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STRONGLY OBTUSE RATIONAL LATTICE TRIANGLES

ANNE LARSEN, CHAYA NORTON, AND BRADLEY ZYKOSKI

ABSTRACT. We classify rational triangles which unfold to Veech surfaces when

the largest angle is at least 2X. When the largest angle is greater than 2{, we

show that the unfolding is not Veech except possibly if it belongs to one of six
infinite families. Our methods include a criterion of Mirzakhani and Wright
that built on work of Méller and McMullen, and in most cases show that the
orbit closure of the unfolding cannot have rank 1.

1. INTRODUCTION

The question considered in this paper is motivated by the following simple prob-
lem: what can be said about the dynamical system consisting of a billiard ball
bouncing around a polygonal billiard table?

One approach to this problem uses the method of unfolding described in [ZK]
to transform the piecewise linear billiard path on a rational polygonal table (i.e.,
a table whose angles are rational multiples of 7) into a straight path on a trans-
lation surface known as the “unfolding” of the polygon, where the dynamics of
straight-line flow might be better understood. For example, Veech [Ve] proved that
any translation surface whose affine automorphism group is a lattice has “optimal
dynamics” (i.e., straight-line flow in any given direction is either completely peri-
odic or uniquely ergodic) and that the unfolding of an obtuse isoceles triangle with
angles of the form (7, T, @) is such a surface. Similar methods were later used
to determine whether other rational triangles also have this “lattice property,” and
several more individual lattice triangles and families of lattice triangles have since
been identified.

Combining Veech’s characterization of lattice triangles with the fact that the
orthic triangle provides a known periodic billiard trajectory in each acute trian-
gle, Kenyon and Smillie [KS] were able to formulate a number theoretic criterion
for the angles of an acute rational triangle that would be satisfied by any lattice
triangle. They used this criterion to classify all acute and right-angled rational
lattice triangles, up to the conjecture that their computer search had identified all
triples satisfying the criterion. This number theoretic conjecture was then proved
by Puchta, completing the classification [

Less is known for obtuse triangles, as the methods of [KS| require a known
periodic billiard trajectory, and there is no longer an obvious choice (although the
McBilliards program of Hooper and Schwartz has been used to identify periodic
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trajectories in all obtuse triangles with obtuse angle at most 100° [Sc]). After
the family of isoceles triangles originally described by Veech, the family of lattice

triangles with angles (g-, 7, (2"2; 3)7T) was discovered independently in [Vo] and

[Wa], and more recently, McBilliards’ computations led Hooper [Ho| to identify

one more obtuse lattice triangle, the ({5, %, %), and to conjecture that the list of

known obtuse lattice triangles is now complete. We prove half of this conjecture:

Theorem 1.1. A rational obtuse triangle with obtuse angle > 135° has the lattice
property if and only if it belongs to one of the two known families (X, M)
and (&£, 2 (2"73”).

n’n’ n
2n n? 2n

Our work on obtuse lattice triangles builds not so much on previous approaches
to the problem as on recent results of a more complex analytical nature, using the
equivalent characterization of a lattice triangle as one whose unfolding generates
a Teichmiiller curve. Moller [M3] proved that if an unfolding (or more generally
a flat surface) generates a Teichmiiller curve, the SL(2,R) orbit of the unfolding
stays in the locus of Jacobians which split up to isogeny with a factor admitting
real multiplication. Filip [Fi] extended this result to any rank 1 orbit closure.
Combining this fact with an application of the Ahlfors variational formula a la
McMullen [Mc| Theorem 7.5], Mirzakhani and Wright [MW] Theorem 7.5] gave a
condition under which the unfolding of a triangle must have orbit closure of rank
> 2. From this, one can immediately derive a simple number-theoretic criterion
that an obtuse rational lattice triangle cannot satisfy.

Asymptotically, this criterion rules out almost all obtuse rational triangles
(Proposition[7.5]), but it turns out that it is somewhat less helpful for smaller obtuse
angles, so that we do not believe it would be possible to complete the classification
without using other methods (see Proposition B.7] and the following discussion for
details). For this reason, the main technical result of this paper is a classification of
all obtuse rational triangles with obtuse angle > %’T for which it is possible to apply
the [MW] criterion. This entails a detailed case analysis, but a key ingredient is
the use of approximation by rational numbers of small denominator, combined with
known estimates on a particular number-theoretic function (the Jacobsthal func-
tion, which was used by Puchta [Pu] and McMullen [Mc2] in related classifications).
By these means, we give a (computer-assisted) proof of the following theorem:

Theorem 1.2. An obtuse rational triangle with obtuse angle > 120° satisfies the
IMW] criterion if and only if it does not belong to one of six (infinite) one-parameter
families of triangles and is not one of seven exceptional triangles.

Two of these families are known families of lattice triangles. The computer
program of Riith, Delecroix, and Eskin [RDE] has shown that the seven exceptional
triangles do not have the lattice property. And by finding parallel cylinders of
incommensurable moduli on the unfoldings, we are able to prove that one of the
remaining families is not a family of lattice triangles. This allows us to complete
the classification of rational obtuse lattice triangles with obtuse angle > 135° and
prove Hooper’s conjecture in this case.

The paper is organized as follows. In §2] we derive the number-theoretic criterion
in the needed form from [MW]. In §3] we establish some preliminary results about
the solution sets of the inequalities derived in §2] and explain the problems that
arise when the obtuse angle is < 120°. In §4] we outline the case analysis that will
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be used to prove Theorem [L.2l This case analysis will be carried out in §§5H8 A
description of the computer search and its results is in §9 Finally, §10] contains the
geometric argument used to rule out the remaining family of triangles with angle
> 135°, proving Theorem [1.1]

2. DERIVATION OF THE CRITERION

In this section, we will briefly explain the setup in [MW, §§6—7] and explain how
[MW| Theorem 7.5] implies the criterion we will state in 2.1

First of all, we will set a standard form to refer to rational triangles. We write
(p,q,7), with p,g,7 € N, p < g < r, ged(p,q,7) = 1, to refer to the triangle with
angles (2%, 4% ) where n = p+q+r. (The ged condition ensures that the choice
of p,q,r is unique, and the p < ¢ < r condition fixes the order.)

Now, the unfolding of the triangle (p, g, r) is the translation surface (X, w) where
X is the normalization of the curve y™ = zP(z — 1)? with holomorphic differential
w =y "HzP~1(z — 1)1 dz. X has the obvious automorphism y e2™/7y and
the space of holomorphic 1-forms on X can be broken into eigenspaces, where the
eigenspace of eigenvalue 2™/ has dimension {=22} + {=24} + {=9} — ] (the
notation {z} meaning the fractional part of z, x — |z]). An explicit basis for each
eigenspace is described in [MW, Lemma 6.1]. Plugging eigenforms of eigenvalues
e2ma/7 and e27%/™ into the integral given by the Ahlfors-Rauch variational formula,
MW, Proposition 7.3] shows that the resulting variation of the period matrix is
nonzero if and only if a + b = 2 mod n. This fact is then applied in [MW]| Theorem
7.5] to see that if there is a € (Z/n)* with 2a # 2 mod n such that both the e??7#/"
and e(2~®)27/" eigenspaces are nonzero, then the unfolding has orbit closure of
rank > 1, as this corresponds to a nonzero off-diagonal derivative of the period
matrix in what would otherwise be a diagonal block (by work of Filip [Fi]).

Proposition 2.1. The unfolding of an obtuse triangle (p,q,r) in the notation de-
scribed above does not have the lattice property if there exists some a € (Z/n)* with
2a # 2 mod n such that two of the following “mod n” inequalities are satisfied:

(2.1) ap < 2p, aq <2q, ar <2r

Let [z],, be the representative of the mod n equivalence class of x which is in [0, n).
Then, for example, the “mod n” inequality ap < 2p is satisfied if [ap], < [2p],. In
what follows, we will almost entirely want to consider numbers “mod n”; where it
seems unlikely to cause confusion, we will drop the bracket notation, which tends
to clutter up equations. In a similar spirit, we will write z € (Z/n)* to mean “x is
coprime to n.”

