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Abstract—Real-time end-to-end task scheduling in networked
control systems (NCSs) requires the joint consideration of both
network and computing resources to guarantee the desired
quality of service (QoS). This paper introduces a new model
for composite resource scheduling (CRS) in real-time networked
control systems, which considers a strict execution order of
sensing, computing, and actuating segments based on the control
loop of the target NCS. We prove that the general CRS problem
is NP-hard and study two special cases of the CRS problem.
The first case restricts the computing and actuating segments
to have unit-size execution time while the second case assumes
that both sensing and actuating segments have unit-size execution
time. We propose an optimal algorithm to solve the first case by
checking the intervals with 100% network resource utilization
and modify the deadlines of the tasks within those intervals
to prune the search. For the second case, we propose another
optimal algorithm based on a novel backtracking strategy to
check the time intervals with the network resource utilization
larger than 100% and modify the timing parameters of tasks
based on these intervals. For the general case, we design a
greedy strategy to modify the timing parameters of both network
segments and computing segments within the time intervals
that have network and computing resource utilization larger
than 100%, respectively. The correctness and effectiveness of the
proposed algorithms are verified through extensive experiments.

I. INTRODUCTION

Networked control systems (NCSs) are fundamental to
many mission- and safety-critical applications that must work
under real-time constraints to ensure timely collection of
sensor data and on-time delivery of control decisions. The
Quality of Service (QoS) offered by a NCS is thus often
measured by how well it satisfies the end-to-end deadlines
of the real-time tasks executed in NCSs [1]-[5].

A typical real-time task in NCSs involves both computing
component(s) for executing the control algorithms on the
controller and communication component(s) for exchanging
sensor data and control signals between sensors/actuators and
the controller. Traditional approaches to scheduling those tasks
consider CPU and network resource scheduling separately.
They either make an oversimplified assumption that the ex-
ecution time of the control algorithm is negligible or consider
it as constant. For example, extensive work has been reported
in recent years on sensing and control task scheduling in real-
time industrial networks [6]-[14]. Most of those work, how-
ever only focused on modeling the constraints of transmission
conflicts but paid less attention to the computation time of

S$The first two authors are the corresponding authors.

{peng.wu, tianyu.wang, song.han}@uconn.edu

chenchen_fu@seu.edu.cn
{minming.li, jasonxue} @cityu.edu.hk

zhaoyingchao @ gmail.com

the control algorithms when enforcing the end-to-end dead-
lines. Those approaches thus either cannot handle complex
NCS applications which require the implementation of time-
consuming control algorithms such as model predictive control
using online optimization, data-driven system identification,
and online learning control [15]-[19], or will lead to unneces-
sarily low utilization of the computing and network resources
due to the lack of efficient methods to schedule those resources
in a joint fashion. Take the F1/10 autonomous car system as
an example that aims to race in a rectangular track while
avoiding any obstacles [20]. The communication component
on the system for exchanging sensing/actuating information
has a worst-case execution time of 0.3 milliseconds; while the
PID controller for steering control and the vision controller
for identifying corners have worst-case execution times of 0.4
and 50 milliseconds, respectively. These comparable execution
times of both networking and computing tasks motivate us to
introduce a new task model, namely the Composite Resource
Scheduling (CRS) model, for jointly scheduling network and
computing resources in NCSs. In CRS, each real-time compos-
ite task consists of three consecutive and dependent segments:
a sensing segment to transmit sensor data to the controller,
a computing segment to compute the control decisions, and
an actuating segment to transmit the control signals to the
actuators. The sensing/actuating segments together are called
network segments. They share the same network resource
while the computing segments compete for the computing
resource on the controller.

Similar models in the literature include PRedictable Exe-
cution Model (PREM) [21]-[23] and Acquisition Execution
Restitution (AER) model [24]. These two models, however
are specifically designed to schedule resources in multi-core
systems with shared memory where the communication phases
including memory read and write are considered as non-
preemptive, which is reasonable for the design of multi-core
systems. By contrast, the network segments of the CRS model
for NCSs are designed to be preemptive to meet the flexibility
of the network scheduling. This provides better parallelism
when scheduling sensing/actuating segments and computing
segments from different tasks.

Our work attempts to tackle the composite resource schedul-
ing problem in NCSs, which aims to optimize the usage of
network and computing resources in NCSs under the end-to-
end deadline constraints. Based on the proposed CRS model,
we provide a comprehensive analysis on the complexity of
the problem, and prove that the general CRS problem is
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NP-hard in the strong sense. We thus in this paper study
two special cases of the CRS problem and present a greedy
heuristic for the general cases as well, focusing on the
design of the corresponding algorithms to construct feasible
composite schedules. We start with the first case where both
the computing segment and actuating segment have unit-size
execution time. In this case, an optimal scheduling algorithm
is proposed. The algorithm first modifies the deadlines of
the CRS task set based on the intervals with 100% network
resource utilization and then applies the Earliest Deadline
First (EDF) scheduling algorithm to schedule the sensing
and actuating segments together according to the modified
deadlines. For the second case where the execution time of
both sensing and actuating segments are unit-size, and the
execution time of the computing segment can be an arbitrary
integer larger than one, we design another optimal scheduling
algorithm which schedules the computing segments in the
first stage and the sensing and actuating segments in the
second stage. If the scheduling fails in the second stage, the
algorithm rolls back to the initial stage based on a novel
backtracking search strategy by adding new constraints to
the original problem recursively, and eventually lead to a
feasible composite schedule if it exists. For the general case,
we propose a heuristic solution with a roll-back mechanism.
EDF is first employed to schedule the segments. If EDF fails
to find a feasible schedule, we locate the intervals with either
network resource or computing resource utilization larger than
100% and modify the deadline of the segment included in the
located interval with the earliest release time. We iteratively
run EDF and modify the timing parameters until we find a
feasible schedule. The effectiveness of the proposed algorithms
has been validated through extensive experiments. Our results
show that the proposed scheduling algorithms outperform the
baseline algorithms in terms of schedulability.

The remainder of this paper is organized as follows: Sec-
tion II presents the task model and the formulation of the
general CRS problem and its two special cases. Section III
and Section V develop the optimal scheduling algorithms for
the first and second cases, respectively. Section V introduces a
heuristic scheduling algorithm for the general case. Section VI
presents the experimental results. Section VII gives a summary
of the related works. Section VIII concludes the paper and
discusses the future work.

II. TASK MODEL AND PROBLEM FORMULATION

In this section, we introduce the CRS model and present
the constraint programming formulation of the composite
resource scheduling problem. Based on different settings on
the execution time of the network/computing segments, we
introduce three CRS models.

