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Abstract—Real-time end-to-end task scheduling in networked
control systems (NCSs) requires the joint consideration of both
network and computing resources to guarantee the desired
quality of service (QoS). This paper introduces a new model
for composite resource scheduling (CRS) in real-time networked
control systems, which considers a strict execution order of
sensing, computing, and actuating segments based on the control
loop of the target NCS. We prove that the general CRS problem
is NP-hard and study two special cases of the CRS problem.
The first case restricts the computing and actuating segments
to have unit-size execution time while the second case assumes
that both sensing and actuating segments have unit-size execution
time. We propose an optimal algorithm to solve the first case by
checking the intervals with 100% network resource utilization
and modify the deadlines of the tasks within those intervals
to prune the search. For the second case, we propose another
optimal algorithm based on a novel backtracking strategy to
check the time intervals with the network resource utilization
larger than 100% and modify the timing parameters of tasks
based on these intervals. For the general case, we design a
greedy strategy to modify the timing parameters of both network
segments and computing segments within the time intervals
that have network and computing resource utilization larger
than 100%, respectively. The correctness and effectiveness of the
proposed algorithms are verified through extensive experiments.

I. INTRODUCTION

Networked control systems (NCSs) are fundamental to

many mission- and safety-critical applications that must work

under real-time constraints to ensure timely collection of

sensor data and on-time delivery of control decisions. The

Quality of Service (QoS) offered by a NCS is thus often

measured by how well it satisfies the end-to-end deadlines

of the real-time tasks executed in NCSs [1]–[5].

A typical real-time task in NCSs involves both computing

component(s) for executing the control algorithms on the

controller and communication component(s) for exchanging

sensor data and control signals between sensors/actuators and

the controller. Traditional approaches to scheduling those tasks

consider CPU and network resource scheduling separately.

They either make an oversimplified assumption that the ex-

ecution time of the control algorithm is negligible or consider

it as constant. For example, extensive work has been reported

in recent years on sensing and control task scheduling in real-

time industrial networks [6]–[14]. Most of those work, how-

ever only focused on modeling the constraints of transmission

conflicts but paid less attention to the computation time of

§The first two authors are the corresponding authors.

the control algorithms when enforcing the end-to-end dead-

lines. Those approaches thus either cannot handle complex

NCS applications which require the implementation of time-

consuming control algorithms such as model predictive control

using online optimization, data-driven system identification,

and online learning control [15]–[19], or will lead to unneces-

sarily low utilization of the computing and network resources

due to the lack of efficient methods to schedule those resources

in a joint fashion. Take the F1/10 autonomous car system as

an example that aims to race in a rectangular track while

avoiding any obstacles [20]. The communication component

on the system for exchanging sensing/actuating information

has a worst-case execution time of 0.3 milliseconds; while the

PID controller for steering control and the vision controller

for identifying corners have worst-case execution times of 0.4
and 50 milliseconds, respectively. These comparable execution

times of both networking and computing tasks motivate us to

introduce a new task model, namely the Composite Resource

Scheduling (CRS) model, for jointly scheduling network and

computing resources in NCSs. In CRS, each real-time compos-

ite task consists of three consecutive and dependent segments:

a sensing segment to transmit sensor data to the controller,

a computing segment to compute the control decisions, and

an actuating segment to transmit the control signals to the

actuators. The sensing/actuating segments together are called

network segments. They share the same network resource

while the computing segments compete for the computing

resource on the controller.

Similar models in the literature include PRedictable Exe-

cution Model (PREM) [21]–[23] and Acquisition Execution

Restitution (AER) model [24]. These two models, however

are specifically designed to schedule resources in multi-core

systems with shared memory where the communication phases

including memory read and write are considered as non-

preemptive, which is reasonable for the design of multi-core

systems. By contrast, the network segments of the CRS model

for NCSs are designed to be preemptive to meet the flexibility

of the network scheduling. This provides better parallelism

when scheduling sensing/actuating segments and computing

segments from different tasks.

Our work attempts to tackle the composite resource schedul-

ing problem in NCSs, which aims to optimize the usage of

network and computing resources in NCSs under the end-to-

end deadline constraints. Based on the proposed CRS model,

we provide a comprehensive analysis on the complexity of

the problem, and prove that the general CRS problem is
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NP-hard in the strong sense. We thus in this paper study

two special cases of the CRS problem and present a greedy

heuristic for the general cases as well, focusing on the

design of the corresponding algorithms to construct feasible

composite schedules. We start with the first case where both

the computing segment and actuating segment have unit-size

execution time. In this case, an optimal scheduling algorithm

is proposed. The algorithm first modifies the deadlines of

the CRS task set based on the intervals with 100% network

resource utilization and then applies the Earliest Deadline

First (EDF) scheduling algorithm to schedule the sensing

and actuating segments together according to the modified

deadlines. For the second case where the execution time of

both sensing and actuating segments are unit-size, and the

execution time of the computing segment can be an arbitrary

integer larger than one, we design another optimal scheduling

algorithm which schedules the computing segments in the

first stage and the sensing and actuating segments in the

second stage. If the scheduling fails in the second stage, the

algorithm rolls back to the initial stage based on a novel

backtracking search strategy by adding new constraints to

the original problem recursively, and eventually lead to a

feasible composite schedule if it exists. For the general case,

we propose a heuristic solution with a roll-back mechanism.

EDF is first employed to schedule the segments. If EDF fails

to find a feasible schedule, we locate the intervals with either

network resource or computing resource utilization larger than

100% and modify the deadline of the segment included in the

located interval with the earliest release time. We iteratively

run EDF and modify the timing parameters until we find a

feasible schedule. The effectiveness of the proposed algorithms

has been validated through extensive experiments. Our results

show that the proposed scheduling algorithms outperform the

baseline algorithms in terms of schedulability.

The remainder of this paper is organized as follows: Sec-

tion II presents the task model and the formulation of the

general CRS problem and its two special cases. Section III

and Section V develop the optimal scheduling algorithms for

the first and second cases, respectively. Section V introduces a

heuristic scheduling algorithm for the general case. Section VI

presents the experimental results. Section VII gives a summary

of the related works. Section VIII concludes the paper and

discusses the future work.

II. TASK MODEL AND PROBLEM FORMULATION

In this section, we introduce the CRS model and present

the constraint programming formulation of the composite

resource scheduling problem. Based on different settings on

the execution time of the network/computing segments, we

introduce three CRS models.

A. Task Model

Consider a NCS configured in a star topology. The sensors

and actuators form the leaf nodes while the controller runs on

the root (Gateway). To ensure efficient and safe operation of

the control system, the transmissions of sensor data/control

signals and the execution of the control algorithm should

Fig. 1: An overview of the real-time composite task model

follow a strict order and meet the designated end-to-end

timing requirement. In a typical real-time composite task in

NCSs, one or multiple sensors send their measurements to

the controller first. The controller then computes the control

signals and delivers them to one or multiple actuators. In

practice, while the CPU is waiting for the sensing data, it

can be set to idle. Once the transmission of sensing data is

finished, an interrupt notifies the CPU to obtain the data stored

in a specified shared memory. This decouples the computation

from sensing and actuating so that the transmissions of sensing

data and control signals share the network resource while

the executions of the control algorithms only compete for

the CPU resource. In our CRS model, we consider multiple-

input multiple-output (MIMO) control systems, which have

multiple sensors as the input and multiple actuators as the

output. As shown in Fig. 1, each real-time composite task

τi = (Ti, Di, Ci,s, Ci,c, Ci,a) is associated with a period Ti

and a relative deadline Di. It consists of three consecutive

and dependent segments:

• Sensing segment: it utilizes the network resource and has

the transmission time of Ci,s;

• Computing segment: it utilizes the CPU resource and has

the execution time of Ci,c;

• Actuating segment: it utilizes the network resource and

has the transmission time of Ci,a.