Proof. By the discussion above, a triangle does not have the lattice property if
there is some a € (Z/n)* with 2a # 2 mod n such that

e
(Feoap}, fCoaa), fmany

(these being the conditions for the eigenspaces to be nonzero). We rewrite as
follows: first of all, as the left-hand sides of these two inequalities must be integral

and
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and each of the three terms is < 1, these inequalities are equivalent to
(2.2)  [=apln + [-agln + [-ar]n = 2n <= [ap]s + [ag]n + [ar]n = n
(since ap, aq,ar Z 0 mod n) and

(2.3) (=2 4+ a)pln + [(—24 a)q]n + [(=2 + a)r], = 2n.

We then note that, for 2z Z 0 mod n,

[_255]71 + [ax]n [
[—2z], + [az], —n |

In < [22]
In > [2

)

and p,q < 5, we have

axr
axr

(2.4) [(—2+a)z], = {

n

Assuming that (p,q,r) is an obtuse triangle, i.e., r > 3

[—2p]ln =n—2p, [-2¢]n =n—2¢, [-2r], =2n—2r

= [=2p]n + [ap]n + [-24]s + [ag]n + [-27]n + [ar]n = 3n,
which means that in order to satisfy Equation 2.3 in light of Equation [2.4] we must

have [ax],, < [2z], for exactly two of p,q,r (or equivalently, by at least two, since
this cannot be satisfied by all three). ]

For the rest of the paper, we will investigate how to find such an a. As we will see,
the main difficulty is not finding elements of Z/n satisfying two of the inequalities,
but ensuring that one of these elements is a unit. (The 2a # 2 condition is generally
not a major consideration, although it is often part of the problem in the families
of triples for which there is no such a.) Initially, it was hoped that such an a could
always be found for triples with sufficiently large p or n, but this has turned out
not to be true. (See Proposition [B.7] for more details.)

3. PRELIMINARIES

We start by defining notation and terminology that will be used throughout the
paper.

Definition 3.1. It will often be useful to refer to the set of solutions of one of the
inequalities described in Equation 2.1] so we set

Sp:={a €[0,n) : [ap]n < [2p]n}
(defining S, and S, similarly).
It is worth noting that, in this obtuse case,
[2p]n = 2p, [2¢]n =2¢, [2r]n=2r—n=mn—2p—2q.

Definition 3.2. We will call a unit a € (Z/n)* with the property 2a # 2 mod n
a “usable” unit.

Clearly, there can be at most two unusable units, 1 and § + 1. Of these, 1 is
always unusable, and § + 1 is unusable iff 4 divides n. (First of all, for § + 1 to be
an integer, n must be even. And if n is divisible by 2 but not 4, then 5 +1 is even,
therefore not a unit. But if 4 divides n, § + 1 is its own inverse.)

Remark 3.3. With these definitions, we can restate our problem in the following
way: when does one of the intersections S, N Sy, S, N Sy, Sy N S, contain a usable
unit?
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We start by considering usable units in S, or Sj.

Remark 3.4. Suppose x < %, and set a = gcd(x,n),r = ab,n = ac. As ged(b,c) =
1, b is invertible in Z/c, so we can let d be the representative in [0,¢) of the
equivalence class of b=! in Z/c. (In the future, we will write “let d = b~! €
(Z/c)*”.) Then

Se={kd+1lc:0<k<2b0<I<a}l

Proposition 3.5. If v < 5, S, contains a usable unit if and only if none of the
following is true: =1; x =2 and n is even; or x =4 and n =4 mod 8.

Proof. We break into cases based on ged(z,n):

If ged(z,n) = 1, then if 1 < & (< 2 4+ 1), 27 € S, is a usable unit. (And if
x =1, then S; = {0,1} does not contain a usable unit.)

If 1 < ged(x,n) < z, then S, contains all elements of Z/n equivalent to kd
mod ¢, for 0 < k < 2b. Any unit mod ¢ is coprime to all prime divisors of ¢, so
to be a unit mod n, it suffices to be coprime to all remaining prime divisors of
a. In particular, there are at least ¢(a) units mod n equivalent to a given unit
mod ¢, by the Chinese remainder theorem. (As usual, we use ¢ to denote Euler’s
totient function.) We know that there are at least two units mod ¢ of the form
kd,0 < k < 2b (namely, 1 and d), so ¢(a) > 2 implies that S, contains > 4 units,
of which > 2 must be usable. On the other hand, a # 1 and ¢(a) < 2 would imply
a = 2, in which case the unusable units are = 1 mod ¢, and so the one or two units
in S; = d mod ¢ must be usable.

Finally, if ged(xz,n) = x, we apply the same argument as in the previous case,
except that the two known units 1 and d coincide. So ¢(a) > 3 implies that S,
contains > 3 units, of which > 1 must be usable, but one needs to consider the cases
¢(a) < 3,ie,a=1,2,3,4,6. Fora = 3,6, 5, contains §+1, 27"—1—1, of which at least
one must be a usable unit. So the only cases in which S, might not contain a usable
unit are = 1, 2,4 (dividing n). As mentioned already, S; = {0, 1} does not contain
a usable unit. If # = 2 and n is even, then Sy = {0, 1, 5, § + 1} does not contain a
usable unit. And if z = 4 and x divides n, then Sy = So U {7}, § +1, %", 37" +1}, of
which the potential usable units are 7 +1, %” +1. If 8 divides n, these are units (as
they are coprime to %, which shares the same prime factors as n), and otherwise,
if n =4 mod 8, these are even, so not units. O

Remark 3.6. Unfortunately, there are more cases when S, does not contain any
usable units. In fact, this is guaranteed to happen if r = 5<n; multiples of r
are multiples of le_ln = 2r —n, and so [ar], < [2r], implies [ar], = 0, i.e., S,

consists entirely of multiples of 2m — 1.

This remark is essential in the following proposition:

Proposition 3.7. There is no constant N such that the criterion of [MW] can be
applied to all triples with p > N.

Proof. We describe a method of constructing arbitrarily large examples in which the
[MW] condition is not satisfied: Let p be any prime > 2, and let m be the product
of all numbers < 2p excluding p. As ged(m,p) = 1, take ¢ = m~* € (Z/p)*. Then
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consider triples of the form

n=(ap—cm, g= LU0 _p o PO
’ 2p—1 ’ 2p—1
for any positive integer x. (As 2p — 1 divides m, ¢ and r are indeed integers.) By
Remark [3.6] S, does not contain a usable unit; it therefore suffices to show that

Sp N Sy does not contain a usable unit. But using the fact that
S,={kp~':0<k<2p}

from Remark B.4] we see that the only units S, contains are 1,p~', and as 1 is
not usable, we need only check that p~! ¢ S;. We note that n = —1 mod p, so

1

”Tfl = p~! € Z/n, which implies
1 n+1 pn (n + 1)” _ n
f— = pr— d
P T T T T Top— 1 op—1 e
1 n 2p — 2 2p—2
pra=n=57 p—1" p—1" P
sop~t ¢S, O

Experimentally, it seems that the triples with § < r < 27" and p # 1,2,4 for
which the [MW] criterion is not satisfied follow roughly this pattern, in that p is
a small prime not dividing n, n is highly composite, and r = 557 for some c.
(We exclude p = 1,2, 4 because of Proposition B.5} it can happen that S, contains
no usable units, and then if for example r = 5-"=n and so S, contains no usable
units as well, the [MW] criterion obviously cannot be satisfied.) But even assuming
p # 1,2,4, the above proposition by no means gives a complete list of problematic
triples. Nevertheless, it does already give an infinite list of infinite families of triples
with r < 22 for which the [MW] criterion is inconclusive, showing that new methods
would be needed to obtain the full classification of obtuse rational lattice triangles,
and because of this issue, the rest of the paper focuses on triangles with r > %" (i.e.,
obtuse angle > 120°), where it has been possible to identify precisely the cases in
which the criterion cannot be applied. However, we will briefly return to the r < 2?”
case in Proposition [Z.5] where we explain why the [MW] criterion does suffice for

an asymptotic result.

4. PROOF OUTLINE

A more detailed statement of our main technical result is as follows.

