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Abstract. In 1995, C. I. Christov and M. G. Velarde introduced the concept of a dissipative soliton in a long-wave thin-film
equation [Physica D 86, 323–347]. In the 25 years since, the subject has blossomed to include many related phenomena. The
focus of this short note is to survey the conceptual influence of the concept of a “production-dissipation (input-output) energy
balance” that they identified. Our recent results on nonlinear periodic waves as dissipative solitons (in a model equation for
a ferrofluid interface in a parallel-flow rectangular geometry subject to an inhomogeneous magnetic field) have shown that the
classical concept also applies to nonlocalized (specifically, spatially periodic) nonlinear coherent structures. Thus, we revisit the
so-called KdV-KSV equation studied by C. I. Christov and M. G. Velarde to demonstrate that it also possesses spatially periodic
dissipative soliton solutions. These coherent structures arise when the linearly unstable flat film state evolves to sufficiently large
amplitude. The linear instability is then arrested when the nonlinearity saturates, leading to permanent traveling waves. Although
the two model equations considered in this short note feature the same prototypical linear long-wave instability mechanism, along
with similar linear dispersion, their nonlinearities are fundamentally different. These nonlinear terms set the shape and eventual
dynamics of the nonlinear periodic waves. Intriguingly, the nonintegrable equations discussed in this note also exhibit multiperiodic
nonlinear wave solutions, akin to the polycnoidal waves discussed by J. P. Boyd in the context of the completely integrable KdV
equation.

INTRODUCTION

According to C. I. Christov and M. G. Velarde [1], dissipative solitons are localized solutions of nonconservative
nonlinear evolution (or wave) equations. To illustrate the concept, consider the original example of the (suitably
nondimensionalized) Korteweg–de Vries–Kuramoto–Sivashinsky–Velarde (KdV-KSV) partial differential equation
(PDE):

ηt +2a1ηηx +a3ηxxx︸ ︷︷ ︸
KdV

+a2ηxx +a4ηxxxx︸ ︷︷ ︸
KS

+a5(ηηx)x︸ ︷︷ ︸
Velarde

= 0, x ∈Ω, t > 0, (1)

where the diffusion coefficients are positive, a2,4 > 0, and Ω⊂ R. In equation (1), η = η(x, t) generically represents
the dimensionless elevation of a thin film’s free surface. The KdV terms in equation (1) are perturbed by the two
prototypical terms from the KS equation, and an extra term due to Velarde and co-workers (see, e.g., [2, 3]) captures
the Marangoni effect (flow driven by surface tension gradients). More generally, Eq. (1) represents a model equation
for wavy viscous flow, capturing the leading-order effects on the evolution of the film’s free surface [4] (see also [5]
for discussion and background on the gravity-driven case).

By the so-called energy method [6], one can form a “budget” for E (t) := 1
2
∫

Ω
η(x, t)2 dx by multiplying Eq. (1) by

η(x, t) and integrating over Ω:

dE

dt
= a2

∫
Ω

η
2
x dx︸ ︷︷ ︸

production

+a5

∫
Ω

ηη
2
x dx−a4

∫
Ω

η
2
xx dx︸ ︷︷ ︸

dissipation

. (2)

Equation (2) is, in fact, a balance law describing the competition of production and dissipation (recalling the positive
signs of a2,4 > 0 were fixed above). Importantly, the middle term in the balance in Eq. (2) has an indefinite sign. In
other words, this term can be positive or negative (i.e., be production or dissipation) depending on the spatiotemporal
evolution of η(x, t). Further, it follows that Eq. (1) is nonconservative because dE /dt does not vanish identically ∀η .
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The domain of integration has not been explicitly specified to allow for the consideration of two cases in which
the boundary contributions (after integration by parts) vanish: (i) Ω = R and asymptotic boundary conditions
(η ,ηx,ηxx, . . . → 0 as |x| → ∞), and (ii) Ω = [0,2π] and periodic boundary conditions (η ,ηx,ηxx, . . . |x=2π

x=0 = 0).
Only the first case was considered in the original paper [1]. In this short note, we consider the second case.