A. Task Model

Consider a NCS configured in a star topology. The sensors
and actuators form the leaf nodes while the controller runs on
the root (Gateway). To ensure efficient and safe operation of
the control system, the transmissions of sensor data/control
signals and the execution of the control algorithm should
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Fig. 1: An overview of the real-time composite task model

follow a strict order and meet the designated end-to-end
timing requirement. In a typical real-time composite task in
NCSs, one or multiple sensors send their measurements to
the controller first. The controller then computes the control
signals and delivers them to one or multiple actuators. In
practice, while the CPU is waiting for the sensing data, it
can be set to idle. Once the transmission of sensing data is
finished, an interrupt notifies the CPU to obtain the data stored
in a specified shared memory. This decouples the computation
from sensing and actuating so that the transmissions of sensing
data and control signals share the network resource while
the executions of the control algorithms only compete for
the CPU resource. In our CRS model, we consider multiple-
input multiple-output (MIMO) control systems, which have
multiple sensors as the input and multiple actuators as the
output. As shown in Fig. 1, each real-time composite task
7i = (13, D;, Ci 5,Ci ¢, Ciq) is associated with a period T;
and a relative deadline D;. It consists of three consecutive
and dependent segments:
« Sensing segment: it utilizes the network resource and has
the transmission time of C; ;
« Computing segment: it utilizes the CPU resource and has
the execution time of C; .;
o Actuating segment: it utilizes the network resource and
has the transmission time of Cj ,.
In this paper, we consider a time-slotted system for network.
A network segment consists of multiple fragments where each
fragment takes exactly one time slot in the super-frame to
transmit. We define the execution times C; s and C; , of the
sensing and actuating segments to be the sum of the network
transmission times of all sensors and actuators connected to
a control task, and that their activation frequency is equal
to the one of the task. We assume that (1) the unit sizes
of the network and computing resources are the same; (2)
the network is single-channel and the CPU is a preemptive
uniprocessor; (3) the task system is a synchronous system; and
(4) the release time, deadline and execution time are integers.

B. Problem Formulation

Based on the above task model, we now present the formal
definition of the composite resource scheduling problem and
give its constraint programming formulation.

Composite Resource Scheduling (CRS) Problem: Consider
a set of real-time composite tasks {71, 72, ..., 7} with 7;
(T3, Dy, C; 5, Cs ¢, C; o) and the hyper-period # obtained by
computing the least common multiple of the periods. The
objective of the CRS problem is to find a feasible composite
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schedule with a length of # if it exists so that the deadlines
of all the real-time composite tasks are met.

We first formulate the CRS problem as a constraint pro-
gramming problem. It aims to construct the feasible sched-
ules Spet = {fij,s.ks fi,j,ak} for the network segments and
Scom = {fijer} for the computing segments, where f; ; s k.
fijieks and f; ;o are the finish times of the kM unit of
sensing/computing/actuating segments of the j" instance of
the task 7;, respectively. The j instance of task 7;, denoted
as 7;j, has a release time r;; and a deadline r;; + D;.
The construction of the feasible schedules is subject to the
following constraints:

Release time and deadline constraints:

figsg =rij+1

Y]
Jiga,Cia STij+ Di
Segment order constraints:
figen 2 figsci, +1
figal = fijeci.+1
figshk+1 > fizon+1, VEE€ZN[1,Cis—1 (2)
figeg+1 = fijerw+1, VE€ZN[1,Cic — 1]
fijak+1 = fijar+1, VYEeZN[l,Ciq—1]
Network resource constraints:
Vi #£ z, Vax,y € {a,s}
VpeZnl,Cigl, YqgeZnN[1,C.,) 3)
fulp < fz,j,y,q -1 OR flJLP z fz,j,y,q +1
Computing resource constraints:
Vi#z, VpeZn[l,Ci.), VYgeZn[l,C, @

fi,j,c,p < fz,j,c,q -1 OR fi,j,c,p > fz,j,c,q +1

Constraint (1) requires that the first unit of the sensing seg-
ment and the last unit of the actuating segment of any task 7;
are constrained by 7;’s release time and deadline, respectively.
Constraint (2) defines the constraints for the sequential order
for each unit of sensing, computing, and actuating segments.
One can easily derive the earliest possible release time and the
latest possible deadline for each segment based on Constraints
(1) and (2). Constraints (3) and (4) define the constraints
for different composite tasks to compete for the network and
computing resources, where the OR operator in the constraints
can be modeled by using the big M method [25]. Note that
the above formulation employing the time-indexed model [26]
is computationally efficient since the problem studied in the
paper is a preemptive flow shop scheduling problem.

TABLE I: Problems and solutions under different CRS models.

Task Model Complexity or Solution
h-1-1 Exponential-time solvable (Alg. 1)
1-m-1 Exponential-time solvable (Alg. 2)
hi-ha-hs NP-hard and solved by heuristics (Alg. 4)

To study the CRS problem comprehensively, we consider
three cases of the CRS model based on the size of the
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Fig. 2: An instance of the composite schedule

execution time of each segment. These cases are summarized
in Table I. The first case is the h-1-1 model where C; . =
Cio =1and C; s = h (h > 0) for each segment of a task.
The second case uses the 1-m-1 model with C; s = C; o =1
and C;. = m (m > 1). The third case is the general
model hq-ho-hz with C; ¢ = hy, C; . = ho, and C; , = h3
(h1,ha,hg > 0). These three cases represent three types of
application scenarios in the real life. While h — 1 — 1 refers
to the task which has a longer sensing segment, 1 —m — 1
represents the task which has a longer computing segment, and
hi-ha-hs represents the general applications. The following
theorem shows that the CRS problem under the general model
is NP-hard in the strong sense.

Theorem 1. The CRS problem under the general model is
NP-hard in the strong sense.

Proof. We reduce 3-Partition to the CRS problem. An instance
of 3-Partition consists of a list A = (1, 2, ..., T3, ) of positive
integers such that Y z; = nB, % <z < % for each 1 <
i < 3n, there exists a partition of A into A;, As,...,A,, such
that Zl‘zEAk x; = B foreach 1 < k <n [27].

Given an instance A (z1,29,...,x3,) of 3-Partition,
we construct an instance of the CRS problem as follows.
As shown in Fig. 2, there will be 3n + 1 tasks. The first
3n tasks are partition tasks. For each 1 < i < 3n, the
task 7; satisfies that C; o = 2ux;, Ci . = 2uz;, Ciq = 1,
D; = (4n + H)puB + 3n, and T; 4uB, where B is
the sum of each partition and p [32]. The last task
is divider task which satisfies that T; = D; = 4uB ,
Cis = uB, C; . =2uB, and C; , = uB. The n + 1 divider
tasks divide the timeline of [uB, (4n + 3)uB] into n + 1
intervals of full computing resource utilization interleaved
with n intervals of full network resource utilization, where
the partition tasks are scheduled. The length of each of these
intervals is exactly 2p4B. The sensing segments of the partition
tasks from the same partition must be scheduled in a length
2uB of the interval [(2j — 1)uB, (25 + 1)uB] so that their
corresponding computing segments can anticipate releasing
exactly at or before (2j+ 1)uB and fully utilizing the interval
[(27 + 1)uB, (2§ + 3)uB], where 1 < j < n. Thus, it is easy
to see that there is a feasible schedule of the CRS problem if
and only if there exists a 3-Partition. It is clear that the above
reduction is polynomial. We thus have proved that the CRS
problem is NP-hard in the strong sense. O

We first exploit the earliest possible release time and the lat-
est possible deadline to define the effective timing parameters
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of the network and computing segments.

Definition 1. Effective Release Time/Deadline: Given an
instance of real-time composite task T; ; with the release time
;.5 and deadline d; j, the effective release time/deadline of its
sensing segment 7; ; s are defined as T; j s = 1; j and c_ii,j;,s =
dij — Ciq — Cic. The effective release time/deadline of its
computing segment T; ; . are defined as 7; j . = r; j+C; s and
c_li,jﬁc = d; j — Cj.q. The effective release time/deadline of its
actuating segment T; , are defined as 7; j o = 1 ;+C; s +Cj ¢
and di,j,a = dl’]

We say a network segment is effectively included in a time
interval if its effective release time and effective deadline are
within that interval. For instance, a network segment 7; ; net
is effectively included in [to, t1] if 7i j et > to and d; jnet <
t1. Based on this condition, we define an effective network
demand over a given interval to be the sum of the execution
time of all network segments that are effectively included in
that interval. We define the effective network overload interval
and effective network tight interval as follows.

