Does Putting a Linguist in the Loop Improve NLU Data Collection?
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Abstract

Many crowdsourced NLP datasets contain sys-
tematic artifacts that are identified only after
data collection is complete. Earlier identifi-
cation of these issues should make it easier
to create high-quality training and evaluation
data. We attempt this by evaluating protocols
in which expert linguists work ‘in the loop’
during data collection to identify and address
these issues by adjusting task instructions and
incentives. Using natural language inference
as a test case, we compare three data collection
protocols: (i) a baseline protocol with no lin-
guist involvement, (ii) a linguist-in-the-loop in-
tervention with iteratively-updated constraints
on the writing task, and (iii) an extension that
adds direct interaction between linguists and
crowdworkers via a chatroom. We find that
linguist involvement does not lead to increased
accuracy on out-of-domain test sets compared
to baseline, and adding a chatroom has no ef-
fect on the data. Linguist involvement does,
however, lead to more challenging evaluation
data and higher accuracy on some challenge
sets, demonstrating the benefits of integrating
expert analysis during data collection.

1 Introduction

Many datasets for training and evaluating natu-
ral language understanding (NLU) models consist
of examples written by non-expert crowdworkers.
While it is convenient and relatively inexpensive
to gather large datasets from non-expert crowd-
workers, the resulting datasets often suffer from
systematic gaps and artifacts. Through post hoc
analysis, experts have identified many such prob-
lems and found that augmenting datasets with tar-
geted examples can mitigate these issues (Yanaka
et al., 2019; Min et al., 2020). Though non-expert
crowdsourcing often produces flawed data, con-
cerns about scalability and crowdworker diversity
mean there is often no viable alternative. With this
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Figure 1: The three protocols compared in this study.
Each crowdworker participates in only one protocol.

in mind, we investigate how to leverage expert lin-
guistic knowledge during writing and annotation by
having linguists dynamically identify artifacts and
gaps in the data, then communicate with non-expert
crowdworkers to instruct them towards strategies
that address issues as they arise.

We focus on natural language inference (NLI;
Dagan et al., 2006, i.a.), a task where the goal is
to predict the label (ENTAILMENT, CONTRADIC-
TION, NEUTRAL) that reflects the relationship of a
hypothesis to a premise. For example. given the
premise Jenny loves all animals, the hypothesis
Jenny loves cats is an ENTAILMENT, and Jenny
hates dogs, a CONTRADICTION. We choose NLI
because it is among the best-studied NLU tasks,
with demonstrated value (e.g., in pretraining (Clark
et al., 2019)), but also multiple well-documented
data quality issues that arise in crowdsourced data
collection, many of which can be traced to a given
heuristic. Because these heuristic-based issues are
prevalent, we focus on NLI with the aim that our
methodology can inform data collection for new
tasks in which there are fewer known heuristics.

Previous efforts to develop more effective NLU
data collection protocols have been limited in their
ability to assess the efficacy of their interventions,
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Text: They inhabit the near-boiling water of geysers in Yellowstone, and the even
hotter water in volcanic vents on the ocean floor.

[0 The definitely correct sentence does not reuse nouns, verbs, adjectives, or adverbs
from the text ($0.10)

e Your definitely correct statement must not contain any of the following words:
there, can, may, might, some, people

Definitely correct st

[ |

O The maybe correct sentence does not reuse nouns, verbs, adjectives, or adverbs
from the text ($0.05)

e Your maybe correct statement must not contain any of the following words: often,
several, many, most, some, other, will

Maybe correct statement:

[ J

O The definitely incorrect sentence does not reuse nouns, verbs, adjectives, or ad-
verbs from the text ($0.05)
® Your definitely incorrect statement must not contain any of the following words:
any, never, no, nothing, not/n’t, only, always, all
Definitely incorrect t:

[ |

Figure 2: Round 5 HIT with the optional No Overlap
constraint shown.

as they often lack direct comparisons between dif-
ferent collection methods. We directly compare
three levels of expert involvement over five rounds
of data collection: (i) a baseline group with no
hands-on expert involvement (‘Baseline’), (ii) a
group that follows linguistically-motivated con-
straints developed by experts after each data collec-
tion round to target heuristic-based weaknesses in
the data (‘linguist-in-the-loop’ (LitL)), and (iii) a
group that extends the LitL protocol to add direct
interaction with the experts, including individual-
level discussion about the task, on the chat plat-
form Slack (‘LitL Chat’). These three protocols are
shown in Figure 1, and a task example with one of
the constraints is shown in Figure 2.

Qualitatively, examples in each protocol appear
equally free of noise (incorrect labels, typos, etc.),
and lexical diversity increases in later rounds for
protocols with linguist intervention.! We find that
while expert involvement (LitL and LitL. Chat) does
not lead to better accuracy on adversarial examples
or out-of-domain datasets, it does reduce the im-
pact of the identified artifacts and results in a more
challenging final dataset, with model performances
that are 5 points lower on validated data compared
to Baseline. Surprisingly, we find no benefit to
providing a chatroom for crowdworkers to interact
directly with linguists. We recommend including
expert analysis during data collection so the expert
can address artifacts as they are identified.

! Appendix E contains a sample of validated examples.

2 Related Work

NLI Data Collection Methods Large-scale
human-elicited datasets include the Stanford Nat-
ural Language Inference Corpus (SNLI; Bowman
et al., 2015), the Multi-genre Natural Language
Inference Corpus (MNLI; Williams et al., 2018),
the Chinese OCNLI corpus (Hu et al., 2020), and
Adversarial NLI (ANLI; Nie et al., 2020). All
four datasets use non-expert crowdworkers to write
hypotheses and annotate labels from pre-defined
short texts, though only OCNLI and ANLI add
interventions to increase data diversity. In OC-
NLI, language-studies students write hypotheses in
different data collection rounds with instructions
for avoiding known artifacts. ANLI uses a human-
and-model-in-the-loop procedure to elicit examples
that are progressively more difficult for their model,
resulting in a dataset with a large human—-model
performance gap, though identifying the cause for
model failure is left up to the discretion of the
worker.