Theorem 4.1. An obtuse rational triangle (”7—?, q%, %) with obtuse angle > %’r

satisfies the [MW] criterion (implying that the orbit closure of its unfolding has
rank > 2) if and only if none of the following is the case:

(1) p=g=1

(2) p=1,q=2,n is even

(3) p=1,g=4,r=7 mod 8

(4) p=1r=3¢+1

(5) p=2,1r=3q+2

(6) p=4,r=3q+4

(7) (p,q,r) is one of the following triples: (1,4,11),(1,3,16),(2,3,17),
(1,4,21),(1,8,19), (3,8, 29), (2, 11, 29)
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Definitive results are already known for some of the triangles on this list. As
mentioned in the introduction, families (1) and (2) are known to be families of
lattice triangles (see [Ve|, [Vol|, [Wa]). The first element of family (3), the triangle
(1,4,7), is the lattice triangle found by [Ho|, although it does not have obtuse angle
> %’T and therefore does not, strictly speaking, belong on our list. And the half
of family (4) with ¢ odd (and > 1) is proven not to have the lattice property in
[Wa, Theorem B]. Furthermore, the unfoldings of all the exceptional triangles in
item 7 have been checked by the computer program of Riith, Delecroix, and Eskin
[RDE] and found to have dense orbit closures.

As Theorem [4.1] is proved by a rather complicated case analysis followed by
computer-checking of certain triples, we will explain here how all the parts fit
together. (We will basically split into cases along two major axes, the size of
ged(g,n) and the size of q.)

In 5l we will derive a new form for S,, which will be particularly useful when
some ged condition is satisfied. In particular, we almost entirely deal with the case
ged(g,n) > 2 and partially deal with the case ged(g,n) = 2. The main tool will be
the Chinese remainder theorem (cf. the proof of Proposition [B.5)), but some extra
complications do arise when ged(g,n) is a small power of 2. (This is perhaps the
case in which the 2a # 2 requirement becomes most problematic.)

In 6] we will finish the proof for ¢ < 4 Applying the results of the previous
section, as well as the obvious but useful fact that ¢(p + ¢ + r) = 0 mod n for all
¢, we will see that in this case, S, N (S, U S,) contains a usable unit if S, does.
There are only a few special cases in which S, does not contain a usable unit, and

in these cases (still assuming ¢ < 4), we prove that either S; NS, contains a unit
or (p,q,r) belongs to families (1)—(3) in Theorem [4.1]

The case q¢ > @ will be addressed in §§7H]l In g7l we will quickly deal with
the case ged(g,n) > 2 and then, for the cases ged(g,n) = 1 or 2, we will give the
first part of a rational approximation argument to prove that if n satisfies certain
bounds, S; NS, must contain a unit. (These bounds are related to the Jacobsthal
function, which will be introduced in this section, and used in a quick digression
to derive an asymptotic result in the r < 27” case.) Although the main idea is

not very complicated, there are many special cases to be checked, corresponding
to the scenarios in which %lr (or its counterpart in the ged(g,n) = 2 case) is
well-approximated by a fraction of denominator < 3. The proofs of the special
cases, which make up g8 tend to use the same few ideas, but the approach and the
resulting bound are slightly different each time, so that it does not seem possible
to condense the proofs in any useful way.

Using the bounds obtained in §§7HS] and known bounds on the Jacobsthal func-
tion (which we will introduce in Definition [Z.3]), together with a computer exper-
iment that greatly decreased the size of the search space, we were able to reduce
the proof of Theorem .1l to an easy computer calculation. (It will suffice to check
all triples with n < 10000.) The details of this are contained in §9

5. OBSERVATIONS ABOUT THE CASE gecd(g,n) > 1

We start with a new characterization of S, and S, (really, of S, for any x < 7).
Thinking of multiples of  (mod n) “jumping along” the number line from 0 to n,
the first two jumps starting when S, passes 0 are in the “target zone” [0,2x), and
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then the jumps leave the target zone until they reach n again. Translating this into
a formula, we have the following:

Observation 5.1. If v < 3,

e (][] 10z

(where as usual, [r] is the smallest integer > r).

This description will be most useful in §6] but we have introduced it now because
of the following corollary:

Corollary 5.2. If v divides y and y < 5, then S, C S,. In particular:

(Cl,) Sgcd(q,n) - Sq

(b) if ged(p, q) > 1, then S, NSy D Sged(p,q) contains the usable unit ged(p, q)~ !
(which ezists since ged(p,q,n) =1).

This corollary is useful for the following lemma.

Lemma 5.3. Suppose l > 2 is a prime factor of ¢ and n, and r > 2?” Then S;N.S,

(and hence Sy N Sy) contains a usable unit. (The same holds when q is replaced
everywhere by p.)

Proof. As [ divides n,

kn k
Sl:{—n,—n+1:0§k<l}

171
where everything of the form an is definitely not a unit. Now, if [2 divides n, every
kT"—H is a unit mod n, and if not, then kT”—l—l is a unit except when k = —(%)*1 mod

I. (This follows from the Chinese remainder theorem and the fact that kl—” +1=1
modulo every prime divisor of n except for possibly I.) Of course, k = 0 gives the
unit 1, which is non-usable, but as we stipulated [ > 2, none of these are § + 1, so
every element of {% + 1} except 1 and potentially one other element is a usable
unit. Now, as ged(g,r,n) = 1, we have ged(r,l) = 1, so for each j, there is some k

SOthatanTEan.
Now, as
kn in in n 2n
T—I—IEST <— T—i—r 6[0,2r—n) <~ TE[n—T,T)D 33|

any j € 7/l with % € [%, %] corresponds to some element an +1€5nNnS,.. As
1 ¢ S, and there is only potentially one non-unit of the form an + 1, if there are
two j such that % SIER %"], at least one of them must correspond to a usable unit
in S; N .S,.. But this condition is clearly satisfied for [ > 3. O

The previous lemma can be applied in all cases where ged(g,n) has a prime
factor other than 2. In the following two lemmas we will basically deal with the
case when ged(g,n) is a power of two > 4, although we will revisit this case in the
next two sections.

Lemma 5.4. Suppose ged(q,n) = 2™ for some m > 3, ¢ > 8, and r > %” Then
SqN S, contains a usable unit. Similarly, if ged(q,n) =4, ¢ > 4, and either r > ‘%
or 8 divides n, then S, NS, contains a usable unit. Similarly, if ged(g,n) = 2,

q>2,r> %T", and 4 divides n, then S; N S, contains a usable unit.
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Proof. For the first part of the assertion: we write ¢ = 2™b, n = 2™¢, with
ged(b,c) = 1. We let d = b= € Z/c, and ged(d,c) = 1 implies that d is co-
prime to all factors of n except possibly 2. We let e = d if d is odd and e = d + ¢
otherwise; then e is a unit mod n. (We have that e is coprime to all factors of n
except possibly 2, and adding ¢ will make it odd, if necessary.) Furthermore, the
set {e+ %"} consists of units mod n, as § and n have the same prime divisors, and
since 1 < e < 2¢ < %, this set consists of usable units. Then, as gcd(q,7,n) =1, r
is odd, so {(e + %2)r} = {er + 2} has some element in [0, 2) C [0,2r — n). This
means that at least one of the elements of {e + %2} is a usable unit in S, N S,..
For the assertion about ged(¢,n) = 4 and r > ‘%" and the assertion about
ged(g,n) = 2, the proof is the same, except that we consider the set {e + &2},
and [0, 5) C [0,2r —n). For the assertion about gcd(q,n) = 4 and 8 divides n, we

consider the set {d + %2} (using that d must be odd). O

Lemma 5.5. Suppose ged(q,n) = 4 and neither of the two conditions in the pre-
vious lemma are satisfied (i.e., 8 does not divide n and %" <r< %), and suppose
q > 16. Then S, N S, contains a usable unit.

Proof. As before, we write ¢ = 4b, n = 4c, with ged(b,¢) = 1 and ¢ odd. We let
d=b"" € (Z/c)*; then letting y = d if d is odd and y = d + % otherwise, we have
that y,y + § € (Z/n)* by the Chinese remainder theorem. (These are coprime to
¢, therefore to all prime divisors of n but 2, and we choose y to be odd.) For the
same reason,

3n 3n
,2 2 L4 4 —
{yvy+ y+4 Y+ — 4 y+ Y+ 4}

are all units mod n. (Recall that ¢ is odd, so 2y,4y € (Z/c)*.) Furthermore, if
q > 16, these are all usable units, as unusable units are = 1 mod ¢, but b > 4 is the
smallest multiple of y such that by = 1 mod c.

