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Abstract
Using the transfer principle of Lie theory, we classify the periodic points on the regular n-
gon and double n-gon translation surfaces and deduce consequences for the finite blocking
problem on rational triangles that unfold to these surfaces.
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billiards · Veech surfaces
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1 Introduction

The group GL+(2,R) acts on the moduli space of translation surfaces, which is stratified
by specifying the number of singularities of the flat metric and their cone angles. This
action, which is generated by complex scalar multiplication and Teichmüller geodesic flow,
preserves these strata. In the sequel, an element of a stratum will be denoted (X ,ω) where
X is a Riemann surface and ω is a holomorphic 1-form that induces the translation surface
structure. Given such a point, its stabilizer SL(X ,ω) in SL(2,R) is called the Veech group,
and (X ,ω) is called a Veech surface when this group is a lattice.

Definition 1.1 A point p on a Veech surface (X ,ω) is called periodic if p is not a zero of ω

and if its orbit under Aff(X ,ω)–the affine diffeomorphism group of (X ,ω)–is finite.

Remark 1.2 Our definition is equivalent to the one used in Apisa [2]. A version of this
definition which includes the zeros ofω first appeared in Gutkin-Hubert-Schmidt [10]. Under
this definition, an equivalent notion of a periodic point is a point marked by a holomorphic
multisection of the universal curve over a suitable finite cover of the Teichmüller curve
associated to (X ,ω). See Möller [22, Lemma 1.2] for details.
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Consider the following translation surfaces. For n even, the regular n-gon surface is the
regular n-gon with opposite sides identified, and for n odd, the double n-gon surface is two
copies of a regular n-gon differing by a rotation by π with parallel sides glued together.
The regular 10-gon and the double 7-gon surfaces are depicted in Fig. 2. Both the regular
and double n-gon surfaces are hyperelliptic with their hyperelliptic involutions being affine
diffeomorphisms of derivative −Id. The Weierstrass points are the fixed points of this invo-
lution. In [24], Veech proved that the regular n-gon and double n-gon surfaces are Veech
surfaces for all n ≥ 3. Our main result is a classification of periodic points on these surfaces.

Theorem 1.3 When n ≥ 5 and n #= 6, the periodic points of the regular n-gon and double
n-gon surfaces are exactly the Weierstrass points that are not singularities of the flat metric.

Remark 1.4 For the regular n-gon surface, the Weierstrass points are the center, midpoints of
the sides, and, when 4 | n, the vertices of the regular n-gon that comprises the surface. For
the double n-gon surface, the Weierstrass points are the midpoints of the sides and vertices
of the two regular n-gons that comprise the surface.

Remark 1.5 When n = 5, 8, and 10 this result was shown byMöller [22, Theorems 5.1, 5.2].
When n = 3, 4 or 6 the surfaces are tori and have infinitely many periodic points coming
from torsion points.

The proof can be divided into two steps. First, we use the transfer principle,1 recalled in
the first sentence of the proof of Proposition 3.2, to reduce the problem to classifying periodic
points on an explicit set of saddle connections.2 Second, we classify the periodic points on
these saddle connections by covering themwith two collections of non-parallel cylinders and
using the “rational height lemma", recalled as Lemma 3.5 below.

The regular n-gon and double n-gon surfaces belong to a larger infinite family of Veech
surfaces called the Veech-Ward-Bouw-Möller surfaces [4]. It would be interesting to know
whether our methods could be used to classify the periodic points on these surfaces, which,
by Hooper [11] and Wright [26], also admit a presentation as a disjoint union of regular
polygons with side identifications.

Theorem 1.3 has consequences for the finite blocking problem.

Definition 1.6 Two points P, Q on a billiard table (resp. translation surface) M are finitely
blocked if there is a finite set of points S ⊂ M − {P, Q} such that all billiard trajectories
(resp. straight line segments that do not contain singularities in their interior) from P to Q
pass through a point in S.

The following corollaries will be proven after the proof of the main theorem.

Corollary 1.7 When n ≥ 5 and n #= 6, the pairs of finitely blocked points on the regular
n-gon and double n-gon surfaces consist precisely of any point that is not a singularity and
its image under the hyperelliptic involution.

Via the unfolding construction of Katok-Zemlyakov [27], the
(

π
2 ,

π
n ,

(n−2)π
2n

)
triangle

unfolds to the regular n-gon or double n-gon surface when n is even or odd respectively.
Therefore, a consequence of the previous corollary is the following.

1 Our use of the phrase “transfer principle" is inspired by and analogous to the usage in Calsamiglia-Deroin-
Francaviglia [5]
2 A saddle connection is a closed geodesic arc on a translation surface whose endpoints are singular points
and which has no singular points in its interior.
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Corollary 1.8 When n ≥ 5 and n #= 6, the
(

π
2 ,

π
n ,

(n−2)π
2n

)
triangle admits a pair of finitely

blocked points if and only if n is even, in which case the only such pair is the vertex of angle
π
n and itself.

Remark 1.9 Similar statements can be deduced for the
(

π
n ,

π
n ,

(n−2)π
n

)
and

(
2π
n , (n−2)π

2n ,

(n−2)π
2n

)
triangles, which unfold to the regular n-gon surface, the double n-gon surface, or a

double cover of one of those surfaces.