Efforts to improve on sentence writing tasks for
NLI have yielded mostly negative results in head-
to-head protocol comparisons. In an experimental
comparison on different NLI crowdsourcing pro-
tocols, Vania et al. (2020) find that automatically
selecting premise-hypothesis pairs for label anno-
tation does not yield a better dataset compared to a
baseline sentence writing protocol. Bowman et al.
(2020) compare interventions aimed at improving
NLI writing, using protocol variants that constrain
the worker’s task, but they see no improvements in
transfer learning results compared to their baseline.

Artifacts in NLI Data Several studies have iden-
tified artifacts in NLI datasets that the models
trained on them subsequently learn (often robustly).
Statistical regularities in the hypothesis can allow
models to assign the correct label when trained on
hypothesis-only input, even though the intended
task reflects the relation between the hypothesis
and premise (Poliak et al., 2018; Gururangan et al.,
2018, i.a.). High lexical overlap between a premise
and hypothesis is associated with a greater prob-
ability of the label being ENTAILMENT (McCoy
et al., 2019; Naik et al., 2018). Additional issues
in trained models suggest the presence of gaps that
are harder to observe directly: Sinha et al. (2021)
note the lack of syntactic understanding in NLI
models as one such example, demonstrating that
models often ignore syntactic information entirely.
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These diverse artifacts make NLI a good test case
for protocols designed to assess issues as the data
is collected.

Methods for Filling the Gaps in Datasets To
collect challenging examples for NLU tasks, re-
searchers have explored altering labeled data to cre-
ate targeted or adversarial examples. Kaushik et al.
(2020) have crowdworkers make minimal edits to
hypotheses to align with a revised label. Gardner
et al. (2020) create contrast sets for evaluation by
having experts alter already-annotated examples
such that the resulting label changes. Wei and Zou
(2019) use simple automatic data manipulations
to augment datasets for several text classification
tasks, resulting in more robust models. More lin-
guistically sophisticated manipulations have been
used to augment MNLI to improve monotonicity
reasoning (Yanaka et al., 2019) and to mitigate the
lexical overlap heuristic (Min et al., 2020). These
methods are applied after data collection is com-
plete, so it is an open question if the gaps they
identify in a final dataset would have been avoid-
able if addressed during data collection.

Similar to our approach, OCNLI’s instructions
nudge writers towards writing examples that ad-
dress known artifacts. They find that encouraging
the writers to follow constraints, such as avoid-
ing negation in a CONTRADICTION label, results
in a harder dataset. We expand on this work by
introducing a wider range of constraints and assess-
ing their effects throughout data collection. Our
approach is also similar to Vidgen et al.’s (2021)
human-generated hate-speech dataset. They intro-
duce pivots during data collection in which they
instruct crowdworkers about how to write in ways
that fool their model. We expand on their method
by qualitatively assessing the crowdworkers to iden-
tify issues specific to our data as it is collected.

Expert Interaction with Crowdworkers Tang
et al. (2019) report that direct communication
among crowdworkers leads to improved task perfor-
mance on image labeling, optical character recogni-
tion, and audio transcription. This suggests that col-
lecting higher quality data is possible when work-
ers have real-time group interaction. Other studies
have reported that interaction among crowdwork-
ers is an effective tool for limiting some forms of
bias and increasing accuracy (Drapeau et al., 2016;
Schaekermann et al., 2018). In a different strat-
egy, Roit et al. (2020) give crowdworkers detailed

feedback during training, then select only a small
number of those workers for the larger task, front-
loading the work of the experts and relying on the
selected workers to perform the task consistently.

Despite the potential benefits of real-time inter-
action between crowdworkers and experts, there
has not yet been a direct comparison of protocols
that differ based on this variable. To our knowledge,
this study is both the first to test the effect of this
interaction and the first head-to-head experimental
assessment of human-in-the-loop data collection
methods, allowing us to make conclusions about
the causal effects of the different interventions com-
pared to a baseline.

3 Data Collection

Task Description Our task is modeled on
MNLTI’s data collection procedure. We present
workers with a text, for which they write statements
they consider definitely correct, maybe correct, and
definitely incorrect. Each round of data collection
creates 3,500 examples, and we collect data over
five rounds. Following each round of sentence writ-
ing, crowdworkers validate 500 of the examples
from their protocol. We collect four validations for
each of these example and use these labels plus the
original one to assign a gold label based on major-
ity vote. Examples for which no gold label can be
assigned are removed from the data. We use the
validated data to evaluate our models and the unval-
idated data for training. Workers with a validation
rate below 70% or whose validation responses fail
to match the gold label at least 70% of the time are
subject to disqualification. Throughout the study,
we disqualified three workers from Baseline, three
from LitL, and two from LitL Chat.

Pay Structure To retain crowdworkers for all
five rounds, we increase the base pay of $1/HIT?
by $0.05 each round and pay a $20.00 bonus af-
ter the last round. To ensure we collect sufficient
examples from each worker, we award a bonus
worth 10% of base pay for reaching milestones of
10, 50, and 100 HITs each round. To encourage
workers to write high-quality examples, we pay a
$5.00 bonus each round to workers with over 25
HITs and at least a 95% validation rate. We esti-
mate that, with bonuses, a worker who completes
70 HITs per round with a high validation rate will
earn $81 in Round 1 (~$16/hr) and $95 in Round

2HIT’ stands for ‘Human Intelligence Task.” Each HIT is
a single unit that a worker accepts via the online interface.
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5 (~$19/hr). Workers in LitL and LitL. Chat earn
additional bonuses for completing challenge op-
tions ($0.05-$0.10), and workers in LitL. Chat earn
bonuses for participation in the chatroom ($1.50 for
any engagement, $10.00 for active engagement).

