We then
design an algorithm to compute an optimal set of weights
in a finite number of iterations via unsupervised learning.

• We conduct extensive experiments with both real and
synthetic data and demonstrate that our algorithm is
robust and outperforms the state-of-the-art solution.

The rest of this paper is organized as follows. Section 2
formulates the problems E2A and E2AP and presents some

2

basic concepts needed in the paper. Section 3 presents Phase 1
of our scheme, while Sections 4 and 5 present Phase 2 of
our scheme. Section 6 presents evaluation results. Section 7
concludes the paper. Proofs are presented in the appendix.

2. PROBLEM FORMULATION AND BASICS

Recent research [1, 18] suggests that a user activity in a smart
home may be inferred from the sequence of IoT device events
triggered by the activity. For example, one of the user activities
studied in [18] “A person without key entering the home from
the front door during the day” usually triggers the sequence
of 10 IoT device events (Ring doorbell motion detection,
Ring spotlight motion detection, Ring doorbell ringing, Ring
doorbell stream on, Ring doorbell stream off, August lock
manual unlocking, Tessan contact sensor open, Tessan contact
sensor close, August lock manual locking, Arlo Q camera
motion detection), involving 5 devices. Intuitively, observing
this sequence of 10 device events in a very short period of time
suggests that the above user activity very likely has happened.

If a device malfunctions when a user activity occurs, the
device events corresponding to this device will be missing
from the sequence. For example, if the Tessan contact sensor
malfunctions, the events Tessan contact sensor open and Tes-
san contact sensor close will be missing in the corresponding
sequence of device events. If the Ring doorbell is in sleeping
mode when the user activity occurs, the event Ring doorbell
motion detection will be delayed. Because the amount of
delay varies significantly in our experiments, we consider such
device event as missing as well.

We have a set A = {A1, A2, . . . , A|A|} of user activities.
Each occurrence of a user activity A ∈ A triggers a sequence
of IoT device events S1(A) = (eA,11 , eA,12 , . . . , eA,1|S1(A)|) or a
subsequence of S1(A), where the missing events correspond
to devices that malfunction when A occurs. We use |A| to
denote the cardinality of set A and use |S| to denote the
length of sequence S. We use A = (A1, A2, . . . , A|A|) to
denote a sequence of user activities. We use superscripts
in the description of (distinct) user activities in set A, and
use subscripts in the description of (not necessarily distinct)
user activities in sequence A. A1 and A2 denote two distinct
elements in set A. A1 and A2 denote the first and second
elements in sequence A, respectively.

For a user activity A, we use S(A) = {S1(A), S2(A), . . .,
S|S(A)|(A)} to denote the set of distinct sequences of de-
vice events that could be triggered by A, where Sk(A) =
(eA,k1 , eA,k2 , . . . , eA,k|Sk(A)|) for k = 1, 2, . . . , |S(A)|, and Sk(A)
is a subsequence of S1(A) for k > 1. We call S(A) the set of
possible patterns of A. In our experiments, S(A) is extracted
through observing the device event sequences triggered by
repeated occurrences of A.

Each IoT device may correspond to multiple events. Each
user may correspond to multiple user activities, and two
different user activities may both involve a common device
event. The focus of this paper is on user activities (rather than
users) and device events (rather than devices).

We use several examples to illustrate important concepts and
algorithms throughout the paper. For ease of understanding, we
use the following setting for all of our examples.

Example Setting: E = (a, b, a, b, d, c, a, b, c) is the se-
quence of device events. A = {A1, A2} is the set of user
activities. The set of possible patterns for A1 (A2, respectively)
is S(A1) = {(a, b)} (S(A2) = {(a, b, c), (a, b)}, respectively).

The sequence of device events triggered by a sequence A
of user activities, denoted by E(A), satisfies
E(A)∈{Z1∥Z2∥· · ·∥Z|A| | Zj∈S(Aj), ∀j=1, . . . , |A|}. (1)
Example 1: Let A1 = (A1, A2, A2) and A2 = (A2, A2, A2)

be two sequences of user activities, where A1 and A2 are
as in the example setting. Then E(A1) could be any of
(a, b, a, b, c, a, b, c), (a, b, a, b, c, a, b), (a, b, a, b, a, b, c),
or (a, b, a, b, a, b). Similarly, E(A2) could be any of
(a, b, c, a, b, c, a, b, c), (a, b, c, a, b, c, a, b), (a, b, c, a, b, a, b, c),
(a, b, c, a, b, a, b), (a, b, a, b, c, a, b, c), (a, b, a, b, c, a, b),
(a, b, a, b, a, b, c), or (a, b, a, b, a, b). □

This example shows that the same sequence of user activ-
ities may trigger different sequences of device events, while
different sequences of user activities may trigger the same
sequence of device events.

The nondeterministic mapping E maps a sequence of user
activities to a sequence of device events. We are interested in
the reverse problem: inferring the sequence of user activities
from a given sequence of IoT device events. We call it the E2A
problem (Events to Activities), defined in the following.

Problem 1 (E2A): Let A = {A1, A2, . . . , A|A|} be a set
of user activities. For each A ∈ A, its set of possible patterns
S(A) is known. Given a sequence of IoT device events E =
(e1, e2, . . . , em), the E2A problem seeks for a sequence A =
(A1, A2, . . . , A|A|) of user activities in A that is most likely
to trigger the sequence of device events E. □

We further propose the Events to Activity Patterns problem
(E2AP) to infer a sequence of user activities together with
their patterns. The solution to this problem can be used to
provide accurate quantification of the solution quality.

Problem 2 (E2AP): Let A = {A1, A2, . . . , A|A|} be a
set of user activities. For each A ∈ A, its set of possible
patterns S(A) is known. Given a sequence of IoT device
events E = (e1, e2, . . . , em), the E2AP problem seeks for
a sequence A = (A1, A2, . . . , A|A|) of user activities in A
together with pattern Skjj ∈ S(Aj) for j = 1, 2, . . . , |A|, such
that Sk11 ∥S

k2
2 ∥ · · · ∥S

k|A|
|A| is as close to E as possible. □

A solution to the E2AP problem consists of a sequence
A = (A1, A2, . . . , A|A|) of user activities and a corresponding
sequence S = (Sk11 , S

k2
2 , . . . , S

k|A|
|A|) of activity patterns. We can

use A as a solution to the E2A problem. The edit distance [5]
between E and Sk11 ∥S

k2
2 ∥ · · · ∥S

k|A|
|A| can be used as a metric to

quantify the solution quality.
The E2AP problem is closely related to UAI problem

studied in [18]. While both [18] and this paper have the same
ultimate goal of inferring user activities in a smart home,
the specific goals and techniques used are very different.
UAI produces a multiset of user activities; E2AP produces
a sequence of user activity patterns. Note that we can use
a sequence of user activity patterns to produce a sequence
of user activities which in turn can be used to produce a
multiset of user activities, but not vice versa. A sequence
of user activity patterns can be directly compared with the

3

sequence of device events to measure the quality of a solution
for E2AP. Such comparison is not possible if the output is a
multiset or a sequence of user activities (without the patterns).
In UAI, each user activity A ∈ A has one signature, which is
the full sequence of device events that may be triggered by A
(corresponding to S1(A) in this paper), but notes that it may
trigger a subsequence of the signature. When computing the
matching of a signature, [18] relies on k-approximate subse-
quence matching, and gives high priorities to the full sequence
of the signature over a partial sequence. In E2AP, we consider
all possible signature patterns independently, and decide the
weights for the patterns using unsupervised learning, where we
aim to minimize the edit distance between the given sequence
of device events and the concatenation of the sequence of
computed activity patterns. This makes our ML-based scheme
resilient to device malfunctions and transient failures/delays,
a significant advantage over the algorithm of [18].

We design a two-phase scheme for solving E2AP. Phase 1
computes a small number of representative matches in E for
each possible pattern Sk(Ai) of each user activity Ai ∈ A. We
prove that the solution computed based on these small number
of representative matches is as good as any solution that can
be obtained by considering all matches. Phase 2 consists of
Phase 2A and Phase 2B. Phase 2A computes a compatible
sequence Sw of representative matches of user activity patterns
with maximum total weight, for any given weight assignment
w of the matches. The edit distance between E and the
concatenation of the user activity patterns in Sw is the value
of the loss function f(w). Phase 2B aims to compute an
optimal weight w via unsupervised learning. Both Phase 1 and
Phase 2B are executed once. Phase 2A is executed multiple
times, one for each evaluation of f(w) within Phase 2B.

Table 1 describes notations commonly used in this paper.
An important concept is the match of a possible activity

pattern in the sequence of device events. We study these in
the rest of this section.

