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Kirigami, the art of introducing cuts in thin sheets to enable articulation and deployment, has become an
inspiration for a novel class of mechanical metamaterials with unusual properties. Here we complement the
use of periodic tiling patterns for kirigami designs by showing that quasicrystals can also serve as the basis for
designing deployable kirigami structures, and analyze the geometrical, topological, and mechanical properties
of these aperiodic kirigami structures.
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I. INTRODUCTION

Kirigami is a traditional Japanese paper crafting art that
has recently become popular among scientists and engineers.
The simple idea of introducing cuts in a sheet of material
has led to a surprisingly wide range of applications, including
the design of superstretchable materials [1], nanocomposites
[2,3], energy-storing devices [4], and robotics [5]. Numer-
ous works have been devoted to the design of deployable
kirigami patterns based on triangles [6], quads [7,8], or even
ancient Islamic tiling patterns [9], with recent efforts on
generalizing their cut geometry [10–14] and cut topology
[15–17].

Almost without exception, these prior studies have ma-
nipulated the geometry, topology, and mechanics of tiling
patterns with translational symmetry, most recently using pe-
riodic deployable kirigami patterns based on wallpaper groups
[18]. However, the crystallographic restriction theorem states
that the order of the rotational symmetry in periodic two-
dimensional (2D) patterns can only be 1, 2, 3, 4, or 6 [19].
This significantly limits the design space of periodic kirigami
patterns. It is therefore natural to ask if kirigami based on pat-
terns that lack translational or rotational symmetry might be
possible. Quasicrystals [20–23] and their tilings [24–30] are a
natural class of aperiodic structures that fit this bill, with three
representative examples being the Penrose tiling [31] (with
fivefold rotational symmetry), the Ammann-Beenker tiling
[32] (with eightfold rotational symmetry), and the Stampfli
tiling [33] (with 12-fold rotational symmetry). Here we pose
the problem of kirigami design from a new perspective: Is
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it possible to design radially deployable structures [34–37]
based on quasicrystal patterns? We solve this problem by
proposing three different design methods and analyzing their
geometrical, topological, and mechanical properties.

II. DEPLOYABLE QUASICRYSTAL DESIGN

Our starting point is an aperiodic quasicrystal tiling pat-
tern, which we seek to make deployable by cutting it along
appropriate edges to articulate the structure while keeping
it as a single connected whole. Here we show that we can
achieve deployable symmetry-preserving patterns, with the
special quasicrystal rotation orders preserved upon deploy-
ment in all three approaches. Moreover, we focus on the
design of rigid-deployable quasicrystal patterns, in which
all tiles do not undergo any bending or shearing throughout
deployment.

A helpful way to think about a kirigami pattern’s structure
is to consider its lattice representation, a graph where each tile
is represented by a node. An edge between two nodes exists
if their corresponding tiles are connected by a shared vertex
around which both tiles can rotate freely. A pattern is rigidly
deployable if it can be pulled apart along cuts so that tiles
rotate away from each other and the pattern’s enclosed area
increases without compromising tiles’ rigidity. As discussed
in [18], 3-cycles in the lattice representation of a pattern
cannot be rigidly deployed.

Consider three tiles lying so that any two tiles share an
edge, like three regular hexagons that meet at a common
vertex. If the tiles are connected in a 3-cycle, each pair of
tiles must be connected at one end of their shared edge. No
two tiles are able to rotate away from each other and deploy,
because both tiles are also connected to the third tile, which is
rigid and cannot accommodate any deformation. However, if
we have four or more tiles connected in a cycle, connections
can be designed so that when two connected tiles rotate away
from each other, the other tiles rotate as well to accommodate
the deployment while still satisfying the system’s constraints.
With this idea in mind, we consider changing the lattice
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FIG. 1. Deployable quasicrystal patterns created using the expansion tile method. (a) An example of the symmetry-preserving expansion
method applied to the Penrose tiling and the deployment snapshots of a rigid cardstock paper model. (b) A deployable fivefold Penrose tiling
with ideal expansion tiles. (c) A deployable eightfold Ammann-Beenker tiling with ideal expansion tiles. (d) A deployable 12-fold Stampfli
tiling with ideal expansion tiles. For each example, the contracted state, an intermediate deployed state, and the fully deployed state are shown.

connectivity of any given closed and compact tilings by (i)
adding tiles, (ii) removing tiles, or (iii) directly changing the
lattice connectivity without changing the number of tiles, so
that the resulting lattice has no 3-cycles.

A. The expansion tile method

Our first approach for designing deployable quasicrystal
patterns is to make use of the expansion tiles introduced in
[18], where thin tiles are added between existing tiles in the
quasicrystal pattern. The new expansion tiles are connected to
the tiles they are placed between, and they appear in the lattice
representation as additional nodes in the middle of existing
edges. Each expansion tile can also be considered as a new tile
formed by introducing an extra cut on one of the two existing
tiles near the edge shared by the two tiles. The 3-cycles in the
lattice structure are turned into 6-cycles instead, and hence the
entire pattern becomes deployable.