3.1 Crowdworker Recruitment

We use a pre-test to recruit workers via Amazon
Mechanical Turk (MTurk). The pre-test is open to
workers in the United States with approval rates at
or above 98% and more than 1000 HITs approved.
The pre-test is a sentence-writing task where work-
ers see a premise and write hypotheses under each
of the three NLI labels. To assess if workers can
follow more complicated instructions, they also
write one entailed sentence that uses a conjunction
and one neutral sentence that does not re-use any
words from the text.

We collect responses from 155 crowdworkers,
of whom 145 indicate interest in completing future,
similar HITs. From those 145, we read their re-
sponses and exclude 24 for failing to adequately
complete the task (many due to responses that do
not follow instructions). The remaining 121 crowd-
workers are retained and split between the three
experimental protocols in a pseudo-random way
such that (i) the three workers who asked not to
participate in a chat forum are placed in the Base-
line or LitL protocol,® and (ii) groups are matched
equally for workers’ initial skill level based on a
4-point rating scale of their qualitative performance
on the pre-test. A total of 37 crowdworkers ulti-
mately participate in data collection in Baseline, 30
in LitL, and 32 in LitL Chat.

3.2 Writing and Label Annotation Details

Crowdworkers write examples and annotate labels
in five rounds, with each round lasting one week
and consisting of 1167 unique premises (result-
ing in 3501 examples). Between rounds, we con-
duct several planned diagnostics on our datasets to
monitor the impact of our intervention and inform
crowdworker feedback for the following round. All
three protocols were run completely in tandem so
that workers in the three protocols saw HITs be-
come available at the same time and were sent any

3Though a potential design confound, this was necessary
and had minimal effect. Requiring workers to sign up for a
third party service violates Amazon’s terms of service, so we
allow participants to opt out. Only three participants opted
out of the chat (two of whom dropped out after Round 1), and
many workers placed in a non-chat protocol had indicated a
willingness to participate in the chat.

emails or bonuses at the same time.

Writing Stage  Crowdworkers construct hypothe-
ses based on premises taken from the SLATE sub-
set of MNLI. SLATE hosts popular culture arti-
cles from the archives of Slate Magazine. After
Round 1, we exclude premises shorter than six to-
kens based on feedback from crowdworkers that
many of the very short premises are incomplete,
nonsensical, or confusing to write hypotheses for.

Diagnostic Stage After each round, we fine-tune
RoBERTa (Liu et al., 2019) models using data
collected up to that round. We then evaluate the
models on diagnostic examples from GLUE (Wang
et al., 2019) and HANS (McCoy et al., 2019). The
GLUE examples target different aspects of linguis-
tic reasoning including lexical semantics, predicate-
argument structure, logic, and world knowledge.
HANS tests for three shallow heuristics, including
lexical overlap between a premise and hypothesis.
We also train and evaluate RoOBERTa models us-
ing hypothesis-only input to assess artifactual cues
about the label present in the hypothesis (Gururan-
gan et al., 2018). Finally, we assess the distribution
of hypothesis lengths and the pointwise mutual
information (PMI) between each word in the vo-
cabulary and label. Hypothesis length does not
appear to differ by protocol or label, so it never
informs our constraints.

We use these diagnostics as well as qualitative re-
views of the data to devise linguistically-motivated
guidelines for the following round, allowing us to
adapt feedback for crowdworkers in a structured
way as the data is collected. This process is con-
ducted by five of the authors who have graduate-
level training in English syntax and semantics.

3.3 Constraints

Banned Words After Round 1, crowdworkers in
LitL and LitL Chat are instructed not to use certain
words when writing sentences for each label. We
identify 5-7 banned words after each round. We
use PMI to identify which words to ban under each
label, as words with high label PMI are a major
contributor to artifacts that allow for high perfor-
mance on hypothesis-only input. We observe high
PMI between existentials (e.g., there, some) and
ENTAILMENT, quantificational expressions (e.g.,
many, often) and NEUTRAL, and negations (e.g.,
not, never) and CONTRADICTION. Figure 2 shows
examples of the banned words during Round 5.
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Constraint  Premise Hypothesis Label  Attempt rate
LitL  Litl Chat

Hypernym or Does anyone know what happened to chaos? Whatever happened to the lack of order is E 228 237

hyponym certainly a mystery.

Banned word Inflation is supposed to be a deadly poison, Inflation is not supposed to be a useful E 437 277

in diff. label  not a useful medicine. medicine

Temporal John Kasich dropped his presidential bid. They said that earlier, John Kasich had E 341 100

reasoning dropped his presidential bid.

Synonym or 2) This particular instance of it stinks. This instance is perceived to be a good C 395 245

antonym thing.

All overlap News argues that most of America’s 93 mil- News argues that volunteers aren’t doing E 21.8 304
lion volunteers aren’t doing much good. much good.

Register First, the horsemen brought out a teaser Teaser horses are commonly thought to be N 253 150

change horse. both entertaining and tragic.

No overlap and she doesn’t floss while driving. The woman has an automated car. N 292 223

Relative Sun Ra’s spaceships did not come, as it were, The spaceships that belong to Sun Ra came C 350 243

clause out of nowhere. out of nowhere

Reverse argu-  After an inquiry regarding Bob Dole’s ... It is illegal for Bob Dole to receive in- N 36.7 294

ment order quiries.