We will see that one of these must be in S,.: First of all, as r is odd, we have
(y+ 5)r = yr+ %, and if neither this or yr is in [0,2r —n) D [0, 3] we can assume
yr € (%, 5) (Otherw1se we switch y and y + %.) Then 2yr € (32, ), and as r is
odd, {2r,3nr} = {2, 32} Supposing (for convemence) that §r =74, yr € (3, 3)
implies (2y +4)re (1112”, %). Then 2y + % ¢ S, would imply (2y + 2)r e (2, n),

e., 2y € (%”, %) Repeating this argument, again assuming that §r = 7, now
2y € (%, %T") implies (4y + ‘%)r € ({5, %), which is within our target zone. So if
the first four units listed above are not in S,., then one of the last two is, and this
one is a usable unit in S, N .S;. O

We will end with a proposition about the case ged(g,n) = 2, whose strategy is
similar to that of the previous proposition.

Proposition 5.6. If ged(q,n) = 2, 4 does not divide n, and there is some m € N
such that ¢ > 2™ and r > %T” + 5wz, then Sy N S, contains a usable unit.

Proof. As before, we write ¢ = 2b,n = 2¢, with ged(b,¢) = 1 and ¢ odd. Let
d=b"t€Z/cand y :=d if d is odd and y := d + 5 otherwise. We note that
2ky 4 % is a unit mod n (k € N), and is in S, if ¢ > 2k,

First of all, if yr < %, then y € S, N S, is the needed unit. (There is no
issue of usability here, as % 4 1 is not a unit, and 1 ¢ S,..) If this fails, we see if

(2y + 2)r < %. If these both fail, and as Zr = %, we must have yr € (%,3%). If
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4y+ % is also not in S,., combined with the previous conditions, we get yr € (3, %)

etc. SO continuing this process to 2™ (< ¢), we get that either there is some I < m
with (2'y+ %)r < % and so 2'y+ % is a usable unit in S, N S,, or yr € (%, (22m++1

)-
Thenifrz%—I—Qm%,yr<2r—nandsoyisausableunitinS’qﬂS’ |

6. THE CASE g < 4

In the first part of this section, we prove that S, N (S, U S,) contains a usable
unit if S, does (in the case g < 4) We recall from Proposition 3.5l that S, almost
always contains a usable unit; however, there can be problems when p = 1,2, 4, and
these are dealt with in the second part of this section.

Lemma 6.1. If S, contains a usable unit and q < @, SpN Sy or S,NS, contains
a usable unit.

Proof. First of all, we can assume ged(p, g) = 1, as otherwise S, NS, contains the
usable unit ged(p, )~ ! (see Corollary [5.2).
Suppose we have a € S, \ S,. Then we have 0 < [ap],, < 2p and

n > [ar], > [2r], =n —2p — 2q.
Now, as p+ q + 1 =mn, [z], <n, and [ar], > 0, we have
[ap]n + [aq]n + [ar]n = n or 2n.
In the first case,
[ap]n, > 0,[ar], > n—2p—2¢ = [aq], < 2p+ 2q.

So either [ag], < 2¢, in which case a € S, or 2¢ < [ag|, < 2p+ 2¢ < 4¢, in which
case a — 2 € S,. (We assumed ged(p,q) =1 and p# 1, so p < q.)
In the second case,

[apl, < 2p,lar], <n = [ag]ln >n—2p+2 = a+2€ S,

So we conclude that a € S, \ S, implies that one of a,a +2 € S,.

Recalling the description of S, and S, in Observation [5.1] if there are elements
of S, and S, within distance 2 of each other, then there must be integers 0 < b <
p,0 < ¢ < g such that

[ (5l (= m-ore)

Ifg < ‘/_ , then 422 <1, s0 as b, ¢, p, q are integers, the only way this can happen is
if bg = cp, and as we assumed ged(p, q) = 1, this only can happen for b= ¢ = 0. So
the only elements of S}, and S, within distance 2 of each other are 0,1 (€ S, N .S,).
Then by the previous paragraph, all elements of S, other than {0,1} must be in
Sy. So if S, contains a usable unit, this usable unit is in S, NS, O

Proposition 6.2. If S, does not contain a usable unit and q < 4 and r > 22
and n > 30, then either (p,q,r) belongs to one of families (1), (2), (3) in Theorem
M1l (in which case the [MW] criterion is not satisfied) or Sq NS, contains a usable

unit.
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Proof. We recall from Proposition[B.5]that S, does not contain usable units exactly
when: p=1; p=2and n is even; or p =4 and n =4 mod 8.

We will start by considering the case ged(g,n) = 1 and ¢ > 1. We write [¢7!],, =
%" + m for some 0 < k <pand 0 < m < z. (In all of these cases, note that p

divides n.) We also write [ = [kq]p, so that k"q = %” mod n. We now start with
two preliminary claims: first, m > o , for 0therw1se if I >0,

l+1)n 1 In k
n2u>—n+mq>—>l = (¢ g, = K—n—km)q} #1
p p p p n
and if [ = 0, then [¢~1q], = [mq], = mqg > 1.

Secondly,

¢ 'r=q(-p—9q)

k
—p (—n—l—m) —1l=-mp—-1,
p
and we claim [¢~'r], = n —mp — 1: first of all, m < %, 80 mp <n, and if p > 1,
then mp + 1 < n also, as n is also a multiple of p. On the other hand, if p = 1,
then m + 1 < n unless ¢~! =m = n — 1, but this would imply g =n —1 > 5

With these preliminaries, and using that ¢ < ﬁ

Yl < [27]n,

mp+12%+124q+1>2p+2q = [q~
so ¢~ € S,N S, is a usable unit.
At this point, we just need to put together what we have already proved. If
p = 2,4, then the above gives a proof for ged(q,n) = 1 (automatically ¢ > 1),
and as ged(p, ¢, n) = 1, the only other option is that ged(g,n) > 1 has some prime
factor other than 2, in which case Lemma [5.3] applies. So the only case to consider
is p = 1. If ged(g,n) = 1 and ¢ > 1, then we use the above; if ¢ = 1, then this
is family (1) in Theorem [4.1] If gcd(g,n) > 1 is not a power of two, then Lemma
B3l applies, and if ged(g,n) is a power of two > 16, then Lemma [5.4] applies. So it
remains to consider the cases ged(g,n) = 2,4,8 (and p = 1).
o ged(g,n) =2:
— ¢ = 2: This is family (2) in Theorem [4.1]
— ¢ > 2 and 4 divides n: an—@—1>3T"forn211, so by Lemma
[5.4] S, NS, contains a usable unit.
— g > 2 and 4 does not divide n: r>n—§—1> for n > 30, so by
Proposition [5.6] (applied with m =1), S, N S, contams a usable unit.
e gcd(g,n) =4
— ¢ =4 and 8 does not divide n: This is family (3) in Theorem [4.1]
— ¢ = 4 and 8 does divide n: One of 7 + 1, %T" + 1 is a usable unit in
SN Sy ifr > 31 (which is true, by the above, for n > 11).
—qg>4r>3n for n > 11, so by Lemmal5.4] S, N S, contains a usable
unit.
e ged(g,n) = 8:
—¢=28 Oneof 2+1,3 +1is a usable unit in S, N S, if r > 32 (in
particular, for n > 11)
— ¢ > 8 By Lemmal5.4] S, NS, contains a usable unit. O
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At this point, it might be worth noting in families (1)—(3) in Theorem[i.1] S, and
Sy both do not contain usable units, by Proposition .5 so that the [MW] criterion
is definitely not satisfied. (Indeed, families (1) and (2) are the known families of
lattice triangles.)

7. THE CASE q > \/_ , PART 1

The main technique in this case is a rational approximation argument, which
will be started at the end of this section and finished in §8] We will begin by
eliminating the cases in which this argument cannot be used. (This includes the
case ged(g,n) > 2, where we recall results from §5l as well as the case r = 3¢ + p,
which turns out to be problematic.) The second half of this section introduces
the number theoretic background necessary for the argument (in particular, the
Jacobsthal function, which will also be used to derive an asymptotic result not
requiring r < %") and deals with the cases in which the rational approximation has
denominator > 3; when the denominator is < 3, one needs to use a slightly different
strategy (depending on fairly fine case distinctions), which will be the topic of §8

Lemma 7.1. Suppose q > ‘/_ , > 2—” , ged(g,n) > 2, and n > 1024. Then S,N S,
contains a usable unit.