In this paper, we consider a time-slotted system for network.

A network segment consists of multiple fragments where each

fragment takes exactly one time slot in the super-frame to

transmit. We define the execution times Ci,s and Ci,a of the

sensing and actuating segments to be the sum of the network

transmission times of all sensors and actuators connected to

a control task, and that their activation frequency is equal

to the one of the task. We assume that (1) the unit sizes

of the network and computing resources are the same; (2)

the network is single-channel and the CPU is a preemptive

uniprocessor; (3) the task system is a synchronous system; and

(4) the release time, deadline and execution time are integers.

B. Problem Formulation

Based on the above task model, we now present the formal

definition of the composite resource scheduling problem and

give its constraint programming formulation.

Composite Resource Scheduling (CRS) Problem: Consider

a set of real-time composite tasks {τ1, τ2, ..., τn} with τi =
(Ti, Di, Ci,s, Ci,c, Ci,a) and the hyper-period H obtained by

computing the least common multiple of the periods. The

objective of the CRS problem is to find a feasible composite
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schedule with a length of H if it exists so that the deadlines

of all the real-time composite tasks are met.
We first formulate the CRS problem as a constraint pro-

gramming problem. It aims to construct the feasible sched-

ules Snet = {fi,j,s,k, fi,j,a,k} for the network segments and

Scom = {fi,j,c,k} for the computing segments, where fi,j,s,k,

fi,j,c,k, and fi,j,a,k are the finish times of the kth unit of

sensing/computing/actuating segments of the jth instance of

the task τi, respectively. The jth instance of task τi, denoted

as τi,j , has a release time ri,j and a deadline ri,j + Di.

The construction of the feasible schedules is subject to the

following constraints:

Release time and deadline constraints:

fi,j,s,1 ≥ ri,j + 1

fi,j,a,Ci,a
≤ ri,j +Di

(1)

Segment order constraints:
fi,j,c,1 ≥ fi,j,s,Ci,s

+ 1

fi,j,a,1 ≥ fi,j,c,Ci,c + 1

fi,j,s,k+1 ≥ fi,j,s,k + 1, ∀k ∈ Z ∩ [1, Ci,s − 1]

fi,j,c,k+1 ≥ fi,j,c,k + 1, ∀k ∈ Z ∩ [1, Ci,c − 1]

fi,j,a,k+1 ≥ fi,j,a,k + 1, ∀k ∈ Z ∩ [1, Ci,a − 1]

(2)

Network resource constraints:
∀i �= z, ∀x, y ∈ {a, s}
∀p ∈ Z ∩ [1, Ci,x], ∀q ∈ Z ∩ [1, Cz,y]

fi,j,x,p ≤ fz,j,y,q − 1 OR fi,j,x,p ≥ fz,j,y,q + 1

(3)

Computing resource constraints:

∀i �= z, ∀p ∈ Z ∩ [1, Ci,c], ∀q ∈ Z ∩ [1, Cz,c]

fi,j,c,p ≤ fz,j,c,q − 1 OR fi,j,c,p ≥ fz,j,c,q + 1
(4)

Constraint (1) requires that the first unit of the sensing seg-

ment and the last unit of the actuating segment of any task τi
are constrained by τi’s release time and deadline, respectively.

Constraint (2) defines the constraints for the sequential order

for each unit of sensing, computing, and actuating segments.

One can easily derive the earliest possible release time and the

latest possible deadline for each segment based on Constraints

(1) and (2). Constraints (3) and (4) define the constraints

for different composite tasks to compete for the network and

computing resources, where the OR operator in the constraints

can be modeled by using the big M method [25]. Note that

the above formulation employing the time-indexed model [26]

is computationally efficient since the problem studied in the

paper is a preemptive flow shop scheduling problem.

TABLE I: Problems and solutions under different CRS models.

Task Model Complexity or Solution
h-1-1 Exponential-time solvable (Alg. 1)
1-m-1 Exponential-time solvable (Alg. 2)

h1-h2-h3 NP-hard and solved by heuristics (Alg. 4)

To study the CRS problem comprehensively, we consider

three cases of the CRS model based on the size of the

B B B
n B+3n
3n

B n Bn B

B
B

ri (1≤ i≤ 3n)

r3n+1 r3n+2d3n+1 r4n+1 d4n+1

di (1≤ i≤ 3n)

B, n B]

Fig. 2: An instance of the composite schedule

execution time of each segment. These cases are summarized

in Table I. The first case is the h-1-1 model where Ci,c =
Ci,a = 1 and Ci,s = h (h > 0) for each segment of a task.

The second case uses the 1-m-1 model with Ci,s = Ci,a = 1
and Ci,c = m (m > 1). The third case is the general

model h1-h2-h3 with Ci,s = h1, Ci,c = h2, and Ci,a = h3

(h1, h2, h3 > 0). These three cases represent three types of

application scenarios in the real life. While h − 1 − 1 refers

to the task which has a longer sensing segment, 1 − m − 1
represents the task which has a longer computing segment, and

h1-h2-h3 represents the general applications. The following

theorem shows that the CRS problem under the general model

is NP-hard in the strong sense.

Theorem 1. The CRS problem under the general model is
NP-hard in the strong sense.

Proof. We reduce 3-Partition to the CRS problem. An instance

of 3-Partition consists of a list A = (x1, x2, ..., x3n) of positive

integers such that
∑

xi = nB, B
4 < xi < B

2 for each 1 ≤
i ≤ 3n, there exists a partition of A into A1, A2,...,An such

that
∑

xi∈Ak
xi = B for each 1 ≤ k ≤ n [27].

Given an instance A = (x1, x2, ..., x3n) of 3-Partition,

we construct an instance of the CRS problem as follows.

As shown in Fig. 2, there will be 3n + 1 tasks. The first

3n tasks are partition tasks. For each 1 ≤ i ≤ 3n, the

task τi satisfies that Ci,s = 2μxi, Ci,c = 2μxi, Ci,a = 1,

Di = (4n + 1)μB + 3n, and Ti = 4μB, where B is

the sum of each partition and μ = � 3n
B 	. The last task

is divider task which satisfies that Ti = Di = 4μB ,

Ci,s = μB, Ci,c = 2μB, and Ci,a = μB. The n + 1 divider

tasks divide the timeline of [μB, (4n + 3)μB] into n + 1
intervals of full computing resource utilization interleaved

with n intervals of full network resource utilization, where

the partition tasks are scheduled. The length of each of these

intervals is exactly 2μB. The sensing segments of the partition

tasks from the same partition must be scheduled in a length

2μB of the interval [(2j − 1)μB, (2j + 1)μB] so that their

corresponding computing segments can anticipate releasing

exactly at or before (2j+1)μB and fully utilizing the interval

[(2j + 1)μB, (2j + 3)μB], where 1 ≤ j ≤ n. Thus, it is easy

to see that there is a feasible schedule of the CRS problem if

and only if there exists a 3-Partition. It is clear that the above

reduction is polynomial. We thus have proved that the CRS

problem is NP-hard in the strong sense.

We first exploit the earliest possible release time and the lat-

est possible deadline to define the effective timing parameters
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of the network and computing segments.

Definition 1. Effective Release Time/Deadline: Given an
instance of real-time composite task τi,j with the release time
ri,j and deadline di,j , the effective release time/deadline of its
sensing segment τi,j,s are defined as r̄i,j,s = ri,j and d̄i,j,s =
di,j − Ci,a − Ci,c. The effective release time/deadline of its
computing segment τi,j,c are defined as r̄i,j,c = ri,j+Ci,s and
d̄i,j,c = di,j − Ci,a. The effective release time/deadline of its
actuating segment τi,a are defined as r̄i,j,a = ri,j+Ci,s+Ci,c

and d̄i,j,a = di,j .