To illustrate this idea, we fabricate a physical model of a
deployable fivefold Penrose pattern obtained by this method
(see Fig. 1(a) and Video S1 of the Supplemental Material
[38]), which consists of rigid cardstock paper tiles connected
by threads (see Appendix A for more details). Note that the
expansion tiles are not necessarily of the same width, and
there may be gaps between the tiles in the pattern. To yield
a closed and compact shape without gaps, one can consider

ideal expansion tiles of infinitesimal width. Figures 1(b)–1(d)
show the simulated deployments of three deployable qua-
sicrystal patterns with ideal expansion tiles (see also Videos
S2–S4 [38]). It can be observed that the three patterns exhibit
fivefold, eightfold, and 12-fold symmetry throughout deploy-
ment from a closed and compact contracted configuration
to the fully deployed configuration, and a large size change
is achieved. Here the deployment simulations are performed
using Python, with the 2D rigid body physics library Pymunk
utilized. The deployment of each pattern is modeled by con-
tinually applying forces on the pattern’s convex hull tiles, in
the direction away from the pattern center (see Appendix B
for more details).

To explain the idea more systematically, Fig. 2(a) shows
the augmented version of the seven types of Penrose ver-
tices [28] using the expansion method. Given a Penrose tiling
of any size, we can consider it as a combination of the
seven vertex stars and augment the tiling accordingly, thereby
producing a deployable Penrose pattern. Similarly, one can
augment the Ammann-Beenker vertex stars [26] [Fig. 2(b)]
and the Stampfli vertex stars [27] [Fig. 2(c)] to make them
deployable. We describe each vertex star using the ratios of
the tile angles meeting at the center of the star. For instance,
Penrose vertex star 22222 has five 72-deg angles meeting at
the center, while Penrose vertex star 12133 has angles of 36,
72, 36, 108, and 108 deg meeting at the center. One can further

033114-2



QUASICRYSTAL KIRIGAMI PHYSICAL REVIEW RESEARCH 4, 033114 (2022)

FIG. 2. The augmented version of the vertex stars using the expansion method. (a) The Penrose vertex stars [28]. (b) The Ammann-Beenker
vertex stars [26]. (c) The Stampfli vertex stars [27]. The left column shows the original vertex stars, and the right column shows the augmented
version of them with the expansion tiles colored in blue.

eliminate the gaps in between the tiles by considering ideal
expansion tiles with infinitesimal width.

Figure 3(a) shows several examples of deployable Pen-
rose patterns with ideal expansion tiles produced using this
method. Similarly, one can augment an eightfold Ammann-
Beenker tiling of any size using the expansion tiles and
produce a deployable pattern. Figure 3(b) shows several ex-
amples of deployable Ammann-Beenker patterns produced
using this method. Figure 3(c) shows several examples of
deployable 12-fold Stampfli patterns produced using this
method. It can be observed that the rotational symmetry of the
quasicrystal patterns is preserved throughout the deployment.

B. The tile removal method

Our second approach for achieving deployability is remov-
ing tiles from a given quasicrystal pattern, which changes the
lattice connectivity and introduces negative space. By taking
a tile involved in each 3-cycle out of the pattern, we can
again remove 3-cycles in the lattice and make the structure
deployable.

For instance, a deployable fivefold Penrose pattern can
be obtained by removing one type of rhombus tile in the
tiling [Fig. 4(a)]. Similarly, a deployable eightfold Ammann-
Beenker pattern can be obtained by removing all squares
[Fig. 4(b)], and a deployable 12-fold Stampfli pattern can be
obtained by removing all rhombi [Fig. 4(c)]. Analogous to the
expansion method, the deployable patterns produced by the
tile removal method exhibit fivefold, eightfold, and 12-fold
symmetry throughout deployment (see also Videos S5–S7
[38]). Figure 4(d) shows a physical model of a deployable
Stampfli pattern (see also Video S8 [38]). Figure 5 shows
more examples of deployable Penrose, Ammann-Beenker,
and Stampfli patterns produced using this method, from which
it can again be observed that the rotational symmetry is pre-
served throughout the deployment.

We remark that the tile removal method only works for
patterns with a sufficiently large number of tiles. For instance,
if we only consider the five innermost tiles of the Penrose
tiling, it is impossible to remove certain tiles without breaking
the symmetry. Also, while this method does not achieve a
large size change because of the holes, it is useful for appli-
cations that require changing the size and shape of the holes
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FIG. 3. Examples of deployable quasicrystal patterns produced using the expansion method. (a) The Penrose patterns consist of 10, 25,
65, 165, and 310 tiles (including the ideal expansion tiles), respectively. (b) The Ammann-Beenker patterns consist of 16, 40, 64, 104, and 200
tiles (including the ideal expansion tiles), respectively. (c) The Stampfli patterns consist of 24, 60, 120, 216, and 336 tiles (including the ideal
expansion tiles), respectively. For each example, the contracted state, an intermediate deployed state, and the fully deployed state are shown.

throughout deployment without changing the size of the entire
structure much. For instance, one may design a flexible filter
that allows some shapes to pass through at the initial state, and
some other shapes to pass through at the deployed state.

