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Abstract. We consider the derivative D⇡ of the projection ⇡
from a stratum of Abelian or quadratic di↵erentials to Teichmüller

space. A closed one-form ⌘ determines a relative cohomology class

[⌘]⌃, which is a tangent vector to the stratum. We give an integral

formula for the pairing of D⇡([⌘]⌃) with a cotangent vector to

Teichmüller space (a quadratic di↵erential).

We derive from this a comparison between Hodge and Teichmüller

norms, which has been used in the work of Arana-Herrera on ef-

fective dynamics of mapping class groups, and which may clarify

the relationship between dynamical and geometric hyperbolicity

results in Teichmüller theory.

1. Introduction

The derivative of the projection. Each stratum H() of genus g

Abelian di↵erentials comes equipped with a projection map ⇡ : H() !
Mg to the moduli space of Riemann surfaces, defined by ⇡(X,!) = X.

Given (X,!) 2 H(), we let ⌃ = {z1, . . . , zs} denote the set of
zeros of !. Any complex valued closed di↵erential one-form ⌘ on X

determines a relative cohomology class [⌘]⌃ 2 H
1(X,⌃,C). Since

H
1(X,⌃,C) is the tangent space to H(), we think of [⌘]⌃ as a tangent

vector to the stratum.
Using a point-wise decomposition, any such ⌘ can be written uniquely

as ⌘ = ⌘
1,0 + ⌘

0,1, where ⌘
1,0 and ⌘0,1 are of type (1, 0) and need not

be closed. The cotangent space to X is the space Q(X) of quadratic
di↵erentials on X, so a tangent vector to Mg can be thought of as a
linear functional on Q(X).

Theorem 1.1. Let ⌘ = ⌘
1,0 + ⌘

0,1 be closed as above. Let {�1, . . . , �s}
denote small disjoint positively oriented loops around the zeros of !,
and let X 0 be the complement in X of the discs that they bound. Then
the pairing of (D⇡)[⌘]⌃ with a quadratic di↵erential q is equal to

(1.0.1)

Z

X0
q
⌘
0,1

!
+

1

2i

X

j

Z

�j

Fj

!
q,
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where Fj(z) =
R z

zj
⌘ is defined by integrating along paths in the disc

containing zj.

See the beginning of Section 2 for how the tensors in this formula
should be interpreted. The fact that equation 1.0.1 does not depend
on the choice of loops �j follows from Stokes’ Theorem, as in the proof
of Lemma 2.1.

With the help of Lemma 2.1 below (which was suggested to us by
McMullen), Theorem 1.1 follows readily from [McM13, Corollary 3.2]
by Poincare duality. In Section 2 we give a short, self contained proof
of Theorem 1.1 that emphasizes the role of Beltrami coe�cients.

In Corollary 2.3, we show that if ⌘ is harmonic, one can let the size
of the loops go to zero to obtain a formula in terms of residues. In
Remark 2.4, we note that Theorem 1.1 holds also for the projection to
Mg,s obtained by marking all the zeros of !. In Section 3.1, we explain
how to apply Theorem 1.1 to strata of quadratic di↵erentials.

The principal stratum of quadratic di↵erentials. Any quadratic
di↵erential (X, q) admits a canonical double cover ⇢q : X̂ ! X on which
the pullback of q becomes the square of an Abelian di↵erential !. The
Deck group of this cover is an involution ⌧ , and ⌧

⇤(!) = �!. The cover
is sometimes called the holonomy double cover, and ! is sometimes
called the square-root of q.

Let ⌃ continue to denote the set of zeros of !. Denote byH1

�1
(X̂,⌃,C)

and H
1

�1
(X̂,C) the �1 eigenspace for the action of ⌧ on H

1(X̂,⌃,C)
and H

1(X̂,C) respectively.
The tangent space to the stratum of (X, q) at the point (X, q) is

H
1

�1
(X̂,⌃,C). If q has no even order zeros, then the natural map

H
1

�1
(X̂,⌃,C) ! H

1

�1
(X̂,C) is an isomorphism, and so H

1

�1
(X̂,C) can

also be viewed as the tangent space. Every element of absolute coho-
mology can be represented uniquely by a harmonic one-form ⌘, so an
arbitrary element of the tangent space uniquely corresponds to an anti-
invariant form ⌘ on X̂ with ⌘

1,0
2 H

1,0(X̂) and ⌘
0,1

2 H
0,1(X̂). Here

H
1,0(X̂) denotes the space of Abelian di↵erentials on X̂ and H

0,1(X̂)
denotes its complex conjugate.