The remainder of the paper is divided into three sections. In Sect. 2 we establish some
facts about the flat geometry of the regular and double n-gon surfaces. This will require a
lemma on the rationality of ratios of sines that will be proven in Sect. 4. Section3 contains
the proof of Theorem 1.3 and its corollaries.
Context. Some of the earliest results on periodic points and the finite blocking problem,
especially for Veech surfaces, are due to Gutkin et al. [10], Hubert et al. [14], and Monteil
[19, 20]; see especially [19, Theorem 1] for related work on the finite blocking problem in
the regular n-gon.

Periodic points in strata of Abelian and quadratic differentials were classified by Apisa
[2] and Apisa and Wright [3] respectively. Periodic points for every genus two translation
surface were classified by Möller [22] and Apisa [1]. These works use the classification of
GL(2,R) orbit closures in genus two strata of Abelian differentials by McMullen [18]. The
only periodic point on a genus two translation surface that is not a Weierstrass point was
discovered by Kumar and Mukamel [15] and relates to orbit closures discovered by Eskin et
al. [9].

For recent work on the finite blocking and illumination problems that was inspired by
work of Eskin et al. [7, 8], see Lelièvre et al. [16], Apisa and Wright [3], and Wolecki [25].

2 Preliminaries

Fix an integer n so that either n = 5 or n ≥ 7. Let R1 denote a regular n-gon circumscribed
in the unit circle in C centered at the origin and so that one of its vertices lies at the point i .
When n is even, the regular n-gon surface is R1 with opposite sides identified. To form the
double n-gon surface when n is odd we take a copy of R1 rotated by π

n , which we call R2, and
identify parallel sides between R1 and R2. By triangulating these polygons and computing
Euler characteristic, it is easy to see that the genus of the regular n-gon surface (resp. double
n-gon surface) is % n

4 & (resp. n−1
2 ).

Let #n denote the Veech group of the regular n-gon surface when n is even and the double
n-gon surface when n is odd. Make the following definitions,

rn =
(
cos π

n − sin π
n

sin π
n cos π

n

)
, sn =

(
1 2 cot π

n
0 1

)
.

Theorem 2.1 ([24] (Definition 5.7, Theorem 5.8); see also [21] (Theorem 5.4)) When n is
even, #n is generated by {r2n , sn, rnsnr−1

n } and is isomorphic to the (n/2,∞,∞) triangle
group. In particular, H/#n has two cusps.

When n is odd, #n is generated by {rn, sn} and is isomorphic to the (2, n,∞) triangle
group. In particular, H/#n has one cusp.
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Remark 2.2 In fact when n is even, Veech considered a double cover of the regular n-gon
surface; however, it is well-known that the Veech group of the two surfaces are identical.
Nevertheless, we will only ever use that, when n is even, #n is contained in the Veech group
of the regular n-gon surface, which is clear since each generator has that property.

Remark 2.3 It is well known (see for instance Veech [24, Section 3] or Hubert-Schmidt
[13, Lemma 4]) that for Veech surfaces, the maximal parabolic subgroups of the Veech
group are in one-to-one correspondence with cylinder directions. The correspondence is
given by associating to each cylinder direction, its stabilizer in the Veech group. Under
this correspondence, the action of the Veech group on cylinder directions corresponds to its
action by conjugation on maximal parabolic subgroups. Since conjugacy classes of maximal
parabolic subgroups correspond to cusps of the quotient of the upper half plane by the Veech
group, we see that each cusp corresponds to the orbit of a cylinder direction under the Veech
group. Thus, every cylinder direction can be moved to one of these prescribed directions
(described below) by an element of the Veech group.

In light of this observation, by Theorem 2.1, on the double n-gon surface any cylinder
direction may be sent to any other by an affine diffeomorphism. Similarly, there are two
orbits of cylinders under the action of the affine diffeomorphism group on the regular n-gon
surface. We will now describe these two cylinder directions.

The first is the horizontal direction, which is covered by
⌈ n
4

⌉
(resp. n−1

2 ) cylinders when
n is even (resp. odd), as seen on the left in Fig. 1. Let g′

n denote the number of horizontal
cylinders. Notice that g′

n is greater than or equal to the genus of the surface. Since the vertices

of R1 lie at the points
{
iexp

(
2 jπ i
n

)}n−1

j=0
, it is easy to see that the heights of the horizontal

cylinders are

h j := Im
(
iexp

(
2 jπ i
n

)
− iexp

(
(2 j + 2)π i

n

))

for j ∈ {0, . . . , g′
n − 1}. We can simplify the expression for the heights as follows,

h j = Im
(
iexp

(
(2 j + 1)π i

n

) (
exp

(−π i
n

)
− exp

(
π i
n

)))

= 2 sin
(π

n

)
sin

(
(2 j + 1)π

n

)
. (1)

When n is odd, notice that since sin(x) = sin(π − x) for any x , for j >
⌊ n−3

4

⌋
we can

write sin
(
(2 j+1)π

n

)
= sin

(
(n−2 j−1)π

n

)
, and so

{h j }g
′
n−1
j=0 =

{
2 sin

(π

n

)
sin

(
kπ
n

)}g′
n

k=1
. (2)