We say a network segment is effectively included in a time

interval if its effective release time and effective deadline are

within that interval. For instance, a network segment τi,j,net
is effectively included in [t0, t1] if r̄i,j,net ≥ t0 and d̄i,j,net ≤
t1. Based on this condition, we define an effective network
demand over a given interval to be the sum of the execution

time of all network segments that are effectively included in

that interval. We define the effective network overload interval
and effective network tight interval as follows.

Definition 2. Effective Network Overload/Tight Interval
(ENOI/ENTI): Given a set of real-time composite tasks and
a time interval [t0, t1], [t0, t1] is an effective network overload
interval if the effective network demand over [t0, t1] is larger
than t1− t0. [t0, t1] is an effective network tight interval if the
effective network demand over [t0, t1] is equal to t1 − t0.

Since the CRS problem under the general model is NP-

hard, in the following we first focus on the design of exact

algorithms for the first two simple models and then present an

effective heuristic solution for the general model.

III. CRS PROBLEM UNDER H -1-1 MODEL

The h-1-1 model represents a wide range of NCSs which

need to transport a large amount of sensing data while the

required computing and actuation time are short. In the fol-

lowing, after giving several important observations, we present

an exact optimal algorithm to solve it.

Based on the effective timing parameters, we employ EDF

to schedule the real-time composite tasks in the following

fashion. We utilize a network ready queue and a comput-

ing ready queue for scheduling the network segments and

computing segments, respectively. Once a sensing segment

τi,j,s is finished at fi,j,s, its computing segment τi,j,c is

released at fi,j,s. Similarly, if a computing segment τi,j,c
is finished at fi,j,c, its actuating segment τi,j,c is released

at fi,j,c. The actuating segments will be scheduled together

with all other network segments (including both sensing and

actuating segments from other task instances) using EDF. The

effective deadlines of the sensing and actuating segments are

used to decide their priorities. Ties are broken by scheduling

the sensing segments first. For the same type of segments, ties

are broken by scheduling the segment with the least laxity.

Lemma 1. Given a real-time composite task set T under the
h-1-1 model, if EDF can find a feasible network schedule for
the sensing segments based on their effective deadlines, it can

also find a feasible computing schedule based on the effective
deadlines of their computing segments.

It is straightforward to prove the correctness of Lemma 1.

As the finish times of the sensing segments are different, the

release times of their corresponding computing segments are

different as well. Given that each computing segment takes

unit-size execution time, we can always schedule the comput-

ing segments immediately after the completion of its corre-

sponding sensing segments. Lemma 1 indicates that scheduling

the sensing segments does not interfere with scheduling the

computing segments. However, it is hard to guarantee that

EDF can also construct a feasible schedule for the actuating

segments as they compete for the network resource with the

sensing segments. Therefore, in the following we focus on

adapting EDF to schedule the sensing and actuating segments.
The following lemma gives a necessary condition to de-

termine the schedulability of the real-time composite task set

under the h-1-1 model.

Lemma 2. Given a real-time composite task set T under
the h-1-1 model, if there exists an effective network overload
interval (ENOI), the task set is unschedulable.

Proof. Due to the page limit, please refer to the full technical

report for the proof [28]

An effective network tight interval (ENTI) indicates that

this interval has a 100% network resource utilization in any

feasible schedule. Thus, it is important to utilize the ENTIs to

modify the deadline of the tasks whose deadlines are within

the interval but their actuating segments are not effectively

included in the interval. The following definition and lemma

show that EDF can find the feasible schedule if there exists

one after applying the ENTIs to modify the task deadlines.

Definition 3. Continuous Interval: Given a real-time com-
posite task set T under the h-1-1 model, suppose τz,j,net is the
first network segment scheduled by EDF to miss its deadline
d̄z,j,net and b0 is the start time of a network segment in the
schedule, we define [b0, d̄z,j,net] to be a continuous interval if
it is fully utilized by the network segments and there exists no
network segment scheduled in the interval [b0 − 1, b0] or the
network segment scheduled in [b0−1, b0] has a deadline later
than d̄z,j,net.

Lemma 3. Given a schedulable real-time composite task set T
under the h-1-1 model, if EDF fails to find a feasible network
schedule, then there exists exactly one actuating segment
scheduled in a continuous interval but not effectively included
in that interval, and the continuous interval is an ENTI.

Proof. Based on proof by contradiction, we assume that one

of the following cases holds.

• Case 1: the network segments scheduled in the continuous

interval are all effectively included in that interval.
• Case 2: there exists exactly one sensing segment scheduled

in the continuous interval but not effectively included in it.
• Case 3: there exist at least two network segments scheduled

in the continuous interval but not effectively included in it.
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Suppose that EDF generates the network schedule Snet.

Consider that EDF fails to find a feasible network schedule.

Let τj,net be the first network segment scheduled by EDF

that misses its deadline d̄z,j,net. There exists the continuous

interval [b0, d̄z,j,net] which is fully utilized by the network

segments. There exists no network segment scheduled in the

interval [b0−1, b0] or the network segment scheduled in it has

a deadline later than d̄z,j,net.
If case 1 holds, all the network segments scheduled in

[b0, d̄z,j,net] are effectively included in the interval, with the

network segment τz,j,net considered, the interval [b0, d̄z,j,net]
is an ENOI, which is a contradiction to that T is schedulable

according to Lemma 2.

If case 2 holds, since there exists exactly one sensing

segment scheduled in the continuous interval but not effec-

tively included in the interval, this sensing segment should be

scheduled in [b0−1, b0] according to EDF. This contradicts to

the definition of continuous interval.

If case 3 holds, there exist at least two network segments

whose corresponding effective release times are smaller than

b0 among the network segments scheduled in [b0, d̄z,j,net].
If at least one of the two network segments is a sensing

segment, the interval [b0 − 1, b0] must be utilized by this

sensing segment, which is a contradiction. Therefore, we

consider the case that both of them are actuating segments.

Let τk,x,a and τg,y,a be the two actuating segments satisfiying

r̄k,x,a, r̄g,y,a < b0. For their corresponding sensing segments

τk,x,s and τg,y,s, it must hold that r̄k,x,s, r̄g,y,s < b0 − 1.

Thus, if any of the two sensing segments τk,x,s and τg,s are

scheduled in [b0, d̄z,j,net], it is a contradiction that the interval

[b0 − 1, b0] is not utilized or by a network segment with the

deadline later than d̄z,j,net. Hence, both τk,x,s and τg,y,s must

be scheduled before b0 − 1. Since the finish times obtained

by EDF must be different, at least one of fk,x,s and fg,y,s
is smaller than b0 − 1. Therefore, at least one of the actual

release times of τk,a and τg,y,a is smaller than b0. This allows

one of τk,x,a and τg,a to be scheduled in [b0−1, b0], but leads

to a contradiction to our assumption. Therefore, there exists

exactly one actuating segment whose effective release time is

smaller than b0. With the network segment τz,j,net considered,

the interval [b0, d̄z,j,net] is an ENTI. This proves that there

exists exactly one actuating segment scheduled in the ENTI

[b0, d̄z,j,net] but not effectively included in it if EDF fails.

Lemma 3 indicates that as long as the actuating segments

which do not belong to a given ENTI are prevented from being

scheduled inside that interval, EDF can construct a feasible

network schedule if it exists.

Based on Lemma 3, Alg. 1 gives an overview of the

CRS algorithm under the h-1-1 model. The algorithm first

constructs the effective timing parameters for all the segments.