Since ! and ⌘
0,1 are both in the �1 eigenspace of ⌧ , the Beltrami

di↵erential ⌘0,1/! is ⌧ invariant and hence is the pull back of a Beltrami
di↵erential on X, which we will continue to denote ⌘

0,1
/!.

When (X, q) is in the principal stratum, Corollary 2.3 further sim-
plifies to give the following, where ⇡ denotes the projection from the
principal stratum of quadratic di↵erentials to the moduli space of Rie-
mann surfaces.
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Corollary 1.2. If (X, q) is in the principal stratum, and ⌘ is a har-
monic anti-invariant form on X̂, then the pairing of (D⇡)[⌘]⌃ with a
quadratic di↵erential q0 2 Q(X) is equal to

1

2

Z

X

q
0⌘

0,1

!
.

We warn that the Beltrami di↵erential ⌘0,1

! is not bounded and hence
does not define a tangent vector toMg in the usual way. The integrand

q
0 ⌘0,1

! is integrable (in fact its pullback to X̂ is continuous), so ⌘0,1

!
defines a functional on the cotangent space Q(X) via integration, and
hence defines a tangent vector indirectly in this way.

Remark 1.3. Corollary 1.2 in particular witnesses that the tangent
space to the fiber of ⇡ is H

1,0
�1

(X̂). In fact, if q0 2 Q(X), it is not

hard to see that ⇢
⇤
q(q

0)/(2!) is contained in H
1,0
�1

(X̂) and moreover is
the derivative of the path (X, q + tq

0) at t = 0 [DH75].

Keeping in mind that the kernel of D⇡ is H1,0
�1

(X̂), we consider ⌘ 2

H
0,1
�1

(X̂), and compare the Hodge norm of ⌘ and the Teichmüller norm
of D⇡(⌘).

Theorem 1.4. Assuming ! has area 1, we have

k⌘k
Hodge

 kD⇡(⌘)k
Teich


4

r
k⌘k

Hodge
,

for any ⌘ 2 H
0,1
�1

(X̂), where 2r is the length of the shortest saddle

connection on (X̂,!).

This is somewhat reminiscent of comparisons between the Teichmüller
and Weil-Petersson norms in [BMW12, Lemma 5.4]. The lower bound
in Theorem 1.4 is sharp when ⌘ = !. In Section 3.3, we show that the
upper bound in Theorem 1.4 is sharp up to constants.

Other perspectives and previous results. One can of course ob-
tain formulas for D⇡ by, for example, triangulating the surface and
considering Beltrami di↵erentials of maps that are a�ne on each trian-
gle; or picking an open cover and using Cech cohomology, as in [HM79].
McMullen gave a formula in terms of complex twists [McM13]. Deriva-
tives of some especially important deformations have been given in
[Wol18].

Motivation and significance. We had two specific motivations for
writing this paper, both having to do with Theorem 1.4.
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(1) Arana-Herrera has used Theorem 1.4 in his proof of an e↵ec-
tive version of the lattice point counting problem of Athreya-
Bufetov-Eskin-Mirzakhani [AH20, ABEM12]. This in turn is
used in his subsequent work on the e↵ective dynamics of the
mapping class group [AH21a, AH21b].

(2) Since the work of Forni, the hyperbolicity of the Teichmüller
geodesic flow has been studied using the Hodge norm [For02],
see also [FM14] for a survey, [EMR19, Fra20] for more recent
developments, and [Kon97] for the introduction of the Hodge
norm to Teichmüller dynamics by Kontsevich. On the other
hand, geometric hyperbolicity results are expressed in terms of
Teichmüller distance and are proven using very di↵erent tech-
niques [Raf14]. Theorem 1.4 opens the door to links between
these dynamical and geometric results, including the possibility
of (re)proving geometric hyperbolicity results using dynamical
hyperbolicity.

It is also conceivable that Theorem 1.1 could be useful in the study
of GL(2,R) orbit closures of translation surfaces, using the restrictions
on the period mapping exploited in [MW18].