When n is even, there are two orbits of cylinder directions under the action of the Veech
group. Under the equivalences explained above, these two cylinder directions can be chosen
to be stabilized by the maximal parabolic subgroup of#n generated by sn and rnsnr−1

n . Using
this observation (which is explained more fully in [24, Section 5]), a cylinder direction that
cannot be sent to the horizontal one by the Veech group can be described as follows. Rotate
the regular n-gon surface so that R1 remains circumscribed in a unit circle but with one of
its edges being horizontal. Let R′

1 denote this rotated copy of R1. The horizontal direction
is now covered by gn :=

⌊ n
4

⌋
cylinders, as seen on the right in Fig. 1; the notation gn is
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Fig. 1 Two cylinder directions for the regular decagon

chosen since it is equal to the genus of the surface. Since the vertices of R′
1 lie at the points{

iexp
(
(2 j+1)π i

n

)}n−1

j=0
, it is easy to see that the heights of the horizontal cylinders are

h′
j := Im

(
iexp

(
(2 j + 1)π i

n

)
− iexp

(
(2 j + 3)π i

n

))

for j ∈ {0, . . . , gn − 1}. We can simplify the expression for the heights as follows,

h′
j = Im

(
iexp

(
(2 j + 2)π i

n

)(
exp

(−π i
n

)
− exp

(
π i
n

)))

= 2 sin
(π

n

)
sin

(
(2 j + 2)π

n

)
. (3)

The following result was stated in McMullen [17, page 7] where it is indicated that its
proof follows from an application of the bounds in the proof of [17, Theorem 2.1]. Since the
deduction is not entirely trivial, we offer a proof in Sect. 4. In our deduction, we will not
use the full strength of [17, Theorem 2.1], which shows that the number of sine ratios of any
fixed degree over Q is finite and which can be used to find all such ratios.

Lemma 2.4 For rational numbers 0 < α < β ≤ 1
2 ,

sin(πα)
sin(πβ) is rational if and only if α = 1

6

and β = 1
2 .

Lemma 2.5 On the regular n-gon and double n-gon surfaces, at least one cylinder direction
has the property that the ratio of heights and circumferences of distinct cylinders in this
direction have irrational ratio; every cylinder direction has this property whenever n is not
congruent to 0 or 6 mod 12. Moreover, for any two parallel cylinders sharing a boundary
saddle connection, their heights and circumferences have an irrational ratio.

Proof ByRemark 2.3, any cylinder direction can be sent to one of the two directions specified
in Remark 2.3 by an element of the Veech group. In particular, the ratio of heights of two

distinct parallel cylinders is either h j
hk

or
h′
j

h′
k
. By Eqs. (1)–(3), up to inverting the ratio, these

ratios always have the form sin(πα)
sin(πβ) for rational numbers 0 < α < β ≤ 1

2 where nα and

nβ are integers. By Lemma 2.4 such a ratio is rational if and only if α = 1
6 and β = 1

2 . In
particular by Eq. (2) the ratio of heights of distinct parallel cylinders is irrational when n is
odd.
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Suppose therefore that n is even. By Equation (1), h j
hk

=
sin

(
(2 j+1)π

n

)

sin
(
(2k+1)π

n

) . If j < k then this

ratio is rational if and only if 2 j+1
n = 1

6 and 2k+1
n = 1

2 . This implies that n = 12 j + 6 and
k = 3 j + 1. Therefore, the ratio of heights of distinct cylinders in this cylinder direction is
irrational if and only if n is not congruent to 6 mod 12. Moreover, since j and k correspond
to cylinders that share a boundary saddle connection if and only if | j − k| = 1 we have that
cylinders that share a boundary saddle connection have an irrational ratio of height as long
as j > 0, which is the case since we have assumed that n #= 6.

By Eq. (3),
h′
j

h′
k
=

sin
(
(2 j+2)π

n

)

sin
(
(2k+2)π

n

) . If j < k then this ratio is rational if and only if 2 j+2
n = 1

6

and 2k+2
n = 1

2 . This implies that n = 12 j+12 and k = 3 j+2. Therefore, the ratio of heights
of distinct cylinders in this cylinder direction is irrational if and only if n is not congruent
to 0 mod 12. As before cylinders that share a boundary saddle connection have an irrational
ratio of height.

By Remark 2.3 any cylinder direction can be moved by an element of the Veech group to
one of the two cylinder directions analyzed in the preceding paragraphs, so the result follows.
The claims for circumferences hold since the ratio of moduli3 of parallel cylinders is rational
for any Veech surface. +,

Definition 2.6 Given translation surfaces (X ,ω) and (X ′,ω′) a translation cover f :
(X ,ω) → (X ′,ω′) is a holomorphic map f : X → X ′ such that f ∗ω′ = ω. Similarly,
if (Y , q) is a quadratic differential that is not the square of a holomorphic one-form, then we
say that f : (X ,ω) → (Y , q) is a half-translation cover if f : X → Y is holomorphic and
f ∗q = ω2.

Lemma 2.7 Let (X ,ω) be the regular n-gon or double n-gon surface. If (X ′,ω′) is a trans-
lation surface so that f : (X ,ω) → (X ′,ω′) is a translation cover then (X ,ω) = (X ′,ω′).