Definition 1 (match and minimal match): Let E =
(e1, e2, . . . , em) be the sequence of device events. Let
A ∈ A be a user activity with S(A) = {S1(A), S2(A),
. . . , S|S(A)|(A)} as its set of possible patterns, where Sk(A) =
(eA,k1 , eA,k2 , . . . , eA,k|Sk(A)|) for k = 1, 2, . . . , |S(A)|. A match of
Sk(A) in E, denoted by ψA,ki , i ∈ Z+, is a sequence of positive
integers (ψA,ki,1 , ψ

A,k
i,2 , . . . , ψ

A,k
i,|Sk(A)|) such that

1 ≤ ψA,ki,j < ψA,ki,j′ ≤ m, ∀1 ≤ j < j′ ≤ |Sk(A)|, (2)

eψA,k
i,j

= eA,kj , ∀1 ≤ j ≤ |Sk(A)|. (3)

We call [ψA,ki,1 , ψ
A,k
i,|Sk(A)|] the interval of ψA,ki , and denote it as

ψA,ki .interval. We use ΨA,k to denote the set of all matches
of Sk(A) in E. A match ψA,ki of Sk(A) in E is called minimal,
if there is no match ψA,ki′ of Sk(A) in E whose interval is a
proper subset of the interval of ψA,ki . We use Ψmin,A,k to
denote the set of all minimal matches of Sk(A) in E. □

Example 2: Set A to A2 in the example setting. Then
S1(A) = (a, b, c) has 9 matches in E: ψA,11 = (1, 2, 6),
ψA,12 = (1, 2, 9), ψA,13 = (1, 4, 6), ψA,14 = (1, 4, 9), ψA,15 =
(1, 8, 9), ψA,16 = (3, 4, 6), ψA,17 = (3, 4, 9), ψA,18 = (3, 8, 9),
ψA,19 = (7, 8, 9). Among the 9 matches in ΨA,1, ψA,11 ,

TABLE 1
COMMONLY USED NOTATIONS IN THIS PAPER

Notations Description
A set of user activities: A = {A1, A2, . . . , A|A|}
Ai the ith user activity: Ai ∈ A
A or Aj a user activity: A,Aj ∈ A
A sequence of user activities: A = (A1, A2, . . . , A|A|)

E sequence of IoT device events: E = (e1, e2, . . . , em)
E(i : j) portion of E from index i to index j
S(A) set of distinct device event sequences triggered by A ∈ A:

S = {S1(A), S2(A), . . . , S|S(A)|(A)}
Sk(A) the k-th possible device event sequence triggered by A∈A:

Sk(A) = (eA,k
1 , eA,k

2 , . . . , eA,k

|Sk(A)|)

ψA,k
i a match of Sk(A) in E, with two interchangeable descrip-

tions in the paper: ψA,k
i = (ψA,k

i,1 , ψA,k
i,2 , . . . , ψA,k

i,|Sk(A)|)

or ψA,k
i = (ψA,k

i [1], ψA,k
i [2], . . . , ψA,k

i [|Sk(A)|])
ϕA,k
i similar to ψA,k

i
ΨA,k set of all matches of Sk(A) in E
Ψmin,A,k set of all minimal matches of Sk(A) in E
Ψ union of ΨA,k over all combinations of A ∈ A and k ∈

{1, 2, . . . , |S(A)|}
Ψmin union of Ψmin,A,k over all combinations of A ∈ A and

k ∈ {1, 2, . . . , |S(A)|}
Lmin,A,k list of (not necessarily all) minimal matches of Sk(A) in E:

whose i-th node may be denoted as Lmin,A,k[i]

Lmin 2-D array of lists of minimal matches of Sk(A) in E
for all possible combinations of Ai ∈ A and k ∈
{1, 2, . . . , |Sk(A)|}: indexed as Lmin[i, k] = Lmin,Ai,k

ni number of elements in S(Ai), i = 1, 2, . . . , |A|
N N =

∑|A
i=1 ni

mi,k mi,k= |Lmin,Ai,k|, i = 1, . . . , |A|, k = 1, . . . , |Sk(Ai)|
M M =

∑|A|
i=1

∑|Sk(Ai)|
k=1 mi,k

M 1-D array of 4-tuple (A, k, α, β): M[i], i = 1, 2, . . . ,M

w(i, k) weight for Sk(Ai), i = 1, . . . , |A|, k = 1, . . . , |S(Ai)|
∥ concatenation operator
Z+ set of nonnegative real numbers

ψA,13 , ψA,16 , ψA,19 are minimal. S2(A) has 6 matches in E:
ψA,21 = (1, 2), ψA,22 = (1, 4), ψA,23 = (1, 8), ψA,24 = (3, 4),
ψA,25 =(3, 8), ψA,26 =(7, 8). ψA,21 , ψA,24 , ψA,26 are minimal. □

In order to design efficient algorithms for solving the E2AP
problem, we restrict our attention to O(m) matches of Sk(A)
in E for each A and k, without losing important information.
To achieve this goal, we introduce the following concepts.

Definition 2 (precedence relation on ΨA,k): We define a
binary relation ⪯ on ΨA,k as follows. Let ψA,ki and ψA,ki′ be
two elements in ΨA,k. We say ψA,ki ⪯ ψA,ki′ if
(i) ψA,k

i,|Sk(A)|<ψ
A,k
i′,|Sk(A)|, or

(ii) ψA,k
i,|Sk(A)|=ψ

A,k
i′,|Sk(A)| and (ψA,k

i,|Sk(A)|−1
, ψA,k

i,|Sk(A)|−2
. . . ,

ψA,ki,1) is lexicographically greater than or equal to
(ψA,k
i′,|Sk(A)|−1

, ψA,k
i′,|Sk(A)|−2

. . . , ψA,ki′,1).
When ϕ ⪯ ψ and ϕ ̸= ψ, we say ϕ precedes ψ, denoted by
ϕ ≺ ψ. We say that ϕ is lighter than ψ when ϕ ≺ ψ. □

One can verify that ⪯ defined above is a linear ordering [16]
on ΨA,k (as well as on Ψmin,A,k). In other words, we have

1) For any ϕ, ψ ∈ ΨA,k, at least one in {ϕ ⪯ ψ, ψ ⪯ ϕ}
is true.

2) If ϕ ⪯ ψ and ψ ⪯ ϕ, then ϕ = ψ.
3) If ϕ ⪯ ψ and ψ ⪯ γ, then ϕ ⪯ γ.
Definition 3 (equivalence relation on ΨA,kand Ψmin,A,k):

Let A ∈ A, and Sk(A) be a possible pattern of A. Let ψA,ki

4

and ψA,ki′ be two elements in ΨA,k (Ψmin,A,k, respectively).
We say that ψA,ki is equivalent to ψA,ki′ , denoted by ψA,ki ≡
ψA,ki′ , if the intervals of ψA,ki and ψA,ki′ are the same. □

Clearly, ≡ is a binary relation defined on ΨA,k, as well as a
binary relation defined on Ψmin,A,k. One can verify that the bi-
nary relation ≡ defined on ΨA,k (Ψmin,A,k, respectively) is an
equivalence relation [16]. This equivalence relation partitions
the set ΨA,k (Ψmin,A,k, respectively) into equivalence classes
where two matches in ΨA,k (Ψmin,A,k, respectively) are in
the same equivalence class if and only if they are equivalent.

Definition 4 (representative matches): Let A ∈ A, and
Sk(A) be a possible pattern of A. For each equivalence class of
ΨA,k (Ψmin,A,k, respectively), we choose the lightest element
in the class as its representative. □

Example 3: Set A to A2 in the example setting. There
are 9 members in ΨA,1. In lexicographically order, they
are (1, 2, 6), (1, 2, 9), (1, 4, 6), (1, 4, 9), (1, 8, 9), (3, 4, 6),
(3, 4, 9), (3, 8, 9), (7, 8, 9). In lightest first order, we have
(3, 4, 6) ≺ (1, 4, 6) ≺ (1, 2, 6) ≺ (7, 8, 9) ≺ (3, 8, 9) ≺
(1, 8, 9) ≺ (3, 4, 9) ≺ (1, 4, 9) ≺ (1, 2, 9).

The 5 equivalence classes of ΨA,1, with the representa-
tive of each class listed first in bold font, are {(3,4,6)},
{(1,4,6), (1, 2, 6)}, {(7,8,9)}, {(3,8,9), (3, 4, 9)}, and
{(1,8,9), (1, 4, 9), (1, 2, 9)}. The 2 equivalence classes of
Ψmin,A,1 are {(3,4,6)} and {(7,8,9)}. □

In Example 3, each equivalence class of Ψmin,A,k has
only one match. In general, the number of elements in an
equivalence class of Ψmin,A,k (ΨA,k) may be very large.

Lemma 1: Let A ∈ A, and Sk(A) be a possible pattern of
A. The number of equivalence classes of ΨA,k is no more than
m(m+1)/2. The number of equivalence classes of Ψmin,A,k

is no more than m, where m = |E|. □

3. COMPUTING REPRESENTATIVES MATCHES (PHASE 1)

In this section, we present Phase 1 of our two-phase scheme as
outlined in the previous section. We first present Algorithm 1
which can be used to compute a sequence Lmin,A,k of the
representatives for the equivalence classes of Ψmin,A,k, for
any given A ∈ A, and any k ∈ {0, 1, . . . , |S(A)|.

The data structures used in Algorithm 1 are as follows.
• c[] is an integer-valued 2-D array of m + 1 rows and
|Sk(A)| + 1 columns. The entry c[i, j], when computed,
is equal to |LCS(E(start : i), Sk(A)(1 : j))|. Here
LCS(X,Y) denotes a longest common subsequence of
X and Y , and |Z| denotes the length of sequence Z.

• Integer l is used to index the next match ψl ∈ Ψmin,A,k

found. At the end of the algorithm, l is the number of
equivalence classes of Ψmin,A,k.