Grammar The Bush campaign has a sweet monopoly The Obama campaign had a sweet C 226 134

change on that. monopoly on that.

Sub-part He was crying like his mother had just wal- He cried a lot, as though he were walloped E 232 19.1
loped him. on his behind.

Background In both Britain and America, the term cov- The term generally applied to countries in E 329 159

knowledge ers nearly everybody. two opposite sides of the world.

Table 1: Sentence pairs displaying each challenge option. Where applicable, relevant contrasts are bolded. Exam-
ples are randomly drawn from data that passed validation on the constraint with the restriction that both sentences
be fewer than 80 characters (~ 32% of the data). The last column shows the percentage of the challenges attempted.

Challenge Options We use constraints, framed
as challenge options to the worker, to target heuris-
tics that we identify in the data during the diag-
nostic state. By explicitly telling workers to avoid
these heuristics, we aim to lower their contribution
to any artifacts in the final dataset. We determine
constraints through qualitative assessment of the
data, taking into consideration syntactic diversity,
lexical choice, and semantic or world-knowledge-
based reasoning patterns. For example, after notic-
ing that the majority of hypotheses relied only on
the stated information from the premise in Round
1, we encouraged workers in Round 2 to focus on
“background knowledge” (last example in Table 1)
that they know to be true, but isn’t explicitly stated,
such as the knowledge that Britain and America are
countries on opposite sides of the world. The 12
challenge options are defined in Appendix A, with
examples of each in Table 1. After Round 1, each
HIT in LitL and LitL Chat lists one constraint. As-
signment of the constraints was completely random
and not based on features of individual premises,
but each constraint was presented as a possible op-
tion an approximately equal number of times across
HITs. This task is optional for the workers, as some
constraints are incompatible with some examples.

3.4 Protocols

Baseline Protocol Our Baseline protocol follows
the task description in §3 and does not include any
direct expert involvement. Crowdworker perfor-
mance is only measured via validation.

Linguist-in-the-Loop (LitL) Protocol LitL ex-
tends the Baseline protocol with constraints (de-
scribed in §3.3). As the constraints make the task
more difficult, we award bonuses of $0.05-$0.10
per example to workers who indicate that they at-
tempted the challenge option. The bonus amount
is determined by the linguists’ assessment of the
difficulty; for example, the No Overlap constraint
is more difficult to apply in entailment examples
than neutral, so a No Overlap entailment example
has a higher bonus. During validation, crowdwork-
ers also label whether each example adheres to the
challenge constraint (the interface is shown in Ap-
pendix F). For any worker whose validation rate on
the challenges is below 50%, we contact them to
explain the source of their errors.

LitL Chat Protocol We provide direct commu-
nication with expert linguists on Slack. We en-
courage workers to ask task-specific questions for
anything they find challenging or confusing, and
we encourage active discussion to help workers
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better understand the task. Most questions seek
to clarify if a certain strategy ‘counts’ as adhering
to a constraint. Feedback given via email in the
LitL protocol is instead given via direct message
in Slack, unless the worker initiates contact over
email, as was sometimes the case for logistical is-
sues. Additionally, at the beginning of Rounds 3-5,
we identify creative examples written in a previous
round and post them to Slack for inspiration, with
a brief comment. These interactions on Slack are
the only difference between the LitL and LitL Chat
protocols.

3.5 Crowdworker Performance

Inter-Annotator Agreement Baseline shows
the highest inter-annotator agreement on NLI labels
with a Krippendorf’s o of 0.709, while LitL and
LitL Chat have 0.655 and 0.640, respectively. All
three meet the standard threshold for “substantial
agreement.” We calculate Krippendorf’s o because
it is both appropriate for nominal data and robust
to missing values (Zapf et al., 2016), i.e., cases
where not every worker rates every item. Valida-
tion rates for the NLI labels are 93.7% for Baseline,
89.76% for LitL, and 91.36% for LitL Chat. LitL.
and LitL. Chat may have slightly lower validation
rates than Baseline because the constraints lead to
challenging examples, making the validator’s task
more difficult.

Frequency of Constraint Attempts The at-
tempt rate of bonus challenges differs between con-
straints (Table 1). Overall, more abstract categories
(e.g., background knowledge) are attempted less
often than more concrete constraints. There are
also differences by protocol, as LitL has a higher
attempt rate than LitL. Chat, possibly because work-
ers in LitL. Chat are more selective in identifying
appropriate examples to apply the constraints to.
Supporting this potential explanation, we find that
LitL Chat had higher constraint validation rates
than LitL in Rounds 4 and 5, indicating that work-
ers in LitL. Chat adhered to the constraints more
accurately after practice.

Use of Slack The total number of active workers
on Slack fell from 23 in Round 1 to just 16 by
Round 4.* The total number of messages sent also
fell with each round, going from about 215 posts
and replies in Round 1 to 162 in Round 4. It may

“Round 5 was even lower, but spanned the US Thanksgiv-
ing holiday, which likely artificially lowered participation.

be that workers rely on the chat less as they become
more familiar with the task. Though only about
half of the workers in LitL. Chat participated in
the Slack channel, the workers who were active on
Slack also completed a high number of HITs; if the
chatroom has a reliable effect on the data created
by workers using it, then we expect this effect to
still be measurable. Further, though we heavily
incentivized use of the Slack channel, the fact that
many workers still chose not to use it reveals that
this low participation rate may be a typical outcome
on micro-task platforms such as MTurk.