Proof Suppose to a contradiction that there is a translation cover f : (X ,ω) → (X ′,ω′)
where the genus g′ of X ′ is less than the genus g of X . For each cylinder C of circumference
c on (X ,ω), there is an integer m so that f (C) is a cylinder of circumference c/m. By
Lemma 2.5, there is a cylinder direction on (X ,ω) in which all distinct pairs of cylinders
have an irrational ratio of circumferences and hence map to distinct cylinders on (X ′,ω′)
under f . Since every cylinder direction on (X ,ω) has at least g cylinders (see the description
of cylinder directions in Remark 2.3), it follows that there is a cylinder direction on (X ′,ω′)
with g distinct cylinders. Since ω has at most two zeros, the number of zeros s′ of ω′ is also
at most two. Therefore, g ≤ g′ + 1, since the number of cylinders on (X ′,ω′) is bounded
above by g′ + s′ − 1. Since we have assumed that g′ < g we see that g′ = g − 1 and s′ = 2.

By the Riemann-Hurwitz formula, this implies that g ≤ 3 and hence that n ∈
{5, 7, 8, 10, 12, 14}. The condition that ω has two singularities reduces the possibilities to
just n ∈ {10, 14}. Since 10 and 14 are not congruent to 0 or 6 mod 12 it follows from Lemma
2.5 that these surfaces possess cylinder directions with g + 1 cylinders so that the ratio of
circumferences of distinct cylinders is irrational. As argued above, this implies that (X ′,ω′)
also has such a cylinder direction and hence that g = g′, which is a contradiction. +,

Corollary 2.8 For the regular n-gon and double n-gon, the affine diffeomorphism group is
isomorphic to the Veech group.

3 The modulus of a cylinder of height h and circumference c on a translation surface is h
c .
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Proof Let (X ,ω) be the regular n-gon or double n-gon surface. Letting Aut(X ,ω) be the
group of affine diffeomorphisms of derivative Id, we have the following short exact sequence
(see [24, Equation (2.6)]).

0 Aut(X ,ω) Aff(X ,ω) SL(X ,ω) 0.

It suffices to show that Aut(X ,ω) is trivial. This follows from Lemma 2.7 since the cover
(X ,ω) → (X ,ω)/Aut(X ,ω) must be the identity. +,

From now on, we consider the Veech group acting on the regular or double n-gon by the
above isomorphism.

Remark 2.9 It is standard that the Weierstrass points that do not coincide with singularities
of the flat metric are periodic points for any translation surface in a hyperelliptic locus
of a stratum. However, in our case, this is particularly easy to see since the isomorphism
between Aff(X ,ω) and SL(X ,ω) shows that the hyperelliptic involution is in the center of
Aff(X ,ω)–since it is sent to −Id–and hence that Aff(X ,ω) permutes its fixed points.

Remark 2.10 Let n be even and let p provisionally denote the center of the regular n-gon R1
whose opposite sides are identified to form the regular n-gon surface. We will show that p
is fixed by every element of the affine diffeomorphism group. It is obvious that it is fixed by
the rotation rn . The remaining generators of the affine diffeomorphism group are shears in
the cylinder directions identified in Remark 2.3. In cylinder direction of slope π

n , p lies on
a boundary saddle connection of a cylinder and is trivially fixed. In the horizontal cylinder
direction, p lies on the core curve of a cylinder C of modulus tan(π/n). The corresponding
generator of the maximal parabolic subgroup is sn , which performs two Dehn twists in C
and hence fixes p. Since p is fixed by the generators of the affine diffeomorphism group, it
is fixed by every element in it.

3 Proof of theorem 1.3 and its corollaries

We now begin our study of periodic points using the transfer principle. Our goal is to reduce
the main theorem to identifying the periodic points on finitely many saddle connections. We
start with the following definition.

Definition 3.1 When n is even let Pn denote the point in Remark 2.10. When n is odd, let Pn
denote the unique cone point of the flat metric of the double n-gon surface. Both points are
fixed by every element of #n .

Proposition 3.2 The #n orbit of any periodic point on the regular n-gon or double n-gon
surface contains a point lying on the leaf of the horizontal foliation passing through Pn or,
when n is even, a point lying on the leaf of the foliation passing through Pn that makes an
angle of π

n with the horizontal (see Fig. 2). These leaves are saddle connections or possibly,
when n is even, the core curve of a cylinder.

Proof The transfer principle states that ifG and H are topological groups acting continuously,
from the left and right respectively, on a topological spaceX then the following are in bijective
correspondence:

1. Closed (resp. dense) G orbits on X/H .
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Fig. 2 After applying Proposition 3.2, any periodic point can be assumed to lie on one of the dashed lines or
its image under the hyperelliptic involution

2. Closed (resp. dense) G × H orbits on X .
3. Closed (resp. dense) H orbits on G\X

We will briefly sketch a proof of this claim for closed orbits (the case of dense orbits is
similar). Let π : X → X /H be the quotient map. If C ⊆ X /H is a closed G-invariant set,
then its preimage π−1(C) is a closed G × H -invariant set. Conversely, if D ⊆ X is a closed
G×H invariant set, then, since it is H -invariant,π(D) is the complement ofπ(X −D). Since
π is an open map, π(X −D) is open and hence π(D) is a closed G-invariant set. Therefore,
taking images and preimages under π establishes a bijection between closed G-invariant
subsets of X /H and closed G × H invariant subsets of X . This bijection restricts to the
desired bijection between closed orbits.