• Lmin,A,k is a singly linked list, each node of which
is an array of |Sk(A)| integers, corresponding to the
|Sk(A)| indices of a match in Ψmin,A,k. The operation
Lmin,A,k.append appends a new node/match at the end.

The following is the flow of Algorithm 1. Lines 1 and 4
perform initialization. In particular, we initialize c[start−1, j]
to 0, which is |LCS(null, Sk(A)(1 : j))| for all j and all
start. We also initialize c[i, 0] to 0, which is |LCS(E(start :
i),null)| for all i and all start.

Algorithm 1: AkMatch(E, A, k)
Input: Sequence of device events E = (e1, e2, . . . , em), user

activity A, and integer k ∈ {1, |S(A)|}.
Output: List Lmin,A,k of all representatives of equivalence

classes of Ψmin,A,k, in increasing order w.r.t ≺.
1 η ← |Sk(A)|; Lmin,A,k ← null; l← 0; start← 1; i← 1;
/* finding a match of Sk(A) in E(start :m) */

2 for j := 0 to η do c[start− 1, j]← 0;
3 while i ≤ m do
4 c[i, 0]← 0;
5 for j := 1 to η do
6 if ei = eA,k

j then
7 c[i, j]← c[i− 1, j − 1] + 1;

8 else if c[i− 1, j] ≥ c[i, j − 1] then
9 c[i, j]← c[i− 1, j];

10 else c[i, j]← c[i, j − 1];

11 if c[i, η] = n then
/* a new match of Sk(A) is found */

12 l← l + 1; initialize ψl; row ← i; col← η;
13 while col > 0 do
14 if erow = eA,k

col then
15 ψl[col]←row; row←row−1; col←col−1;

16 else if c[row − 1, col] ≥ c[row, col − 1] then
17 row ← row − 1;

18 else col← col − 1;

19 Lmin,A,k.append(ψl);
20 start← ψl[1] + 1; i← start; goto 2;

21 i← i+ 1;

22 output Lmin,A,k.

In Line 1, we set both start and i to 1 and get ready to
compute the lightest minimal match of Sk(A) in E among
those whose interval is contained in [start,m]. Line 20 also
sets new values of start and i before control goes to Line 2
to start the computation of the next match in Ψmin,A,k.

In consecutive executions of the while loop in Line 3
with the same start value, we aim to compute the lightest
minimal match of Sk(A) in E among those whose intervals
are contained in [start,m], for the corresponding start value.
Note that start is initialized to 1 in Line 1, and updated to a
new (larger) value ψl[1] + 1 in Line 20 after the l-th match is
found. This update guarantees that the next match computed
will be different from any of the previously computed matches.

For each fixed value of i, we compute c[i, j] for j =
1, 2, . . . , n in the for loop of Line 5. The condition in Line 6
is true if and only if ei = eA,kj , indicating that we just
found a matched pair of events. Due to this match, we have
|LCS(E(start : i), Sk(A)(1 : j))| = 1+|LCS(E(start : i−1),
Sk(A)(1 : j − 1))|. Therefore in Line 7, we set c[i, j] ←
c[i − 1, j − 1] + 1 = |LCS(E(start : i − 1), Sk(A)(1 :
j − 1))| + 1 = |LCS(E(start : i), Sk(A)(1 : j))|. Otherwise,
c[i, j] is either set to c[i−1, j] in Line 9 or c[i, j−1] in Line 10
to guarantee c[i, j] = |LCS(E(start : i), Sk(A)(1 : j))|.

In Line 11, we check whether a match of Sk(A) in
E(start : i) is found. If this condition is not true, control
jumps to Line 21 where i is incremented and the statement of
the while loop is executed again if the new value of i does
not exceed m, and the algorithm outputs Lmin,A,k if the new
value of i exceeds m. If the condition in Line 11 is true, we

5

backtrack to trace out the newly found match of Sk(A) in
E(start : i) in Lines 12 to 19.

In Line 20, we update the values of start and i to ψl[1]+1
and ψl[1], respectively. In Line 2, we initialize the entries of
c[] in row start − 1 to 0 to prepare for the computation of
the lightest minimal match of Sk(A) in E(start : m). The
previous values in the overwritten rows are no longer needed.

Example 4: We use the example setting to illustrate the
execution of AkMatch(E, A2, 1), with the aid of Table 2.

TABLE 2
ILLUSTRATION OF AKMATCH(E, A2, 1)

0 1 2 3
a b c

0 0 0 0 0
start1 1 a 0 1 1 1

2 b 0 1 2 2
3 a 0,0 0, 1 0,2 0,2

start2 4 b 0,0 0,1 1, 2 1,2
5 d 0,0 0,1 1,2 1,2
6 c 0,0 0,1 1,2 2, 3

7 a 0,0 0, 1 0,1 0,2

start3 8 b 0,0 0,1 1, 2 1,2

9 c 0,0 0,1 1,2 2, 3

Pattern S1(A2) = (a, b, c) is on top, and sequence E =
(a, b, a, b, d, c, a, b, c) is on the left. To make things clear, we
use start1, start2, and start3 to denote the different start
values. We use black font for c[i, j] entries computed with
start1 = 1; red for c[i, j] entries computed with start2 = 4;
and blue for c[i, j] entries computed with start3 = 8. For
an entry that is written more than once, we use comma(s) to
separate these values, with newer values towards the left.

First, we set start to 1 (denoted by start1) and initialize
c[0, j] to 0 for 0 ≤ j ≤ 3. For i = 1, we have c[1, 0] = 0,
c[1, 1] = 1 (since e1 = eA

2,1
1 = a), c[1, 2] = 1, c[1, 3] = 1.

Similarly, we have c[2, 0]=0, c[2, 1]=1; c[2, 2]=2, c[2, 3]=2;
c[3, 0] = 0, c[3, 1] = 1; c[3, 2] = 2, c[3, 3] = 2; c[4, 0] = 0,
c[4, 1] = 1; c[4, 2] = 2, c[4, 3] = 2; c[5, 0] = 0, c[5, 1] = 1;
c[5, 2] = 2, c[5, 3] = 2; c[6, 0] = 0, c[6, 1] = 1; c[6, 2] = 2,
c[6, 3]=3. Now we have c[i, 3] = 3, with i = 6. This tells us
that there is a match of S1(A2) in E that lies within E(1 : 6).

The algorithm backtracks from cell [6, 3] to trace out the
lightest match of S1(A2) in E that lies within E(1 : 6). We
shade the cells on the backtracking path where we use green
background and a frame-box around the value of c[row, col]
if the condition in Line 14 is true, and use gray background
if the condition in Line 16 is true. In cell [6, 3], we set
ψ1[3] ← 6, and move to cell [5, 2]. In cell [5, 2], we move
to cell [4, 2]. In cell [4, 2], we set ψ1[2] ← 4, and move to
cell [3, 1]. In cell [3, 1], we set ψ1[1] ← 3, and move to cell
[2, 0]. This backtrack stops at cell [2, 0]. By now, we have
found ψmin,A

2,1
1 = (3, 4, 6). Note that there may be multiple

matches of S1(A2) in E that lie entirely in E(1 : 6). The match
(3, 4, 6) computed by our algorithm is minimal and the lightest
among these matches. In our example, (1, 4, 6) and (1, 2, 6)
also lie within E(1 : 6). As illustrated in Example 3, (3, 4, 6)
is minimal and is lighter than both (1, 4, 6) and (1, 2, 6).

Next, we set start ← ψmin,A
2,1

1 [1] + 1 = 4, and start the
computation of the next match. Since some of the cells will
be overwritten by the algorithm, we use red font for the values
computed with this new start value. We find c[9, 3] = 3, and

backtrack to find the next match ψmin,A
2,1

2 = (7, 8, 9), which
is the only match of S1(A2) in E that lies entirely in E(4 : 9).

Then, we set start ← ψmin,A
2,1

2 [1] + 1 = 8, and start the
computation of the next match. The cell values computed in
this round are in blue font. This time, the algorithm could not
find a match. In summary, the algorithm finds two matches of
S1(A2) in E: ψmin,A

2,1
1 = (3, 4, 6) and ψmin,A

2,1
2 = (7, 8, 9).

□
Theorem 1: For given E, A, and k, Algorithm 1 computes

list Lmin,A,k of all representatives of equivalence classes of
Ψmin,A,k, in increasing order defined by ordering ≺. The
worst-case running time of the algorithm is O(m2|Sk(A)|).□

Each match in ΨA,k can be used as a possible match of
the pattern Sk(A) of user activity A. In order to avoid double-
counting of a device event, we introduce the following concept.

Definition 5 (compatible matches): Let ψA,ki be a match
in ΨA,k for A ∈ A and k ∈ {1, |S(A)|}. Let ψA

′,k′

i′ be a
match in ΨA

′,k′ for A′ ∈ A and k′ ∈ {1, |S(A′)|}. We say
that ψA,ki and ψA

′,k′

i′ are compatible if the intervals of ψA,ki

and ψA
′,k′

i′ do not overlap, i.e.,
ψA,ki,1 > ψA

′,k′

i′,|Sk′ (A′)| or ψA,k
i,|Sk(A)| < ψA

′,k′

i′,1 . (4)

Let Ψ = ∪
A∈A,1≤k≤|S(A)|

ΨA,k be the set of all matches of

a pattern Sk(A) in E, for some user activity A ∈ A.
Assume that W > 0 is a given real number and that

for each i = 1, 2, . . . , |A| and each k = 1, 2, . . . , |S(Ai)|,
there is a nonnegative real number w(i, k) ≥ 0 such that∑|A|
i=1

∑|S(A)|
k=1 w(i, k) = W . For each ψA

i,k
j ∈ Ψ, we

associate a weight ψA
i,k

j .weight = w(i, k). Let Φ ⊆ Ψ be
a subset of Ψ. The weight of Φ is w(Φ) =

∑
ψAi,k

j ∈Φ
w(i, k).