4 Modeling Experiments

For each round and protocol, we collect 3.5k ex-
amples and use the 500 validated examples as val-
idation data and the remaining 3k for training.’
We then fine-tune a RoBERTay,, (Large) model
on all the data accumulated up to that round. For
example, the Round 2 model is trained on exam-
ples from Rounds 1 and 2 with training and vali-
dation sizes of 6k and 1k, respectively. We also
fine-tune a ROBERTar,; model previously trained
on MNLI (RoBERTay ¢ vnL1), though results are
consistently similar to RoOBERTay,, (details in Ap-
pendix B). After each round, we evaluate our mod-
els on the diagnostics described in §3.2.

Estimating Confidence Intervals We estimate
average accuracy and confidence intervals by fine-
tuning 10 additional models with a sample of 90%
of the collected training data. We use the best hy-
perparameters for each protocol and round from
our hyperparameter search described below. In
sampling the data, we first sort the data by crowd-
worker and successively remove 10% of examples,
allowing us to study variation among workers while
controlling for training set size. This design choice
also helps account for the potential issue of over-
estimating performance due to having the same
writers for the training and test sets (Geva et al.,
2019), as the successive removal of 10% of the
training data simulates the removal of all or most
of a single worker’s writing from the train set, but
not the test set, similarly in all protocols.

Implementation To fine-tune our models, we
perform a grid search over learning rate € {5e —
6,1le—5,2e—5,3e—5} and batch size € {16, 32}
and use the hyperparameters yielding the best in-

SData and code are available at https://github.com/Alicia-
Parrish/ling_in_loop
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Figure 3: Performance of RoOBERTar,, fine-tuned on
data collected through different protocols on validation
data from the same protocol, configured normally (top)
or using only the hypothesis (bottom). For each round,
we include training and validation data accumulated up
to Round n. The dashed black line marks the average
majority class baseline across protocols. Error bars rep-
resent bootstrapped confidence intervals.

domain validation accuracy. We train for 20 epochs,
since each round of data collection yields 3k train-
ing examples, and longer training has been shown
to help smaller training sets (Zhang et al., 2020).
Our code is based on jiant (Phang et al., 2020),
which uses PyTorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2020).

4.1 Results

Evaluation Set Difficulty We test whether data
collected with expert intervention leads to a more
challenging test set by comparing in-domain perfor-
mance for each protocol for ROBERTay, g, using the
validated evaluation data accumulated up to that
round (Figure 3). This allows us to study the charac-
teristics of an iteratively collected corpus using cu-
mulative rounds in each protocol. We see that LitL
and LitL Chat performance falls below Baseline af-
ter the introduction of linguistically-informed con-
straints in Round 2. Figure 5 shows a similar trend
— performance from RoBERTa; ¢ fine-tuned only on
MNLI on the validation sets decreases or remains
lower for LitL and LitL Chat, while performance
on Baseline increases as more data is collected. As
we evaluate on validated examples, it is unlikely
that this lower performance is due to noise in the
data. Rather, these findings indicate we are able to
create more challenging evaluation data using the
LitL and LitL. Chat interventions, with LitL slightly
outperforming LitL Chat.

Hypothesis-Only  Performance We test
whether the data collected with linguist inter-
vention leads to a reduction in artifacts that
contribute to high performance on hypothesis-only
input. We compare accuracy for each protocol
for ROBERTay,, trained on hypothesis-only input,
where lower accuracy suggests fewer artifacts in
the data (Figure 3). Both LitL and LitL. Chat show
lower accuracy than Baseline, and this gap widens
in later rounds. To assess whether this widening
from Round 1 to 5 is statistically reliable, we
conduct a two-way ANOVA of round by protocol,
which yields an interaction (p = 0.049), indicating
that while hypothesis-only performance increases
for all protocols with more training examples, this
increase in artifacts is significantly reduced in
LitL and LitLL Chat compared to Baseline. The
lower rate of artifacts in LitL and LitL. Chat may
be due to the lower average word-label PMI,
which increases over rounds for Baseline while
consistently falling in both LitL and LitL Chat.
However, for all protocols, accuracies are still
above chance performance, leaving room to further
reduce these artifacts.

Diagnostic Sets We evaluate whether fine-tuning
on data collected with linguist involvement leads to
a model that has higher performance on challenge
test sets. Figure 4 shows model performance on the
GLUE diagnostic set and HANS non-entailment
examples. A two-way ANOVA of round by pro-
tocol does not reveal any significant interactions
or main effects for GLUE. For HANS, we see
higher accuracy from LitL and LitL. Chat for Lexi-
cal Overlap and Subsequence examples in Rounds
4 and 5 after introducing No and All Overlap con-
straints, though the interaction is only significant
with ROBERTaLngMNLI (Peorr = 0.0147 and peopr
= 0.0119 for Lexical Overlap and Subsequence,
respectively, after applying Bonferroni correction
to correct for 7 comparisons against the same null
hypothesis (Cabin and Mitchell, 2000)), despite the
visually larger accuracy increases in ROBERTay .
This is likely due to greater variance in the data,
indicating that there may be strong effects of indi-
vidual workers on lexical overlap and subsequence
biases. Performance on HANS entailment exam-
ples are in line with McCoy et al. (2019) with me-
dian accuracies of 90% or higher (Appendix D).
To investigate if lexical overlap rates differ by

6 A two-way ANOVA again reveals a significant interaction
of protocol by round (p = 0.022) on word-label PMI values.
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Figure 4: Performance of RoBERTar, fine-tuned on data collected through different protocols on the GLUE
diagnostic set (top) and HANS non-entailment examples (bottom). Error bars represent bootstrapped confidence
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Figure 5: Average performance of RoBERTay,, fine-
tuned on MNLI (not our data) over 10 random restarts
on validated examples accumulated up to Round n. Er-
ror bars represent bootstrapped confidence intervals.

protocol, we assess classification accuracy for a
linear model trained only on the example’s overlap
rate, defined as the proportion of words in the hy-
pothesis that are also in the premise. We observe
that any artifactual cues introduced from overlap
rate are strongest in the Baseline protocol, which
performs 9.52 points above majority class guessing,
while LitL and LitL Chat perform 8.06 and 6.88
points above majority class guessing, respectively.