Under these correspondences, a G × H orbit of x ∈ X will be sent to the G orbit of xH
or the H orbit of Gx . In our context, G is the Veech group #n , X is SL(2,R), and H is

the unipotent subgroup U :=
{(

1 s
0 1

)
: s ∈ R

}
. The quotient SL(2,R)/U can be identified

with R2 − {0} by sending g ∈ SL(2,R) to g ·
(
1
0

)
. Under this identification, the action of

#n on SL(2,R)/U is given by the standard linear action of SL(2,R) on R2 − {0}. Define
at :=

(
et 0
0 e−t

)
where t is any real number.

It is a foundational result of Dani [6, Theorem A] that the only U orbits of #n\SL(2,R)
are closed or dense, and the closed orbits are horocycles around the cusps. Recall from The-
orem 2.1 that cusps of #n\SL(2,R) correspond to conjugacy classes of maximal parabolic
subgroups, and these are generated by sn and, when n is even, rnsnr−1

n . In particular, the
closed horocycles corresponding to the cusps of #n\SL(2,R) are given by #natU and also,
when n is even, #nrnatU where t is any real number. By the transfer principle, the only

vectors inR2 − {0} that do not have dense #n orbit are vectors parallel to a vector in #n ·
(
1
0

)

or, when n is even, parallel to a vector in #n ·
(
cos π

n
sin π

n

)
.
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Now let p be any periodic point that is distinct from Pn . By definition, the orbit of p under
#n is finite. In particular, #n · p remains a bounded distance away from Pn . Since the regular
n-gon surface is comprised of a convex polygon with opposite sides identified and since the
double n-gon surface is comprised of two regular n-gons whose vertices correspond to Pn , it
follows that there is a straight line segment γ from Pn to p, the holonomy of which we will
denote by v. Since p remains a bounded distance away from Pn we have that #n · v is not
dense in R2 (in particular, the orbit is not dense in a neighborhood of 0) and hence there is a

vector in the #n orbit of v that is parallel to a vector in #n ·
(
1
0

)
or, when n is even, one in

#n ·
(
cos π

n
sin π

n

)
. This shows that #n · p contains a point on either the horizontal leaf through

Pn or, in the case of n even, the leaf that makes an angle of π
n with the horizontal. +,

Definition 3.3 When n is odd, call the saddle connections identified in Proposition 3.2 can-
didate line segments. When n is even, notice that the hyperelliptic involution fixes both line
segments identified in Proposition 3.2. Each line segment can be partitioned into two sub-
segments, which are exchanged by the hyperelliptic involution and have one endpoint at Pn .
For each line segment identified in Proposition 3.2 we choose one of these subsegments and
call them candidate line segments (see Fig. 2). Since the hyperelliptic involution preserves
the collection of periodic points, any periodic point can be moved by an element of the Veech
group to a candidate line segment. (Recall that, as observed in Remark 2.9, the hyperelliptic
involution can be identified with the element −Id of the Veech group.)

In the sequel, we will adopt the convention that all cylinders are assumed to be closed;
that is, they contain their boundary.

Definition 3.4 A point contained in a cylinder C is said to have rational height in C if its
distance from the boundary of C is a rational multiple of the height of C .

The following observation is well-known and a version of it appears in [12, Lemma 4]
and [2, Lemma 5.4].

Lemma 3.5 Aperiodic point on aVeech surface has rational height in any cylinder containing
it.

Proof Let p be the periodic point and suppose that it is contained in a cylinder C . After
perhaps rotating the surface we may suppose without loss of generality that C is horizontal.
Denote its height and circumference by h and c respectively. Since the surface is Veech, the

Veech group contains an element g :=
(
1 s
0 1

)
where s = kc/h for some nonzero integer k.

Choosing flat coordinates so that the bottom boundary of C lies on the x-axis, we see that g
sends a point (x, y) ∈ C to (x + ykc/h, y) where the x coordinate is taken modulo c. Thus,
if (x, y) has finite orbit under the Veech group, then y is a rational multiple of h. +,

In the following lemma, it will be useful to use the notation PQ to refer to a straight
line segment on a flat surface between points P and Q. In general on a flat surface there
are infinitely many straight line segments between any two points, so we emphasize that this
notation presupposes a choice of a line segment between P and Q and that the line segment
is not uniquely determined by its endpoints.

Lemma 3.6 Let C2 and C3 be two adjacent parallel cylinders whose ratio of heights is
irrational. Let C1 be another cylinder. Suppose that PQ is a line segment satisfying the
following:
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Fig. 3 The three cylinders in Lemma 3.6

1. PQ is neither parallel nor perpendicular to the core curves of C1, C2, and C3.
2. PQ is contained in C1 and its interior does not intersect the boundary of C1.
3. PQ is contained in C2 ∪ C3 and its interior intersects the boundary of C2 and C3 in a

unique point R. PR (resp. RQ) is contained in C2 (resp. C3) and has nonzero length,
see Fig. 3.

4. The orthogonal projection of PQ (resp. PR, RQ) to the core curve of C1 (resp. C2, C3)
is a proper subset of the core curve.

5. P (resp. Q) has rational height in C1 and C2 (resp. C1 and C3).

Then the only point on PR (resp. RQ) that has rational height in both C1 and C2 (resp. C1
and C3) is P (resp. Q).