Φ is said to be compatible if the elements in Φ are mutually
compatible.

We study the following optimization problem.
Problem 3 (MaxWCM(Φ, w)): Let W > 0 be given,

together with weights w(i, k) ≥ 0 for i = 1, 2, . . . , |A| and
k = 1, 2, . . . , |S(Ai)| such that

∑|A|
i=1

∑|S(Ai)|
k=1 w(i, k) = W .

Let Φ be a subset of Ψ. The weighted maximum compatible
match selection problem (MaxWCM) on (Φ, w) seeks for a
maximum weight compatible subset Φw,opt ⊆ Φ. □

We can apply Algorithm 1 to compute the list Lmin,Ai,k of
matches in Ψmin,A

i,k for i = 1, . . . , |A|, k = 1, . . . , |S(Ai)|.
Let Ψ = ∪

Ai∈A,1≤k≤|S(A)|
{ψA

i,k
j |ψA

i,k
j ∈ Lmin,Ai,k}. The

following theorem shows that an optimal solution of the
MaxWCM problem on (Ψ, w) is also an optimal solution of
the MaxWCM problem on (Ψ, w). Note that Ψ is a subset of
Ψ whose cardinality is much smaller than that of Ψ.

Theorem 2: The MaxWCM(Ψ, w) problem has an optimal
solution Ψw,opt ⊆ Ψ. Furthermore, such an optimal solution
can be obtained by solving the MaxWCM(Ψ, w) problem. □

Note that Ψ contains every match of SAi,k, for every
Ai ∈ A and every k ∈ {1 ≤ k ≤ |S(Ai)|}. Ψmin is a small
subset of Ψ, consisting of the minimal matches only. Ψ is a
small subset of Ψmin, consisting of the representatives of its
equivalence classes. Hence |Ψ| is much smaller than |Ψ| in
general. Theorem 2 shows that we do not lose any important

6

information by restricting our attention from the very large set
Ψ to the much smaller set Ψ.

4. INFERRING OPTIMAL SEQUENCE OF USER ACTIVITY
PATTERNS WITH A GIVEN WEIGHT (PHASE 2A)

In this section, we present an efficient algorithm for solving
the MaxWCM problem on (Ψ, w), for any given weight w. For
ease of presentation, we use a uniform representation of the
matches in Ψ, explained in the following.

We characterize each match ψmin,A
i,k

j ∈ Ψ by a 5-

tuple (i, k, α, β, w), where α = ψmin,A
i,k

j,1 = ψmin,A
i,k

j [1],

β = ψmin,A
i,k

j,|Sk(Ai)| = ψmin,A
i,k

j [|Sk(Ai)|], and ψmin,A
i,k

j .w is
the weight w(i, k) associated with Sk(Ai).

Let mi,k = |Lmin,Ai,k|, i = 1, . . . , |A|, k = 1, . . . , |S(Ai)|.
Let M =

∑|A|
i=1

∑|S(Ai)|
k=1 mi,k. Let M be a 1-D array of

M 5-tuples (i, k, α, β, w), each of which corresponds to a
match computed. We can sort the array M according to non-
decreasing value of β in O(M logM) time. Without loss
of generality, we assume that array M is already sorted.
We also assume that we have computed a 1-D array p of
M + 1 integers where p[0] = 0 and p[j] is the largest integer
t ∈ {0, 1, . . . , j − 1} such that M[t].β < M[j].α. Here we
use the technical convention that M[0].β = −∞. Algorithm 2
presents a solution for the MaxWCM(Ψ, w) problem.

Algorithm 2: OMatch(M, w)
Input: M: computed match of A in E; w: weight function
Output: Mw: max weight sequence of compatible matches

1 OPT [0]← 0;
2 for j = 1 to M do
3 if (M[j].w +OPT [p[j]] > OPT [j − 1]) then
4 OPT [j]← M[j].w +OPT [p[j]];

5 else OPT [j]← OPT [j − 1];

6 Mw ← null; j ←M ;
7 while j > 0 do
8 if (M[j].w +OPT [p[j]] > OPT [j − 1]) then
9 Mw.insert(M[j]); j ← p[j];

10 else j ← j − 1;

11 output Mw.

Theorem 3: Algorithm 2 computes a compatible subse-
quence Mw of user activity patterns in M with maximum total
weight. Its worst-case running time is O(M). □

Our solution to E2AP and E2A has the following flow.
For each Ai ∈ A, i = 1, 2, . . . , |A|, we know the pos-
sible patterns S(Ai) = {S1(Ai), S2(Ai), . . . , S|S(Ai)|(Ai)}.
Given the sequence E of device events, by repeated appli-
cations of Algorithm 1 for each Ai ∈ A, i = 1, 2, . . . , |A|
and each k ∈ {0, 1, 2, . . . , |S(Ai)|}, we can compute
Lmin,Ai,k of representative matches in Ψmin,A

i,k for each
i and k. The union of these lists is Ψ. Given the weights
w(i, k), we can apply Algorithm 2 to compute Mw. From
Mw, we obtain a sequence of |Mw| user activity pat-
terns Sw = (Sw[1], Sw[2], . . . , Sw[|Mw|]), where Sw[j] =

SAMw [j].i,Mw[j].k, j = 1, 2, . . . , |Mw|. Ignoring the pat-
terns, we obtain a sequence of |Mw| user activities Aw =
(Aw[1],Aw[2], . . . ,Aw[|Mw|]), where Aw[j] = AMw[j].i, j =

1, 2, . . . , |Mw|. We use Sw and Aw as our solutions for E2AP
and E2A, respectively.

Example 5: Let A = (A1, A2, A2) be a sequence of
user activities, where A1 and A2 are as in the example
setting. Applying the AkMatch algorithm, we get Lmin,A1,1 =
((1, 2), (3, 4), (7, 8)), Lmin,A2,1 = ((3, 4, 6), (7, 8, 9)), and
Lmin,A2,2 = ((1, 2), (3, 4), (7, 8)). Putting these 8 matches
into array M and sorting according to the β field, we have
M[1] = (1, 1, 1, 2, w(1, 1)), M[2] = (2, 2, 1, 2, w(2, 2)),
M[3] = (1, 1, 3, 4, w(1, 1)), M[4] = (2, 2, 3, 4, w(2, 2)),
M[5] = (2, 1, 3, 6, w(2, 1)), M[6] = (1, 1, 7, 8, w(1, 1)),
M[7] = (2, 2, 7, 8, w(2, 2)), M[8] = (2, 1, 7, 9, w(2, 1)).
We also have p[0] = p[1] = p[2] = 0, p[3] = p[4] = p[5] = 2,
p[6] = p[7] = p[8] = 5.

Suppose w(1, 1) = 1.4, w(2, 1) = 1.6, w(2, 2) = 0. The
OMatch algorithm will compute Mw = (M[1],M[5],M[8]).
Note that M[1] corresponds to S1(A1), M[5] corre-
sponds to S1(A2), and M[8] corresponds to S1(A2). This
leads to the sequence of user activity patterns Sw =
(S1(A1), S1(A2), S1(A2)) as a solution to E2AP and the
sequence of user activities Aw = (A1, A2, A2) as a so-
lution to E2A. Note that the edit distance between E and
S1(A1)∥S1(A2)∥S1(A2) is 1.

Suppose w(1, 1) = 1.6, w(2, 1) = 1.4, w(2, 2) = 0. The
OMatch algorithm will compute Mw = (M[1],M[3],M[6]).
This leads to the sequence of user activity patterns Sw =
(S1(A1), S1(A1), S1(A1)) as a solution to E2AP and the
sequence of user activities Aw = (A1, A1, A1) as a so-
lution to E2A. Note that the edit distance between E and
S1(A1)∥S1(A1)∥S1(A1) is 3. □

Example 5 shows that the value of the weights has a big
impact on the quality of Sw (Aw, respectively) as a solution to
E2AP (E2A, respectively). In Phase 2B, we use unsupervised
learning to compute a good weight, by minimizing a properly
defined loss function.

5. LEARNING OPTIMAL WEIGHTS (PHASE 2B)

In the previous section, we have seen that w uniquely decides
Mw, which in turn uniquely decides Sw and Aw, as our
solutions to E2AP and E2A, respectively. In general, Sw and
Sw′

(Aw and Aw′
, respectively) are not equally good solutions

to E2AP (E2A, respectively) when w ̸= w′, as illustrated in
Example 5.

In this section, we present an unsupervised learning ap-
proach to learn a proper weight assignment. Both supervised
and unsupervised learning can be used. Since the E2AP
problem asks for activity patterns rather than activities, we
can define a loss function that makes unsupervised learning
more adaptive. Hence we focus on unsupervised learning in
this paper. Due to space limitations, we leave the application
of supervised learning as well as distributed unsupervised
learning to this problem as future research directions.