Based on these effective release times and deadlines, the

algorithm identifies every ENTI and modifies the effective

timing parameters accordingly. To ensure that the search of the

ENTIs is complete, we traverse the effective release times of

all sensing segments in the descending order, and the effective

deadlines of all actuating segments in the ascending order to

Algorithm 1: CRS Algorithm (h-1-1 Model)

Input : A real-time composite task set T = {τi}ni=1

Output: A network schedule Snet and a computing schedule
Scom, if exist

1 Compute the hyper-period H and build the set I of instances
of T

2 Construct the set O of effective network overload and tight
intervals

3 while O �= ∅ do
4 if α ∈ O is an ENOI then
5 return None // Algorithm reports a failed

case
6 end
7 if λ ∈ O is an ENTI [t0, t1] then
8 for τi,j ∈ I do
9 if di,j ∈ λ and r̄i,j,a < t0 then

10 di,j = t0
11 end
12 end
13 O = O − {λ}
14 end
15 Update the set O based on the modified timing

parameters
16 end
17 Use EDF to schedule the network and computing segments

in parallel based on their effective deadlines to obtain the
schedules Snet, and Scom

18 return Snet, Scom

construct all candidate intervals. If an ENTI [t0, t1] is found,

we check all the tasks to modify their deadlines based on

the following rule: if the deadline is included in [t0, t1] and

the effective release time of its actuating segment is smaller

than t0, we set its deadline to t0. Additionally, the algorithm

identifies the ENOI and returns a None value to indicate that

this task set is unscheduable. This procedure (line 3-16 in

Alg. 1) repeats until all ENTIs are identified, which has a

time complexity of O(N3), where N =
∑n

i=1 H/Ti is the

total number of instances obtained from all the tasks. After

that, we employ EDF to construct a feasible schedule. The

overall time complexity of Alg. 1 is O(N3).
The following theorem proves the correctness of the CRS

algorithm under the h-1-1 model.

Theorem 2. If there exists a feasible schedule for the real-
time composite task set under the h-1-1 model, then Alg. 1
can find it.

Proof. The proposed CRS algorithm under the h-1-1 model

modifies the task deadlines so that there exist no actuating

segments which would be scheduled in an ENTI if they are

not effectively included in the interval. According to Lemma

3, if the single actuating segment which is not included in the

ENTI is removed, the EDF is able to find a feasible network

schedule Snet for the network segments. Besides, according

to Lemma 1, the computing schedule Scom must be feasible

as well.

IV. CRS PROBLEM UNDER 1-M -1 MODEL

We now extend the study to the 1-m-1 model, where every

real-time composite task has unit-size execution time for its

sensing/actuating segments and arbitrary execution time larger
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than 1 for its computing segment. This model represents a wide

range of NCSs which employ online optimization methods so

that their computing time is longer than the transmission time

for sensing and actuating. Different from the h-1-1 model,

infeasible schedules under the 1-m-1 model can be generated

by scheduling the computing segments improperly. Thus, it is

important to take into account the scheduling of computing

segments in the algorithm design.

In this section, we present an exponential-time optimal

algorithm to solve the CRS problem under the 1-m-1 model

based on a novel backtracking strategy. The effectiveness of

the proposed algorithm has been validated through extensive

experimental results (see Section VI).

A. Algorithm Overview

Alg. 2 gives an overview of the CRS algorithm under the

1-m-1 model, which utilizes an iterative two-stage decompo-

sition method. We decompose the CRS problem into two sub-

problems including the computing scheduling sub-problem

and the network scheduling sub-problem. The variables of

the original CRS problem are also divided into a subset

of computing variables and a subset of network variables.

The first-stage sub-problem is solved over the computing

variables. The values of the network variables are determined

in the second-stage sub-problems based on the given first-stage

solution. If the subsequent sub-problem determines that the

previous stage’ decisions lead to infeasible schedules, then

new constraint(s) will be added to the original CRS problem,

which is re-solved until no new constraints can be added.

Failure will be reported if no feasible composite schedule can

be constructed.

Based on the algorithm framework above, it is important to

guarantee that the new constraints added in each iteration will

not jeopardize the schedulability of the original CRS problem.

To tackle this challenge, we design a constraint generator to

modify the timing parameters of the tasks in the interval(s)

with the network resource utilization larger than 100% based

on the iterative two-stage decomposition method.

B. Design details of the CRS algorithm under 1-m-1 model

1) Decomposition Method: We now reformulate the origi-

nal CRS problem as a two-stage scheduling problem.

Computing Scheduling Sub-Problem: Consider a real-time

composite task set T and the hyper-period H. The objective

of the computing scheduling sub-problem is to find a feasible

computing schedule Scom with a length of H if it exists so

that the effective deadlines of all computing segments are met.

Network Scheduling Sub-Problem: Given a real-time com-

posite task set T , the hyper-period H and the computing

schedule Scom, the objective of the computing scheduling sub-

problem is to find a feasible network schedule Snet with a

length of H if it exists so that the network segments can meet

the deadlines obtained based on the start times and finish times

of the computing segments in Scom.

Since each sub-problem above can be taken as a uni-

processor scheduling problem, it is intuitive to design a two-

stage EDF to solve the CRS problem by solving the computing

scheduling sub-problem in the first stage and the network

scheduling sub-problem in the second stage. However, the

two-stage EDF may not find a feasible schedule for the

second-stage problem as it always employs a fixed first-stage

solution. Therefore, we utilize a constraint generator to add

new constraints to the original CRS problem whenever two-

stage EDF finds an infeasible schedule in the second stage.

Algorithm 2: CRS Algorithm (1-m-1 Model)

Input : A real-time composite task set T = {τi}ni=1

Output: A network schedule Snet and a computing schedule
Scom, if exist

1 Compute the hyper-period H and construct the set I of
instances of T

2 while True do
3 Scom = ComputingScheduling(I)
4 if Scom is infeasible then
5 return None
6 end
7 Snet = NetworkScheduling(I,Scom)
8 if Snet is infeasible then
9 if ConstraintGenerator(I) = None then

10 return None
11 end
12 else
13 break
14 end
15 end
16 return Snet, Scom

2) Constraint Generator: we first introduce some defini-

tions and preliminaries to help understand the design of the

constraint generator.

Definition 4. Virtual Release Time/Deadline: Given a set
of real-time composite tasks T = {τ1, τ2, ..., τn}, for each
instance τi,j with the release time ri,j and deadline di,j , the
virtual release time and virtual deadline of the sensing segment
τi,j,s is set to be ri,j,s = ri,j and di,j,s = si,j,c. The virtual
release time and deadline of the actuating segment τi,j,a is set
to be ri,j,a = fi,j,c and di,j,a = di,j , where si,j,c and fi,j,c
are the start time and the finish time of the corresponding
computing segment τi,j,c, respectively. Both si,j,c and fi,j,c
are obtained in the computing scheduling sub-problem.

We say a network segment is virtually included in a time

interval if its virtual release time and virtual deadline are both

included in that interval. That is, a network segment τi,j,net is

virtually included in [t0, t1] if ri,j,net ≥ t0 and di,j,net ≤ t1.

Based on this condition, we define a virtual network demand
over a given interval to be the sum of the execution time of

all the network segments that are virtually included in that

interval. We define the virtual network overload interval and

minimal virtual network overload interval as follows.

Definition 5. Virtual Network Overload Interval (VNOI):
Given a set of network segments and a time interval [t0, t1],
the interval [t0, t1] is a virtual network overload interval if its
virtual network demand is larger than t1 − t0.
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Definition 6. Min. Virtual Network Overload Interval:
Given a VNOI [t0, t1], if there does not exist another VNOI
[t2, t3] satisfying [t2, t3] ⊂ [t0, t1], [t0, t1] is a minimal VNOI.