Proof Assume for the sake of contradiction that there is a point S on PR other than P with
rational height inside both C1 and C2. Without loss of generality, perhaps after rotating the
surface, we may suppose that C1 is horizontal.

When P is contained in the interior of C1, let ' denote the leaf of the horizontal foliation
passing through P . When P is contained in the boundary of C1, let ' denote the boundary
of C1 containing P . Since the interior of PQ is contained in the interior of C1 (by (2)), we
may think of C1 as a Euclidean cylinder and orthogonally project PQ onto '. By (1) and (4),
this projection is a line segment PU whereU #= P . Let QU denote the vertical line segment
contained in C1 from Q to U . The triangle, which we will denote (PQU , formed by PQ,
PU , and QU is, by (2), a right triangle contained in C1 as shown in Fig. 4. Let T be the
point on QU so that (SQT is similar to (PQU (see Fig. 4).

Since, by (5), P , Q, and S (and hence also T andU ) have rational height in C1, it follows
that the length of UT is a rational multiple of the length of T Q. Since (SQT and (PQU
are similar, it follows that the length of PS is a rational multiple of the length of SQ.

The preceding argument (with the role of PQ being played by PR and that of C1 by C2)
shows that the length of PS is a rational multiple of the length of SR (notice that (3) is the
analogue of (2) here). It follow that the lengths of PR and RQ have a rational ratio.

Finally, let V (resp.W ) denote the orthogonal projection of P (resp. Q) to the component
of the boundary of C2 (resp. C3) containing R (see Fig. 3). We note that the triangles(PV R
and (QW R, which are formed in the same way we formed (PQU , are similar. Since the
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Fig. 4 The triangles SQT and PQU are similar

Fig. 5 The cylinders dividing
candidate lines segments in the
even case. Both Q and Q′ are
endpoints of candidate line
segments

lengths of PR and RQ have a rational ratio, so do the lengths of PV and RW . However,
by (5), the lengths of PV and RW are rational multiples of the height of C2 and C3 respec-
tively. Therefore, we have shown that C2 and C3 have a rational ratio of heights, which is a
contradiction. +,

Proof of theorem 1.3 Suppose first that n is even. By Proposition 3.2, any periodic point can
be moved by an element of the Veech group to one of the two candidate line segments (see
Definition 3.3 and Fig. 5). The endpoints of the candidate line segments are singularities
of the flat metric or Weierstrass points. It suffices to show that these endpoints are the only
periodic points on a candidate line segment. Choosing a candidate line segment, let P denote
Pn , which is one endpoint, and let Q denote the other endpoint. We will let PQ denote the
candidate line segment. Notice that PQ is contained in a single cylinder C1 that makes an
angle of −π

n with the horizontal and to which PQ is not parallel. This is the dotted cylinder
in Fig. 5.

The line segment PQ is also contained in the union of two parallel cylindersC2 andC3 in
the cylinder direction that makes an angle of − 2π

n with the horizontal. The cylinders C2 and
C3 share a boundary saddle connection and so by Lemma 2.5 they have an irrational ratio of
heights. These cylinders are the dashed cylinders in Fig. 5.

Since the endpoints of the candidate line segments are either singularities of the flat metric
or periodic points they have rational height in any cylinder containing them by Lemma 3.5.
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Fig. 6 The cylinders dividing candidate line segments in the odd case. The boundary of C1 (resp. C2 and C3)
are the dotted (resp. dashed) lines

By Lemma 3.6 it follows that any point lying in the interior of PQ has irrational height in
at least one of C1, C2, and C3. Therefore, any point lying in the interior of a candidate line
segment cannot be periodic by Lemma 3.5 as desired.

Now suppose that n is odd. Recall that the double n-gon surface is comprised of two
regular n-gons, which we denote by R1 and R2, that differ from each other by a rotation
of π/n and so that parallel sides are identified. Recall too that the hyperelliptic involution
exchanges R1 and R2. Since every candidate line segment is contained in either R1 or R2 it
suffices to classify the periodic points on the candidate line segments in just R2. Recall that
we have supposed that R2 is circumscribed in a circle centered at the origin in C and has a
vertex lying at the point −i .

We will begin by showing that if a candidate line segment passes through the interior of
R2 then its interior contains no periodic points. Notice that such a candidate line segment
is contained in the interior of a cylinder C1 that makes an angle of −π

n with the horizontal
and in the union of two cylinders C2 and C3 that share a boundary saddle connection and
make an angle of − 2π

n with the horizontal (see the left subfigure in Fig. 6). The claim that
this candidate line segment contains no periodic points in its interior is now identical to the
argument in the case of n even.

It remains to consider the candidate line segment ' that is an edge of R2 (see the right
subfigure in Fig. 6). Let Q′ denote the midpoint of this candidate line segment, which is a
Weierstrass point. We will show that Q′ is the only periodic point on the interior of '. As
before, let P denote Pn and let PQ′ denote the line segment contained in ' that begins at P ,
travels in the positive horizontal direction and ends at Q′.