Definition 2. Effective Network Overload/Tight Interval
(ENOVENTI): Given a set of real-time composite tasks and
a time interval [to,t1], [to,t1] is an effective network overload
interval if the effective network demand over [tg,t1] is larger
than t1 —to. [to, 1] is an effective network tight interval if the
effective network demand over [to,t1] is equal to t1 — to.

Since the CRS problem under the general model is NP-
hard, in the following we first focus on the design of exact
algorithms for the first two simple models and then present an
effective heuristic solution for the general model.

III. CRS PROBLEM UNDER H-1-1 MODEL

The h-1-1 model represents a wide range of NCSs which
need to transport a large amount of sensing data while the
required computing and actuation time are short. In the fol-
lowing, after giving several important observations, we present
an exact optimal algorithm to solve it.

Based on the effective timing parameters, we employ EDF
to schedule the real-time composite tasks in the following
fashion. We utilize a network ready queue and a comput-
ing ready queue for scheduling the network segments and
computing segments, respectively. Once a sensing segment
Tij,s is finished at f;;,, its computing segment 7; ;. is
released at f; ; 5. Similarly, if a computing segment 7; ;.
is finished at f; ; ., its actuating segment 7; ;. is released
at fj j.. The actuating segments will be scheduled together
with all other network segments (including both sensing and
actuating segments from other task instances) using EDF. The
effective deadlines of the sensing and actuating segments are
used to decide their priorities. Ties are broken by scheduling
the sensing segments first. For the same type of segments, ties
are broken by scheduling the segment with the least laxity.

Lemma 1. Given a real-time composite task set T under the
h-1-1 model, if EDF can find a feasible network schedule for
the sensing segments based on their effective deadlines, it can

165

also find a feasible computing schedule based on the effective
deadlines of their computing segments.

It is straightforward to prove the correctness of Lemma 1.
As the finish times of the sensing segments are different, the
release times of their corresponding computing segments are
different as well. Given that each computing segment takes
unit-size execution time, we can always schedule the comput-
ing segments immediately after the completion of its corre-
sponding sensing segments. Lemma 1 indicates that scheduling
the sensing segments does not interfere with scheduling the
computing segments. However, it is hard to guarantee that
EDF can also construct a feasible schedule for the actuating
segments as they compete for the network resource with the
sensing segments. Therefore, in the following we focus on
adapting EDF to schedule the sensing and actuating segments.

The following lemma gives a necessary condition to de-
termine the schedulability of the real-time composite task set
under the h-1-1 model.

Lemma 2. Given a real-time composite task set T under
the h-1-1 model, if there exists an effective network overload
interval (ENOI), the task set is unschedulable.

Proof. Due to the page limit, please refer to the full technical
report for the proof [28] O

An effective network tight interval (ENTI) indicates that
this interval has a 100% network resource utilization in any
feasible schedule. Thus, it is important to utilize the ENTIs to
modify the deadline of the tasks whose deadlines are within
the interval but their actuating segments are not effectively
included in the interval. The following definition and lemma
show that EDF can find the feasible schedule if there exists
one after applying the ENTIs to modify the task deadlines.

Definition 3. Continuous Interval: Given a real-time com-
posite task set T under the h-1-1 model, suppose T, j net is the
first network segment scheduled by EDF to miss its deadline
C_lz,j,net and by is the start time of a network segment in the
schedule, we define [by, Ez,jmet] to be a continuous interval if
it is fully utilized by the network segments and there exists no
network segment scheduled in the interval [bg — 1,bo] or the
network segment scheduled in [bo — 1,bo] has a deadline later

than d j net.

Lemma 3. Given a schedulable real-time composite task set T
under the h-1-1 model, if EDF fails to find a feasible network
schedule, then there exists exactly one actuating segment
scheduled in a continuous interval but not effectively included
in that interval, and the continuous interval is an ENTI.

Proof. Based on proof by contradiction, we assume that one
of the following cases holds.

Case 1: the network segments scheduled in the continuous
interval are all effectively included in that interval.

Case 2: there exists exactly one sensing segment scheduled
in the continuous interval but not effectively included in it.
Case 3: there exist at least two network segments scheduled
in the continuous interval but not effectively included in it.
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Suppose that EDF generates the network schedule Spet.
Consider that EDF fails to find a feasible network schedule.
Let 7;net be the first network segment scheduled by EDF
that misses its deadline (_izyj,net. There exists the continuous
interval [bg,d. jnet] Which is fully utilized by the network
segments. There exists no network segment scheduled in the
interval [by — 1, bo] or the network segment scheduled in it has
a deadline later than Elz,j_,net.

If case 1 holds, all the network segments scheduled in

[bo, d- jnet] are effectively included in the interval, with the
network segment 7 j e considered, the interval [bg, d j net)
is an ENOI, which is a contradiction to that 7 is schedulable
according to Lemma 2.

If case 2 holds, since there exists exactly one sensing
segment scheduled in the continuous interval but not effec-
tively included in the interval, this sensing segment should be
scheduled in [by — 1, by] according to EDF. This contradicts to
the definition of continuous interval.

If case 3 holds, there exist at least two network segments
whose corresponding effective release times are smaller than
by among the network segments scheduled in [bo, ds j net]-
If at least one of the two network segments is a sensing
segment, the interval [by — 1,by] must be utilized by this
sensing segment, which is a contradiction. Therefore, we
consider the case that both of them are actuating segments.
Let 7 2.« and 74, o be the two actuating segments satisfiying
Tk,z,a>Tgy,a < Do. For their corresponding sensing segments
Tha,s and Ty, it must hold that 7y , s, 7g, s < bo — 1.
Thus, if any of the two sensing segments 7 ., and 7, 5 are
scheduled in [by, c_iz,j,net], it is a contradiction that the interval
[bo — 1,bp] is not utilized or by a network segment with the
deadline later than Elw-,net. Hence, both 73 , s and 74, , must
be scheduled before by — 1. Since the finish times obtained
by EDF must be different, at least one of fi s and fg, s
is smaller than by — 1. Therefore, at least one of the actual
release times of 7, , and 74, o is smaller than by. This allows
one of 7y 5 o and 7, , to be scheduled in [by — 1, by], but leads
to a contradiction to our assumption. Therefore, there exists
exactly one actuating segment whose effective release time is
smaller than by. With the network segment 7, ; ¢ considered,
the interval [bg,d. jnet] is an ENTL This proves that there
exists exactly one actuating segment scheduled in the ENTI
[bo, d= j net] but not effectively included in it if EDF fails. [

Lemma 3 indicates that as long as the actuating segments
which do not belong to a given ENTI are prevented from being
scheduled inside that interval, EDF can construct a feasible
network schedule if it exists.