C. The Hamiltonian cycle method

Our third method which does not require us to add or
remove any tiles is based on manipulating the connectivity of

033114-4



QUASICRYSTAL KIRIGAMI PHYSICAL REVIEW RESEARCH 4, 033114 (2022)

FIG. 4. Deployable quasicrystal patterns created using the tile removal method. By removing certain tiles in a given quasicrystal pattern, we
create holes and hence allow the pattern to be deployed. (a) A deployable fivefold Penrose tiling. (b) A deployable eightfold Ammann-Beenker
tiling. (c) A deployable 12-fold Stampfli tiling. For each example, the contracted state, an intermediate deployed state, and the fully deployed
state are shown. (d) The deployment snapshots of a rigid cardstock paper model of a deployable Stampfli pattern.

the tiles. Furthermore, it is possible in edge to edge polyg-
onal tilings to optimize expansion by connecting the tiles
in a Hamiltonian cycle, which deploys into a single loop of
connected tiles. We introduce the following graphic-theoretic
approach to achieve this.

Consider the lattice representation of a pattern, i.e., a graph
G where the nodes are the tile centers and there exists an
edge between two nodes if and only if the two corresponding

tiles share a connected vertex [18] [Fig. 6(a), left]. By the
Tutte theorem [39], every 4-connected planar graph has a
Hamiltonian cycle (i.e., a closed loop that visits all nodes
exactly once). For all three quasicrystal patterns we consider,
note that each tile has at least three sides and there are al-
ways some other tiles that share a common vertex with it,
making the vertex connectivity � 4 in the associated graph
G. Although G may not be planar (i.e., there may be edge
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FIG. 5. Examples of deployable quasicrystal patterns produced using the removal method. (a) The Penrose patterns consist of 20, 35, and
70 tiles, respectively. (b) The Ammann-Beenker patterns consist of 40 and 64 tiles, respectively. (c) The Stampfli patterns consist of 36, 60,
and 108 tiles, respectively. For each example, the contracted state, an intermediate deployed state, and the fully deployed state are shown.

crossings), one can always consider a subgraph G̃ of G with
a few edges connecting tiles in the same layer removed,
thereby avoiding edge crossings while keeping the vertex
connectivity � 4. For instance, by removing the edges high-
lighted in red, we obtain a 4-connected planar subgraph G̃
[Fig. 6(a), right]. Consequently, based on the 4-connected

planar subgraph G̃, we can draw a Hamiltonian cycle and
hence obtain a deployable structure with all tiles used. It is
noteworthy that such Hamiltonian cycles are not necessarily
unique. Figure 6(b) shows two different Hamiltonian cycles,
which lead to two different deployable Ammann-Beenker
patterns.

FIG. 6. Finding Hamiltonian cycles in a quasicrystal pattern. (a) Given an Ammann-Beenker pattern, we first consider the underlying graph
G (left), which is four connected but may contain some edge crossings. By removing the red edges, we obtain a 4-connected planar subgraph
G̃ (right). (b) Two different Hamiltonian cycles extracted from the subgraph G̃ in (a).
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FIG. 7. Deployable quasicrystal patterns created using the Hamiltonian cycle method. We start by constructing a planar subgraph of the
connectivity graph of the given quasicrystal pattern. We can then find a Hamiltonian cycle in the planar subgraph, which passes through all
tiles exactly once and gives us a deployable structure. (a) A deployable fivefold Penrose tiling. (b) A deployable eightfold Ammann-Beenker
tiling. (c) A deployable 12-fold Stampfli tiling. For each example, the contracted state, an intermediate deployed state, and the fully deployed
state are shown. (d) The deployment snapshots of a rigid cardstock paper model of a deployable Ammann-Beenker pattern.

Figures 7(a)–7(c) show three examples of deployable Pen-
rose, Ammann-Beenker, and Stampfli patterns obtained by
this method, in which a significant size change can be ob-
served throughout the symmetry-preserving deployment (see
Videos S9–S11 [38]). A physical model of a deployable
Ammann-Beenker pattern is shown in Fig. 7(d) (see also
Video S12 [38]). Figure 8 shows more examples produced
using the Hamiltonian method, with their rotational symmetry
preserved throughout the deployment. We remark that if the
number of tiles is too small, the resulting deployable struc-
tures may be with symmetry lost under the deployment (see
Fig. 9).

It is natural to consider the problem of finding the largest
Hamiltonian cycle, which can be thought of as a traveling
salesman problem. Each tile in the Hamiltonian cycle is con-
nected to other tiles at exactly two of its vertices. We can
consider trying to maximize the sum

∑
i dist(ai, bi ) for all

tiles i, where ai and bi are the two vertices of tile i that are
constrained to vertices of other tiles. This is the length of
the Hamiltonian path, which after deployment will become
approximately the perimeter of the deployed pattern. It is
maximized by the longest path that starts at a vertex of one tile
and “travels” through all other tiles, entering and exiting each
tile via different vertices. The distances between the entrance
and exit vertices on each tile comprise the lengths that make
up the final path length. Rotationally symmetric cycles can
be found by considering the Hamiltonian path on a rotational

symmetry unit (e.g., one fifth of the Penrose tiling or one
eighth of the Ammann-Beenker tiling) that starts and ends at
two vertices which would be adjacent to each other in the full
pattern. However, naive dynamic programming for this prob-
lem fails to account for the fact that edge crossings between
pairs of tiles at the same vertex star will cause a Hamiltonian
path found via dynamic programming to be “twisted” and
undeployable in two dimensions.

III. GEOMETRICAL, TOPOLOGICAL, AND
MECHANICAL PROPERTIES

After establishing the three above design methods for
producing deployable and symmetry-preserving quasicrystal
patterns, it is natural to ask how the patterns produced by the
three methods differ in terms of their geometrical, topological,
and mechanical properties.