Held-Out Evaluation Sets After the final round
of data collection, we test whether models fine-
tuned on data collected with linguist involvement
show better out-of-domain performance by eval-
uating models trained on our data on MNLI-
mismatched’ (Williams et al., 2018) and ANLI
(Nie et al., 2020). Evaluating on held-out sets al-
lows us to test if our interventions lead to increased
model accuracy on datasets generated through dif-
ferent protocols or from different sources while

"The MNLI corpus includes two evaluation sets, MNLI-
matched and MNLI-mismatched, with examples sourced from
different genres. We evaluate on MNLI-mismatched, as we
source our premise sentences from an MNLI-matched genre.
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Figure 6: Performance of ROBERTay, fine-tuned on
data collected through different protocols on MNLI-
mismatched (top) and ANLI (bottom). Error bars rep-
resent bootstrapped confidence intervals.

ensuring that we do not overly tune our feedback to
these benchmarks. Figure 6 shows that there is lit-
tle difference in ANLI and MNLI-mismatched per-
formance between models trained with data from
different protocols. The high variability in Round
5 accuracy for LitL Chat may be due to artifacts
from just one or two crowdworkers, highlighting
the importance of estimating individual workers’
effects on a final dataset. We perform a more gran-
ular analysis on ANLI examples using the tags
from Williams et al. (2020) and again find no clear
effect of protocol (details in Appendix C). Even
though our interventions reduce some artifacts in
the hypothesis and improve model performance on
HANS non-entailment examples, we have no evi-
dence that these benefits transfer to out-of-domain
examples or examples from adversarial protocols.
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5 Considerations in Choosing a Protocol

In broad terms, we observe a benefit from dy-
namically updating instructions and incentives to
address artifacts identified during data collection.
This procedure increased the average cost per ex-
ample by 4.1% over an average base cost of $0.367.
We offered $0.05 to $0.10 per example, but given
the somewhat low rate at which crowdworkers
chose to attempt the challenges (28.6% and 21.2%
for LitL. and LitL. Chat, respectively), we find it
likely that increasing the amount offered per exam-
ple would have increased participation, potentially
also increasing the benefits observed in model per-
formance. In an exit survey, over 50% of workers
in LitL. and LitL. Chat indicated that they would
have completed more optional challenges if the pay
had been higher. We recommend that future work
using challenge options offer bonuses worth at least
15% of the base pay.

Cost of Linguist Involvement The iterative
analyses and updates to the guidelines in LitL and
LitL. Chat protocols took 10-12 hours of expert
time per week, compared to one hour per week
to monitor task completion in Baseline. The use
of Slack nearly doubled the expert time needed,
adding an additional 8-10 hours each week for
LitL Chat over LitL, even after taking into account
the slight reduction in time spent replying to email
questions that shifted to Slack. If we value linguist
time at $40/hr, this raises the final price per exam-
ple to $0.378 in Baseline, with LitL 31.2% higher,
and LitL Chat 58.5% higher.

Qualitative Considerations Though many
crowdworkers in LitL. Chat expressed that they
enjoyed the extra communication, crowdworkers
from LitL and LitL. Chat rated the task as ‘more
enjoyable’ than typical MTurk tasks at nearly
identical rates (85.2% and 87.5% respectively,
compared to 67.7% in Baseline). = Workers’
ratings of the difficulty of writing and validation
tasks were also nearly identical among the three
protocols. We therefore find that, for typical
data collection on MTurk, the addition of a chat
platform to facilitate worker-expert interaction is
ineffective at improving data quality.

6 Conclusion

Having experts review and analyze incoming
crowdsourced data during data collection allows
those experts to identify new areas of weakness at

each round and update guidelines and constraints
while there is still time for those interventions to
lessen the impact of artifacts in the data. Though
we do not observe any increases in out-of-domain
accuracy, linguist involvement leads to more chal-
lenging evaluation data and higher accuracy on
some challenge sets in HANS. One-on-one interac-
tions between experts and crowdworkers, though
reported in some studies as being beneficial for
more challenging tasks, has no measurable effect
in our study. Future work could extend the expert-
involved protocol to identify additional interven-
tions that would lead to datasets with better gener-
alizability.
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7 Ethical Considerations

Typical MTurk tasks pay well below a living wage
for the US, with median earnings at only about
$2/hr (Hara et al., 2018). Though we target a fair
wage of $15/hr, MTurk as a whole is not designed
to ensure fair pay for its workers. We detail our
estimates of worker pay to make it clear that we
ensured a fair rate, but we recognize that any work
using this platform has the potential to encourage
more ‘typical’ low-paying tasks. Additionally, we
did not control for crowdworker demographics nor
did we explicitly give workers instructions about
avoiding social biases in their writing. There is
therefore no reason to expect that training a system
on data collected via the protocol we advocate for
here will result in a model that is more fair.
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A List of Challenge Options

For each challenge option, we present workers with
the name of the constraint and a brief explanation
of what it means. The brief explanation is fol-
lowed by a longer 2-3 sentence explanation that
includes a concrete example, such as showing what
a relative clause is or giving an example of a hyper-
nym/hyponym pair.

Lexical Options

* Temporal reasoning (Round 2): The hypoth-
esis should reference two separate time points.

¢ Restricted word in different label (Round
2): The hypothesis should contain a word that
is banned for a different label.