For a VNOI α = [t0, t1], we use Uα to denote the set of

network segments which are virtually included in α. We use

Aα ⊂ Uα to denote the set of actuating segments in Uα whose

corresponding sensing segments are not virtually included in

α. That is, for any τi,a ∈ Aα, τi,a ∈ Uα and τi,s /∈ Uα.

We use Sα ⊂ Uα to denote the set of sensing segments in

Uα whose corresponding actuating segments are not virtually

included in α. Finally, we use Mα ⊂ Uα to denote the set

of networking segments which contain both the sensing and

actuating segments from the same tasks.

According to the definitions of Uα, Aα, Sα, and Mα, it

holds that Uα = Aα ∪ Sα ∪ Mα. Let Aα,c, Sα,c and Mα,c

denote the sets of corresponding computing segments of the

network segments in Aα, Sα and Mα, respectively. We define

φ(Aα,c), φ(Sα,c), and φ(Mα,c) to be the amount of execution

time of the computing segments in Aα,c, Sα,c, and Mα,c that

are scheduled in the interval [t0 − 1, t1 + 1] in the computing

schedule.

It should be noted that there exists no feasible schedule for

the network scheduling sub-problem when VNOIs are present.

Thus, the constraint generator must eliminate all VNOIs by

adding new constraints to the original CRS problem. In the

following, we first present several important observations and

then show how to eliminate a VNOI by adjusting the timing

parameters of the network segments that are virtually included

in that interval.

Lemma 4. The virtual network demand over a VNOI α =
[t0, t1] is at most t1 − t0 + 2 under the 1-m-1 model.

Proof. Suppose the interval α = [t0, t1] has a total amount of

t1 − t0 + x units of network segments virtually included in

[t0, t1], where x ∈ Z>0. We will prove x ≤ 2 as follows.

Based on Definition 4, the virtual release times of every two

actuating segments are different since the finish times of their

corresponding computing segments cannot be identical in the

computing schedule. Thus, for any two different actuating seg-

ments τi,j,a, τx,y,a ∈ Uα, it holds that |ri,j,a−rx,y,a| ≥ 1. Sim-

ilarly, the virtual deadlines of every two sensing segments are

different since the start times of their corresponding computing

segments cannot be identical in the computing schedule. Thus,

for any two different sensing segments τi,j,s, τx,y,s ∈ Uα, the

condition |di,j,s − dx,y,s| ≥ 1 holds.

For any τi,j,a ∈ Aα, since its corresponding sensing

segment is excluded from Uα, its corresponding computing

segment τi,j,c has the release time ri,j,c ≤ t0 and deadline

di,j,c ≤ t1 − 1. The last unit of τi,j,c is scheduled in

[ri,j,a − 1, ri,j,a] in the computing schedule. Due to that

ri,j,a ∈ [t0, t1 − 1], the last unit of τi,j,c can be scheduled

in [t0 − 1, t1 − 1]. Taking into account all the computing

segments in Aα,c, it holds that |Aα| ≤ φ(Aα,c). Similarly, for

any τx,y,s ∈ Sα, since its corresponding actuating segment

is excluded from Uα, its corresponding computing τx,y,c has

release time rx,y,c > t0 and deadline dx,y,c ≥ t1 + 1. The

first unit of τx,y,c is scheduled in [dx,y,s − 1, dx,y,s] in the

computing schedule. Due to that dx,y,s ∈ [t0 + 1, t1], at

least the first unit of τi,j,c is scheduled in [t0 + 1, t1 + 1].
Considering all the computing segments in Sα, it holds that

|Sα| ≤ φ(Sα,c). For any actuating segment τu,v,a in Mα,

since its corresponding sensing segment and itself are both

in the interval [t0, t1], it holds that ru,v,c ≥ t0 + 1 and

du,v,c ≤ t1−1. So the computing segment τu,v,c is scheduled

within [t0 + 1, t1 − 1]. Since τu,v,c has at least two units of

execution time, it holds that |Mα| ≤ φ(Mα,c). Based on the

above constraints on the timing parameters of the computing

segments, it holds that

|Sα|+ |Aα|+ |Mα| ≤ φ(Sα,c) + φ(Aα,c) + φ(Mα,c) (5)

As the amount of the execution time of the computing

segments scheduled in the interval [t0−1, t1+1] cannot exceed

the length t1 − t0 + 2 of this interval, there is

φ(Sα,c) + φ(Aα,c) + φ(Mα,c) ≤ t1 − t0 + 2 (6)

Combining (5) and (6), it yields that

|Sα|+ |Aα|+ |Mα| ≤ t1 − t0 + 2 (7)

Therefore, we conclude that x ≤ 2 and the virtual network

demand over an interval [t0, t1] is at most t1 − t0 + 2 if the

EDF schedule of the computing segments is feasible.

Lemma 4 gives an upper bound on the virtual network de-

mand over a virtual network overload interval. The number of

overflow network segments in the interval is thus restricted to

2. However, selecting two feasible overflow network segments

from a VNOI is still challenging due to its combinatorial

nature. The following lemma presents an important property

of the minimal VNOI (see Definition 6), which can further

speed up the overflow segment selection from VNOIs.

Lemma 5. The virtual network demand over a minimal VNOI
α = [t0, t1] is at most t1 − t0 + 1 under the 1-m-1 model.

Proof. Due to the page limit, please refer to the full technical

report for the proof [28]

Lemma 5 indicates that only one network segment needs to

be moved out of a minimal VNOI. Based on this observation,

we aim to select a network segment as the overflow segment

and modify its timing parameters to prevent it from being

scheduled in the interval. This procedure is defined as the

elimination procedure. We first identify the precondition for a

network segment to be selected as an overflow segment. That

is, after the modification of the timing parameter(s) of its cor-

responding real-time composite task, the schedulability of the

network scheduling sub-problem and computing scheduling

sub-problem can still be preserved. Based on this precondition,

we design the constraint generator based on a backtracking

strategy to eliminate all VNOIs.

The elimination procedure for a minimal VNOI α = [t0, t1]
is achieved based on a selected candidate segment τi,j,net and

the instance set I . Consider that we select an actuating segment

τi,j,a ∈ Aα. Let D be the set of timing parameters which

include the deadlines of the actuating segments in Aα and t0.

After sorting D in the descending order, we can find d0 ∈
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Algorithm 3: Constraint Generator (1-m-1 Model)

Input : An instance set I0 of real-time tasks
Output: A modified instance set I2 or the initial instance set

I0

1 if the iterative two-stage decomposition method goes to
network scheduling then

2 Construct the set O of minimal VNOIs
3 if O = ∅ then
4 return I0
5 end
6 Get the earliest minimal VNOI α ∈ O
7 for τi,net ∈ Aα ∪ Sα do
8 I1 = Eliminate(I0, α, τi,net)
9 I2 = ConstraintGenerator(I1)

10 if I2 �= None then
11 return I2
12 end
13 end
14 end
15 return None // Algorithm reports a failed case

D, the latest element smaller than d̄i,j,a. We modify deadline

d̄i,j,a to d0 and d̄i,j,c to d0 − 1. This assures that the priority

of τi,j,c improves, thus guaranteeing that their corresponding

actuating segments will not be scheduled in α to make the

interval become virtually overload again. After rescheduling

the computing segments, the minimal VNOI α is eliminated.

On the other hand, if we select a sensing segment τi,j,s ∈
Sα, we obtain the set R of timing parameters including the

release times of the sensing segments in Sα and t1, and sort

them in the ascending order. Let r0 ∈ R be the first element

larger than r̄i,j,s, and we modify r̄i,j,s to r0. The minimal

VNOI can be eliminated by rescheduling the computing seg-

ments and updating the virtual timing parameters.