Proof. If ged(g, n) is not a power of two, then this follows by Lemmal5.3l If gcd(g, n)
is a power of two > 8 and n > 256, then g > 8, so this follows by Lemma 5.4l If
ged(g,n) = 4, then n > 1024 implies ¢ > 16, so one of Lemma [5.4] and Lemma [5.5]
applies. O

Proposition 7.2. If r = 3q + p, then the [MW| criterion is applicable if and only
ifp#£1,2,4.

Proof. First of all, as ged(p, ¢,7) = 1, we must have ged(p, ¢) = 1, and then since
n = 4q + 2p, we must have ged(p,n) = 1,2, 4.

We write p = ab,n = ac, with ged(b,¢) = 1. Let d =b~! € (Z/e)* if b~! is odd,
and d = b~! + ¢ otherwise. Then d € (Z/n)* is a usable unit if b # 1 (i.e., p # a),

and

0=dn=d(4q+2p) = 4dq = —2a.
Then[dq]n————forsomek—l234 and dr = 352 — 2 mod n. If k = 1,
[dqln < % <2q,50d € SNS,. Ifk=3,[dr], =%—% <2q7[2r]n,sod65 NSy.
We clalm that k # 2,4: if a = 1, then as n is even, k = 2,4 would imply dq has
nonzero fractional part; if a = 2, then k = 2,4 would imply dq = —1 mod 7, which,
given that ¢ < 7, implies ¢ = 5 — £, which is impossible since ¢ = § — £; and if

a=4,k=24 would imply dgq is even, but d, g are odd.

So we have shown that if p # a = 1,2, 4, then there is a usable unit in S, NS, or
Sp NSy It remains to see what happens if p = 1,2,4. First of all, as n = 4¢ + 2p
(with ¢ odd if p is even), these are exactly the cases where S, does not contain a
usable unit, by Proposition[3.5l So it suffices to check that S, NS, does not contain
a usable unit. And as n = 4¢+ 2p and ged(p, ¢) = 1, we must have ged(g,n) = 1, 2.

If ged(g,n) = 1, then

0=q '(4g+2p)=4+2¢'p = ¢ 'p= —2modg.
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1

In particular, ¢"'r =3+ ¢ 'p = 1 mod 2, and as g # r, this must mean ¢~ !r =

2,
5 + 1, s0 for k < 7, we have

k k
[kqflr]n — . even
o4k kodd

and as [2r], = 2¢ < 2¢+p =% and Sy = {k¢~' : 0 < k < 2¢}, S; N S, consists
entirely of even numbers, i.e., does not contain a unit.

Similarly, if gcd(q,n) = 2, then writing ¢ = 2b,n = 2¢,d = b= € (Z/c)* if b~}
is odd and b~' + £ otherwise, we have

l
Sq:{kd+§:0§k<q,0§l<2}

and n n
dr:d(§+q) =2 +2
(as d is odd). Then, as r also is odd, for k < ¢ (< %),
l 2k k+1=0mod2
((kd + )} = o
2 2k+ % k+1=1mod2

so [2r], = 2¢ < § implies that S; NS, can only have elements kd + %” with k + 1
even. But as p is odd, § = 2¢ + p is odd, and d is odd, so this means S, N S,
consists entirely of even numbers and therefore does not contain a unit. O

So we have established that families (4)—(6) in Theorem [d.1] are indeed families
for which the [MW] condition is not satisfied. Now, before stating the next lemma,
we must introduce a new function:

Definition 7.3. The Jacobsthal function j(n) is defined to be the smallest integer
m such that any sequence of m consecutive integers must contain a number coprime
to n.

This function was introduced in [Ja] and will be our main tool to prove the
existence of units in S, N .S,. We will need a few facts about j(n) first.

Definition 7.4. We will call an arithmetic progression {a + xb: & € Z} mod n a
“good” progression if ged(a,b,n) = 1. (The ged condition exactly ensures that a
sequence of j(n) consecutive terms includes a number coprime to n.)

In other words, if we can find a sufficiently long arithmetic progression in one
of our intersections (e.g., by using some form of the pigeonhole principle), we will
be able to prove the existence of a usable unit. The following proposition, a slight
detour, will illustrate how this works for S, N S,, and will show that the [MW]
criterion applies to almost all obtuse rational triangles. (The following proposition
builds on an observation of Alex Wright.)

Proposition 7.5. If4L%J L55¢ay) > 1. then Sp NSy contains a usable unit.

Proof. We consider the map ¢ : Z/n — (Z/n)?,a — (ap,aq). (By the condition
ged(p, g, n) = 1, this map is injective.) Let pg = L%j and qo = L%J, and
B = [-po,P0) X [—qo,q0) € (Z/n)%. Tt cannot be that all the ¢(a) + B for a € Z/n
are disjoint, as n - |B| > n? by assumption, so there must be a; # as so that

(#(a1) + B)N(p(az) + B) #0 = ¢(a1 — az) € (—2po,2po) x (—2q0,2q0)-
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Letting b = a1 — a2, by construction, 1+ kb € S, NS, for —j(n) < k < j(n).
By definition of j(n), both the 1 < k < j(n) and —j(n) < k < —1 parts of this
arithmetic progression contain at least one unit, so we need only consider the issue
of usability. There is only a potential problem if these are both 1 or § + 1, i.e., if
kb =0 or & for some 1 < k < j(n). However, this would mean that

{1+kb: —j(n) <k <jn)}={1+cged(bn):cecZ},

which contains all the possible units in S, / gcd(s,n), according to the characterization
in Observation [B.1] (we may assume ged(b,n) > 2, since in this case some < 2j(n)
multiple of b is equivalent to Omodn, and 2j(n) < p < n/2 since the condition
in the statement of the proposition implies | 2~ | > 0), and by Proposition [3.5]

5,n. But this cannot happen

2j(n)
this must contain a usable unit unless ged(b,n) =

because

]
n
49

n P p n
—— —— < 290 < b 2 - —
< 5 = Po S 0p < p0<2<

and similarly for ¢, so it is impossible for b to be a multiple of % (given that one of
bp,bq # 0). So S, NS, must contain a usable unit. O

In other words, if pg > nj(n)? (up to multiplying by a constant to deal with
the floor issue), the [MW] criterion shows this is not a lattice triangle. A result of
Iwaniec [Tw] implies that j(n) < log?(n), so as n goes to infinity, this proposition
covers almost all rational obtuse triangles.

We now return to the classification for r > %" Our next step is to find an
arithmetic progression of length j(n) in S, N S, (provided that n is sufficiently
large), again using some form of the pigeonhole principle. In what follows, we will
need effective bounds on j(n):

Fact 7.6 ([Ka, Satz 4]). Let w(n) be the number of distinct prime factors of n.
Then

j(n) < 2400,
Fact 7.7 (JRo, Théoréme 11}). For n > 3,

Inn

w(n) < 1.3841

Inlnn

Remark 7.8. For the purposes of the next lemma, we will establish a bound of the
form j(n) < c¢n for n > 10000: Combining Facts [7.6] and [T.7]

](ﬂ) < 2w(n) < eln2><1‘391nn/lnlnn < 6.971nn/lnlnn'
The function f(z) = 2wz ! has negative derivative for z > e, so for n > 10000
we have

j(n)/n < f(n) < £(10000) < .006.

Lemma 7.9. Suppose ged(q,n) = 1 or 2, ¢ > 4, r o> 27", n > 10000, and
r # 3¢+ p. If 24j(n)* < \/n, one of the intersections S, N Sy, Sp N Sy, Sy NS,

contains a usable unit.

Proof. 1f ged(gq,n) = 1, recall S, = {kq~ ' : 0 < k < 2¢}. We note that S;N S, does
not contain unusable units, because 1 ¢ S, and if § + 1 is a unit, n is even, so ¢
is odd, and then [(§ +1)q], = § +¢ > 2¢q, 50 5§ +1 ¢ S,.