Based on Lemma 3, Alg. 1 gives an overview of the
CRS algorithm under the h-1-1 model. The algorithm first
constructs the effective timing parameters for all the segments.
Based on these effective release times and deadlines, the
algorithm identifies every ENTI and modifies the effective
timing parameters accordingly. To ensure that the search of the
ENTIs is complete, we traverse the effective release times of
all sensing segments in the descending order, and the effective
deadlines of all actuating segments in the ascending order to
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Algorithm 1: CRS Algorithm (h-1-1 Model)

Input : A real-time composite task set 7 = {7; }j—;
Output: A network schedule Snes and a computing schedule
Scom, if exist

1 Compute the hyper-period H and build the set I of instances
of T

2 Construct the set O of effective network overload and tight
intervals

3 while O # 0 do

4 if a € O is an ENOI then

5 return None // Algorithm reports a failed
case

6 end

7 if A € O is an ENTI [to, t1] then

8 for ; ; € I do

9 if di,j € X and Tij,a < to then

10 ‘ di’j =19

1 end

12 end

13 0 =0-{)}

14 end

15 Update the set O based on the modified timing

parameters

16 end

17 Use EDF to schedule the network and computing segments
in parallel based on their effective deadlines to obtain the
schedules Spet, and Scom

18 return Spet, Scom

construct all candidate intervals. If an ENTI [to, ¢1] is found,
we check all the tasks to modify their deadlines based on
the following rule: if the deadline is included in [to, 1] and
the effective release time of its actuating segment is smaller
than ¢y, we set its deadline to ty. Additionally, the algorithm
identifies the ENOI and returns a None value to indicate that
this task set is unscheduable. This procedure (line 3-16 in
Alg. 1) repeats until all ENTIs are identified, which has a
time complexity of O(N?3), where N = Y | H/T; is the
total number of instances obtained from all the tasks. After
that, we employ EDF to construct a feasible schedule. The
overall time complexity of Alg. 1 is O(N?3).

The following theorem proves the correctness of the CRS
algorithm under the h-1-1 model.

Theorem 2. If there exists a feasible schedule for the real-
time composite task set under the h-1-1 model, then Alg. 1
can find it.

Proof. The proposed CRS algorithm under the h-1-1 model
modifies the task deadlines so that there exist no actuating
segments which would be scheduled in an ENTI if they are
not effectively included in the interval. According to Lemma
3, if the single actuating segment which is not included in the
ENTI is removed, the EDF is able to find a feasible network
schedule Sy for the network segments. Besides, according
to Lemma 1, the computing schedule S.,, must be feasible
as well. O

IV. CRS PROBLEM UNDER 1-M-1 MODEL

We now extend the study to the 1-m-1 model, where every
real-time composite task has unit-size execution time for its
sensing/actuating segments and arbitrary execution time larger
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than 1 for its computing segment. This model represents a wide
range of NCSs which employ online optimization methods so
that their computing time is longer than the transmission time
for sensing and actuating. Different from the h-1-1 model,
infeasible schedules under the 1-m-1 model can be generated
by scheduling the computing segments improperly. Thus, it is
important to take into account the scheduling of computing
segments in the algorithm design.

In this section, we present an exponential-time optimal
algorithm to solve the CRS problem under the 1-m-1 model
based on a novel backtracking strategy. The effectiveness of
the proposed algorithm has been validated through extensive
experimental results (see Section VI).

A. Algorithm Overview

Alg. 2 gives an overview of the CRS algorithm under the
1-m-1 model, which utilizes an iterative two-stage decompo-
sition method. We decompose the CRS problem into two sub-
problems including the computing scheduling sub-problem
and the network scheduling sub-problem. The variables of
the original CRS problem are also divided into a subset
of computing variables and a subset of network variables.
The first-stage sub-problem is solved over the computing
variables. The values of the network variables are determined
in the second-stage sub-problems based on the given first-stage
solution. If the subsequent sub-problem determines that the
previous stage’ decisions lead to infeasible schedules, then
new constraint(s) will be added to the original CRS problem,
which is re-solved until no new constraints can be added.
Failure will be reported if no feasible composite schedule can
be constructed.

Based on the algorithm framework above, it is important to
guarantee that the new constraints added in each iteration will
not jeopardize the schedulability of the original CRS problem.
To tackle this challenge, we design a constraint generator to
modify the timing parameters of the tasks in the interval(s)
with the network resource utilization larger than 100% based
on the iterative two-stage decomposition method.

B. Design details of the CRS algorithm under 1-m-1 model

1) Decomposition Method: We now reformulate the origi-
nal CRS problem as a two-stage scheduling problem.

Computing Scheduling Sub-Problem: Consider a real-time
composite task set 7 and the hyper-period H. The objective
of the computing scheduling sub-problem is to find a feasible
computing schedule S, with a length of H if it exists so
that the effective deadlines of all computing segments are met.

Network Scheduling Sub-Problem: Given a real-time com-
posite task set 7, the hyper-period H and the computing
schedule S, the objective of the computing scheduling sub-
problem is to find a feasible network schedule S,.; with a
length of H if it exists so that the network segments can meet
the deadlines obtained based on the start times and finish times
of the computing segments in Scop, .

Since each sub-problem above can be taken as a uni-
processor scheduling problem, it is intuitive to design a two-
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stage EDF to solve the CRS problem by solving the computing
scheduling sub-problem in the first stage and the network
scheduling sub-problem in the second stage. However, the
two-stage EDF may not find a feasible schedule for the
second-stage problem as it always employs a fixed first-stage
solution. Therefore, we utilize a constraint generator to add
new constraints to the original CRS problem whenever two-
stage EDF finds an infeasible schedule in the second stage.

Algorithm 2: CRS Algorithm (1-m-1 Model)

Input : A real-time composite task set 7 = {7; }i—;
Output: A network schedule Snet and a computing schedule
Scom, if exist

1 Compute the hyper-period H and construct the set I of
instances of T

2 while True do

Scom = ComputingScheduling(7)

if Scom is infeasible then

| return None

end

Snet = NetworkScheduling(7, Scom )

if S,e¢ is infeasible then
if ConstraintGenerator(/) = None then

10 | return None

1 end

12

13

14

15 end

16 return Syet, Scom

[N e 7 )

else
| break
end

2) Constraint Generator: we first introduce some defini-
tions and preliminaries to help understand the design of the
constraint generator.

Definition 4. Virtual Release Time/Deadline: Given a set
of real-time composite tasks T = {71,72,...,Tn}, for each
instance T; ; with the release time r; ; and deadline d; ;, the
virtual release time and virtual deadline of the sensing segment
Tij,s IS set to be r; ;s = 1;; and d; j s = 5i . The virtual
release time and deadline of the actuating segment 7; ; o is set
to be 1ijq = fijc and d;j, = dij, where s; ;. and f; ;.
are the start time and the finish time of the corresponding
computing segment T; j ., respectively. Both s; ;. and f; ;.
are obtained in the computing scheduling sub-problem.

We say a network segment is virtually included in a time
interval if its virtual release time and virtual deadline are both
included in that interval. That is, a network segment 7; ; net 1S
virtually included in [to, 1] if 7 jnet > to and d; jnet < t1.
Based on this condition, we define a virtual network demand
over a given interval to be the sum of the execution time of
all the network segments that are virtually included in that
interval. We define the virtual network overload interval and
minimal virtual network overload interval as follows.