Notice that ' is entirely contained in a cylinder C1 that makes an angle of −π
n with

the horizontal. Apply the element r−1
n snrn of the Veech group, which shears the cylinders

parallel to C1. When n is odd, any two parallel cylinders have equal moduli (Veech showed
this for one specific cylinder direction in [24, Equation 5.2] and so it holds for every cylinder
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direction by Theorem 2.1, see Remark 2.3). Therefore, r−1
n snrn acts on C1 by performing a

Dehn twist. In particular, the image PQ′ under r−1
n snrn remains in C1 and becomes a line

segment from P to a new point Q (see the right subfigure of Fig. 6). Let PQ denote this line
segment.

It is easy to see that the line segment PQ is contained in two cylinders C2 and C3 that
share a boundary saddle connection and make an angle of −π

n with the vertical. Proceeding
as in the case of n even yields that PQ contains no periodic points in its interior and so the
same must hold for PQ′. Since ' is the union of PQ′ and its image under the hyperelliptic
involution, we have that Q′ is the only periodic point contained in the interior of ' as desired.
+,
Proof of corollary 1.7 By [22, Theorem 2.6] whenever a translation surface (X ,ω) is not a
translation cover of a torus there is a translation cover πXmin : (X ,ω) → (Xmin,ωmin) so
that any translation cover with domain (X ,ω) is a factor of πXmin . Similarly, by [3, Lemma
3.3], there is a quadratic differential (Qmin, qmin) and a degree one or two (half)-translation
cover π : (Xmin,ωmin) → (Qmin, qmin) so that any half-translation cover is a factor of
πQmin := π ◦ πXmin . By [3, Theorem 3.6 and Lemma 3.8], if (p, q) are finitely blocked on
(X ,ω) then one of the following occurs:

1. p and q are periodic points or zeros of ω and the blocking set may be taken to be the
collection of all other distinct periodic points.

2. Neither p nor q are periodic points or zeros of ω, but πQmin (p) = πQmin (q) and the
blocking set may be taken to be the union of the periodic points with π−1

Qmin

(
πQmin (p)

)
.

Let (X ,ω) now denote the regular n-gon or double n-gon surface. By Lemma 2.7, (X ,ω)
is not a translation cover of a torus and πXmin is the identity. Since (X ,ω) = (Xmin,ωmin),
the discussion above shows that πQmin must be degree one or two. By uniqueness of πQmin , if
(X ,ω) admits any degree two map to a quadratic differential this map must be πQmin . Since
(X ,ω) is hyperelliptic, the quotient by the hyperelliptic involution is such a map and hence
must be πQmin .

By [3, Lemma 3.1], all pairs (p, q) where p is not a zero of ω and q is its image under
the hyperelliptic involution are finitely blocked. (Note that the statement of [3, Lemma 3.1]
does not include the case when p = q is a Weierstrass point that is not a zero of ω. However,
the proof is identical.) By Remark 1.4, it is clear that a zero of ω is never blocked from itself
by the collection of Weierstrass points and hence is never finitely blocked from itself.

It remains to show that if p and q are distinct points that are Weierstrass points or zeros
of ω, then they are not finitely blocked from each other. Since the blocking set would have
to consist of the other Weierstrass points, convexity of the n-gons comprising (X ,ω) and the
explicit description of the Weierstrass points in the preceding paragraph shows that this is
never possible. Thus, the only finitely blocked points are the ones listed in the statement of
the corollary. +,
Proof of corollary 1.8 Let T be a billiard table that unfolds to a translation surface (X ,ω).
Two points p and q on T are finitely blocked if and only if every preimage of p is finitely
blocked from every preimage of q on (X ,ω). When (X ,ω) is the regular n-gon or double
n-gon surface, each point is finitely blocked from at most one other by Corollary 1.7. When
T is the

(
π
2 ,

π
n ,

(n−2)π
2n

)
triangle the only points on T that have two or fewer preimages on

(X ,ω) are the vertices of angle (n−2)π
2n and π

n , which, in the first case, unfolds to the zeros
of ω and, in the second, to either the Weierstrass point Pn when n is even or to two points
exchanged by the hyperelliptic involution when n is odd. Since the zeros of ω are not finitely
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blocked from any other point, we see that the only possible pair of finitely blocked points
on T is the vertex of angle π

n from itself. When n is even, the preimage of this vertex on
(X ,ω) is Pn , which is finitely blocked from itself. When n is odd, the preimage of this vertex
consists of two points swapped by the hyperelliptic involution, and each point is not finitely
blocked from itself. +,

4 Proof of lemma 2.4

In this section we will show that for rational numbers 0 < α < β ≤ 1
2 ,

sin(πα)
sin(πβ) is rational if

and only if α = 1
6 and β = 1

2 . McMullen stated this result in [17, page 7] and indicated that
its proof follows from an application of the bounds in the proof of [17, Theorem 2.1]. Since
we were unable to find an explicit proof in the literature, we provide one here.

For any positive integer m, let ζm := exp
( 2π i

m

)
and

g(m) :=






m m ≡ 2 mod 4
2m 4 | m
4m m odd.

We begin with the following simple lemma, which is well known. Throughout this section,
if p and q are positive integers we will let (p, q) denote their greatest common divisor.

Lemma 4.1 For positive integers k and n with (k, n) = 1, Q
(
sin

(
πk
n

))
is the maximal real

subfield of Q(ζg(n)).

Proof It is well known that for positive integers ' andm with (',m) = 1, cos
( 2π'

m

)
generates

the maximal real subfield of Q(ζm). Notice that

sin
(

πk
n

)
= cos

(
π

2
− πk

n

)
= cos

(
2π(n − 2k)

4n

)
.