Corollary 1.2 can be used to re-derive the fact that the canonical
symplectic form on the principal stratum, obtained as for the cotan-
gent bundle to any manifold, corresponds to the usual symplectic form
on H

1

�1
(X̂,C) [BKN17]. This is notable in part because Teichmüller

geodesic flow is easily seen to be Hamiltonian using the later symplectic
form [Mas95].

A tangential remark. The following requires only Remark 1.3, but
illustrates another potential connection between this paper and other
recent work.

Proposition 1.5. Let M be a GL(2,R) orbit closure in the principal
stratum of quadratic di↵erentials over Mg,n, and let ⇡ denote the pro-
jection to Mg,n. Then ⇡(M) is a totally geodesic subvariety of Mg,n.

Proof. By [EM18, EMM15] each orbit closure is a properly immersed
smooth suborbifold, and by [Fil16a, Fil16b] it is moreover an algebraic
variety.

WhenM is in the principal stratum, its tangent space at (X, q) 2 M

is naturally identified with a subspace of H1

�1
(X̂,C) defined over R. By

[Fil16a], this subspace is the direct sum of its intersections withH
1,0
�1

(X̂)

andH
0,1
�1

(X̂). Since these two intersections are complex conjugate, they
have the same dimension, which witnesses the fact that M must have
even complex dimension. Since H

1,0
�1

(X̂) is the kernel of D⇡, we see
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that the kernel of D⇡ restricted to M has dimension half that of M
at every point.

We conclude that the variety ⇡(M) has dimension half that of M.
It follows from previous observations that its closure is totally geodesic,
as is implicit in [MMW17, EMMW20, Wri20] and explicit in [Gou21,
Proposition 1.3]. ⇤

The only known non-trivial primitive totally geodesic subvarieties of
dimension greater than 1 have dimension 2 and arise from orbit closures
in the principal strata of M1,3, M1,4 and M2,1 [MMW17, EMMW20].
See also [Wri20] for related results, and [Gou21] for a survey.

Before [MMW17], it was not expected that any orbit closures would
give rise to totally geodesic subvarieties, and [MMW17, EMMW20]
used a detailed understanding to conclude that three orbit closures
have su�ciently small projections to give totally geodesic surfaces. So
it is perhaps surprising that Proposition 1.5 indicates that, at least
for orbit closures in the principal stratum, there is automatically an
associated totally geodesic subvariety.

Acknowledgements. During the preparation of this paper, the first
author was partially supported by the Simons Foundation and the sec-
ond author was partially supported by a Clay Research Fellowship,
NSF Grant DMS 1856155, and a Sloan Research Fellowship. We thank
Francisco Arana-Herrera, Giovanni Forni, and Bradley Zykoski for com-
ments, and especially thank Curt McMullen for comments that lead to
a simplification of the proof of Theorem 1.1 and the recovery of a pre-
viously missing factor of 2i (see (2.0.2)).

The title of this paper is inspired by [CJY94].

2. The derivative formula

Before we give the proofs of Theorem 1.1 and Corollary 2.3, we must
clarify our conventions. In the integral overX 0 in (1.0.1), the integrand,
as a product of a (2, 0), a (�1, 0), and a (0, 1) form, is a (1, 1) form,
and hence can be written locally on U ⇢ C as f dz dz. We then define,
as a matter of convention,

(2.0.1)

Z

U

f dz dz =

Z

U

f dx dy;

we observe that the latter integral will be independent of the choice of
coordinate and that (2.0.1) can be used to define a global integral in
the usual way. This is the convention used in defining the Teichmüller
pairing of a quadratic di↵erential q and a Beltrami di↵erential µ as
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R
X qµ. Since dz ^ dz = 2i dx dy,

(2.0.2)

Z

U

f dz dz =
1

2i

Z

U

f dz ^ dz.

We continue to use the notation of Theorem 1.1: X
0
⇢ X is the

complement of the discs bounded by loops �j about the zeros zj, and
Fj(z) =

R z

zj
⌘. We start the proof of Theorem 1.1 with the following

observation.

Lemma 2.1. If [⌘]⌃ = 0 and q is a holomorphic quadratic di↵erential
on X \ ⌃, then Z

X0
q
⌘
0,1

!
+

1

2i

XZ

�j

Fj

!
q = 0.

Thus, the derivative formula (1.0.1) only depends on the cohomology
class of ⌘.

