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Abstract—In order for real-time wireless networks (RTWNs) to achieve desired Quality of Service (QoS) for real-time sensing and
control, effective packet scheduling algorithms play a critical role, especially in the presence of unexpected disturbances. Most existing
solutions in the literature focus either on static or dynamic schedule construction to meet the desired QoS requirements, but have a
common assumption that all wireless links are reliable. However, this assumption is not realistic in real-life settings. To address this
drawback, this paper introduces a novel reliable dynamic packet scheduling framework, called RD-PaS. RD-PaS can not only construct
static schedules to meet both the timing and reliability requirements of end-to-end flows in RTWNs, but also construct new schedules
rapidly to handle abruptly increased network traffic induced by unexpected disturbances while minimizing the impact on existing
network flows. Through judiciously sharing time slots among tasks, RD-PaS can significantly reduce the number of required time slots
to meet the system reliability requirement and improve the network throughput. The functional correctness of the RD-PaS framework
has been validated through its implementation and deployment on a real-life RTWN testbed. Extensive simulation-based experiments
have also been performed to evaluate the effectiveness of RD-PaS, especially in large-scale network settings.
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1 INTRODUCTION

In recent years, real-time wireless networks (RTWNs) have
been making their way into a wide range of industrial
applications [1]. These applications are commonly featured
with stringent timing and reliability requirements to ensure
timely data collection and control decision making. Thus
packet scheduling in RTWNs plays an important role to
achieve the desired Quality of Service (QoS) in such ap-
plications. QoS here is often measured by how well the
network delivers the packets by their deadlines. Although
packet scheduling in RTWNs has been studied for a long
time, how to handle abruptly increased network traffic in
the presence of unexpected disturbances (i.e., events causing
more frequent sensing of the environment and processing of
sensed data) remains a challenge. This challenge is further
exacerbated by the lossy wireless links in typical industrial
environments [2].

Most RTWNs adopt Time Division Multiple Access
(TDMA) based data link layers to achieve deterministic
real-time communication. Sensing and control tasks are
abstracted as end-to-end (e2e) flows with specified timing
and reliability requirements. A key challenge of meeting the
e2e timing requirements comes from the existence of unex-
pected disturbances occurred at run time. Disturbances can
trigger changes in network resource demands from certain
tasks during the network operation for realizing some func-
tionalities (e.g., more frequent environment monitoring).
The unpredictable occurrence of disturbances makes off-
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line static scheduling approaches not effective in handling
disturbances while satisfying the flows’ timing require-
ments. The lossy nature of wireless links in the industrial
environment raises another challenge in meeting the e2e
reliability requirements in RTWNs. The lossy wireless links
in the network cause unexpected packet losses, which can
degrade the data freshness, lead to system instability and
even cause catastrophe to the system. Thus, most RTWNs
require a desired e2e Packet Delivery Ratio (PDR), e.g. 99%
for all critical flows in the system.

To address the above challenges, this paper introduces a
reliable dynamic packet scheduling framework, called RD-
PaS, to meet both the timing and reliability requirements
in packet scheduling in RTWNs in the presence of distur-
bances1. When no disturbance occurs (i.e., in the static sce-
nario), RD-PaS determines the minimum number of retrans-
mission slots needed for each task to guarantee reliable e2e
packet delivery, and constructs a communication schedule
locally in a hybrid manner at individual nodes. The hybrid
approach requires collaboration between a centralized con-
troller and a local schedule generator running on individual
nodes to keep a good tradeoff between bandwidth usage
and QoS. When a disturbance occurs, RD-PaS generates a
dynamic schedule to guarantee desired reliability of critical
task(s) while judiciously degrade the reliability of packet
transmissions for other tasks.

We present a formal formulation of the reliable dynamic
packet scheduling problem to minimize such degradation,
prove that this problem is NP-hard, and present an effective
heuristic to solve it. To improve the network bandwidth
usage, we further propose a novel shared slot transmission
mechanism by allowing time slot sharing among multiple

1. An earlier version of the paper appears in [3].
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flows, which can significantly reduce the required number
of slots to meet the reliability requirement. The functional
correctness of the RD-PaS framework has been validated
through its implementation and deployment on a real-
life RTWN testbed. Extensive simulation-based experiments
have also been performed to evaluate the effectiveness
of RD-PaS, especially in large-scale network settings. Our
results show that RD-PaS can reduce the degradation in the
e2e PDR by 58% on average compared to the state-of-the-art
method.

The remainder of this paper is organized as follows. In
Section 2, we review the related work. Section 3 describes
the system model and problem definition, and gives an
overview of the RD-PaS framework. Section 4 presents the
details of RD-PaS for the Transmission-based Scheduling
(TBS) model, including both static schedule construction
and dynamic schedule adjustment in the presence of dis-
turbances. These efforts are further extended to the Packet-
based Scheduling (PBS) model in Section 5. In Section 6,
we propose a novel shared slot transmission mechanism
in order to reduce the demand on the network resource
and improve the network bandwidth usage. In Section 7,
we present the implementation and functional validation
of RD-PaS on a real-life RTWN testbed. Performance eval-
uation from extensive simulation-based experiments is re-
ported in Section 8. Finally, we conclude the paper and
discuss future work in Section 9.

2 RELATED WORK

Most packet scheduling algorithms designed for RTWNs in
the literature focus on schedulability analysis and employ
centralized and static (or infrequently updated) manage-
ment frameworks (e.g., [4], [5]). Those solutions may fit well
for small-scale static RTWNs. They however often lead to
significantly degraded QoS when the system becomes large
and when deployed in harsh environments for monitoring
and controlling complex physical processes where unex-
pected disturbances occur frequently.

To model and respond to disturbances in RTWNs,
many dynamic scheduling approaches have been pro-
posed. [6] supports admission control in response to
adding/removing tasks for handling disturbances in the
network. However, it does not consider scenarios when
not all tasks can meet their deadlines. The protocol in [7]
proposes to allocate reserved slots for occasionally occurring
emergencies (i.e., disturbances), and allow regular tasks to
steal slots from the emergency schedule when no emergency
presents. However, how to satisfy the deadlines of regular
tasks in the presence of emergencies is not considered. [8]
proposes a MAC protocol with a centralized reschedule
scheme allowing on-line changes of active streams and net-
work topology. However, the scheduler and the data format
of the schedule distribution are not specified. A number of
efficient distributed scheduling frameworks (e.g., [9]–[13])
are proposed in Time Slotted Channel Hopping (TSCH)
networks to quickly react to network dynamics. However,
all those works do not consider real-time constraints, i.e.,
ignore the hard deadlines associated with tasks running in
the network. They only provide best effort but no guarantee
on the end-to-end latency of each task.

Another thread of research significantly advances the
state of the art by providing dynamic packet scheduling
functions in RTWNs. Among these approaches, OLS in [14]
relies on a centralized gateway to construct and disseminate
a dynamic schedule to all the nodes in the network; D2-PaS
in [15], [16] offloads the schedule construction to individual
nodes and only disseminates minimum information for the
nodes to construct a dynamic schedule locally; and FD-PaS
in [17], [18] further eliminates the need of a centralized
gateway by notifying and handling the disturbances in a
local and distributed manner. They, however, all assume
perfect wireless links, which is not realistic especially in
noisy and harsh industrial environments. To the best of our
knowledge, none of the existing dynamic packet scheduling
algorithms consider packet losses and thus many lead to
significantly degraded QoS in real-life deployment.

On the other hand, a rich set of methods have been
designed for RTWNs to improve the reliability of wireless
packet transmission over lossy links. For instance, most
RTWN solutions (e.g., WirelessHART [19], ISA 100.11a [20],
and 6TiSCH [21]) employ multiple channels and some fre-
quency hopping mechanisms to minimize potential inter-
ference. Furthermore, [22] proposes a set of reliable graph
routing algorithms in WirelessHART networks to explore
path diversity to improve reliability. Those works are com-
plementary to the approach to be introduced in this paper
since this work focuses on single channel with pre-defined
routing paths. [23] proposes an algorithm to allocate a
necessary number of retransmision time slots for individual
links to guarantee a desired success ratio of packet delivery
in a star network topology. [24] extends the network model
in [23] to allow multi-hop flows and proposes both link-
centric and flow-centric retransmission policies. However,
the policies proposed in [23], [24] tend to assign more
retransmission slots than necessary, and thus require higher
network bandwidth. By contrast, our approach proposed
in this work results in an optimal retransmission slot as-
signment. Moreover, these retransmission policies assign
dedicated time slots to either transmissions or flows and are
inefficient to address unpredictable transmission failures.
This is because the reserved retransmission timeslots can
be wasted when the previous transmission is successful.

To support flexibility in timeslot allocation and im-
prove retransmission efficiency of RTWNs, several shared-
timeslot retransmission schemes are proposed. The IEEE
802.15.4 TSCH specification [25] supports both dedicated
(contention-free) slots and shared (contention-based) slots
with CSMA back-off. [26] introduces a hybrid timeslot de-
sign where a time slot can be used as a dedicated slot by a
primary link and a shared slot by several backup links. [27]
proposes an autonomous scheduling method relying on a
mixture of dedicated slots and shared slots. To reduce trans-
mission collision in shared slots, [28] presents a segmented
slot assignment method in which multiple nodes compete
for a shared slot by randomly choosing a CCA offset. By
assigning each shared slot only to the links with a same
receiver, [29] further reduces the contention on accessing
these timeslots. However, all the approaches above suffer
from the drawback that deterministic performance cannot
be provided for the traffic in CSMA-based shared slots. On
the other hand, both [30] and [31] are recent work proposing
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contention-free shared slot transmission mechanisms. [30]
allocates shared slots to tasks with common links along their
routing paths and [31] assigns shared slots to transmissions
with common receivers. Both approaches rely on a joint
node to decide the transmission within each shared slot
and such link-based slot sharing schemes all suffer from the
state explosion problem when calculating the PDR values
for multi-hop end-to-end packets.

3 PRELIMINARIES

In this section, we first discuss the system model and then
give an overview of the proposed RD-PaS framework.

3.1 System Model and Problem Definition
The system architecture of an RTWN studied in this work
is modeled after RTWNs often found in industrial process
control applications. Such an RTWN consists of multiple
sensor and actuator nodes wirelessly connected to a single
controller node either directly or through relay nodes. The
network is described by a directed graph G = (V,E), where
the node set V = {V0, V1, . . . , Vc}. Vc is the controller node
and the rest are referred to as the device nodes. A direct
link e = (Vi, Vj) ∈ E represents a wireless link from node
Vi to Vj with a Packet Delivery Ratio (PDR), λLe , which
represents the probabilistic transmission success rate on link
e2. Vc connects to all the nodes via designated routes and
is responsible for executing relevant control algorithms. Vc
also contains a network manager which conducts network
configuration and resource allocation. In this work, we focus
on RTWNs with only one controller node. Networks with
multiple controller nodes are left for future work.

We assume that the system executes a fixed set of control
tasks T = {τ0, τ1, . . . , τN} where τi (0 ≤ i < N) is a
unicast task and τN is a broadcast task. Each task τi is
associated with a period Pi and deadline Di, and follows
a designated single routing path with Hi hops. We use−→
Li = [Li[0], Li[1], . . . , Li[Hi − 1]] to represent the routing
path of task τi. For a unicast task, Li[h] ∈ E (0 ≤ h < Hi).
Each unicast task periodically generates a packet originated
at a sensor node, passing through the controller node and
delivering a control message to the designated actuator
node. For the broadcast task τN , each hop involves mul-
tiple links, thus LN [h] = (LN [h](0), LN [h](1), . . . ), where
LN [h](i) ∈ E. The broadcast task runs periodically in Vc
and only generates packets when necessary. These packets
are broadcast to each node directly or though some inter-
mediate nodes on the broadcast path LN . The j-th released
instance of τi is referred to as packet χi,j , with its release
time, deadline, and finish time denoted as ri,j , di,j and fi,j ,
respectively. We denote the transmission of packet χi,j at
the h-th hop as transmission χi,j(h), (0 ≤ h < Hi).