Definition 5. Virtual Network Overload Interval (VNOI):
Given a set of network segments and a time interval [to,t1],
the interval [to, t1] is a virtual network overload interval if its
virtual network demand is larger than t1 — to.
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Definition 6. Min. Virtual Network Overload Interval:
Given a VNOI [to,t1], if there does not exist another VNOI
[to, t3] satisfying [t2,t3] C [to,t1], [to,t1] is a minimal VNOL

For a VNOI « = [tg, t1], we use U, to denote the set of
network segments which are virtually included in . We use
A, C U, to denote the set of actuating segments in U, whose
corresponding sensing segments are not virtually included in
o. That is, for any 7,, € Aq, Tia € Uy and 7,5 ¢ U,.
We use S, C U, to denote the set of sensing segments in
U, whose corresponding actuating segments are not virtually
included in «. Finally, we use M, C U, to denote the set
of networking segments which contain both the sensing and
actuating segments from the same tasks.

According to the definitions of U,, A,, Sa, and M,, it
holds that U, = A, U Sq U M,. Let Ay, Sac and M, o
denote the sets of corresponding computing segments of the
network segments in A,, S, and M, respectively. We define
d(Aa,c)s 9(Sa.c), and ¢(M,, ) to be the amount of execution
time of the computing segments in A, ¢, Sq,c, and M, . that
are scheduled in the interval [top — 1,¢; + 1] in the computing
schedule.

It should be noted that there exists no feasible schedule for
the network scheduling sub-problem when VNOIs are present.
Thus, the constraint generator must eliminate all VNOIs by
adding new constraints to the original CRS problem. In the
following, we first present several important observations and
then show how to eliminate a VNOI by adjusting the timing
parameters of the network segments that are virtually included
in that interval.

Lemma 4. The virtual network demand over a VNOI o =
[to, t1] is at most t1 — to + 2 under the 1-m-1 model.

Proof. Suppose the interval o = [to,?;] has a total amount of
t1 — to + z units of network segments virtually included in
[to, t1], where z € Z~o. We will prove x < 2 as follows.

Based on Definition 4, the virtual release times of every two
actuating segments are different since the finish times of their
corresponding computing segments cannot be identical in the
computing schedule. Thus, for any two different actuating seg-
MeNts 7; j.q, Tz.y,a € Ua,itholds that |r; j o—ry 4 o > 1. Sim-
ilarly, the virtual deadlines of every two sensing segments are
different since the start times of their corresponding computing
segments cannot be identical in the computing schedule. Thus,
for any two different sensing segments 7; ; s, Tz y,s € Uq, the
condition |d; j s — dg4,s| > 1 holds.

For any 7;;, € A,, since its corresponding sensing
segment is excluded from U,, its corresponding computing
segment 7; ; . has the release time r; ;. < ¢y and deadline
dij. < ti — 1. The last unit of 7; ;. is scheduled in
[Fija — 1,7i 4] in the computing schedule. Due to that
Tij.a € [to,t1 — 1], the last unit of 7; ;. can be scheduled
in [to — 1,41 — 1]. Taking into account all the computing
segments in A, ., it holds that |A,| < ¢(Aq,c). Similarly, for
any T,y s € S, since its corresponding actuating segment
is excluded from U, its corresponding computing 7, , . has
release time r;, . > to and deadline d,, . > t; + 1. The
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first unit of 7, . is scheduled in [d; s — 1,ds,4] in the
computing schedule. Due to that d,, s € [to + 1,t1], at
least the first unit of 7; ;. is scheduled in [to + 1,¢; + 1].
Considering all the computing segments in S, it holds that
|Sa] < ¢(Sa,c). For any actuating segment 7, ,, in M,,
since its corresponding sensing segment and itself are both
in the interval [to,t1], it holds that r,,. > ¢ + 1 and
dy,v,c <t1—1. So the computing segment 7, , . is scheduled
within [to + 1,4 — 1]. Since 7,,,,. has at least two units of
execution time, it holds that |M,| < ¢ (M, ). Based on the
above constraints on the timing parameters of the computing
segments, it holds that

1Sal + [Aa] + [Ma| < ¢(Sa.c) + ¢(Aac) + d(Mae) (5)
As the amount of the execution time of the computing

segments scheduled in the interval [to—1, 1 +1] cannot exceed
the length ¢; — ¢y 4 2 of this interval, there is

D(Sae) + 0(Aae) + ¢(Mae) <ty —tg+2  (6)
Combining (5) and (6), it yields that
[Sal + [Aa| + [Ma| <ty —to +2 @)

Therefore, we conclude that z < 2 and the virtual network
demand over an interval [to,t1] is at most ¢; — to + 2 if the
EDF schedule of the computing segments is feasible. O

Lemma 4 gives an upper bound on the virtual network de-
mand over a virtual network overload interval. The number of
overflow network segments in the interval is thus restricted to
2. However, selecting two feasible overflow network segments
from a VNOI is still challenging due to its combinatorial
nature. The following lemma presents an important property
of the minimal VNOI (see Definition 6), which can further
speed up the overflow segment selection from VNOIs.

Lemma 5. The virtual network demand over a minimal VNOI
a = [to, t1] is at most t; — to + 1 under the 1-m-1 model.

Proof. Due to the page limit, please refer to the full technical
report for the proof [28] O

Lemma 5 indicates that only one network segment needs to
be moved out of a minimal VNOI. Based on this observation,
we aim to select a network segment as the overflow segment
and modify its timing parameters to prevent it from being
scheduled in the interval. This procedure is defined as the
elimination procedure. We first identify the precondition for a
network segment to be selected as an overflow segment. That
is, after the modification of the timing parameter(s) of its cor-
responding real-time composite task, the schedulability of the
network scheduling sub-problem and computing scheduling
sub-problem can still be preserved. Based on this precondition,
we design the constraint generator based on a backtracking
strategy to eliminate all VNOIs.

The elimination procedure for a minimal VNOI « = [to, ¢1]
is achieved based on a selected candidate segment 7; ; ner and
the instance set I. Consider that we select an actuating segment
Tija € Aq. Let D be the set of timing parameters which
include the deadlines of the actuating segments in A,, and tg.
After sorting D in the descending order, we can find dy €
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Algorithm 3: Constraint Generator (1-m-1 Model)

Input : An instance set Iy of real-time tasks
Output: A modified instance set Iz or the initial instance set
Io

1 if the iterative two-stage decomposition method goes to
network scheduling then
Construct the set O of minimal VNOIs
if O = 0 then
| return I,
end
Get the earliest minimal VNOI o € O
for 7inet € A U S, do
I = Eliminate(lo, &, Ti net )
I, = ConstraintGenerator(/;)
if /> # None then
| return I,
end
end

[-R-CREN e 7 B SR N

<
W= e

end
return None // Algorithm reports a failed case

-
TS

D, the latest element smaller than am-,a. We modify deadline
di ja to do and d; ;. to dy — 1. This assures that the priority
of 7; j . improves, thus guaranteeing that their corresponding
actuating segments will not be scheduled in « to make the
interval become virtually overload again. After rescheduling
the computing segments, the minimal VNOI « is eliminated.

On the other hand, if we select a sensing segment 7; ; s €
Sqa, we obtain the set R of timing parameters including the
release times of the sensing segments in S, and t;, and sort
them in the ascending order. Let ry € R be the first element
larger than 7; ; ;, and we modify 7; ; ; to rg. The minimal
VNOI can be eliminated by rescheduling the computing seg-
ments and updating the virtual timing parameters.

Note that although any network segment virtually included
in the interval [tp,t1] can be taken as a candidate for the
overflow segment, a candidate is infeasible if modifying its
timing parameter hurts the schedulability of the real-time com-
posite task set. Therefore, we design the constraint generator
to eliminate VNOIs based on a backtracking algorithm.