Since (k, n) = 1, the only prime that might divide both n − 2k and 4n is 2. When n is odd,
we see that the numerator is odd, so (n − 2k, 4n) = 1 and the claim holds. Similarly, when

4 | n, k is odd and so n−2k
4n =

n
2 −k
2n , where

( n
2 − k, 2n

)
= 1 since the numerator is odd.

Finally, suppose that n ≡ 2 mod 4, which in particular implies that Q(ζn) = Q(ζn/2). We
see that 4 | n − 2k and that 8 is the largest power of 2 that divides 4n. Therefore, when n−2k

4n
is put into lowest terms the denominator is either n or n

2 and the result follows. +,

Now let α = k1
n1

and β = k2
n2

be rational numbers expressed in lowest terms where

0 < α < β ≤ 1
2 and so that sin(πα)

sin(πβ) is rational. If n2 = 2, then it is well-known that α = 1
6

and β = 1
2 , see Niven [23, Cor. 3.12]. So suppose in order to deduce a contradiction that n2

and hence also n1 are greater than 2. Let N be the least common multiple of n1 and n2.

Lemma 4.2 If n1 and n2 are as in the preceding paragraph, then n1 = n2

Proof Suppose in order to deduce a contradiction that n1 #= n2. Since g is an injection onto the
even integers,Q(ζg(n1)) #= Q(ζg(n2)). The compositum of these two fields isQ(ζM )where M

is the least common multiple of g(n1) and g(n2). Since, by Lemma 4.1,Q
(
sin

(
πki
ni

))
is the

maximal real subfield of Q(ζg(ni )) for i ∈ {1, 2} and since sin(πα)
sin(πβ) is rational, we see that the
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maximal real subfields ofQ(ζg(n1)) andQ(ζg(n2)) coincide. In general, if E and F are subfields
ofC so that, letting K := E∩F , we have that E/K and F/K areGalois, then the compositum
EF/K is Galois and Gal(EF/K ) ∼= Gal(E/K )×Gal(F/K ). In our case, since we assumed
that ni > 2 for i ∈ {1, 2}, Q(ζg(ni )) is a degree two extension of its maximal real subfield
K . This shows that Q(ζM ) is a degree four extension of K and so φ(M) = 2φ (g(n1)) =
2φ (g(n2))where φ denotes the Euler phi function. Using that g is injective and that n1 #= n2,
this implies that M = 12k where 3 ! k for a positive integer k and where, up to exchanging n1
with n2, g(n1) = 6k and g(n2) = 4k. Since Gal (Q(ζM )/Q) is isomorphic to (Z/MZ)×, we
see that under the Galois correspondence Q(ζg(n1)) = Q(ζ 2

M ) corresponds to the subgroup
generated by 6k + 1 and the maximal real subfield of Q(ζM ) corresponds to the subgroup
generated by−1. Again by the Galois correspondence,Q(ζg(n2)) = Q(ζ 3

M )must correspond
to the subgroup generated by −(6k + 1). This implies that −3(6k + 1) ≡ 3 mod 12k,
equivalently 6k ≡ 6 mod 12k, which implies that k = 1. However, in this case g(n2) = 4
which implies that n2 = 1, a contradiction to the assumption that n2 > 2. +,

FollowingMcMullen [17, Proof of Theorem 2.1], there is a constantC1 such that N
n1

≤ C1.

By Lemma 4.2 we may set C1 = 1. By [17, Proof of Theorem 2.1], 1
2 ≤ 5 log(2N )

N , which
implies that N < 45. By Lemma 4.2 we have the following

sin(πα)

sin(πβ)
= ζ

k2
2N − ζ

−k2
2N

ζ
k1
2N − ζ

−k1
2N

= q

for some positive rational number q ∈ Q. Since k2 > k1, this implies that ζ2N is a root of
the polynomial

F(x) := x2k2 − qxk1+k2 + qxk2−k1 − 1.

The minimal polynomial for ζ2N , which is the (2N )th cyclotomic polynomial, has degree
φ(2N ) and divides F .

Lemma 4.3 F is the (2N )th cyclotomic polynomial.

Proof If not, then because φ(2N ) | 2k2, it would follow that 2φ(2N ) ≤ 2k2. Since k2
N =

β < 1
2 we have, φ(2N )

2N < 1
4 . Let + be the set of primes that divide 2N , then we have

φ(2N )

2N
=

∏

p∈+

(
p − 1
p

)
<

1
4

For this inequality to hold, N would need to have at least three prime factors aside from 2.
The smallest such number is 105, which is greater than 45. +,

Since k2 is coprime to N and since 2k2 = φ(2N ), we have that (N ,φ(N )) = 1. This
implies that N is squarefree and since N > 2, that N is odd. Since N < 45, N is prime or
N ∈ {15, 21, 33, 35, 39}. We can discard the cases of N ∈ {21, 39} since (N ,φ(N )) #= 1.
When N is prime, the (2N )th cyclotomic polynomial is

∑N−1
k=0 (−1)k xk , which is never the

same as F . The (2N )th cyclotomic polynomials for N ∈ {15, 33, 35} all have more than
four nonzero coefficients of monomial terms, so again they cannot be F and we have a
contradiction.
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