Fig. 1 shows an example RTWN running 4 unicast
tasks (τ0, τ1, τ2 and τ3) and 1 broadcast task (τ5) on 7
nodes (V0, V1, . . . , V5 and Vc) where V0, V3, V5 are the sensor

2. Link PDR λLe is usually measured during the site survey and we
apply a considerable lower PDR value for each link to further improve
the system reliability in case the link quality slightly decreases. If the
value of λLe changes significantly, the new value will be reported to the
network manager which will broadcast the information to all the nodes
in the network.

nodes, V1, V4 are the actuator nodes, and V2 is a combined
sensor and actuator node. The routing paths of individual
tasks are summarized on the right side of Fig. 1.

In applications such as crude oil refining, a disturbance,
e.g., a sudden change in temperature, may occur unex-
pectedly. When a disturbance occurs, the system usually
requires the sensor nodes located within the range of the
disturbance to monitor the environment more closely, and
thus one or multiple tasks may demand more network
bandwidth during the disturbance. To capture such abrupt
increase in network resource demand upon the detection
of a disturbance, we adopt the rhythmic task model [32]
in this work3. In the rhythmic model, each task has two
states: nominal state and rhythmic state. In the nominal state,
τi releases packets following the nominal period Pi and each
packet has a relative deadlineDi ≤ Pi. In the rhythmic state,
the period and relative deadline of τi adopt a series of new
values specified by pre-designed vectors

−→
Pi and

−→
Di. Once

τi returns to the nominal state, it starts to use Pi and Di

again. When a disturbance occurs and the corresponding
tasks (denoted as TRhy) enter their rhythmic states, we
say the system switches to the rhythmic mode. The system
returns to the nominal mode after the disturbance has been
completely handled, i.e. all the corresponding tasks return
to their nominal states. In Fig. 1, when the disturbance (in
the yellow region) occurs, τ0 and τ2 (installed on nodes V3

and V0, respectively) will enter their rhythmic states and the
system switches to the rhythmic mode. In the following, we
first assume that at any time during the system operation,
at most one disturbance can occur and needs to be detected
and handled. We will then generalize the system model to
discuss concurrent disturbances at the end of Section 4.2.

Following the industrial practice for RTWNs, we con-
sider a synchronized network adopting a time-slotted
schedule. The length of a time slot is typically 10ms. Within
each time slot, at most one packet can be transmitted over
the air from a sender to a receiver. The acknowledgement
(ACK) is then sent back from the receiver to the sender in
the same slot to notify the successful reception.

Traditional RTWNs employ Link-based Scheduling
(LBS) to allocate time slots. In LBS, each time slot is al-
located to a link by specifying the sender and receiver. If
packets from different tasks share a common link and are
all buffered at the same sender, their transmission order
is decided by a node-specified policy (e.g., FIFO). This
approach introduces uncertainty in packet scheduling and
may violate the e2e timing constraints on packet delivery. To
tackle this problem, Transmission-based Scheduling (TBS) and
Packet-based Scheduling (PBS) are proposed in [15] and [24],
respectively, to construct deterministic schedules. Each of
the two scheduling models has its own advantages and
disadvantages and is preferred in different usage scenarios
as discussed in [24]. Hence, we consider both models in
our RD-PaS framework. Furthermore we focus on single-
channel RTWNs in this work since it forms the basis for
more advanced studies. Multi-channel networks are left for
future work.

3. RD-PaS is not limited to the rhythmic task model and can be
applied to any task models capturing unexpected network resource
demand changes.
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Fig. 1: An example RTWN with 5 tasks running on 7 nodes. The sensor and actuator nodes are taken from a crude oil
processing plant.

In the TBS model, each time slot is allocated to the
transmission of a specfic packet χi,j at a particular hop h or
kept idle. Once the network schedule is constructed, packet
transmission in each time slot is unique and fixed. In the
PBS model, each time slot is allocated to a specific packet
χi,j or kept idle. Within each time slot assigned to χi,j ,
every node along χi,j ’s routing path decides the action to
take (e.g., transmit, receive or idle), depending on whether
the node has received χi,j or not.

Since each link e in the network may suffer packet
losses, i.e., λLe < 1, packet transmissions may fail, which
can significantly affect the timely delivery of real-time pack-
ets. To handle such cases, a retransmission mechanism is
commonly employed in RTWNs [19], [21]. Specifically, if a
sender node does not receive the ACK from the receiver
node, it automatically retransmits the packet in the next
possible time slot.

To quantify the reliability requirement of the e2e packet
delivery for each task, a required e2e PDR for τi, denoted
as λRi , is introduced. For example, a control application can
tolerate 0.01% packet loss, so λRi is 99.99%. Based on λRi ,
the transmission of any packet of τi is reliable if and only
if the achieved e2e PDR of τi is larger than or equal to λRi ,
i.e., λi,j ≥ λRi . To simplify presentation, we assume that
all tasks in the network share a common required e2e PDR
value, denoted as λR. However, our proposed approach can
be easily extended to support different λR’s for different
tasks. Table 1 summarizes the frequently used symbols in
this paper.

Based on the above system model, we aim to design a
general packet scheduling framework to provide specific
timing and reliability guarantees for all the tasks running
in the network in the presence of dynamic disturbances.
To achieve this, we accomplish the framework design by
following two steps corresponding to solving two subprob-
lems as follows. P1: In the system nominal mode, construct
a schedule such that both the e2e timing and reliability
requirements of all tasks can be satisfied; P2: When dis-
turbances occur and are detected, adjust the schedule in a
dynamic and hybrid manner to still guarantee the reliable
and timely transmissions of the rhythmic packets while
achieving the minimum reliability degradation on other
packets. More formally, we have the following problem
formulation.

P1: Given RTWN G = (V,E) where each link e ∈ E
has an associated PDR, and task set T in which each task
τi has a single routing path

−→
Li, determine the nominal-

mode schedule under which the following constraints are
satisfied.

Constraint 1 ∀i, j, λi,j ≥ λR. (e2e reliability requirements
for all tasks)

Constraint 2 ∀i, j, fi,j ≤ di,j . (e2e timing requirements for
all tasks)

P2∗: Given the packet set, Γ, in the rhythmic mode under
consideration, the PDR function of each task τi, and other
network related constraints, determine the rhythmic-mode
schedule such that

∑
χi,j∈Γ max{0, λR−λi,j} is minimized,

with the following constraints being satisfied.

Constraint 3 ∀τi ∈ TRhy, λi,j ≥ λR. (e2e reliability require-
ments for rhythmic tasks)

Constraint 4 ∀τi ∈ TRhy, fi,j ≤ di,j . (e2e timing require-
ments for rhythmic tasks)

Here we use P2∗ instead of P2 as we have not discussed the
network constraints. They will be elaborated in Section 4
and 5 where formal definitions of P2 will be given.

In this paper, we assume P1 is solvable, i.e., there exists
a solution that can satisfy both Constraints 1 and 2 simul-
taneously. Otherwise, extra information should be provided
from the application to distinguish tasks in terms of critical-
ity according to their importance in the system model. Then,
an optimization problem can be formulated to maximize the
level of satisfying tasks’ timing and reliability requirements.
This thread of work will be explored in the future.

3.2 Overview of the RD-PaS Framework

We propose a reliable dynamic packet scheduling frame-
work, referred to as RD-PaS, to address the questions raised
above. An overview of the execution model of RD-PaS is
shown in Fig. 2. Below we focus on a high-level discussion
while leave the detailed explanation of the symbols in
Section 4.

In the network initialization phase, each device node
stores necessary specification information of all tasks (i.e.,
Hi,Di, Pi and λR) locally after receiving it from the network
manager through broadcast packets. Each device node then
calculates the number of time slots to be allocated to each
task (for both transmission and retransmission) in order to
achieve the required e2e PDR value λR.

After the network starts, each device node generates a
static schedule locally, following which all tasks can meet
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TABLE 1: Table of important symbols and notations

Notation Definition Notation Definition
V0, V1, . . . Device nodes: sensor, actuator or relay node λR Required e2e packet delivery ratio (for all tasks)

Vc Controller node λL
Li[h]

Measured link packet delivery ratio of link Li[h]

T , τi Task set and task i λi,j ,
−→
R i,j E2e PDR value and retry vector of χi,j

Hi, Pi, Di Number of hops, period and deadline of τi Ri,j [h] Number of trials for h-th hop assigned by
−→
R i,j

Li[h] The h-th link on the routing path of τi (0 ≤ h < Hi) λ∗i (·) Optimal PDR of τi as a function of number of assigned slots
χi,j The j-th released packet of τi

−→
R∗i (·) Optimal retry vector of τi as a function of number of assigned slots

ri,j , di,j , fi,j Absolute release time, deadline, finish time of χi,j w+
i , w∗i The smallest w achieving λ∗i (w) ≥ λR under DTM and STM

Wi,j Total number of slots assigned for χi,j [tsp, tep) Time duration of system rhythmic mode (dynamic schedule)
δi,j PDR degradation of χi,j Γ, ρ Active packet set and updated packet set

teptsp

Some packets are not reliable, but
QoS degradation is minimized

System rhythmic mode
Rhythmic state

System nominal mode

Network starts

All packets are reliable

Power on

Compute λ∗i (w),−→
R ∗i (w), w+

i

Initialization

Disturbance detected
Broadcast (Rhythmic tasks info + schedule update)

System nominal mode

All packets are reliable

Fig. 2: Overview of the execution model of RD-PaS in both nominal and rhythmic modes. Short upward arrows represent
the releases of the rhythmic packets.

their timing and reliability requirements. By locally generat-
ing a static schedule, no unnecessary bandwidth is wasted
on transmitting the schedule from the gateway. When a
disturbance occurs, several sensor nodes within the range
may detect it and send a report to the controller node via
the corresponding tasks. After the controller node receives
the disturbance information from any of the sensor nodes,
Vc first determines a time duration, denoted as [tsp, tep),
during which the system runs in the rhythmic mode using a
temporary dynamic schedule.4 As RD-PaS and D2-PaS in
[15] both require each node to generate schedule locally,
RD-PaS adopts the same end point selection method in
D2-PaS to determine the system rhythmic mode duration
[tsp, tep). Vc then, checks whether all tasks can still be
reliably delivered after the rhythmic tasks entering their
rhythmic states. If so, Vc only broadcasts the rhythmic tasks
information (task IDs and the corresponding

−→
Pi and

−→
Di) to

the network. Otherwise, Vc needs to generate a dynamic
schedule in which the number of time slots assigned to cer-
tain periodic packets are updated in order to accommodate
the increased workload from the rhythmic tasks. Vc then
piggybacks the information of the updated packet set as
well as the rhythmic task information to a broadcast packet
and disseminates it to all nodes in the network. After all
the nodes receive the updates, the system switches to the
rhythmic mode to handle the disturbance.

In the rhythmic mode, individual device nodes gener-
ate their own dynamic schedules locally and these local
schedules collaboratively guarantee the timing and reliabil-
ity requirements of the rhythmic packets while minimizing
the total reliability degradation suffered by other periodic
tasks. After executing the dynamic schedules, all the device
nodes return to the nominal mode and re-employ the static
schedule.

4. [tsp, tep) is the time duration handling the disturbance instead of
the last duration of the disturbance which is captured by the rhythmic
period vector

−→
Pi.