Alg. 3 shows an overview of the constraint generator. The
key idea is to utilize the backtracking search to eliminate all
VNOIs through the constraint generator, where the input is
the initial set of instances and the output is either a feasible
instance set or reported failure. The constraint generator works
as a recursion tree. The root corresponds to the original prob-
lem of finding a feasible instance set from the given instance
set. Each node in this tree corresponds to a recursive sub-
problem. In particular, when leaves cannot be further extended,
it is either because the network scheduling sub-problem based
on the current instance set finds infeasible schedules, or
because the feasible instance set is found and returned. When
the constraint generator is called, we construct the set O of
minimal VNOIs based on the current instance set. If O is not
empty, then starting with the earliest minimal VNOI in O, we
branch the search based on its overflow candidate segments.
For each candidate segment in the minimal VNOI, we call
its elimination procedure to eliminate the overload interval. If
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every candidate segment fails to utilize the constraint generator
to find an instance set which generates no VNOIs in the
two-stage decomposition method, it indicates that the task set
is not schedulable, which returns a None value and reports
failure. The time complexity of the backtracking algorithm
is O(WPN?), where W is the average number of candidate
segments in the minimal overload interval and p is the number
of the overload intervals. When W approaches N, p goes to 1.
On the contrary, when W approaches 1, p goes to [N, where
N = 37" | H/T; is the total amount of instances of all the
tasks. Each node takes O(N?) time to identify the intervals.

Theorem 3. If a feasible schedule exists for the real-time
composite task set T under 1-m-1 model, Alg. 2 can find it.

Proof. Due to the page limit, please refer to the full technical
report for the proof [28] O

V. CRS PROBLEM UNDER GENERAL MODEL

Based on the studies of the two special cases, we now extend
the CRS problem to its general case, where every real-time
composite task has arbitrary execution time for each segment.

A. Algorithm Overview

We first extend the concepts of effective network over-
load/tight intervals (ENTI/ENOI, see Definition 2) to effective
computing overload/tight intervals.

Definition 7. Effective computing overload/tight interval
(ECOVECTI): Given a set of real-time composite tasks and a
time interval [to,t1), [to, 1] is an effective computing overload
interval if the effective computing demand over [to, t1] is larger
than t| — to. [to,t1] is an effective computing tight interval if
the effective computing demand over [to, t1] is equal to t1 —to.

For the CRS problem in the general case, we first use
EDF to schedule the network and computing segments in
parallel based on their effective deadlines. Suppose EDF fails
scheduling a segment and generates a partial schedule, we
define the provisional timing parameters as follows.

Definition 8. Provisional Release Time/Deadline: For each
instance T; ; with release time r;; and deadline d;;, the
provisional release time 7 ; ; and provisional deadline cZi,j,,s
of its sensing segment T; j s are 7 j s = T; j and dALj’S = fije
where f; ; o is the finish time of the sensing segment. The pro-
visional release time 7 j . and provisional deadline cimv,c of its
computing segment T; j . are ¥ j . = fijs and d; j.c = fi e
where f; ;. is the finish time of the computing segment. The
provisional release time 7; ; . and provisional deadline cfl j.a Of
its actuating segment T; j o are v j o = fi j . and dmya =d; ;.

The provisional timing parameters of each segment are
initialized as its effective timing parameters before EDF is
applied. We say a network/computing segment is provisionally
included in a time interval if its provisional release time
and provisional deadline are both within that interval. Based
on this condition, we define a provisional network/computing
demand over a given interval to be the sum of the execution
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time of all the network/computing segments that are provi-
sionally included in that interval. We define the provisional
network/computing overload interval as follows.

Definition 9. Provisional Network/Computing Overload
Interval (PNOI/PCOI): Given a set of network/computing
segments and a time interval [to,t1], [to,t1] is a provisional
network/computing overload interval if its provisional net-
work/computing demand is larger than t1 — to.

For a PNOI « = [tg,t1], we use X, to denote the set of
actuating segments provisionally included but not effectively
included in [tg,t;]. Similarly, for a PCOI 8 = [bg,b;], we
use Cg to denote the set of computing segments that are
provisionally included but not effectively included in [bg, by ].

Alg. 4 gives an overview of the CRS algorithm under the
general model. It is an iterative two-stage method utilizing
two groups of intervals to modify the timing parameters of
the tasks.

In stage 1, effective network/computing tight intervals
(ENTI/ECTI, see Definition 2 and 7) are used to represent
the intervals that have 100% utilization in computing and
network resources in any feasible schedule, respectively. A
network/computing segment with only one of its effective
release time and effective deadline included in an ENTI/ECTI
must be moved out of that interval. This adjustment provides
better priority for those segments and prevents them from
being scheduled in an ENTI/ECTI. After modifying the timing
parameters, EDF is used to schedule the network and comput-
ing segments in parallel based on their effective deadlines. If
EDF fails to find a feasible schedule, we turn to stage 2.

In stage 2, provisional network/computing overload inter-
vals (PNOI/PCOI, see Definition 9), obtained by EDF schedul-
ing are used to represent the intervals that have the provisional
utilization larger than 100%. This indicates that we need to
move some segments out of a PNOI/PCOI. Among all the
candidate segments in a PNOI/PCOI, we propose a greedy
strategy to select the actuating/computing segment with the
earliest effective release time and move its effective deadline
ahead. This will make its corresponding preceding segment(s),
e.g., the sensing or/and computing segment, finish earlier, and
create more space for scheduling the current segment.

B. Design details of the CRS algorithm under general model

We now present the details of the greedy heuristics.

1) Stage 1: Modification based on effective timing param-
eters: The first stage of the algorithm identifies ECOIs and
ENOIs to decide the schedulability of the task set. It then
utilizes ENTIs and ECTTIs to adjust the tasks according to the
following procedure.

Consider an ENTI « = [to,t1], for any sensing/actuating
segment 7; ; s/7; j.a» We introduce Rule la and Rule 1b to
modify its timing parameters, respectively.

e Rule la: if 7; ; , is not effectively included in o but has

its effective release time 7; ; s included in «, we modify
T; j,s to t1 and the effective release times of its computing
and actuating segments are adjusted to ¢; +C; s and ¢1 +
Ci,s + Cj ¢, respectively.

Algorithm 4: CRS Algorithm (General Model)

Input : A real-time composite task set 7 = {7 }i—1
Output: A network schedule Synet and a computing schedule
Scom, if exist

1 Compute the hyper-period H and construct the set I of
instances of T

2 while True do

// Stage-1

if an ENOI/ECOI is identified then
‘ return None // reports a failed case

end

if an identified ENTI/ECTI triggers the modification on
timing parameters (Rule 1(a-b) and Rule 2(a-b)) then
| continue

end

// Stage-2

9 Run EDF to schedule the network and computing

segments in parallel based on their effective deadlines

to construct Spet and Scom. EDF terminates if any

segment misses the deadline. The provisional timing

parameters are updated

10 if the earliest PCOI 3 = [bo, b1] is located then

= I OO

® 3

11 if Cg has no feasible candidate segment then

12 | return None

13 end

14 Modify the candidate segment in Cg with earliest
effective release time (Rule 3(a-b))

15 continue

16 end

17 if the earliest PNOI a = [to, ¢1] is located then

18 if X, has no feasible candidate segment then

19 | return None

20 end

21 Modify the actuating segment in X, with earliest
effective release time (Rule 4(a-b))

22 continue

23 end

24 break

25 end

26 return Shet, Scom

« Rule 1b: if 7; ; o is not effectively included in o but has its
effective deadline d; ; , included in o, we modify d; ;o
to to and the effective deadlines of its computing and
sensing segments are adjusted to {y —C; o and tg —C; o —
C} ¢, respectively.

