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ABSTRACT

Substantial efforts have been applied to engineer CA with desired
emergent properties, such as supporting gliders. Recent work in con-
tinuous CA has generated a wide variety of compelling bioreminis-
cent patterns, and the expansion of CA research into continuously-
valued domains, multiple channels, and higher dimensions com-
plicates their study. In this work we devise a strategy for evolving
CA and CA patterns in two steps, based on the simple idea that CA
are likely to be complex and computationally capable if they sup-
port patterns that grow indefinitely as well as patterns that vanish
completely, and are difficult to predict the difference in advance.
The second part of our strategy evolves patterns by selecting for
mobility and conservation of mean cell value. We validate our pat-
tern evolution method by re-discovering gliders in 17 of 17 Lenia
CA, and also report 4 new evolved CA and 1 randomly evolved
CA that support novel evolved glider patterns. The CA reported
here share neighborhood kernels with previously described Lenia
CA, but exhibit a wider range of typical dynamics than their Lenia
counterparts. Code for evolving continuous CA is made available

under an MIT License .
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1 INTRODUCTION

The anthropic principle has many variants in two categories: those
predicated on the universe being somehow fine-tuned to support
life (famously espoused by Barrow and Tipler [1]), and the incorpo-
ration of selection bias into reasoning about the universe, described
originally by Carter [4]. We can consider similar perspectives when
it comes to examining life-like capabilities in cellular automata
(CA).
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Von Neumann’s universal constructor CA was carefully designed
to support universal computation and construction [18], analogous
to the fine-tuning of strong anthropic principle variants. John H.
Conway had the opposite idea in developing his Game of Life.
Diligent engineering is not necessary: complexity alone is enough
for a good chance of being universal. Among objectives motivating
Conway’s search for complexity was that future states should be
difficult to predict [13, 26]. Life follows a simple set of birth and
survival rules on a binary rectilinear grid. A cell with exactly 3
live neighbors and state 0 becomes 1, or is born. Cells with state
1, and 2 or 3 active neighbors, stay in state 1, or survive. All other
cells transition to or stay in state 0. Life-like CA rules are typically
written in the Bx/Sy format, e.g. the rules of Life are B3/523.

A seminal discovery made early in the development of Conway’s
Life was a minimal mobile pattern called a glider [3]%. Gliders
quickly became the cornerstone of computational universality and
building computing machines in Life and other CA, and glider
discovery has been an important focus of CA research.

In this work we evolve continuous CA rules for being difficult to
predict halting (i.e. all cells go to 0), after a number of update steps.
We also evolve via selection for equal capability for simple halting
and persistence. A second stage of evolution rewards mobile pat-
terns in a given CA, as gliders are useful for building meaningfully
computational interactions and historically have been a proxy for
complexity and universality in CA.

We validate our glider evolution algorithm by re-discovering
gliders in previously described CA from the Lenia framework [5]),
and also report several new CA rule combinations that support
moving patterns.

2 BACKGROUND
2.1 Growth, Decay, and Complexity

Significant efforts have gone into categorizing or finding specific
characteristics of CA systems that underlie complexity and univer-
sal computation. These efforts seek to define what makes a complex
system ‘interesting’ and to predict whether they are capable of
universal computation by developing objective metrics or practical
heuristics

Wolfram proposed a classification scheme for 1D CA with subjec-
tive criteria intended to capture complexity and universality [29],
also applied to 2D CA [19]. Class I CA progress to a homogeneous
state, typically cells either all become quiescent or all active with a
uniform value. Class ITI CA settle into static or oscillating pattern
equilibria. Class III CA continuously generate chaotic patterns,

%In this work we use the term glider to refer to mobile patterns in general, also called
spaceships, as well as the original reflex glider from Life.
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Figure 1: Logical AND gate from Life glider streams. Clock-
wise from top left: input 00 yields output 0, input 01 yields
output 0, input 10 yields output 0, and input 11 yields output
1. This patterns was implemented in Golly [28]. The pattern
in the lower left is simply a reflector that orients the output
stream.

usually with relatively uniform statistical characteristics. Class IV
CA generate patterns with complex behavior.

Wolfram’s classification system is subjective and many inter-
esting and universal CA fall outside of Class IV [7, 11]. Eppstein
proposed alternative heuristics for predicting universality based
on simultaneous support for patterns that are mortal, i.e. support
patterns that vanish, and fertile, i.e. support patterns that escape
a bounding box[11]. A simple set of rules that supports patterns
that disappear as well as patterns that grow indefinitely was cited
as one of the original objectives in developing Life in Gardner’s
1970 article, and in later interviews with John H. Conway [13, 26].
We use vanishing and growth as the basis for fitness in our evolu-
tionary approach, approximating our real goal: complex CA that
support gliders.