A. Geometry

To study the geometric properties of the deployable qua-
sicrystal patterns, it is natural to consider the change in size
and perimeter of them under the deployment. Here we define
the size change ratio (SCR) by

rs = Area of the fully deployed pattern

Area of the contracted pattern
(1)
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FIG. 8. Examples of deployable quasicrystal patterns produced using the Hamiltonian method. (a) The Penrose patterns consist of 10, 25,
60, and 110 tiles, respectively. (b) The Ammann-Beenker patterns consist of 8, 16, 24, 40, and 72 tiles, respectively. (c) The Stampfli patterns
consist of 12, 24, 48, 84, and 132 tiles, respectively. For each example, the contracted state, an intermediate deployed state, and the fully
deployed state are shown.

and the perimeter change ratio (PCR) by

rp = Perimeter of the fully deployed pattern

Perimeter of the contracted pattern
. (2)

Table I records the SCR rs of different vertex stars in
the deployable Penrose, Ammann-Beenker, and Stampfli
patterns obtained by the expansion method, from which
it can be observed that most vertex stars in a given
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FIG. 9. Examples of deployable quasicrystal patterns produced
using the Hamiltonian method with symmetry lost under deploy-
ment. The fivefold Penrose pattern with five tiles becomes onefold
under deployment, the eightfold Ammann-Beenker pattern with
eight tiles becomes fourfold under deployment, and the 12-fold
Stampfli pattern with 12 tiles becomes sixfold under deployment.

pattern have a comparable rs. Therefore, while we con-
sider a radial deployment of the patterns, we can achieve
a largely uniform deployment effect in the final deployed
shape. Tables II and III record the SCR and the PCR
of the deployable Penrose, Ammann-Beenker, and Stampfli
patterns with different resolution produced by the three de-
sign methods. Figures 10(a) and 10(b) show the SCR and
PCR plots for the deployable Penrose, Ammann-Beenker,
and Stampfli patterns produced by the three proposed
methods.

Note that when the number of tiles n is small (i.e., only
the first few layers around the center of the pattern are used),
the expansion method results in the largest SCR. As n in-
creases, the Hamiltonian method achieves the largest SCR
and PCR among the three design methods. From the log-log
plots of rs and rp [Fig. 10(a) inset and Fig. 10(b) inset],
it can be observed that rs and rp increase with n follow-
ing the power law rs ∝ n and rp ∝ √

n for the Hamiltonian
method.

To explain this, let lmin and lmax be the minimum and
maximum length of the edges and the diagonals of the tiles,
respectively, amin and amax be the minimum and maximum
area of the tiles, respectively, and A(n) be the area bounded by
the fully deployed quasicrystal pattern. By the construction of
the Hamiltonian method, A(n) should be not less than the area
bounded by the circle formed by the shortest edges of every
tile. It should also not be greater than the area bounded by the
circle formed by the longest edges of every tile, plus the sum
of the areas of each tile (as the tiles may lie outside of the

TABLE I. The size change ratio (SCR) rs of different vertex stars
in the deployable Penrose, Ammann-Beenker, and Stampfli patterns
produced by the expansion method. Here we consider the expansion
tiles to be of infinitesimal width.

Pattern Vertex star type rs

22222 2.61
12133 2.79
112222 3.21

Penrose (fivefold) 2224 2.35
244 2.08
334 1.99

1121122 3.89
11111111 4.51
1111112 3.90

Ammann-Beenker 12122 2.71
(eightfold) 233 2.06

111212 3.28
1232 2.38

111111111111 8.52
11111111112 7.97

111211122 6.80
1111121112 7.39

Stampfli 11122122 6.27
(12-fold) 1221222 5.70

22323 3.32
122322 4.40

255 2.68
2325 2.98

circle formed). Therefore, we have

rs(n) � A(n)

namax
� π (nlmin/2π )2

namax
= l2

min

4πamax
n (3)

and

rs(n) � A(n)

namin
�

π
( nlmax

2π

)2 + namax

namin
= nl2

max + amax

4πamin
. (4)

The two inequalities show that rs ∝ n. Furthermore, as rs is
bounded below and above by some multiples of n, the radius
change is bounded below and above by some other multiples
of

√
n. This implies that

k1
√
n � rp(n) � k2

√
n (5)

for some constants k1, k2, and hence rp ∝ √
n.

B. Topology

We then study the topological property of the deployable
quasicrystal patterns by assessing the change in the number of
holes of them (denoted as dhole) throughout deployment. Ta-
ble IV records the change in dhole of the quasicrystal patterns
throughout the deployment. Here we only consider the holes
which are directly related to the holes in the underlying con-
nectivity graph of a pattern. In other words, the holes that are
formed geometrically using some floppy tiles throughout the
deployment [e.g., the outermost triangular holes in the last ex-
ample of Fig. 5(c)] are not considered. Figure 10(c) shows the
plot of dhole for the deployable Penrose, Ammann-Beenker,
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TABLE II. The size change ratio rs of the deployable Penrose, Ammann-Beenker, and Stampfli patterns produced by the three different
design methods.