Although originally framed in the context of the nonlinear evolution equation (1), the dissipative soliton concept
applies equally well to nonlinear wave equations, which support bidirectional propagation [7, 8, 9]. In a paper in the
same special issue as [1], M. Bode and H.-G. Purwins [10] discussed dissipative solitons in the context of pattern
formation in reaction-diffusion systems. This latter topic has become well developed over the years [11], but it is
beyond the scope of the present discussion focusing on model nonconservative equations of nonlinear dispersive
waves.

C. I. Christov and M. G. Velarde [1], considered two situations. In the first case, 0 < a2,4,5� 1, and the nonconser-
vative terms are a small perturbation to KdV. In this case, “Zabusky and Kruskal’s soliton concept is extended in two
directions: [first] to “long” transients practically “permanent” and solitonic”. Specifically, taking a2,4,5 = O(ε), the
so-called sech2 soliton solution of KdV was shown to persist in KdV-KSV for long times, up to t = O(ε−1). Second,
the more interesting case is when the right-hand side of Eq. (2) vanishes for a2,4,5 6= 0, in which case “true permanent
wave-particles with, however, inelastic behaviour upon collisions” were discovered. This latter case corresponds to
the dissipative solitons. Although the mathematical literature strictly defines a soliton as the exact solitary wave solu-
tion of an integrable equation, like KdV, here we take the physicist’s point of view that if the solitary wave has some
generic interaction property, then we shall call it a soliton to not belabor the point (see, e.g., [12], p. 849).

Motivated by some earlier studies demonstrating nonlinear waves on ferrofluid interfaces [13, 14], we recently
introduced [15] a new long-wave equation for a ferrofluid interface subject to an angled nonuniform external magnetic
field. This equation is of the generalized (i.e., dispersive) KS type, and takes the form (suitably nondimensionalized):

ηt +δαηxx +ηxxxx︸ ︷︷ ︸
linear KS

− βηxxx︸ ︷︷ ︸
dispersion

+[(δαηx−βηxx +ηxxx)η ]x−δ (γη
2
x )xx︸ ︷︷ ︸

nonlinearity

= 0, x ∈Ω, t > 0, (3)

where δα > 0. Physically, the constants α , β and γ are determined by the magnetic Bond numbers, which express
the ratio of magnetic field strength (in the x- or y-direction) to surface tension [15]. Meanwhile, δ � 1 is a geometric
parameter expressing the long-wave approximation. For the present purposes, α , β , γ and δ in Eq. (3) can be taken
to be generic constants, like a1,2,3,4,5 in Eq. (1).

The nonlinearity in Eq. (3) is now quite complex, compared to the KdV and Velarde terms (i.e., 2a1ηηx and
a5(ηηx)x) in Eq. (1). The added complexity is due to the force balance between surface tension and magnetic tractions
on the ferrofluid interface [15].

The energy budget for Eq. (3) is

dE

dt
= δα

∫
Ω

η
2
x dx︸ ︷︷ ︸

production

+δα

∫
Ω

ηη
2
x dx+

1
2

β

∫
Ω

η
3
x dx

due to surface tension︷ ︸︸ ︷
−
∫

Ω

ηη
2
xx dx−

∫
Ω

η
2
xx dx︸ ︷︷ ︸

dissipation

. (4)

Now, three terms on the right-hand side of the energy budget remain sign-indefinite a priori. Nevertheless, observe
that the sign-indefinite terms in Eq. (4) are related to the complex nonlinearity arising from the interfacial force balance
on the fluid, just like the sign-indefinite term in Eq. (2) comes from the Velarde term that accounts for the Marangoni
effect at the interface. The sign-definite production and dissipation terms in Eqs. (2) and (4) are the same, arising from
the linear KS equation’s energy production and dissipation mechanisms.

NONLINEAR PERIODIC WAVES AS DISSIPATIVE SOLITONS

Previously, localized (solitary) waves and kinks (topological solitons) were considered as dissipative solitons [1, 9].
Here, we highlight the possibility of nonlinear periodic waves as dissipative solitons. That is, these dissipative solitons
are spatially periodic, rather than spatially localized. The mechanism underlying the generation of these nonlinear
periodic waves is the long-wave linear instability of the flat base state (η = 0), which is ultimately “arrested” by the
saturation of the nonlinearity [16].
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Energy phase plane concept

A useful concept for studying the evolutionary dynamics of dissipative solitons out of some initial conditions (see,
e.g., Eq. (6) below) is the energy phase plane (E , Ė ) employed in [15, 17]. For convenience, we introduced the over-
dot notation Ė ≡ dE /dt. During the evolution from the initial condition, η(x, t) will be such that E (0), Ė (0) 6= 0.
If the evolution leads to a dissipative soliton, we expect that (Ė ,E )→ (0,E ∗), as t → t∗, where t∗ is some transient
timescale over which the dissipative solution emerges. Then, E ∗ ≡ E (t∗) is the dissipative soliton’s finite energy
(conserved in the absence of further perturbations).