In Section 5-A, we define the loss function as the edit
distance between E and the concatenation of the activity
patterns computed. The loss function is a non-differentiable
function of the continuous variables corresponding to the
weights. In Section 5-B, we design an exact algorithm to

7

minimize the loss function with all but one variable fixed. This
algorithm is used as a subroutine in Section 5-C to design a
coordinated descent algorithm to minimize the loss function.

A. Loss Function and Optimization Problem Formulation

Let Ew be the sequence of device events obtained by concate-
nating the activity patterns in Sw:

Ew = Sw[1]∥Sw[2]∥ · · · ∥Sw[|Mw|] . (5)
Without any knowledge of the ground truth, we define the
loss function for parameter w as the edit distance between
Ew and E, denoted by d(Ew,E). Here we assume that the
operations deletion, insertion, and substitution
all have costs equal to 1.

Let n = |A|; nj = |S(Aj)| for j = 1, 2, . . . , n; and N =∑n
j=1 nj . Then w consists of N variables. A natural approach

to obtaining the optimal values of w is to solve the following
optimization problem.
minimize

w
f(w) = d(Ew,E) (6)

subject to
n∑

i=1

|S(Ai)|∑
k=1

w(i, k) = N, (6a)

w(i, k) ≥ 0, ∀i = 1, . . . , n, ∀k = 1, . . . , |S(Ai)|. (6b)
Problem (6) is difficult to solve, as the objective function is

non-differentiable and non-convex [3]. In an effort to design
a coordinated descent algorithm for solving (6), we study
an optimization problem where we minimize the objective
function over one of the N variables. We formally define this
problem in the following, where w(i, k) is the variable, for a
chosen pair (i, k):

minimize
w(i,k)

f(w) = d(Ew,E) (7)

subject tow(i, k) ≥ 0. (7a)
We call (7) the 1-D problem, and (6) the N -D problem. We

present an exact algorithm for solving (7) and a coordinate
descent algorithm for solving (6).

B. Exact Algorithm for 1-D Optimization

We design an algorithm named SLN-1D that computes an
optimal solution of the 1-D problem, and list it as Algorithm 3.

Algorithm 3 performs many rounds of Algorithm 2, by
tracking the trend of the computed matches with the value
of w(i, k) taking on larger and larger values. Here M and p
are the same as in Algorithm 2.

The key observation behind the design of Algorithm 3 is
that the objective function f(w) in (7) is a step function of
w(i, k) with a finite number of different function values, each
of which is defined on an interval for w(i, k). We can evaluate
f(w) in an interior point and on the boundaries of each of
these intervals. We find the boundaries of these intervals by
performing a left-to-right scan.

We start the scan at w(i, k) = 0 (Line 1). For each value x
of w(i, k), we compute real numbers µ and ν where µ > x
and ν = x+µ

2 such that
(i) Mw does not change when w(i, k) is varying in the

interval (x, µ).
(ii) Mw will change when w(i, k) is increased from x to µ

or from x to µ plus an infinitesimal amount.

Algorithm 3: SLN-1D(M, w, i, k)
Input: M: computed match of A in E; w: weight vector; i,

k: index pair for variable w(i, k)
Output: xopt: optimal value for w(i, k); fopt: loss function

value with w(i, k) at optimal value
1 x← 0; xopt ← 0; w(i, k)← x; fopt ← f(w); Eold ← Ew;
2 OPT [0]← 0; a[0]← 0; σ ←∞;
3 for j := 1 to M do
4 if (M[j].A = Ai and M[j].k = k) then
5 δ[j]← 1; /* M[j].w is variable */

6 else
7 δ[j]← 0; /* M[j].w is constant */

8 if (M[j].w +OPT [p[j]] > OPT [j − 1]) then
9 OPT [j]← M[j].w +OPT [p[j]];

10 a[j]← a[p[j]] + δ[j];
11 if a[p[j]] + δ[j] < a[j − 1] then
12 σ ← min{σ, M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j]
};

13 else if (M[j].w+OPT [p[j]]<OPT [j−1]) then
14 OPT [j]← OPT [j − 1];
15 a[j]← a[j − 1];
16 if a[p[j]] + δ[j] > a[j − 1] then
17 σ ← min{σ, M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j]
};

18 else
19 if a[p[j]] + δ[j] ≤ a[j − 1] then
20 OPT [j]← OPT [j − 1];
21 a[j]← a[j − 1];

22 else
23 OPT [j]← M[j].w +OPT [p[j]];
24 a[j]← a[p[j]] + δ[j];

25 if σ =∞ then { σ ← 2; done← true; }
26 µ← x+ σ; ν ← x+ σ/2;
27 w(i, k)← ν; Enew ← Ew;
28 if (Enew ̸= Eold) or (ν = σ/2) then
29 fnew ← f(w); Eold ← Enew;
30 if fnew < fopt or (fnew = fopt and ν = σ/2) then
31 xopt ← ν; fopt ← fnew;

32 w(i, k)← µ; Enew ← Ew;
33 if (Enew ̸= Eold) then
34 fnew ← f(w); Eold ← Enew;
35 if fnew < fopt then { xopt ← µ; fopt ← fnew; }
36 if (not done) then { x← µ; goto 2; }
37 output xopt, fopt.

We evaluate f(w) by setting w(i, k) to ν and µ, respectively.
Then repeat the process with x set to µ, as long as such a µ
exists. When such a µ does not exist, we set µ← x+ 2 and
ν ← x+ 1, and evaluate f(w) by setting w(i, k) to ν and µ,
respectively. Lines 2-25 carry out the computation of σ = µ−x
for the current value of x. In Line 26, we set µ← x+ σ and
ν ← x + σ/2. Lines 27-35 perform the function evaluations
at ν and µ, and related book-keeping operations.

The computation of σ = µ − x from x is carried out by
operations similar to the operations in the dynamic program-
ming algorithm for weighted interval scheduling, i.e., Lines 1-
6 of Algorithm 2. There are additional operations needed to
compute σ.

Before proceeding with the explanation of the algorithm,
we describe the meaning of two variables: array δ[] and array
a[]. For j = 1, 2, . . . ,M , δ[j] = 1 if M[j].w is the variable

8

weight w(i, k), δ[j] = 0 otherwise. For j = 1, 2, . . . ,M , we
use a[j] to denote the number of selected matches/intervals
in the optimal solution of M(1 : j) whose weight is w(i, k),
when w(i, k) is set to x plus an infinitesimal amount.

In Line 2, we set OPT [0]← 0, a[0]← 0, σ ←∞. The for
loop in Lines 3-24 computes the values for δ[j], OPT [j], a[j],
and reduces σ accordingly. The body of the for loop starts
with the computation of δ[j] in Lines 4-7. This is followed
by three mutual exclusive parts: Lines 9-12 (when M[j].w +
OPT [p[j]] > OPT [j − 1]), Lines 14-17 (when M[j].w +
OPT [p[j]] < OPT [j− 1]), and Lines 19-24 (when M[j].w+
OPT [p[j]] = OPT [j − 1]).

When M[j].w + OPT [p[j]] > OPT [j − 1], the optimal
solution of M(1 : j) consists of M[j] and the optimal solution
of M(1 : p[j]). This will not change even when w(i, k)
is increased by an infinitesimal amount, due to the strict
inequality. Hence a[j] is computed according to Line 10. If
a[p[j]]+δ[j] < a[j−1], the inequality M[j].w+OPT [p[j]] >
OPT [j − 1] will no longer be true when w(i, k) is in-
creased by an amount equal to M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j] .
Therefore we set σ to the smaller of its current value and
M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j] in Line 12.
When M[j].w + OPT [p[j]] < OPT [j − 1], the optimal

solution of M(1 : j) is the optimal solution of M(1 : j − 1).
This will not change even when w(i, k) is increased by an
infinitesimal amount, due to the strict inequality. Hence a[j]
is computed according to Line 15. If a[p[j]] + δ[j] > a[j −
1], we will have M[j].w + OPT [p[j]] > OPT [j − 1] when
w(i, k) is increased by an amount equal to an infinitesimal plus
M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j] . Therefore we set σ to the smaller

of its current value and M[j].w+OPT [p[j]]−OPT [j−1]
a[j−1]−a[p[j]]−δ[j] in Line 17.

When M[j].w + OPT [p[j]] = OPT [j − 1], the optimal
solution of M(1 : j) is the optimal solution of M(1 : j −
1), with an objective function value equal to OPT [j − 1] =
M[j].w+OPT [p[j]]. If a[p[j]]+δ[j] ≤ a[j−1], we will have
M[j].w+OPT [p[j]] ≤ OPT [j−1] when w(i, k) is increased
by an infinitesimal amount. Note that M[j].w+OPT [p[j]] ≤
OPT [j − 1] implies that the optimal solution for M(1 : j) is
the optimal solution for M(1 : j − 1). Therefore we choose
the assignment of OPT [j] in Line 20 and set the value of a[j]
according to Line 21. If a[p[j]]+δ[j] > a[j−1], we will have
M[j].w+OPT [p[j]] > OPT [j−1] when w(i, k) is increased
by an infinitesimal amount. Note that M[j].w+OPT [p[j]] >
OPT [j − 1] implies that the optimal solution for M(1 : j)
consists of M[j] and the optimal solution for M(1 : p[j]).
Therefore we choose the assignment of OPT [j] in Line 23
and set the value of a[j] according to Line 24.