Expansion Removal Hamiltonian

Pattern # layers # tiles rs # tiles rs # tiles rs

1 10 2.62 / / / /

2 25 3.58 / / 10 1.30
Penrose (fivefold) 3 65 4.28 20 1.41 25 2.75

4 165 5.44 35 1.28 60 9.32
5 310 5.36 70 1.29 110 13.57
1 16 4.51 / / / /

2 40 3.86 / / 16 2.09
Ammann-Beenker (eightfold) 3 64 4.47 / / 24 3.60

4 104 4.31 40 1.62 40 5.18
5 200 5.06 64 2.88 72 10.86
1 24 8.52 / / / /

2 60 7.23 / / 24 4.66
Stampfli (12-fold) 3 120 6.87 36 2.05 48 7.69

4 216 7.79 60 1.47 84 19.10
5 336 8.19 108 1.85 132 22.30

and Stampfli patterns produced by the three proposed meth-
ods.

Note that the expansion method transforms a closed and
compact pattern into a pattern with multiple holes throughout
deployment, and hence we always have dhole > 0. Moreover,
by the construction of the expansion tiles, dhole increases
strictly with the number of tiles n. In particular, we find that
dhole increases linearly with n, and the slope is approximately
1/4. The removal method transforms a pattern with holes
into a pattern with holes throughout deployment, and differ-
ent quasicrystal patterns can have highly different dhole. In
particular, some holes may merge throughout the deployment
process, thereby leading to a negative dhole. By contrast, the
Hamiltonian method transforms a closed and compact pattern
into a single loop throughout deployment and hence we al-
ways have dhole = 1 regardless of the pattern size.

Below we perform a more detailed analysis of the scal-
ing of dhole with n for the expansion method. To simplify
our analysis, we focus on the Penrose tilings, for which all
original tiles are quadrilateral. For any deployable version
of them obtained by the expansion method, let no and ne be
the number of original tiles and the number of expansion
tiles, respectively. The total number of tiles in the deployable
pattern is n = ne + no. Let nint be the number of interior
tiles in the original tiling for which all sides of the tiles are
shared with some hole. Let nbdy1, nbdy2, nbdy3 be the number
of boundary tiles in the original tiling for which exactly
one, two, or three sides of the tiles are not shared with any
hole in the resulting deployable pattern, respectively. We have
no = nint + nbdy1 + nbdy2 + nbdy3.

Note that each expansion tile is connected to exactly two
original tiles. Therefore, if we count the number of expansion

TABLE III. The perimeter change ratio rp of the deployable Penrose, Ammann-Beenker, and Stampfli patterns produced by the three
different design methods.

Expansion Removal Hamiltonian

Pattern # layers # tiles rp # tiles rp # tiles rp

1 10 2 / / / /

2 25 3 / / 10 2
Penrose (fivefold) 3 65 5/2 20 3/2 25 5/2

4 165 8/3 35 9/7 60 4
5 310 3 70 4/3 110 21/4
1 16 2 / / / /

2 40 3 / / 16 2
Ammann-Beenker (eightfold) 3 64 3 / / 24 3

4 104 5/2 40 3/2 40 3
5 200 3 64 6/5 72 3
1 24 2 / / / /

2 60 5 / / 24 3
Stampfli (12-fold) 3 120 3 36 2 48 4

4 216 4 60 2 84 5
5 336 11/3 108 4/3 132 7
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FIG. 10. Geometric, topological, and mechanical properties of the deployable quasicrystal patterns. (a) The size change ratio rs of the
deployable Penrose, Ammann-Beenker, and Stampfli patterns produced by the three proposed methods versus the number of tiles n. Inset
shows the log-log plot. (b) The perimeter change ratio rp of the patterns. Inset shows the log-log plot. (c) The change in the number of holes
dhole under deployment. (d) The internal degree of freedom dint of the patterns. For each plot, the three different types of patterns are represented
by three different types of markers, and the three different methods are represented by three different colors.

tiles (with repetitions) using the above four types of original
tiles, by the handshaking lemma we have

2ne = 4nint + 4nbdy1 + 3nbdy2 + 2nbdy3, (6)

which yields

ne = 2nint + 2nbdy1 + 3
2nbdy2 + nbdy3 (7)

and hence

n = ne + no = 3nint + 3nbdy1 + 5
2nbdy2 + 2nbdy3. (8)

It is noteworthy that the ratio of nbdy1, nbdy2, nbdy3 may vary as
shown in the examples in Fig. 3(a), and hence it is difficult to
further simplify the above expression.

Next, we find the relation between the number of holes
dhole and the number of tiles n. As shown in the seven motifs
of the deployable Penrose pattern in Fig. 2(a), the holes can
be surrounded by 3, 4, 5, 6, or 7 tiles. Denote the number of
occurrence of the seven motifs by h1, h2, . . . , h7, respectively.

As each hole corresponds to exactly one motif, we have

dhole = h1 + h2 + · · · + h7. (9)

Now, note that each interior tile with m sides is always ad-
jacent to exactly m motifs. Also, the three types of boundary
tiles and each corner tile are adjacent to 3, 2, and 1 motifs,
respectively. Therefore, if we count the number of tiles (with
repetitions) using the motifs, we have

5h1 + 5h2 + 6h3 + 4h4 + 3h5 + 3h6 + 7h7

= 4nint + 3nbdy1 + 2nbdy2 + nbdy3

= 4
3n − nbdy1 − 4

3nbdy2 − 5
3nbdy3. (10)

If we assume that the occurrence of the motifs is approxi-
mately uniform, we have h1 ≈ · · · ≈ h7 ≈ dhole/7 and hence

33
7 dhole ≈ 4

3n − nbdy1 − 4
3nbdy2 − 5

3nbdy3, (11)
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TABLE IV. The change in the number of holes dhole of the deployable Penrose, Ammann-Beenker, and Stampfli patterns produced by the
three different design methods.