In the following, we first present the details of the RD-
PaS framework under the Transmission-based Scheduling
(TBS) model in Section 4. We then introduce required mod-
ifications to support the RD-PaS framework under the PBS
model in Section 5.

4 RELIABLE SCHEDULING UNDER TBS MODEL

This section focuses on reliable scheduling under the TBS
model. We first describe how RD-PaS constructs a reliable
static schedule in the system nominal mode. We then in-
troduce how RD-PaS handles disturbances in the rhythmic
mode.

4.1 Reliable Static Scheduling
An RTWN starts running in the nominal mode in which all
tasks need to 1) be reliably scheduled to achieve the required
e2e PDRs; and 2) meet the e2e timing constraints for all the
packet transmissions. That is, we need to solve P1 defined
in Section 3.1. In the TBS model, each specific time slot is
assigned to an individual packet transmission. Considering
the lossy nature of wireless links, when a transmission is not
successful, retransmissions are needed, which require extra
time slots. To reduce the demand on network resources, we
aim to minimize the number of extra slots for each task
while satisfying the reliability requirement (i.e., Constraint 1
in P1). On the other hand, we observe that Constraint 2
can be handled separately from Constraint 1 since satisfying
Constraint 2 can be treated as a standard transmission
scheduling problem once the number of extra time slots is
determined for each task. Thus, we intend to first tackle the
following sub-problem.

P1.1: Given RTWN G = (V,E) where each link e ∈ E has
an associated PDR, and task set T in which each task τi has
a single routing path

−→
Li, determine the minimum number

of extra slots needed by each task τi to satisfy Constraint 1.

To solve P1.1, we propose to first determine whether a
given number of extra time slots for each task can satisfy
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Constraint 1 and then search for the optimal number of
extra time slots for every task. We will prove later that
this approach indeed leads to an exact solution for P1.1. We
discuss our approach in detail below.

Let
−→
R i,j = [Ri,j [0], Ri,j [1], . . . , Ri,j [Hi − 1]] be the retry

vector of packet χi,j , where Ri,j [h] denotes the number of
time slots assigned to hop h of χi,j . We use Wi,j to denote
the total number of time slots assigned to χi,j , i.e., Wi,j =∑Hi−1
h=0 Ri,j [h]. Given the PDRs of all the links along the

routing path of τi and the retry vector of χi,j , the e2e PDR
of χi,j , λi,j , can be derived as:

λi,j =
Hi−1∏
h=0

[
1− (1− λLLi[h])

Ri,j [h]
]
. (1)

According to Constraints 1 and 2 in P1, all the packets
released by τi must meet the same timing and reliability
requirements in the system nominal mode. Thus, in the
following discussion, we only consider parameter settings
(including both the assigned number of slots and the retry
vector) for each individual task τi instead of each packet
χi,j . For a given number of slots, say w, assigned to τi, the
number of possible slot allocations, i.e. retry vectors, equals
to
( w−1
Hi−1

)
. We further introduce the following definitions.

Definition 1 Optimal Retry Vector
−→
R ∗i (w): An optimal retry

vector of task τi for a given number of slots w is the retry vector
that leads to the largest PDR value for the given w, denoted as
λ∗i (w), among all the possible allocations.

Definition 2 Optimal Retry Vector Function
−→
R ∗i (·): The opti-

mal retry vector function of task τi is the set of pairs (w,
−→
R ∗i (w))

such that each
−→
R ∗i (w) is the optimal retry vector for the given

number of slots w.

Definition 3 Optimal PDR Function λ∗i (·): The optimal PDR
function of task τi is the set of pairs (w, λ∗i (w)) such that each
PDR value λ∗i (w) corresponds to the optimal retry vector with
the given number of slots w.

As the first step towards satisfying Constraint 1, we
present our solution to evaluate the optimal retry vector
function

−→
R ∗i (·) and the optimal PDR function λ∗i (·) for each

task τi. As both functions are only related to task τi itself,
the computation for each task is independent of other tasks.
For the sake of clarity, we create a PDR table for each task
τi to store both

−→
R ∗i (·) and λ∗i (·) for all (needed) values of

w in each node, such overhead in our implementation is
given in Section 7. (An example PDR table can be found in
Table 4 in Section 7.) Below, we describe our optimal PDR
table generation algorithm, Alg. 1, and prove its optimality.

Alg. 1 iteratively constructs the PDR table. At each
iteration, we add one time slot to τi at the h-th hop that
yields the maximum PDR value λ∗i and store the resulting
retry vector

−→
R ∗i into the PDR table (Lines 5-7). The retry

vector is initially set to [1, 1, 1, . . . ] and the corresponding
PDR value equals to

∏Hi−1
h=0 λLLi[h] (Lines 1-3). Since the

required PDR value is λR, the iterative process stops when
λ∗i (w) ≥ λR. We use w+

i to denote the minimum number of
slots that guarantees the reliable delivery of τi and the time
complexity of Alg. 1 is O(Hi · w+

i ).

Algorithm 1 PDR Table Construction under TBS for Task τi

Input: G = (V,E), τi, λR

Output: PDR table of τi and w+
i

1: w ← Hi;
2:
−→
R ∗i (w)← [1, 1, 1, . . . ];

3: λ∗i (w)←
∏Hi−1

h=0 λL
Li[h]

;
4: while λ∗i (w) < λR do
5: w ← w + 1;
6: Select the hop index h which yields the maximum PDR

value (computed by Eq. (1));
7: Update

−→
R ∗i (w) and λ∗i (w) in PDR table;

8: end while
9: w+

i ← w

Lemma 1 and Theorem 1 below affirm that Alg. 1 in-
deed results in the optimal retry vector function

−→
R ∗i (·) and

optimal PDR function λ∗i (·).

Lemma 1 For any particular hop h of a packet with w allocated
slots, if we allocate both the (w + 1)-th and (w + 2)-th slots to
h hop and the reliability values of the packet equal to λ∗(w + 1)

and λ∗(w + 2), respectively, we have λ∗(w+2)
λ∗(w+1) <

λ∗(w+1)
λ∗(w) .

Proof of Lemma 1: Let G(R∗(w)[h], λLL[h]) = λ∗(w+1)
λ∗(w) be

a function of R∗(w)[h] and λLL[h]. Then Lemma 1 implies
that when λLL[h] is set to an arbitrary value λ0, Gλ0 =
G(R∗(w)[h], λ0) is a monotonically decreasing function of
R∗(w)[h]. If we update

−→
R ∗(w) by allocating one slot at an

arbitrary hop h-th, according to Eq. (1), we only need to
update λ∗(w) by replacing the term 1 − (1 − λLL[h])

R∗(w)[h]

by 1− (1− λLL[h])
R∗(w)[h]+1 to get λ∗(w + 1). That is,

G(R∗(w)[h], λLL[h]) =
λ∗(w + 1)

λ∗(w)
=

1− (1− λLL[h])
R∗(w)[h]+1

1− (1− λLL[h])
R∗(w)[h]

Thus, if λLL[h] is fixed to λ0, we have:

G′λ0
=
∂G(R∗(w)[h], λ0)

∂R∗(w)[h]
=
λ0 · (1− λ0)R

∗(w)[h] log(1− λ0)(
(1− λ0)R∗(w)[h] − 1

)2
Since 0 < λLL[h] < 1 and (1 − λLL[h])

R∗(w)[h] > 0, we have
G′λ0

< 0. Further, Gλ0
decreases monotonically as R∗(w)[h]

increases. Thus, Lemma 1 holds.

Theorem 1 For any given number of time slots,w, no other retry
vector can yield a larger PDR value than

−→
R ∗i (w) as computed by

Alg. 1.

Proof of Theorem 1: We prove the theorem by mathematical
induction, i.e., for anyw = H,H+1, . . . , w+, the retry vector−→
R ∗(w) determined by Alg. 1 can achieve the largest PDR
value λ∗(w). (Here we omit the task index i since only one
task is considered).
Base case: When w = H , the statement holds as only one
possible retry vector exists, i.e.,

−→
R ∗(H) = [1, 1, . . . , 1].

Inductive step: Suppose the PDR value of
−→
R ∗(w) is largest

among that of all possible retry vectors when w = k, k > H ,
we should prove that the PDR value of

−→
R ∗(k + 1) obtained

by Alg. 1, i.e. λ∗(k + 1) is also the largest. We prove this by
contradiction.

Suppose there exists another retry vector (denoted as−→
R o(k+1)) that leads to a larger PDR value, i.e., λ∗(k+1) <
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λo(k+1). Since the total number of slots assigned to the task
(i.e., the sum of all elements in the retry vectors) both equal
to k + 1 and

−→
R ∗(k + 1) 6=

−→
R o(k + 1), we can always find

one hop at which the number of assigned slots in
−→
R o(k+ 1)

is larger than that in
−→
R ∗(k+ 1). We use q to denote this hop

index and Ro(k)[q] to denote the number of slots assigned
at the q-th hop in

−→
R o(k). Then, Ro(k+ 1)[q] > R∗(k+ 1)[q].

Suppose
−→
R ∗(k + 1) is achieved by adding one slot at the

p-th hop in
−→
R ∗(k).

Case 1: p = q. In this case,
−→
R ∗(k+1) and

−→
R o(k+1) are both

achieved by adding one slot at the p-th hop in
−→
R ∗(k) and−→

R o(k), respectively. Then, according to Lemma 1, λ∗(k +
1) and λo(k + 1) can be rewritten with G(R∗(w)[h], λLL[h])
function as follows:

λ∗(k + 1) = λ∗(k) · G(R∗(k)[p], λLL[p]),

λo(k + 1) = λo(k) · G(Ro(k)[p], λLL[p]).

According to the assumption that the PDR value of−→
R ∗(k) is the largest, we have λ∗(k) ≥ λo(k). Since
R∗(k)[p] < Ro(k)[p], according to Lemma 1, we have
G(R∗(k)[p], λLL[p]) > G(Ro(k)[p], λLL[p]). Then, λ∗(k + 1) >
λo(k + 1). This contradicts our assumption.
Case 2: p 6= q. In this case, λ∗(k + 1) and λo(k + 1) can be
rewritten as:

λ∗(k + 1) = λ∗(k) · G(R∗(k)[p], λLL[p]),

λo(k + 1) = λo(k) · G(Ro(k)[q], λLL[q]).

As λ∗(k + 1) < λo(k + 1) and λ∗(k) ≥ λo(k), it must holds
that

G(R∗(k)[p], λLL[p]) < G(Ro(k)[q], λLL[q]). (2)

Since R∗(k)[q] < Ro(k)[q] according to the assumption, the
following inequality holds:

G(R∗(k)[q], λLL[q]) > G(Ro(k)[q], λLL[q]). (3)

Combining Eq. (2) and Eq. (3), we have G(R∗(k)[p], λLL[p]) <

G(R∗(k)[q], λLL[q]) . Further,

λ∗(k) · G(R∗(k)[p], λLL[p]) < λ∗(k) · G(R∗(k)[q], λLL[q]).

This means that if we allocate one slot at the q-th hop in−→
R ∗(k) instead of at the p-th hop, we can have a larger
PDR value. This contradicts with Alg. 1 which allocates one
slot at the hop which yields the largest PDR value at each
iteration.

Since both cases lead to contradiction, the inductive step
is proved. Thus, Theorem 1 holds for all values of w.

Now with the functions
−→
R ∗i (·) and λ∗i (·) being deter-

mined, we have successfully solved P1.1. To satisfy Con-
straint 2 in P1, we need to create a static schedule, i.e.,
specifying when a packet uses a slot, to ensure that real-
time constraints are met. We introduce an observation that
helps map the reliable static schedule generation problem,
i.e., P1, to a conventional real-time scheduling problem.