KdV-KSV equation

To determine the instability of the flat base state η = 0 under Eq. (1), we expand the interface shape as η(x, t) =
0+ εei(kx−ωt)+ c.c. (ε � 1 being an arbitrary perturbation strength), where ‘c.c.’ denotes ‘complex conjugate,’ and
i =
√
−1. Then, we substitute this form for η into Eq. (1) and neglect terms of O(ε). This calculation yields the

dispersion relation between the perturbation time-frequency ω and the perturbation wavenumber k:

ω(k) =−a3k3 + ia2k2− ia4k4. (5)

Observe that ω(k) ∈ C, i.e., the dispersion relation is complex, thus waves can propagate. Specifically, linear waves
under Eq. (1) are dispersive with phase velocity vp(k) = Re[ω(k)]/k =−a3k2.

Now, let kc solve Im[ω(k)] = 0; without loss of generality, we keep kc > 0. If k > kc =
√

a2/a4, then the waves
are damped, and the perturbation returns back to the flat state (η(x, t)→ 0 as t → ∞). Meanwhile, for k < kc, the
perturbation grows exponentially in time (linear instability). This type of unstable band and quartic structure of
Im[ω(k)] (competition between diffusion and “anti-diffusion”) is typical of pattern-forming thin-film systems [18].
The unstable case of k < kc is the one of interest henceforth.

To understand how saturation of the nonlinearity arrests the exponential linear instability, leading to a permanent
traveling wave, we solve Eq. (1) on Ω = [0,2π] subject to periodic boundary conditions η(x, t) = η(x+2π, t) ∀t ≥ 0,
starting from the initial condition

η(x,0) = 0+ ε cos(k0x), k0 ≤ kc, ε � 1. (6)

The numerical method employed is a Fourier pseudospectral method [19] for the spatial derivatives with an exponen-
tial time-differencing fourth-order Runge–Kutta (ETDRK4) [20]; see [15] for details on its benchmarking. Observe
that, for this initial condition, we would have E (0) = O(ε2).

Figure 1(a) shows one example for which the KdV-KSV equation exhibits a nonlinear periodic traveling wave
solution. With the given parameters, the critical wave number is kc ≈ 4.24, such that the initial wave number k0 = 4 is
subject to a weak linear instability. Figure 1(c) shows the energy budget, including contributions from the production
term (multiplied by a2), the dissipation term (multiplied by a4), and the indefinite term (multiplied by a5) in Eq. (2).
Upon achieving a balance between these three terms, the nonlinear traveling wave solution emerges. In other words,
the dynamics approaches an equilibrium point in the energy phase plane and the energy change rate Ė → 0.

Figure 1(b) shows the dependence of the propagation velocity v f on the dispersion parameter a3. The linear
phase velocity can effectively predict the nonlinear propagation velocity of the wave, i.e., v f ≈ vp(k = 4), for small-
amplitude solutions in the range a3 ∈ [−15,5]. Note that, for a3 = 0, v f 6= 0 due to the contribution from the nonlinear
advective term, 2a1ηηx, in Eq. (1). This term, termed a Hopf nonlinearity, controls the dependence between amplitude
and propagation velocity, especially for left-propagating waves (a3 > 0).

