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Introduction
In the 1960s, John H. Conway developed a zero-player game
with simple rules. This Game of Life, a cellular automa-
ton (CA), has had a seminal impact on the study of com-
plex systems, computation, and art. Conway’s Life followed
John von Neumann’s 29-state CA (von Neumann and Burks,
1966), and Life’s impact on popular as well as academic
imagination is unique, seeded by a 1970 article in Scientific
American by Martin Gardner (Gardner, 1970).

Subsequent decades saw increasing diversity of CA re-
search and applications. The Life framework: totalistic
CA based on a Moore neighborhood and cell states, sup-
ports 262,144 different rulesets1 CA have since been devel-
oped with larger neighborhoods (Evans, 2001; Pivato, 2007),
higher dimensions (Bays, 1987; Chan, 2020), and evolving
rules (McCaskill and Packard, 2019), to name but a few ex-
amples among many. In this work we are concerned with
continuous CA.

Rudy Rucker developed a continuous CA framework in
the 1990s called CAPOW (Rucker, 2003). Later, Stephen
Rafler developed a continuous CA, SmoothLife, and discov-
ered a persistent glider therein (Rafler, 2011). Recently, Bert
Chan described the discovery of many persistent patterns in
his Lenia framework (Chan, 2019, 2020), and encoding CA
updates in continuously valued neural networks has been ap-
plied to models for growth (Mordvintsev et al., 2020), image
recognition (Randazzo et al., 2020), and control (Variengien
et al., 2021). Continuous CA can be described as:

Apt` dtq “ Aptq ` dt ¨ fpAptqq (1)

where A represents cell states, t is unitless time, dt is step
size, and fp¨q represents some function dependent on cell
states2

˚̊ University of Vermont, [qdavis, jbongard]@uvm.edu
1Life-like CA are defined by Birth and Survival rules; each may

contain any or all of the possible Moore neighborhood sum values
0 through 8, yielding 29 ¨ 29 “ 218 “ 262, 144 possible rules. At
each step, cells with a neighborhood sum in their S rules remain
unchanged, become 1 with a sum in B; all other cells become 0.

2fp¨q typically includes a neighborhood operation (e.g. convo-
lution) and an arbitrary update function.

Figure 1: Stability of a minimal glider in Lenia’s Scutium
gravidus ruleset spans from approximately dt “ 0.25 to
0.97. Kernel parameters pµK , σKq “ p0.5, 0.15q , update
parameters pµG, σGq “ p0.283, 0.0369q.

Typically receiving little scrutiny, dt can have important
effects. Persistent patterns require step size to be neither too
large nor too small, and multiple patterns may exist their
own dt ranges within an otherwise identical CA rule set
(Figures 2 and 3). Step size can also lead to qualitatively
different behavior in CA. Varying step size from 0.0125 to
0.13 in Figure 3 yields diverse movement types including
hopping, meandering, and corkscrewing. While not a per-
fect analogy, the behavioral repertoire in Figure 3 seems to
have more in common with a robot in a conventional physics
simulation changing from jumping to pirouette movement
patterns than with the expected catastrophic failure (or te-
dious slow-down) caused by an inappropriate time-step in a
conventional differential equation-based numerical physics
simulation. Supporting resources for this project are open-
source 3

3Links to animations, notebooks, and code used in this
project are consolidated at https://rivesunder.github.
io/yuca
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Figure 2: This wide glider pattern is pseudostable around
dt “ 0.1, but tends to change size and shape (sometimes
with explosive growth) at higher dt, and to disappear at
lower dt. Kernel parameters pµK , σKq “ p0.5, 0.15q , up-
date parameters pµG, σGq “ p0.283, 0.0369q.

Pattern stability and step size
An intuitive consequence of poor step size choice is that pat-
terns become unstable when the step size is too large, but
this also occurs when step size is too small. This defies the
expectation that in simulations of physical system we typ-
ically expect greater accuracy as the step size approaches
zero. What would be considered systematic error in simulat-
ing billiard ball trajectories is essential for self-organization
by some CA patterns.

A minimal glider Scutium gravidus in the Lenia frame-
work, cousin to the SmoothLife glider (Rafler, 2011), is sta-
ble between approximately dt “ 0.245 to 0.978, smaller or
larger step sizes lead to the glider vanishing. Sample trajec-
tories at both extremes are shown in Figure 1.

Another pattern operating under the same neighborhood
and update rules, a wide glider, is most stable at much lower
step sizes around 0.1. Larger or smaller step sizes yield un-
constrained growth or a vanishing pattern, respectively (Fig-
ure 2). A step size of 0.1 is pseudo-stable for this pattern,
but is sensitive to initial conditions (including grid dimen-
sions, pattern placement, and floating point precision) and
can eventually („1000s of steps) become unstable.

Pattern behavior and step size
In addition to pattern instability, step size can lead to qualita-
tively different behavior. Figure 3 demonstrates behavioral
diversity solely by changing step size. At the “natural” step
size of 0.1, it moves in a “hopping” motion. Relatively large

Figure 3: Identical starting conditions, here a mobile “frog”
pattern, follow different trajectories with qualitatively differ-
ent behavior under CA rules differing only in step size dt.
Note the CA grid represents the surface of a torus: trajecto-
ries reaching one edge of the grid reappear at the opposite
edge.

step sizes (« 0.13) bring the pattern to the edge of stability,
with occasional explosive growth (responsible for a sharp
turn in trajectory), and also occasional larger, surging hops.
At step size 0.025 the pattern travels in a meandering
trajectory and a step size of 0.0125 leads to corkscrew tra-
jectories and a spiky morphology. The CA in Figure 3 uses
the Glaberish CA framework (Davis and Bongard, 2022),
splitting the update function into persistence and genesis
functions dependent on cell state, with a neighborhood
kernel of mixed Gaussians with parameters pµK , σKq “
rp0.0938, 0.033q, p0.2814, 0.033q, p0.469, 0.033qs with
weights r0.5, 1.0, 0.667s, a Gaussian genesis function
pµg, σgq “ p0.0621, 0.0088q, and persistence function
pµp, σpq “ p0.2151, 0.0369q.

Conclusions
This work demonstrates that step size is a consequential pa-
rameter in continuous CA, affecting pattern stability and
qualitative behavior. This is in marked contrast to remarks
in (Chan, 2019), which, noting the resemblance of the Le-
nia update to Euler’s method, suggested that decreasing step
size asymptotically approaches the ideal simulation of a Le-
nia pattern, Orbium. This work demonstrates that for sev-
eral patterns a lower step size does not entail a more accu-
rate simulation, but different behavior or potential patterns
entirely. Therefore, step size should be considered for opti-
mization and learning with CA, e.g. to develop patterns with
agency to avoid obstacles (Hamon et al., 2022) or for train-
ing neural CA such as in(Mordvintsev et al., 2020; Randazzo
et al., 2020; Variengien et al., 2021).
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