Observation 1 Given task set T to be reliably scheduled, if we
set the number of slots for τi to w+

i according to λ∗i (·)5, w+
i is

then equivalent to the execution time of τi. Then, each task τi ∈ T
with Pi, Di and w+

i can be mapped to a task in a conventional
real-time task set with the same period, deadline and execution
time. Thus, a feasible schedule for the corresponding conventional
real-time task set is also a feasible schedule under which all tasks
in T can be reliably delivered.

Given the schedule specifying the slot assignment for
each task, each node can further allocate specific slots to
the transmission at each hop according to the retry vec-
tor function

−→
R ∗i (·). Thus, given a task set to be reliably

scheduled in an RTWN, the network can adopt any con-
ventional real-time scheduling algorithm (Earliest-Deadline-
First (EDF) [33] in this work) to generate a static schedule
that guarantees to meet all the constraints in P1. Since
we allow at most one transmission within each timeslot,
determining the nominal-mode schedule (i.e., P1) can be
mapped to a uni-processor scheduling problem.

4.2 Reliable Dynamic Scheduling

Our proposed solution for P1 ensures that both timing
and reliability requirements are met in the system nominal
mode. However, upon the detection of any disturbance, the
corresponding tasks enter their rhythmic states and follow
new release patterns and deadlines as shown in Fig. 2.
The static schedule may no longer be able to meet both
requirements especially for all the critical rhythmic packets.
Therefore, a well-designed reliable dynamic packet schedul-
ing mechanism is needed to enable the system to adapt to
any workload change after the detection of a disturbance.

In our RD-PaS framework, the network generates the
static schedule by assigning w+

i slots to each task τi ac-
cording to the retry vector function. When a disturbance
is detected and reported to the controller node, the system
follows the execution model outlined in Section 3.2 to switch
to the rhythmic mode. The main challenge here is to gener-
ate a temporary dynamic schedule when tasks cannot be
reliably delivered after the rhythmic tasks (in TRhy) enter
their rhythmic states. That is, problem P2∗ needs to be
solved. The dynamic schedule must be able to accommo-
date the increased rhythmic workload and minimizes the
degradation of both timing and reliability performance of
other periodic tasks. Specifically, all the rhythmic packets
must meet their timing and reliability requirements. That is,
Constraints 3 and 4 are satisfied.

To ensure this, we may have to sacrifice the reliability
requirements, i.e. lowering the e2e PDR values of some
periodic packets, or even sacrifice their timing requirements,
i.e. dropping some periodic packets. That is, the number of
slots assigned to each packet may need to be updated. Since
the PDR table for each task containing both the retry vector
function

−→
R ∗i (·) and PDR function λ∗i (·) is pre-calculated

and stored at each node, Vc only needs to piggyback on
a broadcast packet the information of the updated total
number of slots (Wi,j) assigned to each periodic packet,

5. All the retry vectors for other w values stored in
−→
R∗i (·) are

used in the dynamic schedule generation, which will be discussed in
Section 4.2.
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and then each node can decode the updated retry vector
accordingly, once it receives this information.6

To formally define the dynamic schedule generation
problem, we introduce some concepts/notation. Let Γ de-
note the active packet set containing all the packets to be
scheduled within the rhythmic mode duration [tsp, tep).
Since the payload size of a broadcast packet is bounded,
we set an upper bound on the number of periodic packets
whose Wi,j can be changed, and denote it as α. To capture
the reliability degradation for periodic packet χi,j , let δi,j
represent the difference between the required PDR λR and
the updated PDR value λi,j = λ∗i (Wi,j) in the dynamic
schedule, i.e., δi,j = max{0, λR−λi,j}. Note that the timing
degradation of each packet can also be captured by δi,j
where δi,j = λR if χi,j is dropped. Now the dynamic
schedule generation problem, which is defined formally
below, becomes finding Wi,j for each periodic packet in Γ
to satisfy Constraint 3 and 4.

P2: Given the active packet set Γ, the PDR function λ∗i (·)
of each task τi, the maximum allowed number of up-
dated packets α, determine the updated packet set ρ =
{Wi,j |χi,j ∈ Γ} such that i) the size of ρ is not larger than
α, i.e., |ρ| ≤ α, and ii) the total reliability degradation is
minimized, i.e., ∀χi,j ∈ ρ,min

∑
δi,j .

Given that determining the updated packet set (i.e. solv-
ing P2) is NP-hard [3], we propose a heuristic method
to solve P2 and the high-level idea is as follows. Since
dropping any packet χi,j leads to a significant decrease in
the PDR value of χi,j , i.e., δi,j = λR, we prefer to always
allocate at least the basic number of slots (i.e., Hi) to each
packet. If the network bandwidth is sufficient, we assign
extra slots to periodic packets in a greedy manner according
to their PDR degradation. Alg. 2 summarizes the updated
packet set generation algorithm which uses the greedy extra
slots assignment heuristics described in Alg. 3. Specifically,
at each iteration, Alg. 3 adds one slot to the packet resulting
in the minimum PDR degradation after an extra slot has
been assigned. Using Alg. 2 and Alg. 3, the updated packet
set can be determined in O(α ·Wmax) time where Wmax is
the maximum w+

i among all the tasks.
Handling disturbance in RD-PaS introduces extra time

overhead including computation delay and communication
delay. The computation delay at the gateway is negligible
given the efficient heuristics in Alg. 2 and Alg. 3. The com-
munication delay consists of the disturbance report delay
and dynamic schedule broadcast delay. The former part is
bounded within one period of the reporting task. The latter
part is determined by the network scale and the broadcast
mechanism deployed in the system which is not the focus
of this work. Note that the proposed RD-PaS framework
can be readily extended to handle concurrent disturbances
in RTWNs, following the similar way as elaborated in [16].

5 RELIABLE SCHEDULING UNDER PBS MODEL

In this section, we discuss how to support the RD-PaS
framework under the packet-based scheduling (PBS) model.
At the highest level, reliable scheduling under the PBS

6. In the system rhythmic mode, we adjust the assigned number of
slots for each packet instead of each task for more flexibility.

Algorithm 2 Updated Packet Set Generation

Input: Γ, α, λ∗i (w)
Output: ρ

1: Schedule the rhythmic packets in Γ using w+
0 ;

//Suppose n is the number of periodic packets in Γ
2: if all periodic packets in Γ can be reliably scheduled then
3: No packet needs to be updated;
4: else
5: Find the first n − α schedulable periodic packets with

the minimum w+
i using the packet-dropping heuristic in

[15];
6: if Such n− α periodic packets can be found then
7: if the α packets can be scheduled using Hi then
8: Assign extra slots to the α packets by Alg. 3;
9: else

10: Determine the dropped packet set (suppose m pack-
ets) using the dropping heuristics in [15];

11: Assign extra slots to the α−m packets by Alg. 3;
12: end if
13: else
14: Drop all the periodic packets;
15: end if
16: end if

Algorithm 3 Extra Slots Assignment

1: Sextra ← {Packets to be assigned extra slots};
2: while Sextra 6= ∅ do
3: Add one slot to packet χs if doing so leads to the

minimum PDR degradation;
4: if the system is schedulable then
5: if χs is already reliable then
6: Remove χs from Sextra;
7: end if
8: else
9: Reduce one slot from χs;

10: Remove χs from Sextra;
11: end if
12: end while

model has two main differences from that under the TBS
model. First, since each time slot is assigned to a specific
packet instead of a dedicated hop, retry vector

−→
R i,j and its

function
−→
R ∗i (·) are no longer needed. Second, the computa-

tion for PDR function λ∗i (·) is different because the time slot
allocation mechanism has changed.

Since the PDR function is a key parameter in checking
reliability, we first describe how to compute the PDR value
for a task with a given number of slots in PBS. Let Pri(0, w)
denote the probability of a packet of τi staying in the source
node within w slots; Pri(h,w) denote the probability of a
packet of τi being transmitted to the receiver of the h-th
hop along the routing path (1 ≤ h ≤ Hi), and have not
been successfully forwarded, within w slots. Pri(h,w) can
be computed by:

Pri(h,w) =



1 w = h = 0

(1− λLLi[h])Pri(h,w − 1) w > h = 0

λLLi[h−1]Pri(h− 1, w − 1) w = h > 0

Pri(h,w − 1)+

λLLi[h−1]Pri(h− 1, w − 1) w > h = Hi

(1− λLLi[h])Pri(h,w − 1)+

λLLi[h−1]Pri(h− 1, w − 1) otherwise.
(4)
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Fig. 3: PDR computation for a task with two hops under the
PBS model.

The computation of Pri(h,w) is iteratively conducted
based on the status of τi at its previous transmission, i.e.,
Pri(h

∗, w − 1) when τi is assigned with w − 1 time slots.
Specifically, when w = 0, h must equal to 0 since it indicates
that a packet of τi stays in the source node without any
assigned time slot. In this case, Pri(0, 0) equals 1 as no
transmission happens. When w > 0, Pri(h,w) is computed
according to the different cases of h and the status of the
previous transmission. If w > h = 0, it indicates that a
packet of τi experiences w transmission failures and stays
at the source node. If w = h > 0, it indicates that a
packet of τi has been successfully transmitted for each hop
1, 2, ..., h. If w > h > 0, it indicates that a packet of τi has
been successfully transmitted for h hops using w slots. Note
that, depending on whether h = Hi, the computation of
Pri(h,w) is slightly different. Below, we use an example
task with 2 hops (links a and b with PDR λLa and λLb ,
respectively) and 4 slots to describe the computation of
Pri(h,w) in Fig. 3.

As shown in the figure, Pri(h,w) can be either reached
by Pri(h− 1, w− 1), followed by a successful transmission
(λLLi[h−1]), or Pri(h,w − 1), followed by a failed transmis-
sion (1 − λLLi[h]), except for boundary conditions. These
boundary conditions include the following:

Case 1: When w = h = 0, the source node generates a
packet (Pri(0, 0) = 1).
Case 2: When w > h = 0, it is not possible for Pri(h,w) to
be reached by Pri(h − 1, w − 1) (Pri(0, 1), Pri(0, 2) in the
figure). Thus only Pri(h,w − 1) is considered.
Case 3: When w = h > 0, it is not possible for Pri(h,w)
to be reached by Pri(h,w − 1) (Pri(1, 1), Pri(2, 2) in the
figure). Thus only Pri(h− 1, w − 1) is considered.
Case 4: When w > h = Hi, Pri(h,w − 1) always reaches
Pri(h,w) (Pri(2, 3), Pri(2, 4) in the figure).

Different from TBS, which finds the optimal PDR values
by using retry vectors for a given w, the PDR values in PBS
is solely determined by w, i.e., λ∗i (w) = Pri(Hi, w). Based
on Eq.(4), we propose a dynamic programming algorithm
(Alg. 4) to compute Pri(h,w) and finally λ∗i (w). In Alg. 4,
the iteration starts from w = 1, and stops when λR is
reached. In each iteration, it computes all Pri(h,w) for
0 ≤ h ≤ Hi, and stores them to λ∗i (·) if w ≥ Hi.

After the PDR function is computed, we can apply the
same method proposed in Section 3.2 and 4 to generate
reliable static and dynamic schedules, respectively. More
specifically, we use Observation 1 with computed PDR func-
tion to generate a reliable static schedule, and use Alg. 2 and

Algorithm 4 PDR Table Computation under PBS for Task τi

Input: G = (V,E), τi, λR

Output: The PDR function of τi and w+
i

1: w ← 0;
2: while λi(w) < λR or w < Hi do
3: w ← w + 1;
4: for h = 0 to Hi do
5: Compute Pri(h,w) following Eq.(4);
6: end for
7: if w >= Hi then
8: λ∗i (w)← Pri(Hi, w);
9: end if

10: end while
11: w+

i ← w

Alg. 3 to determine the updated W in the rhythmic mode.
Note that, the retransmission mechanism for the broadcast
task under both TBS and PBS models shows some slight
differences and readers are referred to [3] for the details.