* Hypernym or hyponym (Rounds 2 & 3):
The hypothesis should contain a hypernym
or hyponym (a more or less specific word or
phrase) of a word in the premise.

¢ Synonym or antonym (Rounds 2 & 3): The
hypothesis should contain a synonym or
antonym of a word in the premise.

* No overlap (Rounds 4 & 5): The hypothesis
should use none of the content words appear-
ing in the premise. Content words are nouns,
verbs, adjectives, and adverbs.

* All overlap (Rounds 4 & 5): The hypothesis
should only use content words that appear in
the premise. Introducing new function words
is allowed, as is changing grammatical fea-
tures of the content words.

Syntactic Options

* Relative clause (Round 2): The hypothesis
should contain a relative clause. A relative
clause is a noun that is described by a phrase
that begins with words like who or that.

* Reverse argument order (Rounds 2 & 3):
The hypothesis should contain a pair of noun
phrases from the premise in reverse order.

e Grammar change (Round 4): The hypothe-
sis should change a grammatical element of
the premise, such as tense, number, or gender
on a pronoun.

World Knowledge Options

* Background knowledge (Rounds 2 & 4):
The hypothesis should target background facts
or general knowledge that workers can infer
from the premise.

* Sub-part (Round 3): The hypothesis should
refer to something that is a part of an entity in
the premise. For example, sub-parts of a bus
include its steering wheel and engine.

* Register change (Round 5): The hypothesis
should differ from the original text in its level

of formality.

B MNLI-Pretrained RoBERTa Results
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Figure 7: Performance of RoBERTarq N1 fine-
tuned on data collected through different protocols on
in-domain validation data trained with either the full ex-
ample (top) or hypothesis-only (bottom) input. Higher
hypothesis-only accuracy indicates a greater effect of
artifacts. For each round, we include training and vali-
dation data accumulated up to Round n. Dashed black
line marks average majority class baseline across pro-
tocols. Error bars represent bootstrapped confidence
intervals.

We fine-tune a RoOBERTar,; model previously
trained on MNLI (RoBERTar,¢ vn11) On the same
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Figure 8: Performance of RoBERTarq nvnr1 fine-

tuned on data collected through different protocols on
MNLI-mismatched (top) and ANLI (bottom). The
black line for MNLI-mismatched and ANLI indicates
performance of ROBERTay,; fine-tuned on MNLI alone.
Error bars represent bootstrapped confidence intervals.

sets of training data used for the RoBERTay,, anal-
yses. We find similar trends to those from fine-
tuning ROBERTay; and report them in the analo-
gous plots here.

Figure 7 shows the performance of
RoBERTar g viNg1 fine-tuned  using  either
the full example or hypothesis-only input. For both
types of input, we see a performance gap between
Baseline and our intervention protocols. We
perform a two-way ANOVA of round by protocol
to see if this performance gap significantly changes
between rounds 1 and 5 and find a significant
interaction (p < 0.001 for both full example and
hypothesis-only input). For the full example input,
this indicates that our interventions create more
challenging evaluation data. For hypothesis-only
performance, Baseline performance increases
while LitL and LitL Chat remain relatively
unchanged, indicating that our interventions
mitigate stronger hypothesis-only artifacts in NLI
datasets as new data is collected.

Figure 8 shows the performance of
RoBERTar g vNL1 fine-tuned on each proto-
col on MNLI-mismatched and ANLI. We find no
significant difference among protocols for either
held-out set.

Figure 9 shows the performance of
RoBERTar g vnp1  fine-tuned on data from
each protocol on the GLUE diagnostic set and
HANS non-entailment examples. For the GLUE
diagnostic set, we do not find any significant
difference among protocols. For the HANS

examples, we perform a two-way ANOVA of
round by protocol and find significant interaction
terms for all HANS categories (pcorr = 0.0126,
0.0147, 0.0119 for Constituent, Lexical Overlap,
and Subsequence, respectively, after applying
Bonferroni correction for 7 tests against the
same null hypothesis). For Lexical Overlap
and Subsequence, these findings indicate our
interventions lead to higher accuracy compared
to Baseline. For the Constituent examples, the
data from each protocol is especially noisy, with
larger error bars and more dramatic changes in
performance between rounds; it is unclear whether
this is due to our protocol or the types of examples
that the Constituent subset of HANS uses.

C ANLI Performance by Reasoning Type

We test whether any of the reasoning tags in
ANLI (Williams et al., 2020) reveal an area
where data collection with linguist involvement
leads to improved model performance. Figure
10 shows the performances of RoOBERTar,, and
ROBERTar ¢ vin1 fine-tuned on our data and
tested on ANLI by reasoning tag. Similar to our
findings in Figures 6 and 8, we do not find any in-
creases in accuracy from our interventions for any
reasoning tags.

D HANS Entailment Peformance

On the entailment subset of HANS, models typi-
cally achieve accuracies near 100% McCoy et al.
(2019). This is because the three heuristics in
HANS target instances that lead to a greater like-
lihood of the model choosing ENTAILMENT com-
pared to NEUTRAL or CONTRADICTION, and thus
the non-entailment portion of HANS is the chal-
lenge set. Figure 11 shows the performance of
RoBERTar,; and ROBERTay ¢ vini 1 fine-tuned on
our data and tested on HANS entailment exam-
ples. For RoBERTay ¢, variability in performance
reduces in later rounds as the training set size grows
with 3k examples per round, though median per-
formances for all rounds are still 90% or higher.
For RoBERTar ¢ MiNLI, accuracies are near 100%,
consistent with McCoy et al.’s findings.