Note that although any network segment virtually included

in the interval [t0, t1] can be taken as a candidate for the

overflow segment, a candidate is infeasible if modifying its

timing parameter hurts the schedulability of the real-time com-

posite task set. Therefore, we design the constraint generator

to eliminate VNOIs based on a backtracking algorithm.

Alg. 3 shows an overview of the constraint generator. The

key idea is to utilize the backtracking search to eliminate all

VNOIs through the constraint generator, where the input is

the initial set of instances and the output is either a feasible

instance set or reported failure. The constraint generator works

as a recursion tree. The root corresponds to the original prob-

lem of finding a feasible instance set from the given instance

set. Each node in this tree corresponds to a recursive sub-

problem. In particular, when leaves cannot be further extended,

it is either because the network scheduling sub-problem based

on the current instance set finds infeasible schedules, or

because the feasible instance set is found and returned. When

the constraint generator is called, we construct the set O of

minimal VNOIs based on the current instance set. If O is not

empty, then starting with the earliest minimal VNOI in O, we

branch the search based on its overflow candidate segments.

For each candidate segment in the minimal VNOI, we call

its elimination procedure to eliminate the overload interval. If

every candidate segment fails to utilize the constraint generator

to find an instance set which generates no VNOIs in the

two-stage decomposition method, it indicates that the task set

is not schedulable, which returns a None value and reports

failure. The time complexity of the backtracking algorithm

is O(W pN2), where W is the average number of candidate

segments in the minimal overload interval and p is the number

of the overload intervals. When W approaches N , p goes to 1.

On the contrary, when W approaches 1, p goes to N , where

N =
∑n

i=1 H/Ti is the total amount of instances of all the

tasks. Each node takes O(N2) time to identify the intervals.

Theorem 3. If a feasible schedule exists for the real-time
composite task set T under 1-m-1 model, Alg. 2 can find it.

Proof. Due to the page limit, please refer to the full technical

report for the proof [28]

V. CRS PROBLEM UNDER GENERAL MODEL

Based on the studies of the two special cases, we now extend

the CRS problem to its general case, where every real-time

composite task has arbitrary execution time for each segment.

A. Algorithm Overview

We first extend the concepts of effective network over-

load/tight intervals (ENTI/ENOI, see Definition 2) to effective
computing overload/tight intervals.

Definition 7. Effective computing overload/tight interval
(ECOI/ECTI): Given a set of real-time composite tasks and a
time interval [t0, t1], [t0, t1] is an effective computing overload
interval if the effective computing demand over [t0, t1] is larger
than t1 − t0. [t0, t1] is an effective computing tight interval if
the effective computing demand over [t0, t1] is equal to t1−t0.

For the CRS problem in the general case, we first use

EDF to schedule the network and computing segments in

parallel based on their effective deadlines. Suppose EDF fails

scheduling a segment and generates a partial schedule, we

define the provisional timing parameters as follows.

Definition 8. Provisional Release Time/Deadline: For each
instance τi,j with release time ri,j and deadline di,j , the
provisional release time r̂i,j,s and provisional deadline d̂i,j,s
of its sensing segment τi,j,s are r̂i,j,s = ri,j and d̂i,j,s = fi,j,s,
where fi,j,s is the finish time of the sensing segment. The pro-
visional release time r̂i,j,c and provisional deadline d̂i,j,c of its
computing segment τi,j,c are r̂i,j,c = fi,j,s and d̂i,j,c = fi,j,c,
where fi,j,c is the finish time of the computing segment. The
provisional release time r̂i,j,c and provisional deadline d̂i,j,a of
its actuating segment τi,j,a are r̂i,j,a = fi,j,c and d̂i,j,a = di,j .

The provisional timing parameters of each segment are

initialized as its effective timing parameters before EDF is

applied. We say a network/computing segment is provisionally
included in a time interval if its provisional release time

and provisional deadline are both within that interval. Based

on this condition, we define a provisional network/computing
demand over a given interval to be the sum of the execution
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time of all the network/computing segments that are provi-

sionally included in that interval. We define the provisional
network/computing overload interval as follows.

Definition 9. Provisional Network/Computing Overload
Interval (PNOI/PCOI): Given a set of network/computing
segments and a time interval [t0, t1], [t0, t1] is a provisional
network/computing overload interval if its provisional net-
work/computing demand is larger than t1 − t0.

For a PNOI α = [t0, t1], we use Xα to denote the set of

actuating segments provisionally included but not effectively

included in [t0, t1]. Similarly, for a PCOI β = [b0, b1], we

use Cβ to denote the set of computing segments that are

provisionally included but not effectively included in [b0, b1].
Alg. 4 gives an overview of the CRS algorithm under the

general model. It is an iterative two-stage method utilizing

two groups of intervals to modify the timing parameters of

the tasks.
In stage 1, effective network/computing tight intervals

(ENTI/ECTI, see Definition 2 and 7) are used to represent

the intervals that have 100% utilization in computing and

network resources in any feasible schedule, respectively. A

network/computing segment with only one of its effective

release time and effective deadline included in an ENTI/ECTI

must be moved out of that interval. This adjustment provides

better priority for those segments and prevents them from

being scheduled in an ENTI/ECTI. After modifying the timing

parameters, EDF is used to schedule the network and comput-

ing segments in parallel based on their effective deadlines. If

EDF fails to find a feasible schedule, we turn to stage 2.
In stage 2, provisional network/computing overload inter-

vals (PNOI/PCOI, see Definition 9), obtained by EDF schedul-

ing are used to represent the intervals that have the provisional

utilization larger than 100%. This indicates that we need to

move some segments out of a PNOI/PCOI. Among all the

candidate segments in a PNOI/PCOI, we propose a greedy

strategy to select the actuating/computing segment with the

earliest effective release time and move its effective deadline

ahead. This will make its corresponding preceding segment(s),

e.g., the sensing or/and computing segment, finish earlier, and

create more space for scheduling the current segment.

B. Design details of the CRS algorithm under general model
We now present the details of the greedy heuristics.
1) Stage 1: Modification based on effective timing param-

eters: The first stage of the algorithm identifies ECOIs and

ENOIs to decide the schedulability of the task set. It then

utilizes ENTIs and ECTIs to adjust the tasks according to the

following procedure.
Consider an ENTI α = [t0, t1], for any sensing/actuating

segment τi,j,s/τi,j,a, we introduce Rule 1a and Rule 1b to

modify its timing parameters, respectively.

• Rule 1a: if τi,j,s is not effectively included in α but has

its effective release time r̄i,j,s included in α, we modify

r̄i,j,s to t1 and the effective release times of its computing

and actuating segments are adjusted to t1+Ci,s and t1+
Ci,s + Ci,c, respectively.

Algorithm 4: CRS Algorithm (General Model)

Input : A real-time composite task set T = {τi}ni=1

Output: A network schedule Snet and a computing schedule
Scom, if exist

1 Compute the hyper-period H and construct the set I of
instances of T

2 while True do
// Stage-1

3 if an ENOI/ECOI is identified then
4 return None // reports a failed case
5 end
6 if an identified ENTI/ECTI triggers the modification on

timing parameters (Rule 1(a-b) and Rule 2(a-b)) then
7 continue
8 end

// Stage-2
9 Run EDF to schedule the network and computing

segments in parallel based on their effective deadlines
to construct Snet and Scom. EDF terminates if any
segment misses the deadline. The provisional timing
parameters are updated

10 if the earliest PCOI β = [b0, b1] is located then
11 if Cβ has no feasible candidate segment then
12 return None
13 end
14 Modify the candidate segment in Cβ with earliest

effective release time (Rule 3(a-b))
15 continue
16 end
17 if the earliest PNOI α = [t0, t1] is located then
18 if Xα has no feasible candidate segment then
19 return None
20 end
21 Modify the actuating segment in Xα with earliest

effective release time (Rule 4(a-b))
22 continue
23 end
24 break
25 end
26 return Snet, Scom

• Rule 1b: if τi,j,a is not effectively included in α but has its

effective deadline d̄i,j,a included in α, we modify d̄i,j,a
to t0 and the effective deadlines of its computing and

sensing segments are adjusted to t0−Ci,a and t0−Ci,a−
Ci,c, respectively.