6 SHARED SLOT TRANSMISSION MECHANISM

In the previous sections, we meet the tasks’ reliability re-
quirements by assigning a number of retransmission slots
which are specifically assigned to either each hop or each
packet in the TBS model or PBS model, respectively. To
improve the network slot utilization, in this section, we
propose a novel shared slot transmission mechanism, called
TG-STM, for both TBS and PBS models. Below we first
present a motivational example to illustrate that slots may
be significantly wasted under the dedicated slot transmis-
sion mechanism (DTM) and then present an overview of
TG-STM. After that, we describe the details of TG-STM for
the TBS model and the PBS model, respectively.

6.1 Motivation and Overview of TG-STM
Consider task τ1 with a required e2e PDR value λR = 0.99.
Its routing path consists of two hops, each of which cor-
responds to a link with PDR value λL = 0.9. According
to Alg. 1 and Alg. 4, τ1 should be allocated with 4 and
2 retransmission slots to satisfy λR under TBS and PBS
models, respectively. Table 2 shows the probability of each
dedicated time slot being wasted (not used for transmitting
a packet of τ1). For example, the first hop of τ1 can be
successfully transmitted within 2 time slots (Slot 1 and Slot
2) under the TBS model with a probability of 99%. This
means that the third slot (Slot 3) allocated to τ1’s first hop
has a probability of 99% being wasted. Note that such slot
waste happens for every packet released by τ1. Taking the
task set running in our later RTWN testbed as an example
(the task and network specifications will be provided later
in Table 3 and Fig. 5, respectively), the number of wasted
slots with a probability higher than 90% is 126 (56) within
each hyperperiod (360 slots) under the TBS (PBS) model.

TABLE 2: Time Slot Waste under the TBS/PBS Models.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

TBS 1 hop 2 hop
0% 90% 99% 0% 90% 99%

PBS 0% 0% 81% 97% - -

As a consequence of the slot waste, more time slots have
to be allocated to each task (i.e., a larger w+) to satisfy the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3196922

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 28,2022 at 15:19:17 UTC from IEEE Xplore.  Restrictions apply. 



10

reliability requirement. This leads to an unnecessarily higher
system workload. Even worse, if the system is overloaded,
Constraint 1 and 2 in P1 cannot be satisfied simultaneously.
This motivates us to explore more efficient packet transmis-
sion mechanisms in the RD-PaS framework to reduce the
number of wasted slots, and thus to improve the network
resource utilization.

As observed in the motivational example, the main rea-
son behind such slot waste is that each slot is dedicated to a
particular hop (packet) of a task in the TBS (PBS) model. If
the transmission of a hop (packet) succeeds, all the following
allocated slots are wasted. Therefore, an intuitive insight is
to let each slot be shared by different tasks. In this case,
the probability of a slot being wasted can be significantly
reduced. However, realizing such slot sharing is non-trivial
especially given the deterministic communication require-
ment by RTWNs. By deterministic, we mean that under
a certain scheduling policy, we are able to determine the
reliability value that can be achieved by each task τi (i.e., λi)
prior to the network operation.

Designing a deterministic shared slot transmission
mechanism in RD-PaS needs to tackle the following chal-
lenges. First, RD-PaS relies on a local schedule generation
framework where each node determines the schedule lo-
cally based on the information stored at the node. Given the
limited memory resource at each node, the additional re-
quired information to be stored locally to support the shared
slot mechanism should be affordable. Second, the number of
slots that can be used as shared slots varies among packets
released by individual tasks. This is because each packet
can only use the slots (i) scheduled for other tasks as the
shared slots and (ii) within the time duration between the
packet’s release time and deadline. Such a varing number of
shared slots requires pessimistic estimation on the number
of required retransmission slots for each task. Third, we
need to design a method to calculate the achieved reliability
value for each task under the shared slot mechanism before
the network starts operation.

To overcome the above challenges, we design a task-level
and grouped shared slot transmission mechanism, referred to
as TG-STM, for both TBS and PBS models. As a task-level
mechanism, TG-STM follows DTM to assign a same number
of transmission slots (i.e., w+

i ) for all packets released by
each task τi. As a grouped mechanism, TG-STM groups all
the tasks into multiple task groups where slots can only be
shared among the tasks within the same group. TG-STM
guarantees that the number of shared slots supplied to all
the packets from each task remains the same. To achieve
the required functions of TG-STM, the following questions
need to be answered. i) How to group all the tasks into
different task groups? ii) How to design the slot sharing
rules among tasks within a group to guarantee a same
required number of shared slots among packets released by
a task? iii) How to calculate the achieved reliability value
for each task under TG-STM? In the following, we present
our solution under the TBS model and the PBS model in
Section 6.2 and Section 6.3, respectively.

6.2 TG-STM under TBS Model
As elaborated in Section 6.1, TG-STM is acceptable only
if the following two requirements are satisfied. (i) Each

time slot is shared by tasks in a deterministic manner. That
is, tasks sharing a same slot should be granted access to
the slot in a deterministic order during run time. (ii) The
specification of each shared slot, including which tasks (or
even which hops in the TBS model) sharing this slot and the
sharing order, is pre-determined and the achieved reliability
of each task under TG-STM can be calculated before the
network starts.

To satisfy the first requirement, we adopt Multi-Priority
MAC (MP-MAC), an enhancement to the IEEE 802.15.4e
standard proposed in [17], to support prioritization of task
transmissions. MP-MAC enables the transmitter to indicate
the priority of the transmission by adjusting the Start-Of-
Frame (SOF) time offset in the time slot. Tasks sharing the
same slot are granted access to the channel according to
their MP-MAC priorities. If the transmission of the task with
the highest priority has been successfully transmitted before
this shared slot, the task(s) with lower priorities can use this
shared slot to transmit. Therefore, different from traditional
shared slot transmission mechanisms in RTWNs (e.g., [25])
which only provide opportunistic transmissions by allowing
links (or nodes) to compete for a shared slot to transmit
packets, TG-STM relies on MP-MAC to support tasks to
share each time slot in a deterministic manner.

Satisfying the second requirement is more complicated.
Below, we first explain the reason of designing TG-STM as a
task-level and isolated shared slot transmission mechanism
to satisfy the second requirement. Then we present the
details of TG-STM under the TBS model.

First, the granularity of slot sharing among tasks (i.e.,
how many slots are shared by which tasks) impacts the net-
work bandwidth required by the system to be schedulable.
For example, if we allow all tasks running in the system
to share every slot in the slotframe, the utilization of each
time slot is high and the system schedulability may be sat-
isfied using the minimum number of slots. However, such
mechanism is impractical since it requires a huge number
of shared slot information to be stored in each memory
constrained device node (e.g., 32K RAM in TI CC2538 SoC)
to generate the schedule locally. Particularly, besides the
task specifications, each node needs to record the priority
index of every transmission of all the tasks in each time
slot within the slotframe7. Since the slotframe length can
be relatively long and storing the slot offset is memory
consuming, this motivates us to design a mechanism under
which slot sharing rule of transmissions of each task is
fixed for all its released packets. In this case, the number
of transmission slots needed by each packet of a same task
remains the same. We call this mechanism task-level slot
sharing mechanism, i.e., each task τi is assigned with a fixed
number of transmission slots for all its released packets.

Second, each packet χi,j released by task τi can only
use the slots assigned to other tasks within its own time
window (i.e., [ri,j , di,j)) as shared slots. Thus, for a given
schedule, the number of shared slots can be different among
the packets released by a same task. Similarly, the relative
positions between these shared slots and χi,j ’s dedicated

7. Since different transmissions of each task correspond to particular
links with different PDRs, each time slot can be shared by an arbitrary
combination of all tasks’ transmissions and the priorities of all trans-
missions in different slots also vary according to the schedule.
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slots can also be different. According to the PDR table
generation under both TBS and PBS models, this results in
different achieved reliability values for different packets τi,j .
To satisfy the task-level slot sharing requirement mentioned
above, we have to set the maximum required number of
dedicated and shared slots among all χi,j as w+

i for task
τi. This introduces significant pessimism on the network
bandwidth demand by the task set to satisfy its reliability
requirement. Furthermore, since the shared slots assigned
to each packet χi,j are different, each node on τi’s routing
path must store the shared slot information for each χi,j .
Apparently, this posts high memory overhead on each de-
vice to store the slot offsets of shared slots and priorities
of all transmissions released by each packet. Therefore, we
propose to address the above two issues by designing a
grouped shared slot transmission mechanism to guarantee
that the shared slots allocated to all the packets by a task
remain the same.

The key challenge in designing TG-STM mainly lies on
the fact that the relative positions of transmissions from
different tasks keep changing in the schedule. Below, we
use an example to illustrate such challenge and introduce
an important observation to help us design the task-level
and grouped TG-STM.

Example 1 Consider three tasks τ1, τ2 and τ3 with periods P1 =
5, P2 = 13 and P3 = 15, respectively. Assume that τ1, τ2 and
τ3 are allocated with 2, 3 and 2 dedicated slots, respectively. τ2
and τ3 use the dedicated slots of τ1 as shared slots to transmit.
The system adopts the EDF scheduler. Fig. 4 shows the shared
slots (from τ1) of τ2 and τ3. According to EDF, 6 dedicated slots
assigned to τ1 fall into the time window of τ2’s first packet τ2,1 but
only 5 dedicated slots of τ1 fall into the time window of packet τ2,2.
However, each packet of τ3 (i.e., τ3,1 and τ3.2) shares the same
number of dedicated slots (i.e., 6 slots) from τ1. This is because
that τ1 and τ3 have harmonic periods (i.e., P1 = 5, P3 = 15)
such that a fixed number of slots from the task with the shorter
period fall into the time window of each packet of the task with the
larger period.

On the other hand, although the number of shared slots can
be used by each packet of τ3 remains the same (6 slots from τ1),
the relative positions between these shared slots and the dedicated
slots for τ3 are different among different packets in the schedule
(see Fig. 4). This results in different shared slots assigned to
different packets of a same task. One can further observe that the
relative positions between the transmissions of τ1,1 and τ3,1 (τ1,4
and τ3,2) remain unchanged. That is, the transmissions of τ1,1
(τ1,4) are always scheduled before those of τ3,1 (τ3,2) under the
EDF scheduler because the deadline of any packet of τ1 is always
before the deadline of a simultaneously released packet of τ3. This
example gives us the following observation.

Observation 2 Given two tasks with harmonic periods, the
transmissions of any packet released by the task with the shorter
period are always scheduled before the transmissions of a simul-
taneously released packet (if any) from the task with the larger
period.

According to Observation 2, the assigned dedicated slots
for packets of τi can be used as shared slots by the simul-
taneously released packets of τj , if τi and τj are harmonic
tasks and Pi < Pj . This guarantees that i) the number of

τ1

τ2

τ3

τ3,1

τ2,1

τ3,2

τ2,2

τ1,3τ1,2 τ1,4 τ1,5 τ1,6τ1,1

Different relative positions

Fig. 4: Illustration of τ1’s dedicated slots and the shared slots of
τ2 and τ3 in Example 1. The solid blocks denote tasks’ dedicated
slots and the dashed blocks in different colors denote the shared
slots assigned to different packets of a same task.

shared slots assigned to each packet of τj is the same, and ii)
the relative positions of the dedicated and shared slots keep
unchanged for all the packets of τj . Therefore, we can group
tasks into harmonic task groups, each of which consists of
tasks with harmonic periods8 and slots can be shared among
tasks within a group in a predetermined manner.