Similarly, for any ECTI « = [tg, t1], we introduce Rule 2a
and Rule 2b to modify the timing parameters of a computing
segment T; j .

« Rule 2a: if 7; ;. is not effectively included in « but has
its effective release time 7; ; . included in «, we modify
T;j.c to t; and the release time of its actuating segment
is adjusted to ¢; 4+ Cj ..

e Rule 2b: if 7; ; . is not effectively included in « but has
its effective deadline d; ; . included in «, we modify d; j .
to to and the effective deadline of its sensing segment is
adjusted to tg — Cj ..

To thoroughly check all the identified ECTIs and ENTIs and
the newly generated ones due to the ongoing modifications,
whenever a modification is made, we check again on all the
ECTIs and ENTIs based on the modified task set until no more
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modifications is needed. In the meanwhile, we utilize ECOIs
and ENOIs as the necessary conditions to decide the feasibility
of the task set. If any ECOI or ENOI is found, the task set is
unschedulable.

2) Stage 2: Modification based on provisional timing pa-
rameters: After stage 1, we use EDF to schedule the segments
based on their effective deadlines. If EDF fails to construct a
feasible schedule, the algorithm moves to the second stage to
deal with PCOIs and PNOIs by employing greedy strategy
that always modifies the candidate segment with the earliest
effective release time.

Consider the first case that we locate the earliest PCOI § =
[bo, b1], where the provisional demand is Dg and the extra
provisional demand satisfies Dg crtra = Dg — b1 + bg. Let
Cs denote the set of computing segments included in 3. We
sort them by their effective release times in ascending order.
When traversing Cg, for a candidate computing segment 7; ; .,
if there exists a set of computing segments Cg 1 C Cg that have
their effective deadlines smaller than Ei, 4,c» we introduce Rule
3a to modify 7; ;.; if Cg,1 does not exist, we introduce Rule
3b to modify 7; ;.. If the modification generates no further
ECOIs or ENOIs, we accept this modification and use EDF
to schedule the segments again.

« Rule 3a: we modify the effective deadline d; j . of 7; ;..

to the effective deadline d,, . of another computing
segment 7, , . in Cg 1. dy . is the latest one among all
the computing segments in Cg ;.

e Rule 3b: if Dg cptra > Ci, we modify d; j . to bo. If

Dﬁ,ezh'a < Ci,c’ we mOdlfy ai.,j,c to bO+Ci,c _Dﬁ,eztran

‘We further consider the second case where the earliest PNOI
a = [to,t1] is found. Its provisional demand is D, and
the extra provisional demand is Dg crtra = Do — t1 + to.
After sorting the set of actuating segments in X, by their
effective release times in ascending order, we traverse X,.
For a candidate actuating segment 7; ; o, if there exists a set
of actuating segments X, ; C A, that have their effective
deadlines smaller than C_ii,j,a, we introduce Rule 4a to modify
Tijas if Xo 1 does not exist, we introduce Rule 4b to modify
T i,j,a-

« Rule 4a: we modify the effective deadline d; ;, to the
effective deadline of another actuating segment 7, , , in
the set X, ; which has the latest effective deadline.

e Rule 4b: if Dy cxtra > Cia, we modify d; ;o to to. If
Da,ea:t'ra < Ci,a’ we mOdlfy di,j,a to t()+ci,a_Do¢,eztra~

Modifying the effective deadline of the actuating segment
will change the effective deadlines of its corresponding com-
puting and sensing segments. If the modification of a candidate
actuating segment incurs no ECOIs or EVOIs, the modification
is accepted. If there exists no feasible candidate segment, the
algorithm returns failure.

The key design principle of the above greedy heuristics
is based on the observation that a segment with an earlier
effective release time is usually preempted by the segments
with later effective release times. The proposed adjustment
improves the priority of the current candidate segment. In
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addition, since the effective release time of its preceding seg-
ment(s) is also modified, it makes more space for scheduling
the current candidate segment. The segment with the earliest
effective release time is preempted by the largest amount of
other segments, thus the modification enables the effective
adjustment of the priority to the utmost. This modification
procedure repeats until EDF finds feasible schedules. Each
segment can be modified at most O(N) time and there are
at most O(N) number of segments. Since for each round
of modification, identifying the overload/tight intervals takes
O(N?) time, the overall time complexity of Alg. 4 is O(N*),
where N = Y7 | H/T; is the total amount of instances of all
the tasks.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms for solving the CRS problem under the A-1-1,
1-m-1, and the general model. The proposed CRS algorithms
are compared with the baseline algorithms, including both
EDF and least laxity first (LLF). For EDF, we use two
ready queues to separately store the network and computing
segments. A segment is popped out from the queue if its corre-
sponding task has the earliest deadline. A segment is released
and pushed into the ready queue when its preceding segment
is finished. Similarly, LLF also uses two ready queues. In each
queue, the priority of the segments is defined as the laxity of
the tasks, i.e. the task deadline minus the remaining execution
time. We use NEC to denote the number of task set satisfying
the necessary condition of finding a feasible schedule, which
is the upper bound of the feasible cases under the general
model. We search ECOI and ENOI for each trial of task set.
If any ECOI or ENOI is identified, the trial will be recorded
as an infeasible case and will not be counted in NEC.

A. Experimental Setup

To efficiently obtain the feasible solution of constraint
programming, we employ an efficient satisfiability modulo the-
ories (SMT) solver Z3. All the algorithms including SMT are
implemented in Python and computed in a CPU cluster node
with Xeon E5-2690 v3 2.6 GHz CPU. To perform an extensive
comparison, we generate 1000 trials under each parameter
setting. Each trial contains a task set 7 = {71, 72, ..., T},
where n € [1,50]. The task periods are randomly set in
[10,10000]. For the task set generated under the h-1-1 model,
since its network resource utilization is much larger than the
computing resource utilization, we vary the network resource
utilization to assess the impact. Similarly, we vary the com-
puting resource utilization of the task set generated under
the 1-m-1 model. For the task set under the general model,
we use the normalized resource utilization to represent the
resource utilization of a task, where the normalized utilization
is calculated as (C; s + C; . + C; o) /2T; (we use 2T; because
there are two resources, CPU and network bandwidth). Given
the utilization of a task set, we generate the utilization of all
the tasks using the UUniSort algorithm [29]. For the general
model, we randomly split the total execution time into the
sensing, computing, and actuating segments.
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B. Evaluation Results

In the first set of experiments, we compare the performance
of the proposed solutions with the baseline methods for the
general model, h-1-1 model, and 1-m-1 model by varying
the resource utilization of the task set. Fig. 3a shows the
percentage of feasible cases obtained by CRS, EDF, and
LLF under the general model when the normalized resource
utilization is varied. One can observe that as the normalized
resource utilization increases from 0.2 to 0.9, the percentage
of feasible cases that NEC, CRS, EDF, and LLF can achieve
gradually decrease from 96.6%, 96.2%, 94.7%, and 93.2%
to 1.3%, 0.3%, 0.1%, and 0.1%, respectively. Fig. 3a also
shows that the performance of the proposal heuristic solution
is close to the upper bound (the difference increases from 0.4%
to 7% when the utilization is increased from 0.2 to 0.9), and
outperforms those of EDF and LLF significantly. For example,
it reports more than 10% and 7% feasible cases than EDF and
LLF, respectively, when the utilization is set at 0.6.