Similarly, for any ECTI α = [t0, t1], we introduce Rule 2a

and Rule 2b to modify the timing parameters of a computing

segment τi,j,c:

• Rule 2a: if τi,j,c is not effectively included in α but has

its effective release time r̄i,j,c included in α, we modify

r̄i,j,c to t1 and the release time of its actuating segment

is adjusted to t1 + Ci,c.

• Rule 2b: if τi,j,c is not effectively included in α but has

its effective deadline d̄i,j,c included in α, we modify d̄i,j,c
to t0 and the effective deadline of its sensing segment is

adjusted to t0 − Ci,c.

To thoroughly check all the identified ECTIs and ENTIs and

the newly generated ones due to the ongoing modifications,

whenever a modification is made, we check again on all the

ECTIs and ENTIs based on the modified task set until no more
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modifications is needed. In the meanwhile, we utilize ECOIs

and ENOIs as the necessary conditions to decide the feasibility

of the task set. If any ECOI or ENOI is found, the task set is

unschedulable.

2) Stage 2: Modification based on provisional timing pa-
rameters: After stage 1, we use EDF to schedule the segments

based on their effective deadlines. If EDF fails to construct a

feasible schedule, the algorithm moves to the second stage to

deal with PCOIs and PNOIs by employing greedy strategy

that always modifies the candidate segment with the earliest

effective release time.

Consider the first case that we locate the earliest PCOI β =
[b0, b1], where the provisional demand is Dβ and the extra

provisional demand satisfies Dβ,extra = Dβ − b1 + b0. Let

Cβ denote the set of computing segments included in β. We

sort them by their effective release times in ascending order.

When traversing Cβ , for a candidate computing segment τi,j,c,

if there exists a set of computing segments Cβ,1 ⊂ Cβ that have

their effective deadlines smaller than d̄i,j,c, we introduce Rule

3a to modify τi,j,c; if Cβ,1 does not exist, we introduce Rule

3b to modify τi,j,c. If the modification generates no further

ECOIs or ENOIs, we accept this modification and use EDF

to schedule the segments again.

• Rule 3a: we modify the effective deadline d̄i,j,c of τi,j,c
to the effective deadline d̄x,y,c of another computing

segment τx,y,c in Cβ,1. d̄x,y,c is the latest one among all

the computing segments in Cβ,1.

• Rule 3b: if Dβ,extra ≥ Ci,c, we modify d̄i,j,c to b0. If

Dβ,extra < Ci,c, we modify d̄i,j,c to b0+Ci,c−Dβ,extra.

We further consider the second case where the earliest PNOI

α = [t0, t1] is found. Its provisional demand is Dα and

the extra provisional demand is Dα,extra = Dα − t1 + t0.

After sorting the set of actuating segments in Xα by their

effective release times in ascending order, we traverse Xα.

For a candidate actuating segment τi,j,a, if there exists a set

of actuating segments Xα,1 ⊂ Xα that have their effective

deadlines smaller than d̄i,j,a, we introduce Rule 4a to modify

τi,j,a; if Xα,1 does not exist, we introduce Rule 4b to modify

τi,j,a.

• Rule 4a: we modify the effective deadline d̄i,j,a to the

effective deadline of another actuating segment τx,y,a in

the set Xα,1 which has the latest effective deadline.

• Rule 4b: if Dα,extra ≥ Ci,a, we modify d̄i,j,a to t0. If

Dα,extra < Ci,a, we modify d̄i,j,a to t0+Ci,a−Dα,extra.

Modifying the effective deadline of the actuating segment

will change the effective deadlines of its corresponding com-

puting and sensing segments. If the modification of a candidate

actuating segment incurs no ECOIs or EVOIs, the modification

is accepted. If there exists no feasible candidate segment, the

algorithm returns failure.

The key design principle of the above greedy heuristics

is based on the observation that a segment with an earlier

effective release time is usually preempted by the segments

with later effective release times. The proposed adjustment

improves the priority of the current candidate segment. In

addition, since the effective release time of its preceding seg-

ment(s) is also modified, it makes more space for scheduling

the current candidate segment. The segment with the earliest

effective release time is preempted by the largest amount of

other segments, thus the modification enables the effective

adjustment of the priority to the utmost. This modification

procedure repeats until EDF finds feasible schedules. Each

segment can be modified at most O(N) time and there are

at most O(N) number of segments. Since for each round

of modification, identifying the overload/tight intervals takes

O(N2) time, the overall time complexity of Alg. 4 is O(N4),
where N =

∑n
i=1 H/Ti is the total amount of instances of all

the tasks.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithms for solving the CRS problem under the h-1-1,

1-m-1, and the general model. The proposed CRS algorithms

are compared with the baseline algorithms, including both

EDF and least laxity first (LLF). For EDF, we use two

ready queues to separately store the network and computing

segments. A segment is popped out from the queue if its corre-

sponding task has the earliest deadline. A segment is released

and pushed into the ready queue when its preceding segment

is finished. Similarly, LLF also uses two ready queues. In each

queue, the priority of the segments is defined as the laxity of

the tasks, i.e. the task deadline minus the remaining execution

time. We use NEC to denote the number of task set satisfying

the necessary condition of finding a feasible schedule, which

is the upper bound of the feasible cases under the general

model. We search ECOI and ENOI for each trial of task set.

If any ECOI or ENOI is identified, the trial will be recorded

as an infeasible case and will not be counted in NEC.

A. Experimental Setup

To efficiently obtain the feasible solution of constraint

programming, we employ an efficient satisfiability modulo the-

ories (SMT) solver Z3. All the algorithms including SMT are

implemented in Python and computed in a CPU cluster node

with Xeon E5-2690 v3 2.6 GHz CPU. To perform an extensive

comparison, we generate 1000 trials under each parameter

setting. Each trial contains a task set T = {τ1, τ2, ..., τn},

where n ∈ [1, 50]. The task periods are randomly set in

[10, 10000]. For the task set generated under the h-1-1 model,

since its network resource utilization is much larger than the

computing resource utilization, we vary the network resource

utilization to assess the impact. Similarly, we vary the com-

puting resource utilization of the task set generated under

the 1-m-1 model. For the task set under the general model,

we use the normalized resource utilization to represent the

resource utilization of a task, where the normalized utilization

is calculated as (Ci,s +Ci,c +Ci,a)/2Ti (we use 2Ti because

there are two resources, CPU and network bandwidth). Given

the utilization of a task set, we generate the utilization of all

the tasks using the UUniSort algorithm [29]. For the general

model, we randomly split the total execution time into the

sensing, computing, and actuating segments.
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B. Evaluation Results

In the first set of experiments, we compare the performance

of the proposed solutions with the baseline methods for the

general model, h-1-1 model, and 1-m-1 model by varying

the resource utilization of the task set. Fig. 3a shows the

percentage of feasible cases obtained by CRS, EDF, and

LLF under the general model when the normalized resource

utilization is varied. One can observe that as the normalized

resource utilization increases from 0.2 to 0.9, the percentage

of feasible cases that NEC, CRS, EDF, and LLF can achieve

gradually decrease from 96.6%, 96.2%, 94.7%, and 93.2%
to 1.3%, 0.3%, 0.1%, and 0.1%, respectively. Fig. 3a also

shows that the performance of the proposal heuristic solution

is close to the upper bound (the difference increases from 0.4%

to 7% when the utilization is increased from 0.2 to 0.9), and

outperforms those of EDF and LLF significantly. For example,

it reports more than 10% and 7% feasible cases than EDF and

LLF, respectively, when the utilization is set at 0.6.