If ged(q,n) = 2, as usual, we write ¢ = 2b,n = 2c and let d = b~! € Z/c.
We can choose z = d or d + 5 such that z is a unit and such that the subset
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Sy ={kz:0 <k < g} C S, contains no unusable unit but 1. (If ¢ is odd, then
5 + 1 is not a unit, and we choose z to be whichever one of d,d + 5 is odd. If ¢
is even, d and d + % are both units, and we choose the one which is b= mod n.)
Then S{I N S, does not contain unusable units.

We let z = [¢~ 7], /n for ged(q,n) = 1 and [2r],/n for ged(¢,n) = 2. By hy-
pothesis, we can choose some N € (125(n), 26)) Then Dirichlet’s approximation
theorem states that there are relatively prime integers «, 8 with 1 < 8 < N such

that
PG
Bl = BN
Suppose there is some v € (Z/8)* with {3} € [5.2]. Then, for k < j(n)
1 ] 1
'(7+k6) (x—%)’ < (7+k6)ﬁ—N < % <13

In particular, we get that

(k)] € [

n 1lln

3 %} C[0,2r—n) = {(7+k6)q_1 :0<k<j(n)-1} C S,

(or the same when ¢! is replaced by 2). And, for k < j(n),

7+kﬂ<j(n)N<g<q = {(v+kB)g ' :0<k<jn)—-1}CS,

(or the same for 2z and S;). Then S, NS, or S; NS, contains a good progression of
length j(n), and hence a usable unit.

The question is now if such a 7 exists. If 8 > 10000, Remark [Z.8] implies that
there is an element § of (Z/f)* in [%, %], so a~14 is such a 5. For 3 € [4,10000],
a computer search reveals that the only values of 8 for which this is not the case
are 8 = 4,10, 18, 30. For B =4, we take ¥ = o~ !, so we are “aiming for” i and are
permitted an error < 12, for f = 10, we take v = o~ if = > %, allowing an error
of < 3—70, and v = 3a~tifx < %, allowing an error of < 10, for 8 = 18 we take
v=atorb5a"?t (for x > & ﬁ or x < §, resp.) and are allowed an error of < 35; and
for =30,y =a " or 7o~ !, allowing an error of < - So the bound 12j(n) < N
is sufficient, as this gives an accumulated error < Z (n) <1is

For 5 < 3, it is clearly impossible to aim for a unlt in (O, %), so we will need
a slightly more sophisticated method of choosing a good progression in Sq N Sy
It is for this reason that we separately treat each case x < & gorr >3 for each

a<fB<3in§\ O

8. THE CASE ¢q > ‘/_ , PART 2

What follows is a list of propositions explaining what happens when z is over- or
under-approximated by a given fraction of denominator < 3. The proof strategies
are very similar in each proposition: there is a certain balancing act involved, as
one identifies a good arithmetic progression of length > j(n) which is in S, because
sufficient error has built up that x is very far from its approximation, but on the
other hand, one is not allowed to wait too long for the error to build up, as multiples
of ¢~'/z may no longer be in S,. As each case is somewhat different in terms of
minimal size of error, needed amount of built-up error, size of ¢, and resulting
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necessary bounds on n, it has not been possible to condense these in any useful
way. (To be clear, each proposition is a proof of Lemma [7.9]in the case described
in the statement of the proposition.) The bounds obtained in these propositions
will also be used in §9] to determine what needs to be checked by computer, as this
is where the reduction algorithm described there is least useful. (These bounds
are not optimal, but they will be sufficient to reduce the needed computation to
checking only triples with n < 10000.)

o

Proposition 8.1. The case a =0 and the case a =1, =3,z < 5

Proof. As r > %”, [0,%] C [0,2r —n), so in these cases q~'/z is a usable unit in

SqN Sy |
Proposition 8.2. The case « = 1,5 = 3,2 > % In this case, we use that
j(n) < 3.

Proof. We write ¢~ 'r/zr = 3 +m, with 0 < m < g%. First of all, if r > 37",

2r—m > 5§ > 5 +m, so ¢ '/z is a usable unit in S, N S,, so we may assume

r < 22 And if ged(3,n) = 1, then 3¢~ /3z is a usable unit in S, N S,, so we may

assume m € Z. Also, in this case, r > 27" implies 2r —n > 3 + 2, so it m =1,

then ¢='/2 € S, N S,. We therefore assume m > 2 € Z. At this point, it will be
convenient to consider the ged(g,n) = 1 and 2 cases separately.

In the ged(g,n) = 1 case (where m > 2 and r < ‘%”, so ¢ > g), we have

n n

(20— 3j(m)m >2 (T —3j(n)) > %

) < &. Then, if we let [ be the smallest positive integer such that

(2 +3l)m > %, we must have 2 4 3] < 2¢ — 3j(n) + 2. Furthermore, 3j(n)m <

<3,

i), < n

when 6j(n
N <13

and so
{2+3k)g ' I<k<Il+jn)—1}CS,NS,
as [(2+3k)q~'r], = [&* + (2+ 3k)m],, € [0, %) and 2+ 3k < 2q for k in this range.
So Sy N S, contains a good progression of length j(n), and therefore a usable unit.
(This is the prototype for the arguments that will be used throughout this section.)
In the ged(g,n) = 2 case, we will need to deal with the case m = 2 separately
before applying an argument as above. In this case,

erg—i—? = 2rEq%+2q == 27‘E2qmodg == TEqud%.

Assuming 2 < r < 3% (so also % < ¢ < %), this can only happen if r = % + ¢,

which we recognize as the case r = 3¢ + p, which is dealt with in Proposition [7.2]
So we may assume m > 3. Then

_ n ) n

(a=3jm)m >3 (% —3j(m)) > %

when 9j(n) < g;. Then by the same argument as before, Sclz NS, contains a good

progression of the form (2 + 3k)z of length j(n), and therefore a usable unit. O

Proposition 8.3. The case a=1,=2,2 < % In this case, we use j(n) < 7.

Proof. As before, we write ¢~ 1r/2r = 5 —mwith 0 <m < 55%. Ifr > 37", then
¢ '/z € S,N S, is a usable unit, so we may assume r < ?jT”. To establish a lower

bound on m, we again split into cases based on ged(gq,n).
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If gcd(q,n) = 1, then r # 5 implies that m # 0. Also m # %, as otherwise we
would have 2¢~!'r = —1 and 2r —n = n — q # n — 2p — 2q. Now we apply the same
argument as before:

_ n _ n
(2¢ = 2j(n))m = 7 = 2j(n) > &
for 2j(n) < {5, so if [ is the smallest positive integer so that (1 +2l)m > %,

have that 1+ 2] < 2¢g — 2j(n) + 1. Then 2j(n)m < i )n < 7, so as before,
{(1+2k)q_1:lﬁkgl—i—j(n)—l}CSqﬂS’r

gives a good progression of length j(n).

If ged(g,n) = 2, recall that z = (%)_1 mod %, so zr = —m mod 3 implies
r=-—m% mod %. Given that r € (3,n — q) and q€ (O %), we can immediately
rule out m < 2 If m = 3, we must have r = n — 2q, so p = 4, and then by
Proposition 8.5 S, = S, NS, must contain a usable unit. Similarly, if m = 4, then
we must have r = n — 2q, i.e., p = ¢, violating the condition ged(p, ¢,n) = 1. So it

suffices to consider the case m > 5. In this case

(= 2i(m)m >5 (% —2j(n)) > ¢

as long as 10j(n) < 121%, so by the same argument as in the previous paragraph,

S, N S, contains a good progression of the form (1 + 2k)z of length j(n), and
therefore a usable unit. ]

Proposition 8.4. The casc a=1,=2,z > % In this case, we use j(n) < {55-

Proof. We have ¢~ 'r/zr = % +m, O<m<w If r > 22 then ¢~'/2 € S, NS,
is a usable unit, so we may assume r < 4%, Also, if n is odd7 2¢71/2€8,Nn8S, is
a usable unit, so we may assume n is even, and so m € Z. As usual, we break into
cases at this point.