Expansion Removal Hamiltonian

Pattern # layers # tiles dhole # tiles dhole # tiles dhole

1 10 1 / / / /

2 25 6 / / 10 1
Penrose (fivefold) 3 65 16 20 −4 25 1

4 165 46 35 −4 60 1
5 310 91 70 6 110 1
1 16 1 / / / /

2 40 9 / / 16 1
Ammann-Beenker (eightfold) 3 64 17 / / 24 1

4 104 25 40 −15 40 1
5 200 57 64 −23 72 1
1 24 1 / / / /

2 60 13 / / 24 1
Stampfli (12-fold) 3 120 25 36 0 48 1

4 216 49 60 12 84 1
5 336 73 108 12 132 1

which gives

dhole ≈ 28
99n − 7

33nbdy1 − 28
99nbdy2 − 35

99nbdy3. (12)

If we further assume that the occurrence of the three types
of boundary tiles is approximately uniform, we have
nbdy1 ≈ nbdy2 ≈ nbdy3 ≈ nb/3 where nb is the number of
boundary tiles in the original pattern, and hence

dhole ≈ 28

99
n − 7

33

nb
3

− 28

99

nb
3

− 35

99

nb
3

= 28

99
n − 28

99
nb.

(13)

As nb scales approximately with
√
n and is much smaller

than n, dhole/n should be slightly smaller than 28/99, which
agrees with the slope of approximately 1/4 we observe from
the example patterns.

One can perform a similar analysis for the deployable
Ammann-Beenker and Stampfli tilings obtained by the ex-
pansion method. For the Ammann-Beenker tilings, all tiles
are also quadrilateral but the number of possible motifs is
different, and hence the expressions in Eqs. (9)–(13) will be
slightly different. For the Stampfli tilings, one has to separate
each of the above types of interior and boundary tiles into two
subtypes, one for the quadrilaterals and one for the triangles.

C. Mechanics

Finally, we study the mechanics of the patterns by consid-
ering their infinitesimal rigidity [15,40]. As described in [15],
the rigidity of each tile in a kirigami pattern can be enforced
by a set of edge and diagonal length constraints in the form of

glength(xi, x j ) = ‖xi − x j‖2 − d2
i j = 0, (14)

where xi, x j are two vertices of a tile. The connectivity of the
tiles can be enforced by a set of connectivity constraints in the
form of

gconnectivityx (xi, x j ) = xi1 − x j1 = 0 (15)

and

gconnectivityy (xi, x j ) = xi2 − x j2 = 0, (16)

where xi = (xi1 , xi2 ) and x j = (x j1 , x j2 ) are two vertices of
two connecting tiles. The above constraints can be used for
constructing a rigidity matrix A, which allows us to determine
the range of motions associated with infinitesimal rigidity and
hence the total internal degrees of freedom (DOF) [40]:

dint = 2|V| − rank(A) − 3, (17)

where |V| is the total number of vertices in the kirigami
pattern. Here the last term is used for removing the three
global DOF of the entire pattern (two translational and one
rotational).

We use the above rigidity matrix rank computation to
assess the floppiness of the deployable quasicrystal patterns
produced by the three design methods. Table V records the
value of dint for the deployable quasicrystal patterns. As the
computation of dint is merely based on the length constraints
(for the rigidity of the tiles) and the connectivity constraints
(for the connectivity of the tiles), some modes detected by
the rigidity matrix computation may be associated with tile
overlaps (which can be considered as geometrical frustra-
tions of the tiles under the deployment). In other words,
dint serves as an upper bound for the number of physically
realizable zero energy deployed states of the kirigami pattern.
Figure 10(d) shows the plot of dint for the deployable Penrose,
Ammann-Beenker, and Stampfli patterns produced by the
three proposed methods. It can be observed that dint increases
approximately linearly with the number of tiles n for all three
methods. In particular, the Hamiltonian method achieves the
largest dint among the three methods, with dint ∼ n.

To explain this, note that under the Hamiltonian method,
the n tiles form a single loop with each tile connected to
exactly two other tiles. If all n tiles are disconnected, the
total DOF of the entire pattern is 3n (two translational and
one rotational DOF for each tile). As we connect all tiles one
by one, note that the 2(n − 1) connectivity constraints for the
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TABLE V. The total internal degrees of freedom dint of the deployable Penrose, Ammann-Beenker, and Stampfli patterns produced by the
three different design methods.

Expansion Removal Hamiltonian

Pattern # layers # tiles dint # tiles dint # tiles dint

1 10 8 / / / /

2 25 13 / / 10 8
Penrose (fivefold) 3 65 33 20 18 25 23

4 165 73 35 33 60 58
5 310 128 70 38 110 108
1 16 14 / / / /

2 40 22 / / 16 14
Ammann-Beenker (eightfold) 3 64 30 / / 24 22

4 104 54 40 38 40 38
5 200 86 64 62 72 70
1 24 21 / / / /

2 60 33 / / 24 21
Stampfli (12-fold) 3 120 69 36 33 48 45

4 216 117 60 33 84 81
5 336 189 108 57 132 129

first n − 1 connections are always independent, while the last
connection of the two ends of the chain of tiles may lead to
some redundancy in the DOF counting. Therefore, we have
dint ≈ 3n − 2n = n.