E Examples of Collected Data

In order to show a representative sample of the val-
idated data, we randomly sample premises from
Round 5 data for which annotations exist in all
three labels for each protocol (roughly 45% of that
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round’s validated data). Five such examples are
presented in Table 2. Example complexity varies
widely from example to example, and it is not
always the case that the example in Baseline is
the simplest one. For premise 4, for example, the
Baseline crowdworker has written very complex
examples that require abstract reasoning about the
knowledge that Harris has. For this same premise,
the LitL. Chat crowdworker has also created a tricky
set of examples, in this case ones that do not re-use
any words from the original premise.

In premise 3, we see an example where the LitL
Chat crowdworker uses the idiom seen better days
for the entailment example, in place of just using a
different lexical item for fough as the crowdwork-
ers in the other two protocols do. Use of idioms
was suggested to workers in LitL. and LitL Chat
as one way to write more creative examples. In

premise 5, we see that the LitL crowdworker has
written a challenging contradiction example, one
which requires knowledge that if help is needed on
a project, that means it must not be complete.

F Validation Task Interfaces

Figure 12 provides an example of the validation
interface used by the Baseline protocol throughout
the study, and by LitL and LitL. Chat in rounds
1 before constraints were introduced. Each HIT
contained six such examples.

Figure 13 provides an example of the validation
interface used by LitL and LitLL Chat in rounds 2
through 5. Each HIT contained six such examples.
The only difference between this and Figure 12 is
that, in these HITs, workers are also prompted to
validate whether the constraint was followed for
that example.
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Text: Trump, who said he would decide by March whether to run for
president, would likely spend 100millionto200 million of his own
money on a campaign.

Statement: Trump was considering a presidential campaign.

The statement about the text is:

Definitely correct ~ Maybe correct  Definitely incorrect
o o o

Figure 12: Example question from a validation HIT
used for Baseline throughout the study, and for LitL
and LitL Chat in round 1 before the introduction of
challenge options.

Text: The story also made the front page of the New York Times and
the Financial Times of London, which said that more than 10,000 mem-
bers of a mystic cult called Fa Lun Gong caused acute embarrassment
to security forces by virtually surrounding the compound where China’s
leaders work.

Statement: Security forces were embarrassed by a cult in China.

The statement about the text is:

Definitely correct ~ Maybe correct  Definitely incorrect
o o o

For the statement above, does the following constraint apply the state-
ment relies on something that is not explicitly stated, but is part of com-
mon knowledge

Yes No
o o

Figure 13: Example question from a validation HIT
that includes validation of the challenge options. This
task was used with LitL and LitLL Chat after round 1,
once we had introduced challenge options into the task.
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Premise Label Hypothesis

Baseline LitL LitL Chat
(The Ramseys E Some people were skeptical ~ The Ramseys came up with  Some speculate that the
buried their of the Ramseys’ reasons for  a story to tell the mediathey = Ramseys worked out a story
daughter in Atlanta, going on vacation. didn’t do it. while on vacation.
then vacationed in N The Ramsey’s held a pri- The Ramseys had nothing  The Ramseys worked in At-
Sea Island, Ga.) vate funeral service for their  to hide. lanta.
This absence, some daughter.
speculate, gave the C The Ramsey’s daughter The Ramseys went into The Ramseys buried their
Ramseys time to joined them on their trip to  mourning after burying daughter in Sea Island, Ga.
work out a story to Sea Island. their daughter.
explain their
innocence.
Mr. Clinton rewards E Al Gore planned to run for ~ Mr. Gore lays the ground- By hiring Mr. Knight, com-
Mr. Knight for his president. work for his anticipated panies were listened to by
fund raising, Mr. presidential bid four years the administration.
Gore lays the from now.
groundwork for his N Companies were hopeful Mr. Knight get the adminis- The administration had
anticipated they could get Clinton to tration’s ear for companies been ignoring the compa-
presidential bid four further reduce corporate tax  that contribute to his fund nies up to this point.
years from now, and rates. raising.
the companies, by C Bill Clinton punished Mr. Mr. Clinton admonishes Companies were ignored
hiring Mr. Knight, Knight because of his fund  Mr. Knight for his fund rais- by the adminstration be-
get the raising efforts. ing. cause of the hiring of Mr.
administration’s ear. Knight.
And these are tough E Reviewers are going Reviewers are having a Reviewers have seen better
times for reviewers through difficult times. challenging time. days.
in general. N The recession is to blame  Times will only get tougher  Reviewers are still able to

for these tough times. for reviewers. get by.

C This is a great time to be a  Reviewers have rarely had  This have to be the best

reviewer. it SO easy. time to get into the review
game.

To some critics, the E The author argues that pimps like him have prof- An unsolved question in-
mystery isn’t, as some critics are incapable ited. volves the money making
Harris suggests, of understanding the role of a hustler.
how women pimps have played in the ex-
throughout history ploitation of women.
have exploited their = N If women are going to at- Pimps have exploited Reviewers are mainly con-
sexual power over tempt to exploit their sex- women who have more cerned with hustlers.
men, but how pimps ual power over men, then power than they think.
like him have come it is only natural for pimps
away with the profit. to emerge to oversee sexual

transactions.

C Harris does not understand Pimps  control  every An unsolved question in-
the means by which women  woman. volves the money wasting
have using sexual power in of a hustler.
order to exploit men.

We need your help E Next week, a new feature There have been other new  We are starting a new fea-

with another new will be introduced. features. ture next week.

feature that starts N This new feature focuses on ~ Help has been needed with ~ We are starting a new fea-

next week. cloud technology. previous features. ture next week that uses
maps.

C The new feature will start  The project is complete and ~ We have more help than we

six months from now.

currently unsupported.

need for the new feature
next week.

Table 2: Randomly selected examples from validation data showing typical writing from each protocol.
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