2.2 Why Gliders?

An early discovery that solidified Conway’s Life as an interesting
automaton was the glider [3]. Gliders can be thought of as elemen-
tary units of information: a train of gliders encodes a stream of
digital information. Glider collisions can carry out computations
and make up the fundamental AND, OR, and NOT logic gates [3, 14],
such as the AND gate in Figure 1. As the authors of Winning Ways
put it, with basic logic gates and wires defined:

“From here on it’s just an engineering problem to
construct an arbitrarily large finite (and very slow!)
computer. Our engineer has been given the tools—let
him finish the job!" [3]

Computation is an interesting and useful characteristic of com-
plex systems like Life and, as implied in the name, the processes
of life have much in common with engineered computation [17].
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Living systems must sense, act on, and copy internal and/or exter-
nal information in order to be successful. Modern computational
resources have facilitated large scale simulation of continuous CA
that produce evocative bioreminiscent patterns, at the expense of
being somewhat more complicated than their discrete antecedents.

2.3 Continuous Cellular Automata

In addition to Life, CA systems have been developed with larger
neighborhoods [12, 21], higher dimensions [2, 6], and many other
extensions. While continuous CA have been developed and applied
for modeling tasks for several decades [22, 24, 25], recent work has
produced a plethora of bioreminiscent and aesthetically pleasing
dynamic patterns, particularly in the Lenia framework [5, 6].

Parsimony suggests we should prioritize minimally-complicated
CA systems that still fulfill desired objectives. Life is by some mea-
sures the simplest 2D CA in its class [20], and is Turing complete
[3, 23], as is the 1D elementary CA 110 [8]. Against the simplicity
and complexity of these precedents, do continuous CA offer novel
capabilities, or merely appeal to human pareidolia and aesthetic
sensibilities? There may indeed be a payoff to the complicated-ness
of continuous CA and their successors: self-organizing intelligent
agents, fully-embodied in self-consistent simulation.

Recent work made a nascent demonstration of such self-organizing
agents. Authors used gradient descent to train continuous CA up-
date rules, generating robust mobile patterns that survive inter-
actions with immutable obstacles [15]. Simulated environments
are typically distinct from agents in reinforcement learning and
evolutionary optimization, even when the environment and the
agent are both modeled as different types of CA as in [9]. Future
work stemming from continuous CA may find systems that exhibit
autopoietic selection and robustness (and eventually learning) with
no externally imposed evolution or gradient-based optimization.

3 METHODS
3.1 Glaberish Framework

We use a continuous CA framework called Glaberish [10]. Based on
Lenia, Glaberish extends Lenia’s update function by splitting the
single growth function G from Lenia into genesis and persistence
functions Ggen, and P, respectively, analogous to the Birth and
Survival rules in Life-like CA [13]. The Glaberish update is shown
in Equation 1.

Appar = p (As +dt - [(1 - Ap) - Ggen(n) + As - P(n)]) (1)

Where Ay is the grid state at time ¢, n is the result of a neighbor-
hood convolution K * A;, dt is the step size, and p is a squashing
or clipping function that keeps cell values between 0 and 1.

We also consider several CA from the Lenia framework. Lenia
differs from Glaberish in that the update is a single growth function,
regardless of current cell value. The equation for the Lenia update
is shown in Equation 2.

Apvdr = p (A +dt - G(n)) ()
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Figure 2: Selecting for halting unpredictability to search for
complex systems capable of supporting life-like patterns.
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3.2 Evolving Halting Unpredictability in
Continuously-Valued Cellular Automata

Our approach evolves CA update rules (while keeping a static neigh-
borhood) based on the inability of a trio of convolutional networks
to accurately predict whether a CA grid state will settle to a quies-
cent state (all cells have value 0) or remain active after a number of
update steps. To achieve this, we wrapped training/validation of
convolutional neural networks in a covariance matrix adaptation
evolutionary algorithm [16]. The (negative) average accuracy of 3
trained models is the fitness (Equation 3).

maxg

1 N
E (—N 2T (fp, 9 g)))] ®)

Where 7 is a function that returns halting prediction accuracy
for halting predictions fg, (x) with respect to the final grid states 7.
A cartoon representation of halting unpredictability evolution is
shown in Figure 2.

We also implemented a simple version of CA halting evolution.
Simple halting evolution has no inner prediction training loop
and fitness is based simply on mean-squared error between the
proportion of end-point CA grids with nonzero cell values and a
target proportion of 0.5.