D. Summary of the properties

Our analysis of the geometrical, topological, and me-
chanical properties of the patterns derived from the three
construction methods shows they are suitable for different
applications. The expansion tile method produces deployable
patterns that achieve substantial size changes upon deploy-
ment without being too floppy. The tile removal method
achieves deployability and shape change of the holes without
much overall pattern size change. Finally, the Hamiltonian
cycle method can be used to generate large pattern size change
during deployment.

Also, note that for all three construction methods, the
resulting deployable patterns are significantly different from
periodic tilings. For instance, for the periodic rotating squares
tilings with n × n tiles, one can consider the convex hull of
the fully deployed configuration and easily see that the size
change ratio is

rs = [n2 + (n − 1)2 + 2(n − 1)]/n2 = 2 − 1/n2. (18)

The perimeter change ratio for the periodic rotating squares
tilings is

rp = [8(n − 1) + 4]/(4n) = 2 − 1/n, (19)

and there is a single DOF regardless of n. Similarly, one can
see that for other periodic tilings such as the kagome (triangle-
based) tilings and the hexagon tilings, the size change and
perimeter change are not significantly affected by n. By con-
trast, we see that for all three construction methods proposed
in this work, the size change ratio increases approximately
linearly with n. The perimeter change ratio also increases ap-
proximately linearly with n for the expansion method and the
Hamiltonian method, and the internal DOF dint increases with
n for all three methods. These properties of our construction

methods allow us to easily control the size and DOF of the
structures by simply increasing or reducing the number of cuts
and achieve different desired effects.

IV. QUASIPERIODIC TRANSLATIONAL ORDER OF
DEPLOYABLE QUASICRYSTAL PATTERNS

Next, we consider how deployment affects pattern struc-
ture. Since quasicrystals have quasiperiodic translational
order [22], it is natural to ask whether this order is preserved
during deployment. Here we produce a large 1550-tile Pen-
rose pattern using the Penrose pattern inflation rules for the
analysis. In the contracted quasicrystal pattern, the emergence
of aperiodic lines in the moiré pattern, as seen in Fig. 11(a),
indicates quasiperiodic translational order [22]. Continuing
to superpose the Penrose pattern with a translated version
of itself while deploying it using the expansion tile method
produces moiré patterns where the aperiodic lines persist
throughout deployment [Figs. 11(b)–11(d)]. To assess the
spacing ratios between the lines at different stages throughout
deployment, we consider an alternative visualization of the
patterns as shown in Fig. 12. Table VI shows the spacing
between the three aperiodic lines in the “\” direction emerged
in each configuration. It can be observed that the ratio remains
almost unchanged throughout the deployment, and the value
is very close to the golden ratio ϕ = 1+√

5
2 ≈ 1.618.

To explain the relationship between the observed ratio and
the golden ratio, note that the angles of every thin rhombus
in the Penrose tiling are 36◦, 144◦, 36◦, 144◦, and the angles
of every thick rhombus are 72◦, 108◦, 72◦, 108◦. Therefore,
if the side length of the rhombi is s, by trigonometry one can
show that the length of the longer diagonal of every thin rhom-

bus is a =
√

10+2
√

5
2 s and the length of the shorter diagonal

of every thick rhombus is b =
√

10−2
√

5
2 s. Now, consider the

spacing between the lines in the overlaid contracted patterns
in Fig. 12(b). As shown in Fig. 13, s1 can be measured by
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FIG. 11. Quasiperiodic translational order of deployable quasicrystal patterns. We deploy a large Penrose kirigami pattern using the
expansion tile method. At various stages of the deployment we superimpose two differently colored copies of the configuration as shown
in (a)–(d). In the resulting moiré pattern, the emergence of aperiodic lines indicates quasiperiodic translational order. For better visualization,
in (b)–(d) the thin ideal expansion tiles are not shown while the other tiles are filled and outlined in a thickened border stroke. The patterns are
not displayed to scale.

considering the line segment between the first two red dots,
which passes through five thin rhombi along their longer di-
agonal and three thick rhombi along their shorter diagonal.
Similarly, s2 can be measured by considering the line segment
between the second and third red dots, which passes through
three thin rhombi along their longer diagonal and two thick
rhombi along their shorter diagonal. Hence, we have

s1

s2
= 5a + 3b

3a + 2b
= 5

√
10+2

√
5

2 s + 3
√

10−2
√

5
2 s

3
√

10+2
√

5
2 s + 2

√
10−2

√
5

2 s

= 5
√√

5 + 1 + 3
√√

5 − 1

3
√√

5 + 1 + 2
√√

5 − 1

= 1 + √
5

2
= ϕ. (20)