The performance of the algorithms under h-1-1 model is
shown in Fig. 3b. It is observed that the percentage of feasible
cases that CRS, EDF, and LLF can achieve gradually decrease
from 97.3%, 96.8%, and 91.0% to 10.9%, 8.4%, and 7.8%,
respectively. Our method outperforms EDF and LLF when
the utilization is high. For example, it reports 4.5% and 12%
more feasible cases than EDF and LLF, respectively, when
the utilization is set at 0.7. We also evaluate the performance
of the proposed algorithm by varying the computing resource
utilization of the task set under 1-m-1 model. Fig. 3c reports
the percentage of feasible schedules obtained by CRS, EDF,
and LLF, which decrease from 97.5%, 97.5%, and 89.9% to
20.0%, 18.6%, and 15.6%, respectively. CRS shows slightly
better performance than EDF due to a small number of cases
that identify the virtual network overload intervals. Note that
we don’t show the upper bound (NEC) for h-1-1 model and
1-m-1 model because the proposed method is optimal.

In the second set of experiments, we further evaluate the
performance of the SMT method for the general model. The
results are shown in Table II. In the experiments, we generate
1000 cases for the evaluation. Since SMT may take a long time
to obtain a solution in some corner cases, we set the longest
task period to 1000s in each case and the average number of
jobs is 100 for the 1000 cases. We also set a time limit of 2
hours for running SMT. When the time limit is reached, SMT
terminates and that trial will be recorded as an unsolved case.
From Table II, it is observed that the average running time
of SMT for the solved cases is 1940s and the percentage of
solved cases of SMT is only 15.1%. Compared with SMT, our
method can finish a trial in 74 milliseconds on average and
can solve all the 1000 cases.

In the last set of experiments, we evaluate the running time
of the algorithms by increasing the number of jobs from 100
to 10000. The comparison results are shown in Fig. 4. It can
be observed that the average running time of all the algorithms
increase along with the increase of the number of jobs. For all
the models, the running time of CRS are under 20s when the
number of jobs are less than 2000. When the number of jobs
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TABLE II: Performance comparison with SMT

Average running time | Percentage of terminated
Unsolved Solved cases due to time limit
SMT >2h 1940s 84.9%
CRS N/A 0.074s 0%
EDF N/A 0.008s 0%
LLF N/A 0.008s 0%

reaches 10,000, the running time of CRS is under 500s, which
is acceptable compared with the running time of EDF and LLF
methods. SMT terminates due to the time limit (7200s) when
the number of jobs are larger than 1000. Note in Fig. 4, we
only show the running time of the feasible cases for CRS,
EDF, and LLF. For the infeasible cases, the average running
time is under 10s.

VII. RELATED WORK

Most real-time networks adopt Time Division Multiple Ac-
cess (TDMA) based data link layers to guarantee deterministic
real-time communications. Sensing and actuating tasks are
abstracted as end-to-end flows with specified timing require-
ments. The existing real-time network scheduling algorithm
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designs focus on schedulability analysis and management of
the network packet scheduling (e.g., [8], [30]-[34]). Those
solutions may fit well for NCSs when the transmission time is
large and the computation time of the controller is negligible.
However, with the rapid development of real-time network
such as RT-WiFi [35], which supports a minimal time slot
of 0.1 milliseconds, the transmission time of the network
segment becomes comparable to the computation time of
controller [20]. In addition, due to an increasing number of
industrial applications having complex online optimization
algorithms designed for the controllers, the computation time
can no longer be ignored [15], [17]. In this paper we propose
a three-segment execution model for scheduling composite
network and CPU resources in NCSs. To provide more flex-
ibility, both network segments and computing segments are
considered to be preemptive.

The existing related three-segment execution models include
self-suspension model, PRedictable Execution Model (PREM)
and Acquisition-Execution-Restitution (AER) model. The self-
suspension model is composed of two computation segments
separated by one suspension interval, which focuses on one
resource type [36]. PREM and AER are designed for multi-
core CPU system. PREM enables parallelism by dividing tasks
in communication/computation phases [22]. The read phase
reads data from the main memory, the computation phase can
proceed the execution, and the write phase writes the resulting
data back to the main memory. Since PREM increases the
predictability of an application by isolating memory accesses,
it is widely used [37]-[40]. However, the PREM model usually
couples the write phase of a task with the next activated read
phase on the same core [39], [41]. By contrast, AER from [24]
allows more freedom to schedule the read and write phases,
which is further implemented on a scratchpad memory (SPM)
based single-core [39]. Hiding the communication latency
when scheduling a task graph on a multi-core based on the
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AER model is discussed in [42], [43]. Other research works
based on the AER model studies how to improve the schedula-
bility of latency-sensitive tasks, manage the memory on COTS
multiprocessor platforms, and increase system determinism
by reducing task switching overhead, and the global static
scheduling of non-preemptive tasks [44]-[47]. As those recent
works above focus on scheduling for multi-core CPU systems,
the communication phases are reasonably considered to be
non-preemptive, while the network scheduling in our CRS
model employs the preemptive segments to provide better
parallelism.

For the existing related works on end-to-end scheduling in
NCSs, utilizing the system state of control systems to design
the scheduler is an important methodology to optimize QoS.
Based on the system state, the scheduling and feedback co-
design for NCSs is introduced in [48], [49], which computes
the deadline for the real-time tasks. However, the network
scheduling is not guaranteed to be real-time because of the
CAN protocol considered in the model. The work in [50]
studies how to integrate security guarantees with end-to-
end timeliness requirements for control tasks in resource-
constrained NCSs. The proposed sensing-control-actuation
model is similar to our CRS model, but the sensing, computing
and actuating segments in the proposed model have designed
release times and deadlines. This is not general as the CRS
model which only has a task deadline. Other related network
and computing co-scheduling works include the co-generation
of static network and task schedules for distributed systems
which only focuses on the SMT solver [51], and the feasible
time-triggered schedule configuration for control applications,
which aims at minimizing the control performance degradation
of the applications [52].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we study the composite resource schedul-
ing problem in networked control systems (NCSs). A new
composite resource scheduling (CRS) model is introduced
to describe the sensing, computing, and actuating segments
in NCSs. We formulate the composite resource scheduling
problem in constraint programming and prove it to be NP-
hard in the strong sense. Two special models and the general
model are studied. For the CRS problem under the h-1-1
model, we present an optimal algorithm that utilizes the
intervals of network resource utilization of 100% to prune
the search space to find the solution. For the CRS problem
under the 1-m-1 model, we propose an optimal algorithm that
exploits a novel backtracking strategy to adjust the timing
parameters of the tasks so that there exist no intervals of
network resource utilization larger than 100% obtained in
the two-stage decomposition method. For the general case,
we propose a heuristic solution to find the feasible schedule
based on the greedy strategy of modifying the segments in the
interval of either network resource utilization or computing
resource utilization larger than 100%.

As the future work, the proposed algorithms will be imple-
mented on our NCS testbed to evaluate their effectiveness and
practicability in real-life systems.
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