Intuitively, one may simply group all the tasks with
harmonic periods into one group so that shared slots can
be utilized by tasks as many as possible. However, it is
more advantageous to limit the number of tasks within each
harmonic task group to be two due to the following three
considerations. First, the probability of a shared slot being
used by a certain task during run time decreases signifi-
cantly as the number of tasks sharing this slot increases. For
example, suppose three transmissions with a same corre-
sponding link PDR of 0.8 share one time slot and the first
transmission uses this slot as a dedicated retransmission
slot. Then, the probability of this slot being used by the
second transmission equals to 0.8, and the probability of this
slot being used by the third transmission decreases to 0.64.
Second, for all the transmissions being assigned in a shared
slot, both of their senders and receivers need to remain
active9 thus consume additional energy. Third, MP-MAC
only supports a limited number of priority levels, i.e., the
number of tasks that can share a time slot. The more priority
levels to be enabled in MP-MAC, the longer slot length is
needed which may reduce the network throughput.

Therefore, TG-STM groups (unicast) tasks in the system
into harmonic task groups, where each group HGk(1 ≤
k ≤ I) contains two tasks and I is the total number of
harmonic task groups. Within eachHGk, the dedicated slots
allocated to the task with the shorter period can be used as
the shared slots by the task with the larger period.10 Tasks
not belonging to any harmonic task group (e.g., tasks with
prime periods) are stored in a special group HG∗. To enable
a larger total number of shared slots among the tasks in
the system, we aim to maximize the number of harmonic
task groups (i.e. I) and thus formulate the following task
grouping problem.

8. Harmonic periods have been widely used in industrial applica-
tions ranging from radar dwell tasks and robotics to control systems
with nested feedback loops [34]. If all tasks are with inharmonic
periods, some existing methods (e.g., [35]) can be applied to tune the
applications’ original periods into harmonic ones.

9. In a shared slot, the sender makes a transmission attempt within
its assigned TxOffset and the receiver keeps listening for a potential
transmission.

10. If two tasks have the same period, the earlier scheduled task
makes it’s dedicated slots as shared slots to be used by the later
scheduled one.
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Algorithm 5 Task Grouping Heuristic
Input: T = {τ0, τ1, . . . , τn}
Output: T ′ = {HGk(1≤k≤I), HG

∗}
1: for τi ∈ T do
2: if Pi is a prime number then
3: HG∗ ← HG∗

⋃
{τi};

4: T ← T \ {τi};
5: end if
6: end for
7: Sort tasks in T in the ascending order of tasks’ periods;
8: k ← 1, Flag ← false, T ′ ← {HG∗};
9: for τi ∈ T , i = 0, 1, 2, . . . do

10: for τj(j > i) ∈ T do
11: if Pi and Pj are harmonic numbers then
12: HGk ← {τi, τj};
13: T ← T \ {τi, τj};
14: T ′ ← T ′

⋃
{HGk};

15: Flag ← true;
16: k ← k + 1;
17: Break;
18: end if
19: end for
20: if Flag is true then
21: Continue;
22: end if
23: T ← T \ {τi};
24: HG∗ ← HG∗

⋃
{τi};

25: end for
26: return T ′;

Task Grouping Problem. Given a task set T =
{τ0, τ1, . . . , τN}, any two tasks with harmonic periods can
form a harmonic task group HGk(1 ≤ k ≤ I). The objective
of the task grouping problem is to maximize I , i.e. the total
number of harmonic task groups in T .

We design a greedy heuristic to solve the task grouping
problem11. Alg. 5 gives the pseudo code of the proposed al-
gorithm. Initially, all tasks with prime periods are removed
from T and stored in groupHG∗ (Lines 1-6). All the remain-
ing tasks in T are sorted in the ascending order of tasks’
periods (Line 7). Then, for each task τi ∈ T , i = 0, 1, 2, . . . ,
we select the task with the minimum harmonic period with
Pi to form a harmonic group HGk. If there is no task
with harmonic period with τi, τi is added to group HG∗

(Lines 9-25). Finally, the task set T ′ containing harmonic
task groups HGk(1 ≤ k ≤ I) and the special task group
HG∗ is returned (Line 26). The time complexity of Alg. 5 is
O(N) where N is the number of unicast tasks in T .

Given task set T being grouped into harmonic task
groups, we describe how TG-STM generates the PDR table
for the task being assigned with shared slots, i.e. the task
with the larger period in each harmonic task group HGk.
The task with the shorter period is assigned with only ded-
icated time slots, and its PDR table is calculated according
to Alg. 1. In the following, we denote τl as the task using
shared slots and τs as the task contributing shared slots in
each harmonic task group HGk. We use w′l to represent the
total number of slots allocated to each packet of τl (including
both the shared slots from τs and the dedicated slots of

11. By formulating the task grouping problem as a maximum match-
ing on a graph G = (V,E), we can apply the Blossom algorithm [36]
to solve this problem. However, our simulation result shows that
the Blossom algorithm with a higher time complexity (O(E × V 2))
demonstrates a similar performance with the greedy heuristic.

τl) and
−→
R ′l = [R′l[0], R′l[1], . . . , R′l[Hl − 1]] to represent the

corresponding retry vector.
Due to the existence of shared slots, generating the PDR

table for τl (i.e., determining w′l and
−→
R ′l) under TG-STM

is much more complicated. Specifically, each shared slot
contributed by τs is associated with a probability specifying
the likelihood that this slot is not used by τs and thus can
be used as a shared slot by τl. This possibility value of
each shared slot impacts both w′l &

−→
R ′l, and the calculation

of the achieved reliability of τl, denoted as λ′l. We use
Ps(hs, k)(0 ≤ hs < Hs) to denote the probability for the
k-th dedicated slot assigned to τs’s hs hop being used as a
shared slot of τl. To determine w′l and

−→
R ′l for τl, we need

to tackle the following issues. i) How to calculate Ps(hs, k)
for each shared slot and how to determine the number of
shared slots that can be used by τl? ii) How to calculate the
achieved reliability λ′l with givenw′l and retry vector

−→
R ′l? iii)

How to determine the minimum needed w′l and
−→
R ′l to have

λ′l ≥ λR? Below, we present the answers to these questions.
According to the definition of Ps(hs, k), we have

Ps(hs, k) = 1− (1− λLLs[hs])
k−1 (5)

where λLLs[hs] represents the link PDR for delivering the
hs hop transmission of τs. According to Eq. (5), we know
Ps(hs, 1) = 0 which indicates that the first slots assigned
to each hop of τs are always used to transmit τs’s packets
and only the retransmission slots allocated for each hop (i.e.,
k > 1) can be used as shared slots by τl. Thus, the number of
shared slots contributed by τs that can be used by τl equals
to w+

s −Hs.
According to Observation 2, all the shared slots from

τs are scheduled before the dedicated slots (denoted as w∗l )
assigned to τl under TG-STM based on EDF12. That is, given
w∗l , the sequence of all the slots used by τl is determined and
we have w′l = (w+

s −Hs) +w∗l . Further, if a retry vector
−→
R ′l

is also given, the slot assignment for each packet of τl can
be determined, i.e. the slot assignment (including both the
shared slots from τs and the dedicated slots assigned to τl)
to each hop of τl. Below, we first present the calculation of
the achieved reliability λ′l with given w∗l and

−→
R ′l by Eq. (6).

λ′l =
Hl−1∏
h=0

1−
R′l[Hl−1]∏
R′l[0]

(
1− Ps(hs, k) ∗ λLLl[h]

) . (6)

We now discuss how to determine w∗l and
−→
R ′l according

to Eq. (6) to satisfy τl’s reliability requirement, i.e. λ′l ≥ λR.
Given that the number of shared slots w+

s is fixed and a
minimum number of dedicated slots w∗l is desired to satisfy
λ′l ≥ λR, the high-level idea to determine w∗l and

−→
R ′l is

as follows. We first check whether λR can be satisfied only
using w+

s −Hs shared slots by traversing all the possible slot
assignments (i.e., retry vectors). If not, an extra dedicated
slot is assigned to τl (i.e., w∗l = 1) and the above process
repeats until a feasible

−→
R ′l satisfying λ′l ≥ λR is found. The

searching space of such method can be significantly reduced
based on the following theorem.

12. Observation 2 holds under any scheduling policy as long as τs
and τl are harmonic tasks.
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Algorithm 6 PDR Table Computation under TBS

Input: G = (V,E), τs, τl, λR, w+
s , Ps(hs, k)

Output: PDR table of τl
1: Generate w+

l and the corresponding retry vector
−→
R l =

[Rl[0], Rl[1], . . . , Rl[Hl − 1]] using Alg. 1;
2: w′l ← w+

l ;
// w∗l = w+

l −(w+
s −Hs) if w+

s −Hs < w+
l . Otherwise, w∗l = 0

3:
−→
R ′l ← [Rl[0], Rl[1], . . . , Rl[Hl − 1]];

4: Calculate λ′l by Eq. (6);
5: while λ′l < λR do
6: w′l ← w′l + 1;

// Assign a shared slot if w′l < w+
s −Hs. Otherwise assign an

extra dedicated slot
7: Select the hop index h which yields the maximum PDR

value (computed by Eq. (6));
8: Update

−→
R ′l and λ′l in PDR table;

9: end while

Theorem 2 Suppose under DTM, w+
l dedicated slots are as-

signed to τl using Alg. 1 and the corresponding achieved PDR
value equals to λl. If TG-STM assigns the same number of slots
to τl (i.e. w+

l = (w+
s −Hs) + w∗l ), the achieved PDR value λ′l

is less than or equal to λl.

The proof of Theorem 2 is straightforward. Since ∀k >
1, Ps(hs, k) < 1, the theorem directly holds by comparing
Eq. (1) and Eq. (6). According to Theorem 2, we must assign
at least

∥∥w+
l − (w+

s −Hs)
∥∥0

number of dedicated slots to τl
in order to satisfy λ′l ≥ λR. That is,

w∗l ≥
∥∥w+

l − (w+
s −Hs)

∥∥0
. (7)

Similarly, given the retry vector
−→
R l =

[Rl[0], Rl[1], . . . , Rl[Hl − 1]] generated by Alg. 1 under
DTM, TG-STM should assign at least Rl[h] number of slots
to each hop of τl to satisfy λ′l ≥ λR. That is,

∀h,R′l[h] ≥ Rl[h]. (8)

Based on Eq. (7) & Eq. (8), the searching space of PDR
table generation for τl can be reduced since the numbers of
possible values for both w∗l and R′l[h] reduce. The pseudo
code for PDR table computation under the TBS model is
given in Alg. 6. We first compute the number of dedicated
slots w+

l and the corresponding retry vector
−→
R l for τl

under DTM (Line 1). If w+
s − Hs < w+

l , the number of
shared slots can be used by τl is less than the number
of dedicated slots needed by τl under DTM. Thus, we
allocate w+

l − (w+
s − Hs) dedicated slots to τl according

to Eq. (7). Otherwise, we allocate the first w+
l shared slots to

τl, where the number of shared slots allocated to each hop
follows the specification in

−→
R l (Line 3) and then calculate

the achieved PDR value λ′l (Line 4). As long as the required
PDR value of τl is not satisfied (i.e., λ′l < λR), we assign an
additional shared/dedicated slot to the h-th hop that yields
the maximum PDR value and update

−→
R ′l and λ′l in the PDR

table (Lines 5-9).