Proof. [⌘]⌃ = 0 implies that ⌘ = df for a function f which is zero on
⌃. We note

d

✓
f

!
q

◆
= @

✓
f

!
q

◆
= ⌘

0,1
^

q

!
,

and hence, by (2.0.2) and Stokes’ Theorem,

2i

Z

X0
q
⌘
0,1

!
=

Z

X0
⌘
0,1

^
q

!
= �

X

j

Z

�j

f

!
q.

Since both f and Fj are zero at zj and have exterior derivative ⌘, we
see that Fj is the restriction of f , so this gives the result. ⇤

Next, consider the Beltrami di↵erential

µt =
t⌘

0,1

! + t⌘1,0

on X. Assuming ⌘ is compactly supported on X�⌃ and t is su�ciently
small, then kµtk1 < 1. In this case, let Xt denote X with the complex
structure for which the identity map X ! Xt has Beltrami di↵erential
µt.

Lemma 2.2. If ⌘ is compactly supported and t is su�ciently small,
then the closed one-form ! + t⌘ is holomorphic on Xt.

Proof. Write ⌘
1,0 = ⌘

1,0(z) dz etc. Since ! + t⌘ is proportional to

dz +
t⌘

0,1(z)

!(z) + t⌘1,0(z)
dz = dz + µt dz,
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we see that ! + t⌘ is (1, 0) form on Xt. (In terms of a conformal chart
for X, the derivative at p of a conformal chart for Xt is of the form z 7!

A(z+µt(p)z), meaning that the form dz pulls back to A(dz+µt(p)dz).)
Since closed (1, 0) forms are holomorphic, this gives the result. ⇤
Proof of Theorem 1.1. By Lemma 2.1, we can assume that ⌘ is com-
pactly supported on X

0. Lemma 2.2 gives that (Xt,! + t⌘) is a path
in the stratum whose image in period coordinates is [! + t⌘]⌃. Since
dµt

dt

��
t=0

= ⌘
0,1
/!, the derivative of the family Xt is the Beltrami di↵er-

ential ⌘0,1/!. Since ⌘ is is supported in X
0, the pairing of this Beltrami

di↵erential with q coincides with the formula given in Theorem 1.1. ⇤
We now observe the the formula also simplifies if ⌘ is harmonic.

Corollary 2.3. Let ⌘ be harmonic, i.e. ⌘
1,0

2 H
1,0(X) and ⌘

0,1
2

H
0,1(X). Then the pairing of q and [⌘]⌃ is given by

Z

X

q
⌘
0,1

!
+ ⇡

X
reszj

 R z

zj
⌘
1,0

!
q

!
,

where the first term is understood as a Cauchy principal value using
flat coordinates provided by !.

The Cauchy principal value is the limit as " ! 0 of the integral over
the subset of X whose !-distance to a zero of ! is at least ".

Proof. It su�ces to check that the limit of

(2.0.3)

Z

�j

R z

zj
⌘
0,1

!
q

as the size of the loop �j goes to zero is 0. We can pick local coor-
dinates in which ! = z

k
dz, and pick �j of the form re

i✓. We expand
q = (

P
c`z

`)dz2, and we expand
R z

zj
⌘
0,1 =

P
m>0

dmz
m, noting that

(because of the integral) m = 0 is not included in the index of this
last sum. For each value of ` and m we obtain a term proportional toR
�j
z
�k+`

z
m
dz, which, using the expression z = re

i✓ for �j, is equal to
Z

2⇡

0

(rei✓)�k+`(rei✓)
m
d(rei✓) = ir

�k+`+1+m

Z
2⇡

0

e
i✓(�k+`+1�m)

d✓.

This is non-zero only when�k+`+1�m = 0, in which case r�k+`+1+m =
r
2m. Since m > 0, this integral goes to zero as r ! 0. As the power
series expansion for the integrand of (2.0.3) is uniformly and absolutely
convergent on the closed disk containing �j, it follows that (2.0.3) goes
to 0. ⇤
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Remark 2.4. All the results of this section also apply to the projection
to Mg,s, with s = |⌃|, obtained by marking all the zeros of !. We can
also allow ⌃ to be a finite set which properly contains the zeros of !,
in which case we think of a point of ⌃ at which ! does not vanish as a
zero of order zero.