Figure 1(d) shows the distinct role of the a5 (Velarde) term in the energy budget. As can be inferred from the plot,
this term can be either production or dissipation. For right-propagating waves (a3 < 0), a5

∫
Ω

ηη2
x dx < 0, and this

term dissipates energy in the system. For left-propagating waves (a3 > 0), a5
∫

Ω
ηη2

x dx > 0, and this term serves as
energy production. This contribution becomes more important as the wave amplitude increases (with a3).
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FIGURE 1. (a) Space-time plot of the nonlinear evolution of the interface into a permanent traveling wave, under Eq. (1), starting
from a small perturbation of the flat base state [i.e., taking η(x,0) = 0.1cos(4x)]. The coefficients of the PDE are taken to be
a1 = 18, a2 = 18, a4 = 1, a5 = 1, and a3 = 5. (b) The dependence of the propagation velocity v f (vL

f = vp from the linear
dispersion relation and vN

f extracted from the PDE simulation) and corresponding wave profiles’ shape on the dispersion parameter
a3 (the red curves in the insets are for a3 = 0), with other ai same as (a). (c) Energy budget of the nonlinear traveling wave
generation process shown in (a). The black curve shows the sum of the components in Eq. (2), which is seen to approach zero as
the wave evolves into a dissipative soliton. (d) Variation of the energy budget component involving a5 in Eq. (2), from dissipation
to production, as the dispersion coefficient a3 is changed. The black curve (circles) shows the absolute contribution, while the red
curve (squares) shows the normalized one with respect to η̂3, where η̂ =max0≤x≤2π |η(x, t∗)| is the amplitude of the corresponding
traveling wave profile.

Long-wave equation for a ferrofluid thin film

As before, it can be shown that the stability of the flat base state η = 0 under Eq. (3) is characterized by the dispersion
relation:

ω(k) = βk3 + iδαk2− ik4. (7)

Now, kc =
√

δα [15]. Again, linear waves are dispersive with phase velocity vp(k) = Re[ω(k)]/k = βk2. Indeed,
the long-wave linear instability is the same in both model equations, being set by the linear KS-type terms. The
main differences between Eqs. (1) and (3) emerge from their nonlinear terms. Obviously, it is expected that these
different nonlinearities will saturate differently, and lead to different dissipative soliton dynamics. To highlight the
latter differences, as before, we solve Eq. (3) numerically on Ω = [0,2π], subject to periodic boundary conditions,
starting from the initial condition in Eq. (6).

Figure 2(a) shows the emergence of the nonlinear periodic traveling wave for a critical wave number kc ≈ 4.24,
in which case the initial perturbation is subject to weak linear instability. Meanwhile Fig. 2(c) shows the dynamics’
energy budget (and its evolution). The δαηxx term from the external magnetic field leads to energy production, while
the ηxxxx from surface tension represents energy dissipation in the balance in Eq. (4). These two terms’ contributions
dominate over those from the nonlinear terms in the energy balance.

Again, the nonlinear wave’s propagation velocity can be well predicted by the linear dispersion relation, namely
v f ≈ vp(k)= βk2, for both directions of propagation. Both the velocities and the wave profiles preserve their symmetry
under the transformation β →−β , which is required by the physics that it represents (i.e., inverting the magnetic field
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FIGURE 2. (a) Space-time plot of the nonlinear evolution of the interface into a permanent traveling wave, under Eq. (3), starting
from a small perturbation of the flat base state [i.e., taking η(x,0) = 0.01cos(4x)]. The coefficients of the PDE are taken to be
δα = 18, β = 5, and γ = 44.93. (b) The dependence of the propagation velocity v f (vL

f = vp from the linear dispersion relation and
vN

f extracted from the PDE simulation) and corresponding wave profiles on the dispersion parameter β (the dashed red curve in the
inset is for β = 0), with δα = 18, and γ determined by physical relations in [15]. (c) Energy budget of the nonlinear traveling wave
generation process shown in (a). The dashed curves represent the contributions from nonlinear terms, the black curve shows the
sum of the components in Eq. (4), and ‘s.t.’ stands for ‘surface tension’. (d) Variation of the energy budget component involving
δα in Eq. (4), from dissipation to production, as the dispersion coefficient β is changed. The black curve (circles) shows the
absolute contribution, while the red curve (squares) shows the normalized one with respect to η̂3, where η̂ = max0≤x≤2π |η(x, t∗)|
is the amplitude of the corresponding traveling wave profile.

direction inverts the direction of wave propagation). Note that, under Eq. (3), the dependence of the propagation
velocity on the wave amplitude is less significant than under Eq. (1) (shown in Fig. 1(b)) for a similar propagation
velocity range (see [15] for a wider parameter scope).