If we find σ =∞ in Line 25, we know that x is the left end
of the rightmost interval for w(i, k). However, we do not know
whether the function is right-continuous at x. Therefore, we set
σ to 2 (which can be replaced by any other positive number).
In Line 26, we set µ ← x+ σ and ν ← x+ 0.5σ. Lines 27-
35 are straightforward which do not need explanation. If the
current x is not the left end of the rightmost interval, we set
x← µ and repeat the process.

Theorem 4: For any given value of w and index pair (i, k),
Algorithm 3 terminates with an optimal solution to (7). The

worst-case time complexity of Algorithm 3 is O(M2). □

C. Coordinate Descent for N -D Optimization
The optimization problem defined by (6) is difficult to
solve for two reasons: (i) The objective function is non-
differentiable; (ii) The optimization problem is non-convex.
Therefore we tackle the problem via a round-robin coordinate
descent approach. This is presented in Algorithm 4.

Algorithm 4: SLN-ND(M)
Input: M: representative minimal matches of A in E.
Output: w: optimal weight vector; Sw: corresponding

solution to E2AP.
/* initialization */

1 for i := 1 to n do {for k := 1 to ni do w[i, k]← 1;}
2 done← false; fopt ← f(w);
/* coordinate descent */

3 while (done = false) do
/* normalize the weights */

4 W ← 0;
5 for i := 1 to n do
6 for k := 1 to ni do W ←W + w[i, k];

7 for i := 1 to n do
8 for k := 1 to ni do w[i, k]← N×w[i,k]

W
;

9 done← true;
10 for i := 1 to n do

/* 1D minimization */
11 for k := 1 to ni do
12 xold ← w(i, k);
13 xnew ← argmin

w(i,k)≥0

f(w); fnew ← f(w);

14 if fnew < fopt then
15 done←false; w(i, k)←xnew; fopt←fnew;

16 else w(i, k)← xold;

17 output w, Sw.

The following explains the main steps of Algorithm 4.
Line 1 performs the initialization of the weights. It then
performs coordinate descent until convergence. Lines 4-8
perform normalization so that the N non-negative weights sum
up to N . Instead of normalizing after each one-dimensional
minimization, we normalize it after one round-robin over all
N variables. Lines 10-16 perform one round of coordinated
descent. For each (i, k), we perform 1-D minimization of f(w)
over w(i, k) by calling Algorithm 3.

Example 6: Assume the same setting as in Example 5. Let
M contain the 8 matches computed. We apply Algorithm 4 to
this setting, with the initial weights w(1, 1) = 1, w(2, 1) = 1,
w(2, 2) = 1. The objective function value is f(w) = 3, with
Mw = (M[1],M[3],M[6]).

Algorithm 4 performs minimization over w(1, 1), there is
no improvement. It then performs minimization over w(2, 1).
The objective function value is reduced to 1 with w(1, 1) = 1,
w(2, 1) = 2, w(2, 2) = 1. It then performs minimization
over w(2, 2), there is no improvement. After normaliza-
tion, we have w(1, 1) = 3

4 , w(2, 1) = 3
2 , w(2, 2) = 3

4 .
The algorithm performs minimization over w(1, 1), w(2, 1),
and w(2, 2). None of these produce any improvement. The
algorithm terminates, with w(1, 1) = 3

4 , w(2, 1) = 3
2 ,

w(2, 2) = 3
4 ; f(w) = 1; Mw = (M[1],M[5],M[8]); and

Sw = (S1(A1), S1(A2), S1(A2)). □

9

Theorem 5: Algorithm 4 stops after a finite number of
iterations. Let w be the weight at the end of the algorithm.
Then f(w) cannot be reduced by minimizing over any single
variable w(i, k). □

Algorithm 4 does not guarantee finding an optimal solution
to (6). Similar to most machine learning algorithms [14],
Algorithm 4 produces a solution to the (6) that cannot be
improved by optimizing along any of the coordinates. We do
not know a theoretical bound on the performance gap of the
algorithm. However, our extensive experiments (presented in
Section 6) show that the algorithm performs well.

Besides proving that the algorithm converges in a finite
number of iterations, we do not have a theoretical bound on
the worst-case running time of the algorithm. Given the non-
convex nature of the problem, it is unlikely to compute an
optimal solution in polynomial time.

6. PERFORMANCE EVALUATIONS

We implemented our scheme and compared it with IoTMo-
saic [18]. We did not compare our proposed solution with [12]
or Peek-a-Boo [1], since many devices used in [12] are simple
sensors without Internet connectivity and Peek-a-Boo [1]
infers user activities from the states of devices and sensors,
rather than solely from the sequence of device events. We use
E2AP to denote our scheme, and IoTMosaic to denote the
scheme in [18]. We studied the performance on both real data
from our smart home testbed, and synthetic data generated
following the patterns observed in the real data.

In Section 6-A, we present the evaluation setup and metrics.
In Section 6-B, we present our evaluation results and our
observations/analyses. These results show that E2AP exhibits
high accuracy and stability, and outperforms IoTMosaic.

A. Evaluation Setup and Metrics

We used the data collected from a smart home, involving 21
distinct user activities and 25 distinct device events from 11
different IoT devices. We refer the readers to [18] for detailed
descriptions of the experiment setup.

Experimental data were collected over a period of two
months, with a total of 2, 959 user activities, and 15,420
corresponding device events (computed from network traffic
using IoTAthena [17]). We call these data real data and denote
them as real. We study three cases: (i) 387 user activities
(2, 013 events) in the first week, (ii) 1, 494 user activities
(7, 934 events) in the first month, (iii) 2, 959 user activities
(15, 420 events) throughout the experiment. In the real data,
two device events from two IoT devices (Ring doorbell and
Ring spotlight) could be delayed, due to devices on sleep
mode. No device malfunctioned during the experiment.

We also wrote a test case generator, based on the charac-
teristics of the real data collected. In addition to delayed
device events, we added scenarios where up to two devices
malfunctioned during part of the time. We call these data
synthetic data, and denote them by synth where no devices
malfunctioned, and by synth-MF where up to two devices
malfunctioned during part of the time.

We ran E2AP and IoTMosaic on both the real data and
the synthetic data. Let E denote the input sequence of device
events, A denote the input sequence of user activities, w
denote the weight vector computed, Sw denote the sequence
of activity patterns computed, Ew denote the sequence of
device events by the concatenation of the elements of Sw,
and Aw denote the sequence of user activities computed. For
IoTMosaic, we measure the number of undetected user
activities (denoted by FN), the number of falsely detected
user activities (denoted by FP), and the accuracy. For E2AP,
we measure the edit distance between Ew and E (denoted
by d(E)), the edit distance between Aw and A (denoted by
d(A)), the number of undetected user activities (denoted by
FN), the number of falsely detected user activities (denoted
by FP), and the accuracy. Since d(E) and d(A) tend to
increase as the lengths of the sequences increase, we introduce
dN (E) = d(E)/|E| and dN (A) = d(A)/|A| as a form of
normalization.

B. Evaluation Results and Observations

Table 3 shows the evaluation results. For each of the three
sizes for real data (first week, first month, two months), the
corresponding entries in the table are the results of a single
run of the denoted algorithm. For each of the five sizes for
synth and synth-MF, we generated 100 test cases. These
100 test cases have the same number of user activities, but have
different sequences of user activities (as these are randomly
generated), hence having a different number of device events
(as the device events are triggered by different user activities).
Each entry for #Event shows the minimum and maximum
numbers of events (over 100 test cases). All other entries are
the average over 100 test cases. We observe that E2AP has a
higher accuracy than IoTMosaic and exhibits more stability.

E2AP: synth E2AP: synth-MF
IoTMosaic: synth IoTMosaic: synth-MF

0 10 20 30 40 50 60 70 80 90 100
0.70

0.75

0.80

0.85

0.90

0.95

1.00

index of test cases

ac
cu
ra
cy

Fig. 1. Performances of E2AP and IoTMosaic on synth/synth-MF
test cases where each test case consists of a distinct sequence of 2959 user
activities and a corresponding sequence of device events. Each dot in the
figure shows the accuracy achieved by the indicated algorithm on a distinct
test case.

Fig. 1 illustrates the accuracy of IoTMosaic and E2AP
on 200 synthetically generated test cases (100 test cases with
device malfunctions, and 100 test cases without device mal-
functions) where each test case consists of a distinct sequence
of 2, 959 user activities and a corresponding sequence of
device events, following the distribution of our real data. The
lengths of the sequences of device events vary between 13, 382
and 14, 264, as shown in Table 3.