Suppose ged(q,n) = 1. Then ¢~ 'r = § + 1 implies » = 3¢ + p, which is covered
by Proposition[7.2] The case m = 2 will require more work: first of all, this implies
n = 6q + 2p,r = 5q +p, so 2r —n > 5 + 2 and g ! € S,N S, unless ¢ < p+ 2.

e ¢ =p: S, =5,NS, contains a usable unit by Proposition B.5]

e g=p+1. n=8p+6, and ¢q is odd, so p must be even. If 3 divides p,
then ged(p,n) = 6, and so S, N S, contains a usable unit by Lemma [5.3]
Otherwise, we have ged(p,n) = 2. We write p = 2a,n = 2¢ and choose d to
be coprime to n and = a~! mod ¢. Then

1

8 k
d(4p+3)_0mod— — d—_§+§
for some k =1,...,6. As d is an integer, we rule out k = 3,6, and as d is

odd, we additionally rule out k = 2,4 (since TS, 2"3 8 are even if they are

integers). If k =1,

2
dq:d(p+1)z2+d:%—§<2q — deS,nS,
And if k =5,
4
dr:d(6p+5)_12+5d———3 <2r—n = deS,NS,.

So one of S, NS, and S, NS, contains the usable unit d.
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e ¢ = p+2: This case is very similar to the previous one, but now n = 8p+12
and p is odd. If 3 divides p, ged(p,n) = 3, and S, NS, contains a usable
unit by Lemma [5.3l Otherwise ged(p,n) = 1, and p~1(8p + 12) = 0 mod
n implies p~ = —% + % for some k =1,...,12. As p~! must be an odd
integer, k cannot be divisible by 2 or 3, so the possible values of k are
1,5,7,11. If k= 1,7,

<2¢ = pltes,nSs,.

Wl =

_ _ n
plg=p 1(p+2)56

If k=511,

2
p*lr:p*1(6p+10)5%—§<2r—n E pileSpﬁSr.

So we can assume m > 3 (still in the case ged(g,n) = 1). Now

(2q = 2j(n))m > 3 (g - 2j(n)) > g

if 6j(n) < {5. By the usual argument, we have a good sequence of the form
(14 2k)q! of length j(n) in S; NS, and hence a usable unit.

Now suppose ged(q,n) = 2. First of all, if § is even, then z + % € S, N S, is a
usable unit, so we may assume 7 is odd. Then since zr is odd, m must be even.
If m =2, ie., zr = § + 2, then 2r = 2¢ (¢ being even) and therefore r = 3¢ + p,
which is covered by Proposition[7.2] If m = 4, 2r = 4q, which implies either r = 2¢
(contradicting ged(q,r,n) = 1) or r = § + 2¢, so we can assume the latter, i.e.,
n = 6q + 2p, r = 5q + p. This is very similar to the ged(g,n) = 1 and m = 2 case
above: here, 2r —n > % 4 4 unless ¢ < p + 4, and since ged(g,n) = 2, p must be
odd, so this can only happen if ¢ = p+ 1,p + 3. We can also assume 3 does not

divide p, since otherwise S, NS, would contain a usable unit by Lemma [5.3]

e ¢ =p+1: Since n = 8p+ 6 and ged(p,6) = 1, we have ged(p,n) = 1, and
p~1(8p + 6) = 0 implies p~! = —% + %" for some k € [1,6]. As p~! is an
odd integer, we rule out all but k = 1,5; now k = 1 implies p~! € S, N S,
and k = 5 implies p~* € S, N S,..

e ¢ = p+ 3: Since n = 8p + 18 and ged(p, 18) = 1, we have ged(p,n) = 1,
and p~(8p + 18) = 0 implies p~! = —5 + % for some k € [1,18]. Asp~!
is an odd integer, k cannot be divisible by 2 or 3, leaving the options k = 1
or 5mod6. Now k = 1 mod 6 implies p~! € S, N S,, and k = 5 mod 6
implies p~! € S, N S,

So we can assume m > 6, and now

(g —2j(n))m > 6 (% - 2j(n)) > g

if 12j(n) < {5. By the usual argument, we now have a good sequence of the form
(1+2k)z of length j(n) in S; N S, and hence a usable unit. O

Proposition 8.5. The case a =2, =3,z < % In this case, we use j(n) < %.

Proof. As usual, we write ¢~ 'r/zr = 22 —m for some 0 < m < 35 - In this case,

3
we will show
{(2+3k)g ' /2:0< k< j(n)—1} C S,NS,.
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As 3j(n) < 4 < g, this is in S;. And (24 3k)q~'r/zr = & — (2 + 3k)m, so for
these to be in S, it suffices that 3j(n)m < %. So we have a good progression of
length j(n) in S, N S,. O
Proposition 8.6. The case a =2,0 =3,z > % In this case, we use j(n) < %

and j(n) < 5.

Proof. We write ¢~ 'r/2r = 27” + m for some 0 < m < F%. If 3 does not divide
n, then 3¢~'/3z is a usable unit in S, N S,, so we can assume 3 divides n, and so
m € Z. We start by splitting into cases based on the size of r.

If r > 1 we will show that {(2+ 3k)g~'/z:0 <k <j(n)— 1} is in S, N S,
For S,, it suffices that 3j(n) < 4 < q. For S,, we have

(2+3k)g 'r/zr = g + (24 3k)m < g+3j(n)m < i—; <2r—n

as N > 12j(n). So S, N S, has a good progression of length j(n).
Ifr < 127—4" (and so ¢ > Z—g), we split into cases based on ged(q, n). If gcd(q3, n) =1,
3n

m = 1 implies r = ¢ mod %,andq<%impliesr:%+q:5q+2p> 1> S0 in

this case it suffices to consider m > 2. Then

. ™m ) n
20 3imym >2 (55 30 ) > 3
if65(n) < 7§, and 3j(n)m < %, so by the usual argument, there is a good progression
of the form (1 + 3k)g™! of length j(n) in S, N S,.
Now, suppose ged(q,n) = 2. If § is even, z+ % is also a usable unit in S,, which
is also in S, as
n

GHopr=srto=—cdm< =t <
ETQEAIT Y= TS TN O

On the other hand, if 5 is odd, 4z + % is a usable unit in S,, which is also in 5, as

n n o n n 4n n

(since N > 125(n) > 24). O

Proposition 8.7. The case o = 3. In this case, we use j(n) < %.
Proof. We write ¢~'r/zr =n —m for some 0 <m < %.

Suppose ged(g,n) = 1. Then p + ¢ = mgq, so m = 1 is impossible, and m = 2
implies p = ¢ (so S; = S, N S, contains the usable unit ¢~'), and m = 3 is
impossible, as p + ¢ < 2g < 3¢ < n. So we have

(2¢ — j(n))m > 4(2q — j(n)) > 49 > 2p+2q

if j(n) < q. Then if [ is the smallest positive integer such that [lg~'r], < [27], =
n —2p —2q, we have | < 2q—j(n), and j(n)m < %, so by the usual argument there
is a good progression {kqg~': 1 <k <I+j(n)—1}C S,NS,.

Suppose ged(g,n) = 2. Then zr is odd, so m must be odd. By the same argument
as in the proof of Proposition B.3] we must have m > 5. Furthermore m # 5, as
this would imply p = % mod 7, but p < g and ¢ < 3 make this impossible. So
m > 7, and

(q—j(n))m>7q—"Tj(n) >4q>2p+2q
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if 7j(n) < 3¢q. Then, as in the previous paragraph, there is a good progression of
the form kz of length j(n) in S} N S,. O
NG

The most restrictive bounds needed in these propositions were j(n) < 5= and

J(n) < 515 These are certainly satisfied under the conditions of Lemma [Z.9] but

this information will be useful in the next section.

9. COMPUTER VERIFICATION

At this point, we have proved Theorem [4.1] up to finitely many exceptions. We
will see what remains to be checked, give a computer-assisted proof that vastly less
must actually be checked, and then present the results of the checking. (We start
with the assumption that we will check all triples with n < 10000.)

Recall that we split the proof into major cases ¢ < @ and ¢ > 4 When

q < 4, Lemmas [6.1] and [6.2] prove the theorem for n > 30. When ¢ > 4 and
ged(g,n) > 2, Lemma[T.1] proves the theorem for n > 1024, and when ¢ > 4 and
ged(g,n) < 2, Lemma [.9] proves the theorem for n > 10000 and 245 (n)? < y/n. So
the only case in which checking triples up to n = 10000 will not complete the proof

is the case ¢ > 4,gcd(q,n) <2.
Remark 9.1. By the bounds on the Jacobsthal function introduced in g7,

1 1.41n4
j(n)Q < AR = pTmn

(which we are comparing to 57/7).