Figure 2(d) shows the different role of the nonlinear δα term in the energy balance in Eq. (4). The variation of this
component with the dispersion parameter is different under Eq. (3) than under the KdV-KSV equation (1), which was
shown in Fig. 1(d), since the energy balance in Eq. (4) involves two more sign-indefinite terms. The role of the δα

term as energy production becomes weaker as |β | increases. The plot in Fig. 2(d) is symmetric about β = 0 due to the
symmetry of the wave profiles under the transformation β →−β , as discussed above.

Spatially multiperiodic dissipative soliton and transition under KdV-KSV

As shown above, perturbations of the flat state grow into stable nonlinear periodic traveling waves. Let us denote
such a nonlinear solution as Θn(ζ ) if it has period-n, where ζ = x− v f t is the traveling wave coordinate. Next, we
perturb the period-four traveling wave profile Θ4(ζ ), obtained under the parameter choices of a1 = 20, a2 = 19.1,
a3 = 10, a4 = 1, a5 = 1, by taking η(x,0) = Θ4(ζ ) +ηp(ζ ), where ηp(ζ ) = 0.8sin(2ζ ), as the initial condition
for a simulation. We track the evolution of this perturbed traveling wave via direct simulation of the PDE (1). The
wave profile η is decomposed into complex Fourier modes {ηk}, and the evolution of their energy, |ηk| =

√
ηkη−k,

is shown in Fig. 3(a).
We observe a long-lived interaction between Fourier modes 2 and 4 for t ∈ [0.,1.1]. This interaction becomes

stronger and strong, until a transition occurs during t ∈ [0.9,1.25], which is also observed in the space-time plot of
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FIGURE 3. (a) Fourier modes’ energy evolution and interactions for a perturbed period-four nonlinear traveling wave Θ4(ζ ) of
the KdV-KSV equation (1). This period-two perturbation is taken to be ηp(ζ ) = 0.8sin(2ζ ). Here, a1 = 20, a2 = 19.1, a3 = 10,
a4 = 1, and a5 = 1. (b) The phase velocities of mode 4 and mode 2. The black solid curve shows the filtered Fourier mode phase
velocity vp(k = 2). (c) Space-time plot and the corresponding wave profiles during the transition period, t ∈ [0.9,1.3].

the wave profile’s evolution in Fig. 3(c). Specifically, we observe that the period-four traveling wave is modulated
by mode 2, and this coexistence lasts for a relatively long time (compared to the total transition time), until mode 2
ultimately becomes dominant for t > 1.4.

For this set of parameters, the system is considered strongly dispersive, and the KdV terms dominate in Eq. (1). In
this case, it is therefore expected that the traveling wave solution bears similarity to cnoidal waves (see section 5 in
[21]), which can also be approximated by low-dimensional Fourier series. Such numerically identified long-lived mul-
tiperiodic wave states can be thought of as analogues to polycnoidal waves (multiperiodic nonlinear traveling waves
of KdV) [22]. Specifically, the double cnoidal wave can be shown to be the proper spatially periodic generalization of
the two-soliton solution of KdV [23].

Back to our example, Fig. 3(b) shows the evolution of the phase velocities vp(k) (in the simulations) of modes k = 2
and 4. The oscillations are caused by energy exchanges (interaction) between even modes. A low-pass filter is applied
to evaluate a time-averaged phase velocity for mode 2, shown as the black curve. It is surprising to see that while |η2|,
which is the amplitude of Fourier mode 2, is growing slowly, its phase velocity maintains at vp(k = 2) ≈ −49.05,
which is independent of the phase velocity of mode 4, vp(k = 4)≈−127.

The rapid transition during t ∈ [1.1,1.25] is characterized by a change of propagation direction in the physical
domain. At the same time, in the Fourier domain, modes 2 and 4 become comparable in energy content. Visually,
this observation is similar to soliton collisions: when the peak of mode 2 is “caught” by that of mode 4, an elevation
of the profile is observed. Subsequently, a depression of the profile is seen in Fig. 3(c) for t ∈ [1.147,1.181] as the
waves separate. However, while soliton collision (in the sense of Zabusky and Kruskal [24]) leave the two interacting
waves’ profiles and propagation velocities unchanged upon collision, the interaction of the nonlinear periodic waves
just described in current study results in the waves ultimately separating into what look like two localized solitons. The
left-propagating components in the Fourier decomposition dramatically decrease in energy, and the profile appears as a
standing wave at t ≈ 1.181. Subsequently, all Fourier modes in the system merge into a right-propagating profile with
phase velocity vp≈ 341.7, which no longer follows the linear prediction from the dispersion relation, thus highlighting
the strongly nonlinear interaction that has just occurred.