3. The principal stratum

3.1. Arbitrary strata of quadratic di↵erentials. Let Q() denote
a stratum of the bundle of quadratic di↵erentials over Mg,n. Given
(X, q) 2 Q(), we continue to let ⇢q : X̂ ! X denote the double cover
on which the pullback of q becomes the square of an Abelian di↵erential
!. We continue to specify a tangent vector to the strata by giving a
closed anti-invariant one-form ⌘ on X̂, and we consider also a cotangent
vector q0 2 QD(X) to Mg,n.

As we now explain, if ⇡ : Q() ! Mg,n continues to denote the
projection, then the pairing of the cotangent vector D⇡([⌘]⌃) with the
cotangent vector q0 is

1

2

Z

X̂0
⇢
⇤
q(q

0)
⌘
0,1

!
+

1

2

X

i

Z

�i

Fi

!
⇢
⇤
q(q

0),

where Fi(z) =
R z

zi
⌘ is defined as before. This will follow from Theorem

1.1 once we clarify the bookkeeping of double covers.
Let U be a small open subset of H1

�1
(X̂,⌃,C) which contains [!]⌃

and provides a local coordinate for Q() at (X, q). We restrict ⇡ to
give a map from U to Mg,n.

Let ĝ denote the genus of X̂. Assuming that U is simply connected,
we can lift ⇡ to a map ⇡̂ : U ! Tĝ. The mapping class ⌧ of the holonomy
involution is constant on U , and the image of ⇡̂ is contained in the
subset G ⇢ Tĝ on which the mapping class ⌧ contains a holomorphic
involution. The quotient by this involution gives a map ⇢ : G ! Mg,n.
We consider ⇡̂ to be a map to G, and we have ⇡ = ⇢ � ⇡̂.

Given any di↵erentiable map ⇡ = ⇢ � ⇡̂, and any cotangent vector q0

in the codomain and tangent vector ⌘ in the domain, we have

hD⇡(⌘), q0i = hD⇡̂(⌘), ⇢⇤(q0)i,

where h·, ·i is the pairing between tangent and cotangent vectors and
the coderivative ⇢

⇤ maps between cotangent spaces.
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In our situation, the cotangent space to G is the space of quadratic
di↵erentials which are invariant by the involution, and if q0 is a qua-
dratic di↵erential on X then

⇢
⇤
q
0 =

1

2
⇢
⇤
qq

0
.

Let ◆ : G ! Tĝ denote the inclusion. Any invariant quadratic di↵erential
can be considered both as a cotangent vector to G and to Tĝ, and
we have hD◆(v), q00i = hv, q

00
i for any tangent vector v to G and any

invariant quadratic di↵erential q00 on X̂. Thus we get

hD⇡(⌘), q0i = hD(◆ � ⇡̂)(⌘), ⇢⇤(q0)i.

This gives the desired formula, since ◆ � ⇡̂ is the projection from the
stratum H of (X̂,!) to Tĝ, whose derivative is given by Theorem 1.1.

Applying this to the principal stratum, we get the following.

Proof of Corollary 1.2. First note that, since q has simple zeros, ! has
double zeros. Since each zero of ! is a ramification point of ⇢q, every
pull back ⇢

⇤
q(q

0) has at least a double zero at every zero of !, so we
see that ⇢⇤q(q

0)/! is holomorphic at the zeros of !. This shows that all
the residue terms in Corollary 2.3 are zero, giving the result. (The fact
that ⇢

⇤
q(q

0)/! is holomorphic gives that pull back of the integrand is

continuous on X̂, so a Cauchy principal value is not required.) ⇤
3.2. Norm comparisons. Consider a tangent vector to a principal
stratum of the form ⌘ = �, where � 2 H

1,0
�1

(X̂). Keeping in mind
Corollary 1.2, the Beltrami di↵erential µ = �/! can be viewed as the
tangent vector D⇡(⌘) via pairing with cotangent vectors. We now turn
to comparisons between the Hodge norm

k�k
Hodge

=

sZ

X̂

|�|2

and the Teichmuller norm

k[µ]k
Teich

= sup
kq0k=1

Z

X

q
0
µ = sup

kq0k=1

Z

X̂

1

2
⇢
⇤
q(q

0)
�

!
.

Theorem 3.1. We have

(3.2.1) k[µ]k
Teich

�
k�k

Hodge

k!k
Hodge

The reader should keep in mind that the normalization kqk = 1
corresponds to k!k

Hodge
=

p
2. From now on we will omit the subscript

“Hodge”, since the only norm we will consider for Abelian di↵erentials
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is the Hodge norm. On the other hand, kqk for a quadratic di↵erential
is the L

1 norm.