The performance of the algorithms under h-1-1 model is

shown in Fig. 3b. It is observed that the percentage of feasible

cases that CRS, EDF, and LLF can achieve gradually decrease

from 97.3%, 96.8%, and 91.0% to 10.9%, 8.4%, and 7.8%,

respectively. Our method outperforms EDF and LLF when

the utilization is high. For example, it reports 4.5% and 12%
more feasible cases than EDF and LLF, respectively, when

the utilization is set at 0.7. We also evaluate the performance

of the proposed algorithm by varying the computing resource

utilization of the task set under 1-m-1 model. Fig. 3c reports

the percentage of feasible schedules obtained by CRS, EDF,

and LLF, which decrease from 97.5%, 97.5%, and 89.9% to

20.0%, 18.6%, and 15.6%, respectively. CRS shows slightly

better performance than EDF due to a small number of cases

that identify the virtual network overload intervals. Note that

we don’t show the upper bound (NEC) for h-1-1 model and

1-m-1 model because the proposed method is optimal.

In the second set of experiments, we further evaluate the

performance of the SMT method for the general model. The

results are shown in Table II. In the experiments, we generate

1000 cases for the evaluation. Since SMT may take a long time

to obtain a solution in some corner cases, we set the longest

task period to 1000s in each case and the average number of

jobs is 100 for the 1000 cases. We also set a time limit of 2
hours for running SMT. When the time limit is reached, SMT

terminates and that trial will be recorded as an unsolved case.

From Table II, it is observed that the average running time

of SMT for the solved cases is 1940s and the percentage of

solved cases of SMT is only 15.1%. Compared with SMT, our

method can finish a trial in 74 milliseconds on average and

can solve all the 1000 cases.

In the last set of experiments, we evaluate the running time

of the algorithms by increasing the number of jobs from 100

to 10000. The comparison results are shown in Fig. 4. It can

be observed that the average running time of all the algorithms

increase along with the increase of the number of jobs. For all

the models, the running time of CRS are under 20s when the

number of jobs are less than 2000. When the number of jobs

(a) General model

(b) h-1-1 model

(c) 1-m-1 model

Fig. 3: Percentage of feasible cases versus utilization under different models

TABLE II: Performance comparison with SMT

Average running time Percentage of terminated
Unsolved Solved cases due to time limit

SMT >2h 1940s 84.9%
CRS N/A 0.074s 0%
EDF N/A 0.008s 0%
LLF N/A 0.008s 0%

reaches 10,000, the running time of CRS is under 500s, which

is acceptable compared with the running time of EDF and LLF

methods. SMT terminates due to the time limit (7200s) when

the number of jobs are larger than 1000. Note in Fig. 4, we

only show the running time of the feasible cases for CRS,

EDF, and LLF. For the infeasible cases, the average running

time is under 10s.

VII. RELATED WORK

Most real-time networks adopt Time Division Multiple Ac-

cess (TDMA) based data link layers to guarantee deterministic

real-time communications. Sensing and actuating tasks are

abstracted as end-to-end flows with specified timing require-

ments. The existing real-time network scheduling algorithm
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(a) General model

(b) h-1-1 model (c) 1-m-1 model

Fig. 4: Comparison of running time with different number of jobs

designs focus on schedulability analysis and management of

the network packet scheduling (e.g., [8], [30]–[34]). Those

solutions may fit well for NCSs when the transmission time is

large and the computation time of the controller is negligible.

However, with the rapid development of real-time network

such as RT-WiFi [35], which supports a minimal time slot

of 0.1 milliseconds, the transmission time of the network

segment becomes comparable to the computation time of

controller [20]. In addition, due to an increasing number of

industrial applications having complex online optimization

algorithms designed for the controllers, the computation time

can no longer be ignored [15], [17]. In this paper we propose

a three-segment execution model for scheduling composite

network and CPU resources in NCSs. To provide more flex-

ibility, both network segments and computing segments are

considered to be preemptive.

The existing related three-segment execution models include

self-suspension model, PRedictable Execution Model (PREM)

and Acquisition-Execution-Restitution (AER) model. The self-

suspension model is composed of two computation segments

separated by one suspension interval, which focuses on one

resource type [36]. PREM and AER are designed for multi-

core CPU system. PREM enables parallelism by dividing tasks

in communication/computation phases [22]. The read phase

reads data from the main memory, the computation phase can

proceed the execution, and the write phase writes the resulting

data back to the main memory. Since PREM increases the

predictability of an application by isolating memory accesses,

it is widely used [37]–[40]. However, the PREM model usually

couples the write phase of a task with the next activated read

phase on the same core [39], [41]. By contrast, AER from [24]

allows more freedom to schedule the read and write phases,

which is further implemented on a scratchpad memory (SPM)

based single-core [39]. Hiding the communication latency

when scheduling a task graph on a multi-core based on the

AER model is discussed in [42], [43]. Other research works

based on the AER model studies how to improve the schedula-

bility of latency-sensitive tasks, manage the memory on COTS

multiprocessor platforms, and increase system determinism

by reducing task switching overhead, and the global static

scheduling of non-preemptive tasks [44]–[47]. As those recent

works above focus on scheduling for multi-core CPU systems,

the communication phases are reasonably considered to be

non-preemptive, while the network scheduling in our CRS

model employs the preemptive segments to provide better

parallelism.
For the existing related works on end-to-end scheduling in

NCSs, utilizing the system state of control systems to design

the scheduler is an important methodology to optimize QoS.

Based on the system state, the scheduling and feedback co-

design for NCSs is introduced in [48], [49], which computes

the deadline for the real-time tasks. However, the network

scheduling is not guaranteed to be real-time because of the

CAN protocol considered in the model. The work in [50]

studies how to integrate security guarantees with end-to-

end timeliness requirements for control tasks in resource-

constrained NCSs. The proposed sensing-control-actuation

model is similar to our CRS model, but the sensing, computing

and actuating segments in the proposed model have designed

release times and deadlines. This is not general as the CRS

model which only has a task deadline. Other related network

and computing co-scheduling works include the co-generation

of static network and task schedules for distributed systems

which only focuses on the SMT solver [51], and the feasible

time-triggered schedule configuration for control applications,

which aims at minimizing the control performance degradation

of the applications [52].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we study the composite resource schedul-

ing problem in networked control systems (NCSs). A new

composite resource scheduling (CRS) model is introduced

to describe the sensing, computing, and actuating segments

in NCSs. We formulate the composite resource scheduling

problem in constraint programming and prove it to be NP-

hard in the strong sense. Two special models and the general

model are studied. For the CRS problem under the h-1-1
model, we present an optimal algorithm that utilizes the

intervals of network resource utilization of 100% to prune

the search space to find the solution. For the CRS problem

under the 1-m-1 model, we propose an optimal algorithm that

exploits a novel backtracking strategy to adjust the timing

parameters of the tasks so that there exist no intervals of

network resource utilization larger than 100% obtained in

the two-stage decomposition method. For the general case,

we propose a heuristic solution to find the feasible schedule

based on the greedy strategy of modifying the segments in the

interval of either network resource utilization or computing

resource utilization larger than 100%.
As the future work, the proposed algorithms will be imple-

mented on our NCS testbed to evaluate their effectiveness and

practicability in real-life systems.
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