This result could also have been anticipated from Fig. 3(a) wherein, after the transition, the localized solitons are
seen to contain a wider energy spectrum than that of the period-four traveling wave (from before the transition).
Therefore, the linear phase velocity of the leading mode is no longer predictive of the nonlinear wave speed. On the
other hand, according to the parameters used for the example shown in Fig. 3, the relatively large values of a1, a2 and
a3 indicate that the KdV-terms dominate in Eq. (1). The interaction between Fourier modes becomes more and more
intense, as the nonlinearity becomes more and more important, which results in a large wave amplitude in the physical
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domain. As discussed in [15], this transition is indicative of (and can be explained by) the spectral instability [25]
of the period-four nonlinear traveling wave. Eventually, the wave evolves into the two localized solitons observed,
which are visually similar to the sech2 solutions of KdV. In this case, the determination of the propagation velocity
would involve all of the system parameters, as for the sech2 solution of KdV [24].

Finally, it is worth comparing and contrasting the dynamics just described with those discussed in [15] under the
long-wave equation (3) for a ferrofluid thin film. Before the transition, the long-lived multiperiodic waves discussed
herein and in [15] are qualitatively similar. However, after the transition, the period-four nonlinear traveling wave
in [15] merges with a period-two traveling wave, and the resultant propagation velocity is still well predicted by
the linear theory. Under the KdV-KSV equation (1), however, the transition is more intricate than the examples in
[15] under Eq. (3): the wave profile changes from a period-four nonlinear traveling wave into what appear to be two
localized soliton-like shapes. The mechanism of this transition, which to best of our knowledge has not been reported
before, is still under investigation. Nevertheless, 25 years after [1], our numerical results shed light on the intriguing
nonlinear dynamics of nonlinear periodic waves as dissipative solitons.

CONCLUSION

Motivated by our ability to “tune” a spatially nonuniform magnetic field to turn a linearly unstable circular ferrofluid
interface (confined in a Hele-Shaw cell) into a spinning “gear” [14], we previously derived a model long-wave equa-
tion (3) for driven ferrofluids [15]. When the spinning droplet interface is “unwrapped” onto x ∈ [0,2π], it is a
manifestation of a nonlinear periodic traveling wave solution of a nonconservative long-wave equation. This appears
to be a novel finding in the context of dissipative solitons.

In this short note, we returned to the classical model equation (1) exhibiting dissipative solitons [1], and we demon-
strated that it also features sustained nonlinear periodic traveling wave solutions. Despite the advective nonlinearities
in Eq. (1) (from [1]) and Eq. (3) (from [15]) being substantially different due to the different physics, the nonlinear
periodic waves as dissipative solitons that emerge were shown to have similar features. For example, these solutions
(despite being nonlinear waves) are characterized by low-dimensional Fourier decompositions, thus their propagation
velocity can be well predicted by the phase velocity (calculated from the linear dispersion relation) of the leading
Fourier mode. Another point of commonality is that the linear instability of the flat base state, which gives rise to the
nonlinear periodic waves, is controlled by the ratio of the coefficients of the second and fourth order (anti-)diffusive
terms in the respective PDEs. Thus, ‘control’ of the period of the traveling wave solutions is possible. The transition
between different nonlinear periodic states occurs when a spectrally unstable nonlinear traveling wave is subjected to
global perturbations of with a specific wavenumber.

Importantly, model equations such as (1) and (3) are nonintegrable models in which one can observe generalizations
of the so-called polycnoidal waves (multiperiodic nonlinear traveling waves) [22]. While the double cnoidal wave
problem for integrable models like KdV is well understood [23], there is no equivalent theoretical understanding for
nonintegrable models. Our recent work [15] on Eq. (3) further suggests that the dominant balances for KdV found
in [23] may not be applicable to Eq. (3). Meanwhile, to the best of our knowledge, multiperiodic solutions to the
classical Eq. (1) have not been studied prior to the present short note. In future work, it would be of interest to explore
nonlinear periodic waves as dissipative solitons in other long-wave model equations for driven thin film flows (see,
e.g., [5]).
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