Proof. Let q
0 = (⇢q)⇤(!�), where (⇢q)⇤ is defined by summing over

fibers, so !� = 1

2
⇢
⇤
qq

0. Then kq
0
k = k!�k  k!k k�k by the Cauchy-

Schwartz inequality. On the other hand,
Z

X

q
0
µ =

Z

X̂

!�
�

!
=

Z

X̂

�� = k�k
2
.

Therefore

⇤(3.2.2) k[µ]k
Teich

�
k�k

2

kq0k
�

k�k
2

k�k k!k
=

k�k

k!k
.

For the other direction it will be helpful to observe the following, for
any holomorphic function f : Dr ! C, where Dr denotes the disk of
radius r:

|f(0)| 

R
Dr

|f(z)|

⇡r2
(3.2.3)



sR
Dr

|f(z)|2

⇡r2
(3.2.4)

=

qR
Dr

|f(z)|2
p
⇡r

,(3.2.5)

where the second inequality follows from Cauchy-Schwarz. In particu-
lar, for any z 2 X̂ that isn’t a root of !, we have

(3.2.6)

����
�

!
(z)

���� 
k�k

p
⇡r!(z)


k�k

r!(z)
.

where r!(z) is the radius of the largest (open) embedded Euclidean
!-disk around z. We can also control � near a root of !:

Lemma 3.2. Suppose that z0 is an order n root of !, and the !-disk
of radius 2r around z0 is embedded, without any other singularities of
!. Then for z in the !-disk of radius r,

(3.2.7)

����
Z z

z0

�

����  k�k ln 2(n+ 1),

and when n = 2,

(3.2.8)

����
Z z

z0

�

����  k�k .
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Proof. We can find a local coordinate z where z0 maps to 0, and ! =
(n + 1)zndz in these coordinates. In the z coordinate, the !-disk of
radius 2r will becomes the disc Da, with a = (2r)1/(n+1). Similarly the
!-disk of radius r becomes the disc Da0 , with a

0 = r
1/(n+1) = 2�1/(n+1)

a.
For any z 2 Da0 , we have

|�(z)| 
k�k

a� |z|

by (3.2.5). Therefore, for any z 2 Da0 ,
����
Z z

0

�

����  k�k

Z |z|

0

1

a� t
dt

 k�k

Z a0

0

1

a� t
dt

= k�k ln
a

a� a0

= k�k (� ln(1� 2�1/(n+1)))

 k�k ln 2(n+ 1).

In the case where n = 2, we can use the
p
⇡ from (3.2.5) and a direct

numerical estimate of � ln(1� 2�1/(n+1)) to obtain (3.2.8). ⇤
Theorem 3.3. Suppose that the !-distance between any two zeroes of
! is at least 2r. Then

(3.2.9)

����
�

!

����
Teich


4 k�k

r
.

Proof. Let ✏ > 0 be arbitrary. For each zero zi of !, we can define a
C

1 function pi : X̂ ! [0, 1] with

(3.2.10) k@pi/!k1 < (2 + ✏)/r.

which is 1 on the disk of radius r/2 around zi and supported in the
open disk of radius r. We then define a vector field v = f/!, where
f =

P
i pi

R
zi
�; we have

@v =
1

!

X

i

pi� + @pi

Z

zi

�.

If q0 is a norm 1 quadratic di↵erential on X then q
00
⌘

1

2
⇢
⇤
qq

0 has double
roots at the zi, so q

00
/! is holomorphic. Therefore integration by parts

gives
Z

X̂

@v q
00 =

Z

X̂

@f
q
00

!
= 0,
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and hence ����
�

!

����
Teich

= sup
kq0k=1

1

2

Z

X̂

q
00�

!

= sup
kq0k=1

1

2

Z

X̂

q
00
✓
�

!
� @v

◆



����
�

!
� @v

����
1
.

We can bound the latter norm as follows. In the disk of radius r/2
around zi, it is zero. By (3.2.6) and (3.2.8), in the annulus around zi

with radius between r/2 and r,
����
�

!
� @v

���� =

�����
� � pi� � (@pi)

R
zi
�

!

�����

 (1� pi)

����
�

!

����+
����
@pi

!

����

����
Z

zi

�

����


2 k�k

r
+

(2 + ✏) k�k

r
=

(4 + ✏) k�k

r
.