We observe that both IoTMosaic and E2AP are quite
accurate. However, E2AP is consistently more accurate
than IoTMosaic. For the 100 test cases without device
malfunctions, the accuracies of E2AP fall in the interval

10

TABLE 3
RESULTS ON REAL DATA (ONE CASE PER ROW) AND SYNTHETIC DATA (AVERAGE OVER 100 CASES PER ROW)

Data Type #Act #Event IoTMosaic (k ≤ 5) E2AP
FN FP Accuracy FN FP Accuracy d(A) dN (A) d(E) dN (E)

real (week) 387 2013 6 2 97.92% 2 2 98.97% 4 0.0103 22 0.0109
real (month) 1494 7934 32 13 96.98% 2 12 99.06% 14 0.0094 104 0.0131
real (full) 2959 15420 42 18 97.97% 2 16 99.39% 18 0.0061 142 0.0092
synth 387 [1666, 1941] 38.76 0.44 88.77% 1.50 0.82 99.61% 1.52 0.0039 2.62 0.0014
synth 1494 [6708, 7202] 147.50 0.92 88.99% 5.23 2.58 99.60% 5.96 0.0040 10.58 0.0015
synth 2959 [13382, 14264] 290.08 1.36 89.09% 9.27 4.58 99.60% 11.05 0.0037 20.33 0.0015
synth 10000 [46122, 47496] 984.61 4.67 89.04% 29.77 12.41 99.60% 40.46 0.0040 73.21 0.0016
synth 30000 [139427, 141632] 2936.63 12.31 89.11% 82.91 33.19 99.61% 117.04 0.0039 212.84 0.0015
synth-MF 387 [1337, 1590] 49.45 19.49 81.69% 3.90 3.38 98.33% 6.47 0.0167 1.99 0.0013
synth-MF 1494 [5645, 6009] 183.28 68.78 82.60% 10.89 8.44 98.32% 25.02 0.0167 8.50 0.0015
synth-MF 2959 [11161, 11855] 361.27 137.15 82.64% 19.10 14.62 98.05% 47.07 0.0159 15.67 0.0014
synth-MF 10000 [38312, 39401] 1221.87 460.44 82.65% 54.78 39.67 98.44% 155.74 0.0156 53.31 0.0014
synth-MF 30000 [115946, 117785] 3648.52 1385.25 82.71% 156.95 111.75 98.45% 465.13 0.0155 160.43 0.0014

[99.09%, 99.97%] with a mean of 99.63% and a standard
deviation of 0.0016, compared to that of IoTMosaic in
the interval [87.28%, 90.78%] with a mean of 89.09% and
a standard deviation of 0.0063. For the 100 test cases with
device malfunctions, the accuracies of E2AP fall in the interval
[97.70%, 99.02%] with a mean of 98.41% and a standard
deviation of 0.0030, compared to that of IoTMosaic in
the interval [80.11%, 85.31%] with a mean of 82.65% and
a standard deviation of 0.0103.

The advantage of E2AP over IoTMosaic is more signif-
icant over the combined 200 test cases. The accuracies of
E2AP fall in the interval [97.70%, 99.97%] with a mean of
99.02% and a standard deviation of 0.0066, compared to that
of IoTMosaic in the interval [80.11%, 90.78%] with a mean
of 85.87% and a standard deviation of 0.0333. We observe that
E2AP is 15% more accurate than IoTMosaic and 5 times
more stable than IoTMosaic.

As we discussed earlier, IoTMosaic gives higher priorities
to exact matches of a signature over partial matches of a
signature. When a device malfunctions, events corresponding
to this malfunctioned device will not appear in the observed
sequence of device events. Therefore, in the presence of
malfunctioning devices, a user activity may only trigger a
subsequence of its full signature. Therefore the number of
exact matches will be reduced. This is the root cause for
the lower accuracy and higher instability of IoTMosaic. In
contrast, E2AP can intelligently adapt to such situations by
learning the proper weights for all possible patterns.

We conducted more experiments with different synthetic
datasets, and found that the results are consistent with those
presented in Table 3 and Fig. 1. In a nutshell, E2AP is consis-
tently accurate and stable across different experiment scenarios
and varying test cases. On the other hand, the accuracy of
IoTMosaic decreases when the number of missing events
increases, which conforms to our analysis above.

7. CONCLUSIONS

In this paper, we studied the problem of inferring a sequence
of user activities together with their patterns from a sequence
of device events in a smart home setting. We designed a novel
two-phase scheme for solving this problem. A key contribution
of this paper is the unsupervised learning algorithm which
helps make the inference more adaptive to varying scenarios.
No existing algorithm can be directly applied to minimize

the non-differentiable and non-convex loss function for our
problem. We designed a novel algorithm for minimizing the
loss function over one variable, which is a central component
in our unsupervised learning algorithm. Extensive evaluations
show that our algorithm is significantly more robust and accu-
rate than the state-of-the-art algorithm. Future work includes
evaluating the limitations of our scheme in more smart homes
as well as exploring its applications in home security. Another
line of research is to explore other machine learning techniques
to solve this problem.

REFERENCES

[1] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miet-
tinen, H. Aksu, M. Conti, A.-R. Sadeghi, and S. Uluagac,
“Peek-a-Boo: I see your smart home ativities, even en-
crypted!” in Proc. of ACM WiSec, 2020.

[2] V. Bhosale, L.-D. Carli, and I. Ray, “Detection of anoma-
lous user activity for home IoT devices,” in Proc. of
IoTBDS, 2021.

[3] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

[4] H. Chi, Q. Zeng, X. Du, and L. Luo, “PFirewall:
Semantics-aware customizable data flow control for home
automation systems,” in Proc. of NDSS, 2021.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press, 2009.

[6] S. Feng, P. Setoodeh, and S. Haykin. “Smart home:
Cognitive interactive people-centric internet of things,”
IEEE Communications Magazine, 55(2):34 – 39, 2017.

[7] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-aware
anomaly detection for appified smart homes,” in Proc. of
USENIX Security, 2021.

[8] J. Kleinberg and E. Tardos, Algorithm Design. Pearson
Education, 2006.

[9] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric, “All things
considered: An analysis of IoT devices on home net-
works,” in Proc. of USENIX Security, 2019.

[10] F. S. Lesani, F. F. Ghazvini, and H. Amirkhani, “Smart
home resident identification based on behavioral patterns
using ambient sensors,” Springer Personal and Ubiquitous
Computing, 25:151–162, 2019.

[11] T. OConnor, R. Mohamed, M. Miettinen, W. Enck,
B. Reaves, and A.-R. Sadeghi, “HomeSnitch: Behavior

11

transparency and control for smart home IoT devicess,”
in Proc. of ACM WiSec, 2019.

[12] P. Rashidi, D. J. Cook, L. B. Holder, and M. Schmitter-
Edgecombe, “Discovering activities to recognize and track
in a smart environment,” IEEE Transactions on Knowledge
and Data Engineering, 23(4):527–539, 2011.

[13] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari,
R. Kolcun, and H. Haddadi, “Information exposure from
consumer IoT devices: A multidimensional, network-
informed measurement approach,” in ACM IMC, 2019.

[14] S. Sun, Z. Cao, H. Zhu, and J. Zhao. “A survey of op-
timization methods from a machine learning perspective,”
IEEE Trans. on Cybernetics, 50(8):3668–3681, 2020.

[15] R. Trimananda, J. Varmarken, A. Markopoulou, and
B. Demsky, “PingPong: Packet-level signatures for smart
home device events,” in Proc. of NDSS, 2019.

[16] B. van der Waerden, Modern Algebra, 2nd ed. 1949.
[17] Y. Wan, K. Xu, F. Wang, G. Xue, “IoTAthena: Unveiling

IoT device activities from network traffic,” IEEE Trans.
on Wireless Communications, 21(1): 651-664, 2021.

[18] Y. Wan, K. Xu, F. Wang, and G. Xue, “IoTMosaic:
Inferring user activities from IoT network traffic in smart
homes,” in Proc. of IEEE INFOCOM, 2022.

[19] R. Want, B. Schilit, and S. Jenson, “Enabling the Internet
of Things,” Computer, 48(1):28 – 35, 2015.

[20] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and
H. Zhu, “HoMonit: Monitoring smart home apps from
encrypted traffic,” in Proc. of ACM CCS, 2018.

APPENDIX

Proof of Lemma 1: By Definition 3, two matches of Sk(A)
in E are equivalent if and only if their intervals are the same.
Each interval must be in the form [α, β] where α and β are
integers such that 1 ≤ α ≤ β ≤ m. The number of such
intervals is m(m+ 1)/2. This proves the upper-bound on the
number of equivalence classes of ΨA,k.

Let ψmin,A,ki and ψmin,A,ki′ be two non-equivalent ele-
ments of Ψmin,A,k. Let [α, β] and [α′, β′] be the intervals of
ψmin,A,ki and ψmin,A,ki′ , respectively. We claim that α ̸= α′.
Suppose to the contrary that α = α′. If β = β′, we conclude
that ψmin,A,ki ≡ ψmin,A,ki′ ; If β < β′, we conclude that
ψmin,A,ki′ is not minimal; If β > β′, we conclude that ψmin,A,ki

is not minimal. Therefore we have proved that α ̸= α′.
This fact implies that the number of equivalence classes of
Ψmin,A,k is upper-bounded by m. □
Proof of Theorem 1: Algorithm 1 is a modification of the
algorithm for computing an LCS of two sequences E(start :
m) and Sk(A). The difference lies in (i) we are only interested
in computing an LCS that is identical to Sk(A), not any proper
subsequence of Sk(A); and (ii) we compute multiple matches,
rather than one. Therefore we omit the details that are well-
known in the correctness of the algorithm for LCS [5].

We use η to denote |Sk(A)|. Computing one LCS requires
O(mη) time in the worst-case. The algorithm computes O(m)
LCSs. Hence the worst-case running time is O(m2η).