6.3 TG-STM under PBS Model
TG-STM for the PBS model bares only one difference from
that under the TBS model. That is, the PDR table compu-
tation for task τl uses shared slots contributed by τs in

each harmonic task group HGk. In the PBS model, since
dedicated slots are assigned to individual packet of a task,
we only need to determine the number of slots allocated to
τl, i.e. w′l, under TG-STM but not the retry vector. In this
case, as the number of shared slots from τs usable by τl is
fixed and equals to w+

s − Hs, we only need to determine
w∗l , the number of dedicated slots needed by τl. Below, we
discuss how to calculate the achieved PDR value λ′l(w) if w
dedicated slots are assigned to τl. Then, we can derive w∗l
by gradually increasing w until λ′l(w) ≥ λR.

According to the PDR computation for task τi under
DTM (discussed in Section 5), λi(w) = Pri(Hi, w), and
represents the probability of a packet of τi being delivered
within w slots. Since TG-STM assigns certain number of
shared slots from τs to τl, we need to first compute the
probability of these shared slots being available to τl. Then
we can calculate λ′l(w) based on Pri(Hi, w). We use Ps(k)
to denote the probability that k shared slots are available
to τl (i.e., τs is successfully transmitted using w+

s − k slots).
According to the definition of Pri(Hi, w), we have

Ps(k) = Prs(Hs, w
+
s − k)− Prs(Hs, w

+
s − k − 1) (9)

Since τs needs at least Hs slots to be delivered, we
calculate Ps(k) for 0 ≤ k ≤ w+

s −Hs. For a certain number
of shared slots k and dedicated slots w∗l , the probability of
a packet being delivered within these k +w∗l slots equals to
Ps(k) · Prl(Hl, k + w∗l ). Thus, with a number of dedicated
slots w∗l , the achieved PDR value, λ′l(w

∗
l ), is the sum of the

above probabilities for all the cases of k ∈ [0, w+
s −Hs]. That

is,

λ′l(w
∗
l ) =

w+
s −Hs∑
k=0

Ps(k) · Prl(Hl, k + w∗l ) (10)

As the delivery of a packet of τl needs at least Hl slots, w∗l
is initialized to ‖Hl − (w+

s −Hs)‖
0 and we then gradually

increase w∗l until λ′l(w) ≥ λR.
Below, we use an example to illustrate the process of

TG-STM under both the TBS/PBS model.

Example 2 Consider our RTWN testbed (in Fig. 5 in Section 7)
as an example and the task specifications are given in Table 3. We
first group all unicast tasks in the system into task groups accord-
ing to Alg. 5, and we get HG1 = {τ0, τ3} and HG∗ = {τ1, τ2}
(τ4 and τ5 are not unicast tasks). Thus, the retransmission slots
of τ0 can be used by τ3 as shared slots.

In the TBS model, τ0 and τ3 are assigned with 10 and 6
dedicated slots, respectively, under DTM (i.e. w+

0 = 10, w+
3 =

6), and the corresponding retry vectors are
−→
R 0 = [4, 3, 3],

−→
R 3 =

[3, 3] to satisfy λR = 99%. According to Alg. 6, since the number
of shared slots from τ0 (w+

0 −H0 = 10−3 = 7) is larger than the
dedicated slots required by τ3 under DTM (w+

3 = 6), TG-STM
assigns the first 6 shared slots to τ3 (w′3 = 6) with no additional
dedicated slots, i.e. w∗3 = 0. The retry vector follows

−→
R 3, i.e.−→

R ′3 = [3, 3]. We calculate the achieved PDR value λ′3 = 96.41%
which is less than the reliability requirement λR = 99%. Then,
we need to assign an additional slot to τ3 to increase its PDR
value. As another available shared slot exists (w+

0 −H0 = 7), we
assign this slot to τ3. Among the two possible slot assignments−→
R ′3 = [4, 3] and

−→
R ′3 = [3, 4], the former achieves a higher PDR

value λ′3 = 99.39% > λR. Therefore, no dedicated slots are
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needed by τ3 using TG-STM under the TBS model to satisfy the
reliability requirement while w+

3 = 6 if DTM is applied.
In the PBS model, τ0 and τ3 are assigned with 7 and 4

dedicated slots, respectively, under DTM (i.e. w+
0 = 7, w+

3 = 4).
Similarly, TG-STM first assigns all available shared slots to τ3
(w′3 = w+

0 − H0 = 4) with no additional dedicated slots, i.e.
w∗3 = 0, and calculates the achieved PDR value λ′3 = 91.80%
according to Eq. (10). Since λ′3 < λR, TG-STM assigns addi-
tional dedicated slots to τ3 until w∗3 = 2 and λ′3 = 99.49%.
Therefore, only 2 dedicated slots are needed by τ3 using TG-STM
under the PBS model to satisfy the reliability requirement while
w+

3 = 4 if DTM is applied.

More comprehensive experimental comparisons be-
tween DTM and TG-STM for the both TBS and PBS models
are given in Section 8.

6.4 TG-STM in Dynamic Scheduling

Upon the detection of any disturbance, the corresponding
tasks enter their rhythmic states and RD-PaS generates a
temporary dynamic schedule to accommodate the increased
rhythmic workload. Since shared slots are allocated to cer-
tain tasks under TG-STM, we need to accordingly modify
the generation and update of task PDR table (storing the
PDR function and retry vector), which involve shared slot
allocation, in the dynamic scheduling process. As described
in Sec. 6.2, PDR table generation consists of task grouping
(Alg. 5) and PDR table computation (Alg. 6). Below we
discuss the needed updates on PDR table computation for a
task τ0 entering its rhythmic state under different cases after
performing task grouping.

Case 1: τ0 ∈ HG∗. In this case, all the time slots assigned
to τ0 are dedicated slots and none of these slots are used
as shared slots by other tasks. Therefore, when τ0 enters
its rhythmic state and follows a new release pattern, the
PDR table generation for all the other periodic tasks remains
unchanged.

Case 2: τ0 ∈ HGk. In this case, either τ0 shares a number
of slots from the other task τp in HGk (τ0 having a larger
period), or a portion of τ0’s dedicated slots are shared by τp
(τ0 having a shorter period). For the former situation, since
the rhythmic task is granted with highest criticality in the
disturbed network, we assign dedicated slots to τ0 without
any shared slots for the sake of guaranteed reliability. For
the latter situation, since the release pattern of rhythmic
task τ0 changes during its rhythmic state, τ0 and τp become
inharmonic tasks which violates Observation 2 for allocating
shared slots among them. Therefore, we assign dedicated
slots to both τ0 and τp in HGk in this case according to
Alg. 1 (TBS model) and Alg. 4 (PBS model).

To satisfy the timing and reliability requirements of τ0
after it enters the rhythmic state, we need to minimize the
performance degradation of other periodic packets, i.e. solv-
ing the dynamic schedule generation problem P2. According
to the high-level idea of Alg. 2, a basic number of slots are
first allocated to each periodic packet to avoid significant
reliability degradation. Then, extra slots are gradually as-
signed to each packet to maximize the system reliability.
Below, we discuss the necessary modifications required by
the above two steps under TG-STM.

Fig. 5: (a): the RTWN testbed with 7 CC2538 evaluation
boards; (b): the testing topology with emulated link PDR
values.

In the first step, if all the slots allocated to task τi are
dedicated slots in the system nominal mode (i.e., either
τi ∈ HG∗, or τi has a shorter period in a task group
HGk), we assign Hi dedicated slots to τi to achieve the
minimum non-zero reliability value. If τi is assigned with
shared slots (i.e., τi having larger period in a task group),
we do not assign any dedicated slot to τi in the system
rhythmic mode. Such modification is due to the following
reason. If a task τl is assigned with shared slots, its PDR
table can be generated only if the dedicated slot allocation
for task τs within the same task group has been determined.
Thus, the basic number of slots required by τl to satisfy its
minimum reliability value cannot be determined before any
shared slots are allocated to the harmonic task τs.

In the second step, extra dedicated slots are gradually
allocated to periodic packets in a greedy manner to max-
imize the system reliability. Note that, the only difference
introduced by TG-STM is the PDR value update in each
iteration. Specifically, when a dedicated slot is assigned to a
task with a shorter period in task groupHGk, this dedicated
slot becomes a shared slot allocated to the other task with
the larger period and thus its PDR value also needs to be
updated.

7 TESTBED IMPLEMENTATION AND VALIDATION

To validate the functionality of the proposed RD-PaS frame-
work in real-life RTWNs, we implemented RD-PaS on a 7-
node RTWN testbed (see Fig. 5) running the 6TiSCH pro-
tocol [21]. The testbed consists of seven CC2538 evaluation
boards. One of these boards is configured as the controller
node, while the others are configured as device nodes. A
16-channel 802.15.4 sniffer and an 8-channel logic analyzer
are used to capture and analyze the activities of each device
node. Our modified 6TiSCH stack utilizes 5KB more ROM
and 2KB more RAM space for implementing RD-PaS (in TBS
and PBS). These are relatively small compared to the origi-
nal 6TiSCH stack which needs 69KB ROM and 6KB RAM.
Due to the page limit, the implementation details of the RD-
PaS framework is omitted. Below, we focus on discussing
the functional validation of RD-PaS on the testbed.

The testbed topology is shown in Fig. 5(b). To attain the
link PDRs as specified in the topology, we implemented a
random packet dropper at the MAC layer of each device
node. Six tasks are installed in the testbed and the task
specifications are summarized in Table 3. The desired e2e
PDR for all the tasks, λR, is set to 99%. τ0, τ1, τ2 and τ3
are unicast tasks, τ5 is a broadcast task, and τ4 is a task that
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handles all network management packets. Since we always
allocate two shared slots at the beginning of τ4’s period, we
set D4 = 2. For simplicity, only τ0 enters the rhythmic state
when a rhythmic event occurs.

7.1 Validation of reliable static scheduling
To validate the static schedule construction in RD-PaS, we
run the specified task set on the testing topology in the
nominal mode under both TBS and PBS models. The PDR
tables computed by the testbed are exactly the same as those
obtained from simulation. The PDR table for task τ1 is given
in Table 4 (while others are not shown due to the page limit).
The highlighted rows indicate the corresponding w+

i ’s for
TBS (w+

i = 13) and PBS (w+
i = 7) when λR is reached.

We further test 5000 packets for each unicast and broad-
cast task under both models, and compare the actual e2e
PDR values collected from the testbed with the simulated
values from Alg. 1 and Alg. 4. These results are summarized
in Table 5. τ4 is omitted in the table since it is a task dedi-
cated for network management packets. It can be concluded
from the table that the reliable static scheduling function
in RD-PaS executes correctly as the actual e2e PDRs are
improved to the desired values (≥ 99%) in both models in
the presence of specified packet loss. The slight differences
between the measured and predicted e2e PDR values are
expected due to the limited sample size.

7.2 Validation of reliable dynamic scheduling
To validate the functional correctness of reliable dynamic
scheduling in RD-PaS on our testbed, we let the network
trigger rhythmic events, and use the logic analyzer to cap-
ture the radio activities through a physical pin on each
device node and plot the waveforms. We configure the
network to enter the rhythmic mode at slot 720. The hyper-
period of the task set is 360 according to Table 3. (Rhythmic
events can happen at any time. We chose this integer mul-
tiple of the hyperperiod to simplify the waveform demo.)
Fig. 6 illustrates a sample waveform for 240 consecutive
slots (slot 600-840) in the TBS model. (Both TBS and PBS
models are validated. We present the results in the TBS
model here for ease of explanation.) The network runs in
the nominal mode for the first 120 time slots (Fig. 6b) and
then switches to the rhythmic mode in the next 120 slots
(Fig. 6c). Seven waveforms represent the radio activities,
either transmitting, receiving, or listening, for all the 7
nodes, as labeled on the left side of the figures. Each rising
and falling edge in the Slot row (lower part of the figures)
mark the start of a new time slot. In the schedule row (lower
part of the figures), slot assignments are indicated using
different colors.