Outside of the disks of radius r around the zi, @v is zero, and
���/!

�� <
k�k /r. ⇤
3.3. Sharpness of the upper bound. We will now produce a series
of examples where ����

�

!

����
Teich

�
C k�k

r
,

and r is arbitrarily small, which shows that (3.2.9) is sharp up to the
value of the constant C = 4.

For this we start in the stratum H(2) of Abelian di↵erentials with
1 double zero. Note that every Abelian di↵erential in H(2) is the
holonomy double cover of a unique surface in Q(1,�15), so this will
relate directly to principal strata of quadratic di↵erentials.

We define a family (X✏,!✏) 2 H(2) by taking a 1 by 1 torus, mak-
ing a length ✏ horizontal slit, and gluing in an ✏ by ✏ cylinder. This
construction is called bubbling a handle in [KZ03].

Let �✏ be the core curve of the small cylinder on (X✏,!✏). We can
write its Poincare dual as sum of its holomorphic and anti-holomorphic
part, �⇤

✏ = �✏ + �✏, which in this case are complex conjugates.
Consider the path (X✏,!✏)+ t✏�

⇤
✏ for t 2 [0, 1], along which the small

cylinder is sheared. This in fact defines a closed loop in H(2), since
when t = 1 a full Dehn twist has been accomplished. Since the curve
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being Dehn twisted about has hyperbolic length bounded above and
below, the total Teichmüller distance travelled is bounded above and
below. Hence, for some t, the Teichmüller norm of D⇡(X✏,!✏)+t✏�⇤

✏
([✏�⇤

✏ ])
must be bounded below independently of ✏. This can also be verified
with standard techniques for all t, so we’ll assume this is true at t = 0.
In summary, we get

����
�✏

!

����
Teich

= kD⇡([�⇤
✏ ])kTeich �

C0

✏

for some constant C0 > 0.
We now note that the Hodge norm of �✏ is bounded above and be-

low independently of ✏. This can be obtained as a special case of the
estimates in [ABEM12, Section 3], or explained more directly as fol-
lows. The surfaces (X✏,!✏) are converging in the Deligne-Mumford
compactification to a nodal surface X0 obtained by gluing two tori at
a point. The collapse maps thus induce isomorphisms on cohomology.
The cohomology of X0 has a well defined Hodge norm, obtained for
example via a direct sum, and one can see that the Hodge norm of any
fixed cohomology class converges as ✏ ! 0 to the Hodge norm of the
corresponding class on X0.

Since the length of the shortest saddle connection on (X✏,!✏) is ✏,
this example shows that (3.2.9) is sharp up to the value of the constant
C = 4 for the stratum Q(1,�15).
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Études Sci. 127 (2018), 95–324.

[EMM15] Alex Eskin, Maryam Mirzakhani, and Amir Mohammadi, Isolation,
equidistribution, and orbit closures for the SL(2,R) action on moduli
space, Ann. of Math. (2) 182 (2015), no. 2, 673–721.

[EMMW20] Alex Eskin, Curtis T. McMullen, Ronen E. Mukamel, and Alex Wright,

Billiards, quadrilaterals, and moduli spaces, J. Amer. Math. Soc. 33
(2020), no. 4, 1039–1086.

[EMR19] Alex Eskin, Maryam Mirzakhani, and Kasra Rafi, Counting closed
geodesics in strata, Invent. Math. 215 (2019), no. 2, 535–607.

[Fil16a] Simion Filip, Semisimplicity and rigidity of the Kontsevich-Zorich co-
cycle, Invent. Math. 205 (2016), no. 3, 617–670.

[Fil16b] , Splitting mixed Hodge structures over a�ne invariant mani-
folds, Ann. of Math. (2) 183 (2016), no. 2, 681–713.

[FM14] Giovanni Forni and Carlos Matheus, Introduction to Teichmüller the-
ory and its applications to dynamics of interval exchange transforma-
tions, flows on surfaces and billiards, J. Mod. Dyn. 8 (2014), no. 3-4,

271–436.

[For02] Giovanni Forni, Deviation of ergodic averages for area-preserving flows
on surfaces of higher genus, Ann. of Math. (2) 155 (2002), no. 1, 1–

103.

[Fra20] Ian Frankel, Meromorphic L2 functions on flat surfaces,
arXiv:2005.13851 (2020).
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