If LCS(E, Sk(A)) ̸= Sk(A), Algorithm 1 outputs a null list,
as Ψmin,A,k = ΨA,k = ∅ in this case. In the rest of the proof,

we assume LCS(E, Sk(A)) = Sk(A). Hence the condition in
Line 11 is true at least once during the execution.

Each time when the condition in Line 11 is true, we know
that E(start : i− 1) contains no subsequence that is identical
to Sk(A), and that E(start : i) contains a subsequence that is
identical to Sk(A). Therefore Lines 12-19 correctly compute a
match ψl = (ψl[1], ψl[2], . . . , ψl[η]) of Sk(A) in E(start : i).

Let x15 and x18 denote the number of times Line 15 and
Line 18 are executed (with start and l fixed), respectively.
Since control enters the while loop in Line 13 with col
initialized to η, and exits the while loop when col is reduced
to 0, we have x15 + x18 = η. Because a match of Sk(A) in
E is found that lies entirely in E(start : i), we have x15 = η.
Hence x18 = 0. In other words, between the executions of
Line 12 and Line 19, Line 15 is executed exactly η times, and
Line 18 is executed zero times.

When we trace out a newly computed match of Sk(A) in
E, we first initialize row to i and col to η. If erow = eA,kcol , we
decrement both row and col by 1. Otherwise, we decrement
row by 1 and keep col unchanged. Therefore, the match we
trace out is the lightest among all matches of Sk(A) in E that
lie entirely in E(start, i).

When the condition in Line 11 becomes true for the first
time, we know that there is no match of Sk(A) in E that
lies within E(start : i) = E(1 : i). Therefore ψ1 =
(ψ1[1], ψ1[2], . . . , ψ1[η]) is the lightest match of Sk(A) in E,
which implies that it is minimal. Let ϕ = (ϕ[1], ϕ[2], . . . , ϕ[η])
be any minimal match of Sk(A) in E that is not equivalent to
ψ1, we must have ϕ[1] ≥ ψ1[1] + 1. Therefore ψ2 computed
by our algorithm is the lightest minimal match of Sk(A) in
E that is not equivalent to ψ1. Similarly, ψ3 computed by our
algorithm is the lightest minimal match of Sk(A) in E that is
not equivalent to ψ1 or ψ2. In general, ψl computed by our
algorithm is the lightest minimal match of Sk(A) in E that is
not equivalent to ψj for j = 1, 2, . . . , l−1. This completes the
proof of the theorem. □
Proof of Theorem 2: Let Ψmin =

∪
Ai∈A,1≤k≤|S(Ai)|

Ψmin,A
i,k. We first prove that there is

an optimal solution Ψw,opt of the MaxWCM(Ψ, w) problem
such that Ψw,opt ⊆ Ψmin.

Let Ψw,opt be an arbitrary optimal solution for the
MaxWCM(Ψ, w) problem. If Ψw,opt ⊆ Ψmin, there is noth-
ing to be proved. Let ψA

i,k
j be a match in Ψw,opt such that

ψA
i,k

j ∈ ΨA
i,k \Ψmin,Ai,k. Let ψA

i,k
j′ be a minimal match of

S(Ai) in E such that [ψA
i,k

j′ [1], ψA
i,k

j′ [|Sk(Ai)|] is a proper sub-

interval of [ψA
i,k

j [1], ψA
i,k

j [|Sk(Ai)|]. Since the two matches
have the same weight w(i, k), we can obtain another optimal
solution by replacing ψA

i,k
j with ψA

i,k
j′ . Therefore, we can ob-

tain another optimal solution to the MaxWCM(Ψ, w) problem
with one fewer non-minimal match than Ψw,opt. Repeating
this process for each non-minimal match in Ψw,opt, we will
obtain an optimal solution to the MaxWCM(Ψ, w) problem
consisting of matches in Ψmin only.

WLOG, we will assume that Ψw,opt⊆Ψmin in the rest of
this proof. Next, we show that we can transform the optimal
solution Ψw,opt to another optimal solution Ψw,opt ⊆ Ψ.

12

Suppose there is an element ψmin,A
i,k

j ∈ Ψw,opt that

is not in Ψ. Let ψmin,A
i,k

jlightest
be the lightest element in the

equivalence class which contains ψmin,A
i,k

j . Then we can

replace ψmin,A
i,k

j with ψmin,A
i,k

jlightest
. This transformation does

not destroy compatibility (since ψmin,A
i,k

jlightest
and ψmin,A

i,k
j have

the same interval), nor does it change the weight of the set
(since ψmin,A

i,k
jlightest

and ψmin,A
i,k

j have the same weight w(i, k)).

Note that ψmin,A
i,k

jlightest
∈ Ψ. Therefore, through a finite number

of such transformations, we can transform the optimal solution
Ψw,opt to another optimal solution Ψw,opt′ ⊆ Ψ. □
Proof of Theorem 3: Algorithm 2 is the dynamic program-
ming algorithm for weighted interval scheduling [8]. □
Proof of Theorem 4: Algorithm 3 starts with setting w(i, k)
to 0, the minimum possible value for w(i, k). It then scans
left-to-right to evaluate function values at chosen points.

Suppose that we are at a current value x ≥ 0 of w(i, k).
We perform the dynamic programming algorithm for weighted
interval scheduling to compute a set of matches for the interval
scheduling problem of M(1 : j) for j = 1, 2, . . . ,M .

In addition to computing the current set of intervals, we also
check the trend when w(i, k) is increased by an infinitesimal
amount. For this purpose, we use a[j] to denote the number
of selected intervals for M(1 : j) whose weight is w(i, k). If
we find M[j].w +OPT [p[j]] > OPT [j − 1] in Line 8, M[j]
is selected in the optimal solution for M(1 : j). However,
if the condition in Line 11 is also true, then the condition
in Line 8 will no longer be true if w(i, k) is increased from
its current value of x to x + M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j] plus
an infinitesimal amount. Therefore we add a corresponding
upper-bound on σ in Line 12.

If we find M[j].w + OPT [p[j]] < OPT [j − 1] in Line 8,
M[j] is not selected in the optimal solution for M(1 : j),
and control goes to Line 14. However, if the condition in
Line 16 is also true, then the condition in Line 8 will
become true if w(i, k) is increased from its current value
of x to x + M[j].w+OPT [p[j]]−OPT [j−1]

a[j−1]−a[p[j]]−δ[j] plus an infinitesimal
amount. Therefore we add a corresponding upper-bound on σ
in Line 17.

In Lines 19-24, we set the correct value of a[j] to reflect
the trend of change of Mw when w(i, k) is increased from its
current value of x by an infinitesimal amount.

Algorithm 3 considers all possible cases of the upper bound.
If the condition in Line 25 is true, we have reached the right
end. Otherwise, we need to continue the left-to-right scan.

Given the discrete feature of the dynamic programming
algorithm, we do not know whether the function is left con-
tinuous or right continuous at the boundary points. Therefore
we also evaluate the function value at the mid-point of x and
µ, which is ν. Since the function only takes O(M) different
values, the goto statement in Line 36 is executed O(M) times.
Since the execution of Line 2 to Line 35 uses O(M) time, the
algorithm has a worst-case time complexity O(M2). □
Proof of Theorem 5: Let w[0] be the initial weight vector.
f(w[0]) is a non-negative integer. Whenever the algorithm
finds an improved solution, the objective function value is
reduced by at least 1. Therefore the algorithm is guaranteed

to terminate. When the algorithm terminates, it must be at a
weight vector from which the objective function value cannot
be improved by minimization over any of the N variables.
This proves the theorem. □

Guoliang Xue (Member 1996, Senior Member
1999, Fellow, 2011) is a Professor of Computer
Science at Arizona State University. His research
interests span the areas of wireless networking, se-
curity and privacy, and optimization. He received the
IEEE Communications Society William R. Bennett
Prize in 2019. He has served as VP-Conferences of
the IEEE Communications Society, and an editor
for IEEE Transactions on Mobile Computing and
IEEE/ACM Transactions on Networking. He is the
Steering Committee Chair of IEEE INFOCOM.

Yinxin Wan (Student Member 2020) received his
B.E degree in Information Security from University
of Science and Technology of China in 2018. He
is currently a Ph.D. student of Computer Science
at Arizona State University. His research interests
include cyber security, the Internet of Things, and
data-driven networked systems.

Xuanli Lin (Student Member 2022) received his
B.S. and M.S. degrees in Computer Science from
Arizona State University in 2018 and 2020, respec-
tively. He is currently a Ph.D. student of Computer
Science at Arizona State University. His research in-
terests include network optimization, machine learn-
ing, and the Internet of Things.

Kuai Xu (Member 2008, Senior Member 2015) is
a Professor at Arizona State University. He received
B.S. and M.S. degrees in Computer Science from
Peking University, China in 1998 and 2001, and
received Ph.D. degree in Computer Science from the
University of Minnesota in 2006. His research inter-
ests include network security, Internet measurement,
big data, data mining, and machine learning. He is
a member of ACM and a senior member of IEEE.

Feng Wang (Member 2007) received the B.S. degree
from Wuhan University in 1996, the M.S. degree
from Peking University in 1999, and the Ph.D.
degree from University of Minnesota, Twin Cities
in 2005, all in Computer Science. She is currently a
Professor with School of Mathematical and Natural
Sciences, Arizona State University. Her research
focuses on network science, social media analysis,
network optimization, network security, and wireless
sensor networks.