3.3 Evolving Glider Patterns Under Cellular
Automata Rule Sets

We evolved a population of compositional pattern-producing net-
works (CPPNs) [27] as synthesis patterns. Fitness is designed to
reward motility, homeostasis, and survival, and is composed of a
positive reward for displacement in center of mass (motility), penal-
ized for changes in average cell values (homeostasis), and severely
penalized for patterns that disappear entirely (survival). Figure 3
shows a graphic representation of pattern evolution.
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Figure 3: Pattern evolution with mobility-based fitness.
Solid line is fitness, dashed line is the motility componet,
and dotted line is the homeostasis component.
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Name Origin (p, 0)
Orbium Lenia [5] (0.150, 0.0150)
P. s. labens Lenia [5] (0.330, 0.0462)
S. valvatus Lenia [5] (0.292, 0.0486)
D. valvatus Lenia [5] (0.337, 0.0595)
H. natans* Lenia [5] (0.260, 0.0360)
s7* Simple evo.  (0.0420,0.00490)4
(0.261,0.0292),,
s613* Pred. evo. (0.0621, 0.00879),
(0.215,0.0369),,
s11* Simple evo. (0.0761,0.0107),4
(0.260,0.0303),,
$643* Simple evo.  (0.0670,0.0101),
(0.248,0.0186),,
s113* Random evo.  (0.266,0.0382),

(0.289,0.0215),

Table 1: Example CA supporting CPPN-mediated evolved
gliders. Update functions are Gaussians with peaks at ; and
width o. Lenia CA have a single update function, while CA
evolved in this project are based on the Glaberish frame-
work with update functions split into genesis and persis-
tence (g and p). * indicates Hydrogeminium natans neighbor-
hood kernel, other CA use Orbium kernel parameters [5].

4 RESULTS & DISCUSSION

We recovered gliders in 17 of 17 select CA available online?, previ-
ously described in the Lenia framework . Table 1 lists 5 examples
each of Lenia CA and evolved CA which supported glider evolution.

Table 2 includes metrics based on Eppstein’s heuristics [11] and
approximate CA classes [19, 29]. Mortality ratio is the proportion
of grids with all zero cell values; fertility ratio is the proportion
of grids where patterns escaped from a bounding box twice as tall

3https://chakazul github.io/Lenia/JavaScript/Lenia.html
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Figure 4: Evolved glider pattern trajectories in evolved CA.

and wide as the initialized area*. Putative classes are subjective, but
reflect the diversity in the dynamics exhibited by these CA. The
Lenia CA typically generate Turing pattern-like grid states, though
not entirely static. s7 usually vanishes, s613, s643, and s11 exhibit
chaotic, dynamics, and s113 generates a Turing pattern-type grid,
similar to most Lenia CA. Despite different dynamics, all of these
CA support mobile, self-organizing patterns.

Name [ Fertility ratio [ Mortality ratio [ Putative class
Orbium 0.745/0.931 0.0377/0.0469 I
D. valvatus 0.856/1.0 0.0/0.0 I
H. natans” 0.923/1.0 0.0/0.208 /v
P. s. labens 0.785/1.0 0.0/0.701 /v
S. valvatus 0.870/1.0 0.0/0.0 I
s7* 0.0639/0.0138 0.577/0.976 I
s613* 0.953/0.993 0.0/0.0 /v
s11* 0.889/0.933 0.0212/0.0234 v
$643* 0.937/0.999 0.0/0.0 oyiv
s113* 0.693/0.992 0.00615/0.00781 I

Table 2: Metrics and putative CA classes. Metrics are split
(x/y) into first (x) and second (y) 512 CA steps, approximating
initial and steady-state behavior.

5 CONCLUSIONS

We demonstrated evolution of complex continuous CA, validating
these by evolving gliders under the new rule sets. Selecting for poor
halting prediction performance, and simply evolving CA rules that
support both halting and persistent patterns, both yield CA that
support gliders, the latter having lower computational and tuning
overhead.

4Metrics based on 128 grids with 128 by 128 cells initialized with U(0, 1) random
uniform values.
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Evolved CA supporting gliders in Table 1 tend to have more
diverse dynamics than their Lenia counterparts, and may help in-
crease the already expansive diversity of bioreminiscent patterns
discovered in Lenia, developed previously via manually and by
interactive evolution.

This work was supported by the National Science Founda-
tion under the Emerging Frontiers in Research and Innova-
tion (EFRI) program (EFMA-1830870).
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