TABLE 3: Parameters of the task set deployed on the testbed.

Task Routing Path Pi(Di)
−→
P i =

−→
D i

τ0 V3 → V0 → Vc → V1 30 (30) [20, 20, 20,
20, 20, 20]

τ1 V5 → V2 → Vc → V0 → V4 45 (45) -
τ2 V0 → Vc → V1 40 (40) -
τ3 V2 → Vc → V1 60 (60) -
τ4 - 60 (2) -
τ5 Vc → (V0, V1, V2), V0 →

(V3, V4), V2 → (V5)
120 (120) -

TABLE 4: PDR table for task τ1 in TBS and PBS models.

PDR Table in TBS PDR Table in PBS
w

λ∗i (w)
−→
R ∗i (w) λ∗i (w)

4 0.564963 1,1,1,1 0.564963
5 0.663832 1,1,2,1 0.864394
6 0.756769 1,2,2,1 0.964613
7 0.850608 2,2,2,1 0.991720 (λ∗i (w+

i ))
8 0.928013 2,2,2,2
9 0.952201 2,2,3,2
10 0.968572 2,3,3,2
11 0.981822 3,3,3,2
12 0.989274 3,3,3,3
13 0.993672 (λ∗i (w+

i )) 3,3,4,3

TABLE 5: Reliable static schedule validation in TBS and PBS
models on the testbed.

T
BS

M
od

el

Task
−→
R ∗i λ∗i (w+

i ) Measured PDR
τ0 [4,3,3] 99.01% 99.21%
τ1 [3,3,4,3] 99.37% 99.61%
τ2 [3,3] 99.34% 99.41%
τ3 [3,3] 99.60% 99.71%
τ5 [4,4,3] 99.38% 100%

PB
S

M
od

el

Task w+
i or

−→
R ∗i λ∗i (w+

i ) Measured PDR
τ0 7 99.68% 99.22%
τ1 7 99.17% 99.65%
τ2 5 99.80% 99.34%
τ3 4 99.29% 99.65%
τ5 [4,4,3] 99.38% 100%

From Fig. 6b, we observe that each task τi releases
its packets according to Pi, and w+

i number of slots are
allocated to each packet before its deadline (shown in the
schedule row). In each scheduled slot, the sender attempts
to transmit the packet and may succeed (marked by the
arrows). Although some attempts fail, all the packets are
still delivered to the destination node because of the right
amount of retransmission slots as determined by the reliable
static scheduling function. In Fig. 6c, τ0 enters the rhythmic
state, and its period is reduced according to

−→
P 0 given in

Table 3. Also as shown in the schedule row, the Wi,j values
for τ0 do not change, while those for τ1, τ2, τ3, τ5 are reduced
to [9, 9, 9], [4, 5, 5], [4, 4], [7], respectively. The

−→
R i,j vectors

are also selected correctly by the updated Wi,j values in
the rhythmic mode, and all the packets from the rhythmic
task (τ0) are successfully delivered to the destination. The
captured results match the results from the simulation,
and this validates the correctness of the reliable dynamic
scheduling function in RD-PaS.

8 SIMULATION-BASED EVALUATION

In this section, we evaluate the performance of RD-PaS
through extensive simulations and compare RD-PaS with a
state-of-the-art dynamic approach, D2-PaS.13 The first three
sets of simulations compare the packet delivery ratio, net-
work bandwidth usage and number of extra slots produced
by RD-PaS with those by D2-PaS. The 4th set of simulations

13. [17] shows that D2-PaS has a clear advantage in packet dropping
performance compared to the fully distributed scheduling framework
FD-PaS, so we omit the comparison between RD-PaS and FD-PaS.
Also, since we have proved the optimality of our retransmission slots
assignment in Sec. 4.1, we omit to compare with the retransmission
mechanism in [24] in the static setting.
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(a) Legend.
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(b) Radio activities in slots 600 to 720 (nominal mode).
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V0

V1
V2
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(c) Radio activities in slots 720 to 840 (rhythmic mode). Task τ0 is in the rhythmic state and releases packets following
−→
P 0 given in Table 3.

Fig. 6: Slot information and radio activities in the reliable dynamic scheduling test case captured by the logic analyzer.

studies the behavior of the rhythmic mode. We evaluate
the reliability degradation by comparing RD-PaS with D2-
PaS on handling disturbances in RTWNs. In the last set
of simulations, we evaluate the performance improvement
of TG-STM in terms of network bandwidth utilization and
number of extra slots.

8.1 Comparison of Packet Delivery Ratio
As RD-PaS utilizes retransmission slots to guarantee the
required e2e PDR value for each task, there is no doubt that
the system reliability will be improved compared with a
traditional scheduling framework not considering reliabil-
ity. To quantify such improvements, we calculate the e2e
PDR resulted from applying D2-PaS in lossy links with
randomly generated link PDRs. Since the e2e PDR for each
task is independent, we use different settings to randomly
generate tasks and compute the PDR value for each task.
The number of hops for a task, H , is drawn from the
uniform distribution over {1, 2, ..., 10} and the PDR value
of each link on the routing path is randomly generated by
controlling the average value of link PDR, λL, following a
uniform distribution in {0.5, 0.55, ..., 0.95}. As periods and
deadlines do not affect the packet delivery ratio, we only
study PDR’s dependency on H and λL. Fig. 7 shows the e2e
PDR of a task as a function of λL and H . Because RD-PaS
can always guarantee the required PDR value, its results are
always at the ceiling (above 99%) of the figure and are thus
omitted. From Fig. 7, we can observe the large gap between

RD-PaS and D2-PaS (60.6% on average) in guaranteeing the
e2e PDR of the task.

8.2 Comparison of Network Bandwidth Usage
Allocating extra retransmission slots can significantly im-
prove the reliability of packet delivery. However, higher
network bandwidth is required which may affect system
schedulability. In this set of experiments, we study the
efficiency of using time slots to deliver packets, in differ-
ent scheduling frameworks, according to the performance
metric throughput. Throughput is defined as the number of
packets delivered per slot (PPS) and is the ratio between the
e2e PDR value and the number of allocated slots assigned
to the task, i.e. λ

∗
i (w)
w . The parameter settings of this set of

experiments are the same as that in Section 8.1.
Fig. 8 summarizes throughputs for different scheduling

frameworks with varied average link PDR λL and the
number of hops, H , for the generated task. From the results,
we can observe that D2-PaS has a higher throughput when
H is small and when λL is close to 1. However when the link
PDR drops and H increases, RD-PaS (in both TBS and PBS
models) gains better throughput. This is mainly due to the
fact that using a time slot for retransmission can gain more
throughput than transmitting a new packet in these cases.
The simulation results also show that RD-PaS in the PBS
model can always achieve a better throughput than in the
TBS model. The reason is that the PBS model can always
achieve same PDR with less number of slots, compared
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Fig. 7: PDR in D2-PaS framework.
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to the TBS model due to the PBS’s ability in sharing slots
among transmissions of a packet.

8.3 Comparison of Required Numbers of Slots
In this set of experiments, we make further evaluation on
RD-PaS in TBS and PBS models. As discussed in Section 5,
the PBS model provides more flexibility on the retransmis-
sion slot assignment, and a less number of slots, w+

i , is
required to achieve the same λR as compared to the TBS
model. Fig. 9 gives the comparison on the required number
of slots under different settings of average λL and H , and
the required end-to-end PDR value λR is set to 99%. As can
be observed, tasks in PBS model require less number of slots
than in TBS model, when H > 1. The required number of
slots in the PBS model is 55.0% less on average compared
to that in TBS model. This is consistent with the observation
that one packet requires less number of slots to achieve the
same λR in the PBS model.

8.4 Effectiveness in Handling Rhythmic Events
To evaluate the performance of RD-PaS in handling rhyth-
mic events, we compare the degradation rate (DR) between
RD-PaS and D2-PaS. DR is defined as the ratio between the
sum of reliability degradation (i.e., δi,j) from all periodic
packets and the total number of generated periodic packets
in the rhythmic mode. As D2-PaS does not consider un-
reliable wireless links, we first extend D2-PaS to support
reliable transmission, denoted as eD2-PaS. Specifically, all
packets in eD2-PaS are reliably transmitted using w+

i slots
in the static schedule. In the dynamic schedule, transmission
and retransmission slots assigned for each packet are not

differentiated, i.e., each packet can either be reliably sched-
uled or dropped.

To better control the system workload, we vary the
nominal utilization of the task set. Specifically, we use a
random periodic task set generated according to a target
nominal utilization U∗. The generation of each random task
τi is controlled by the following parameter settings: i) the
number of hops Hi is drawn from the uniform distribution
over {2, 3, ..., 16}, ii) the nominal period Pi is equal to dead-
lineDi and follows a uniform distribution in {50, 51, ...100}.
As the simulation results in the last sub-section have shown,
the PBS model requires less total number of slots to achieve
the same transmission reliability. Thus, here we use the PBS
model to generate the PDR function λ∗i (·) for each task τi.

After a task set is generated, we randomly select two
tasks to be the rhythmic tasks. To better control the work-
load of the rhythmic event, we assume that all the rhyth-
mic periods (deadlines) are the same in

−→
P i(
−→
D i) and the

number of elements in
−→
P i equals to 10. The value of each

element Pi,R is thus controlled by the rhythmic period ratio,
γ =

Pi,R

Pi
.

Fig. 10 shows the results of DR as a function of both
the nominal task set utilization U∗ and the rhythmic period
ratio γ. Each data point is the average value of 1, 000 trials.
From Fig. 10, we can observe that RD-PaS has a lower
PDR degradation rate (58.4% on average) over eD2-PaS. The
main reason is that eD2-PaS either schedules or drops any
packet χi,j , i.e. Wi,j ∈ {0, w+

i }. However, RD-PaS has more
flexibility on tuning the number of slots assigned to χi,j , i.e.
Wi,j ∈ {0, Hi, . . . , w

+
i }.
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8.5 Effectiveness of TG-STM

In this set of experiments, we evaluate performance im-
provements of TG-STM over DTM in terms of throughput
and required number of slots w+

i . The parameter settings
remain the same as those in the previous sets of experi-
ments. Fig. 11 and Fig. 12 summarize the throughput and
w+
i results for both DTM and TG-STM, respectively. We

can observe that all the simulation results of TG-STM under
both the TBS and PBS models show a same trend with those
of DTM. However, the performance of both throughput
and required number of slots improve by varying degrees.
Specifically, the required number of slots in the TBS model is
significantly reduced using TG-STM while the improvement
in the PBS model is smaller. This is due to the ability of the
PBS model in sharing slots among transmissions of each
packet such that a number of slots have already been saved,
hence fewer opportunities for TG-STM.

9 CONCLUSION AND FUTURE WORK

In this paper, we present RD-PaS, a reliable dynamic
packet scheduling framework for RTWNs. RD-PaS pro-
vides guaranteed reliability of packet delivery in RTWNs
for both transmission-based scheduling model and packet-
based scheduling model in a hybrid fasion. In the presence
of unexpected disturbances, RD-PaS makes dynamic sched-
ule adjustment judiciously to guarantee timely and reliable
delivery of the critical rhythmic packets while minimizes
reliability degradation for noncritical packets. An optimal
algorithm (for the static case) as well as a heuristic (for
the dynamic case) are introduced for realizing RD-PaS.
Extensive testbed and simulation based experiments are
conducted to validate the correctness and effectiveness of
RD-PaS. Our experimental results show that RD-PaS can sig-
nificantly improve the QoS (in terms of reliability) compared
with the state-of-the-art approaches. As future work, we
will extend RD-PaS to further support RTWNs with multi-
channel scheduling and multi-path routing capabilities, and
evaluate its performance in large-scale RTWN testbeds.
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