We write p,,# for the product of the first m primes and w(m) for the number

of distinct prime factors of m. Values of the function
H(n):= max j(m)
w(m)=n

for n < 24 have been computed by Hajdu and Saradha [HS]. We will use their
computed values, along with the obvious observation that w(n) < m for n < p,,#,
to obtain bounds on j(n) for small n better than those presented in §71 (From now
on, every statement we make about the maximum value of j(n) in some particular
range can be attributed to their computations.)

Remark 9.2. For n > pos# > 2.3 x 1036, we have Inlnn > 4.4, and so

2/4.4 1/2.

1
< 2471
So our bound holds for n > pas#. And for n < pos#, we have w(n) < 24 and
therefore j(n) < 236. Then for n > 242(236)* this bound holds, and for n <
24%(236)* we have w(n) < 11, and therefore j(n) < 58. So for n > 242(58)* this
bound holds, and for n < 24%(58)* we have w(n) < 10, so j(n) < 46. Then this
bound holds for n > 242(46)*, and for n < 242(46)* we have w(n) < 9, so j(n) < 40.
Then this bound holds for n > 242(40)* = 1.47456 x 10°, but the reduction process

stops here, as we still have w(n) < 9.

j(n)? < nEwE < n

It therefore remains to check triples with ¢ > 4 and ged(g,n) < 2 up to

n = 1.47456 x 10°. However, we will by no means check all of them individually.
Instead, we use the following strategy: First of all, if we find some k coprime to

n with k < ¢ so that k¢~ 'r/zr is in [0, %], k¢~'/kz is a usable unit in S, N S,.
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As mentioned previously, any n in this range has < 9 prime factors, so if one can
find 10 powers of distinct primes ¢y, ...,c19 < ¢ so that ¢;q~ r/czzr € [0, 3], then
at least one of the ¢; must be coprime to n, and so one of the ¢;q~'/c;z must be
a usable unit in S; NS,. We will split the interval from 0 to n into subintervals,
the idea being to show that for almost all of the subintervals, if ¢g~!7/2zr is in this
subinterval, then there are such c1,...,c10- In order to get better bounds, we will
divide into cases r > —” and & < r < 4”

In the case r > 45”, recall that by Propositions [5.4] and [5.6] (the latter being

applied with m = 3), if ged(g,n) = 2, then S, N S, contains a usable unit. (As
q > 4 > 50 for n > 10000, the conditions ¢ > 2 and ¢ > 8 are satisfied.) So
we may assume gcd(g,n) = 1, and S, contains multiples of ¢=! up to 2¢. Now,

[0,32] C [0,2r — n), so it suffices to use this larger interval. We will allow prime

powers up to 80 (if n > 6400 and ¢ > \/_ , then 2¢ > 80) In this case, a computer

check (partitioning n into 10000 sublntervals) shows that there are c1, ..., 1o unless

g 'ris in [%,n). We note that this is the case considered in Proposition [8.7]
43n

except that the upper bound on m is replaced by =555 -
is only needed to ensure j(n)m < 32 (this being the r > % case), and as j(n) < 40
given our bound on n, this is still satlsﬁed. So we may apply the proposition to say

that the [MW] condition is satisfied for ¢~'r € [493T n) if j(n) < %. We will
prove in Remark [9.3] that j(n) < % for n > 10000, so the case ¢~ 'r € [45 n)
will not require any additional cheoking

Now we consider the case %" <r <4 Here g > > 75 = 1000 in the range being

considered, but we must use the smaller target 1nterva1 [0,%]. Allowing prime

However, the upper bound

'3
powers up to 1000 and partitioning n into 12000 subintervals, the computer test
reveals that there are cy, ..., cyp unless
-1 n 4005n 5997n 6007n 2n 8005n 11991n
q r/zr € | =, , —, U ,
3712000 12000 12000 3 712000 12000

We see that these exactly correspond to the cases x = % + e,% + e,% +el—c€
considered in §8 As in the case r > 4?", the propositions of §8 apply to our
situation, as the only difference is that the upper bound on m is replaced by the
bounds given here, and as j(n) < 40, the strongest upper bound on m needed in
those propositions, 3j(n)m < %, is satisfied for q~'r/zr in the ranges shown above.
So we may apply the propositions of §§ to say that for ¢~ 1r/2zr in these ranges, the

[MW] criterion is satisfied if j(n) < ‘{3—, 575 As ‘/_ < 515 for n > 1296, i.e., in the

range we are considering, it suffices to see when j( ) < %.

Remark 9.3. For n > 1.47456 x 10°, by Remark 9.2 we have j(n)? < Y so

24
jn) < % holds. Then for n < 2 x 10%, j(n) < 40, so for n > 36(40)? = 57600, this
holds. For n < 57600, we have w(n) < 6, so j(n) < 22. So for n > 36(22)? = 17424

this holds, and for n < 17424 we have w(n) < 5, and so j(n) < 14. So j(n) < %
holds for n > 36(14)? = 7056, and n < 7056 is in the range that we plan to check

anyway.
So there is no need for additional checking in the 22 < 7 < 4" case either, i.e.,
it suffices to check only n < 10000.
Checking all triples in this range besides those belonging to the six exceptional
families listed in Theorem 4.1l we find the following additional triples for which the

Licensed to Univ of Michigan. Prepared on Wed Sep 28 10:11:55 EDT 2022 for download from IP 141.211.62.238.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7140 ANNE LARSEN ET AL.

FiGure 1. “Top” cylinder

---------------------- \\

FIGURE 2. “Bottom” cylinder

[MW] criterion is not satisfied: (1,4,11), (1,3,16), (2,3,17), (1,4,21), (1,8,19),
(3,8,29), (2,11,29). This is the list which appears in item (7) in Theorem [.1]
(For a summary of known results about these families and exceptional cases, the
reader is referred to §4l)

10. THE FAMILY p=1,q=4,r =7 MOD 8

In this section, we prove that the triangles in family (3) of Theorem [4.1] do not
have the lattice property (excluding Hooper’s triangle, which has r =7 < 8 = %n)
As families (1)—(2) are known to be families of lattice triangles, families (4)—(6)
have r < 37", and the exceptional triangles in item 7 have been excluded by the
computer program of Riith, Delecroix, and Eskin [RDE|, the consequence of this
section will be Theorem [I.1] the classification of rational obtuse lattice triangles
with obtuse angle > ?jf.

Our first observation is that the unfoldings of triangles in this family have a very
simple form: the unfolding is in the shape of an n-pointed star (cf. [Wal Figure 1]),
which, by chopping off the points and reassembling them, can be thought of as an
n-gon with four %-gons attached to its edges (cf. [Ho, Figure 1]). (Each %-gon is
attached to every fourth edge of the n-gon.) We easily identify the two horizontal
cylinders shown in Figures [l and [2 (In the images, only the relevant parts of the
n-gon and attaching 7-gons are shown. The black dots and dashes are intended to
make edge identifications clear. The blue and red dashes indicate the center lines

of the corresponding cylinders.)
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Letting « := @ be the interior angle of a regular n-gon of side length 1, one
can calculate that the “top” cylinder has height and circumference

hy = sin(a), ¢ =2 —4cos(a) + 2 cos(2a) — 2 cos(3a)
and the “bottom” cylinder has height and circumference
hy = —sin(2a), ¢, =1 —2cos(a) + 2 cos(2a).

Comparing the moduli,

hy ,he =4 cos?(a).

Cp Ct
We note that 4 cos?(a) € Q would imply cos(2a) € Q, and as 2« is a rational angle,
it is a well-known fact that this would imply 2« is a multiple of § or 7, i.e., o must
certainly be a multiple of {5. For the first triangle in this family, Hooper’s triangle,
we have n = 12, and 4 cos?(a) = 3, as computed in [Ho, Equation 8]. However, for
all larger n = 1248z (x > 1), a = (=27 s not a multiple of {5, and so the ratio of
the moduli is irrational. By [Ve, Remark on p. 582], this implies that the triangles
of this family with n > 12 do not have the lattice property, and as explained at
the beginning of this section, this argument completes the classification of rational
lattice triangles with obtuse angle > 37”.
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