Similarly, for the lines in the overlaid deployed patterns in
Fig. 12(c), one can see from Fig. 14 that the first line segment
passes through approximately five thin rhombi along their
longer diagonal, three thick rhombi along their shorter diag-
onal, and eight approximately equal gaps (each with width
c), while the second line segment passes through approxi-
mately three thin rhombi along their longer diagonal, two
thick rhombi along their shorter diagonal, and five approxi-
mately equal gaps (each with width c). Hence, we have

s1

s2
≈ 5a + 3b+ 8c

3a + 2b+ 5c
= ϕ(3a + 2b) + 8c

3a + 2b+ 5c

= ϕ + 8c − 5ϕc

3a + 2b+ 5c

= ϕ − 5ϕ − 8
3a+2b

c + 5
. (21)
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FIG. 12. An alternative visualization of the quasiperiodic translational order of deployable quasicrystal patterns. (a) A Penrose pattern with
1550 tiles with two reference points highlighted in red. We create a deployable Penrose kirigami pattern using the expansion tile method and
overlay the reference points in two copies of the pattern for the overlay in each of the subsequent plots. The inside of tiles is left unfilled
to make tile boundaries visible. (b)–(e) An alternative visualization of Fig. 11, with the two copies of the pattern colored in red and black,
respectively. The observed aperiodic lines are highlighted in yellow. For better visualization, in (c)–(e) the thin ideal expansion tiles are not
shown. All patterns are displayed to scale.

Now, since 5ϕ − 8 ≈ 5 × 1.618 − 8 = 0.09 and 3a + 2b �
c, we have 5ϕ−8

3a+2b
c +5

≈ 0 and hence s1
s2

≈ ϕ.

TABLE VI. The spacing between the three aperiodic lines in the
“\” direction emerged in each overlaid image in Fig. 12. Here s1

denotes the spacing between the left line and the middle line, and s2

denotes the spacing between the middle line and the right line. The
measurement is done in the vector graphics software Inkscape.

Pattern Spacing s1 Spacing s2 Ratio s1/s2

Fig. 12(b) 28.2 17.4 1.62
Fig. 12(c) 37.3 23.0 1.62
Fig. 12(d) 52.5 32.7 1.61
Fig. 12(e) 68.5 42.9 1.60

For the two other deployed states in Figs. 12(d) and 12(e),
one can assess the spacing ratio by considering the two line
segments analogously. Note that the tiles may have been
rotated by an approximately equal angle θ so that the line seg-
ments do not exactly pass through the diagonals of them. The
deviation in the gap widths in the line segments also becomes
larger. Nevertheless, we can approximate the length of the two
line segments by s1 ≈ 5ã + 3b̃+ 8c̃ and s2 ≈ 3ã + 2b̃+ 5c̃,
where ã = a cos θ , b̃ = b cos θ , and c̃ is the average gap width.
Then we have

s1

s2
≈ 5ã + 3b̃+ 8c̃

3ã + 2b̃+ 5c̃
= 5a + 3b+ 8 c̃

cos θ

3a + 2b+ 5 c̃
cos θ

= ϕ − 5ϕ − 8
3a+2b

c̃ cos θ + 5
. (22)
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FIG. 13. The spacing between the aperiodic lines in Fig. 12(b).
One can measure the spacing between the lines by considering the
red straight line passing through the three red dots.

Again, one can see that the last term in the above expression
is very small and hence s1

s2
≈ ϕ. This shows that the spacing

ratio remains very close to the golden ratio throughout the
deployment.

Altogether, the persistence of these aperiodic lines and the
invariance of the spacing ratios between the lines at different
stages throughout deployment demonstrate that quasiperiodic

FIG. 14. The spacing between the aperiodic lines in Fig. 12(c).
One can measure the spacing between the lines by considering the
red straight line passing through the three red dots. Note that the thin
ideal expansion tiles are not shown.

translational order is largely preserved. This highly unusual
behavior makes quasicrystals a special candidate for kirigami
design.

V. FOURIER TRANSFORM OF DEPLOYABLE
QUASICRYSTAL PATTERNS

A different measure of order in structures is given by the
Fourier transforms of their diffraction pattern; for quasicrys-
tals, this goes back all the way back to their discovery [20,21].
Specifically, quasicrystals have stunning structures which are
ordered, but aperiodic. This is reflected in their Fourier trans-
forms, which exhibit bright peaks with “forbidden” orders of
rotational symmetry [41]. To study how the Fourier trans-
form of a deployable quasicrystal pattern evolves throughout
deployment, the vertex coordinates of the pattern tiles were
saved at regular intervals during the deployment simulation,
then fit to size n × n grayscale image arrays, where array
entries corresponding to a vertex point were set to black (0)
while all other entries were set to white (255).

We obtained viewable FFT images by applying a Hanning
window to the array, taking the Fourier transform, shifting the
zero-frequency component to the center of the spectrum using
the Python function numpy.fft.fftshift, and then taking
log(1 + |z|) for each resulting complex entry z. Examples of
these images shown in Fig. 15 illustrate how as deployment
proceeds, quasicrystalline order is lost and the Fourier trans-
form loses its sharp peaks of brightness. In particular, we
observe that the FFT changes the most right after deployment
begins, while the difference between consecutive frames in the
latter stage of the deployment is less significant. These results
suggest that even a small change caused by the deployment
is enough to disrupt the quasicrystalline symmetry, causing
a significant change in the Fourier transform relative to the
smaller changes observed later on in deployment.

Overall, for our quasicrystal kirigami patterns produced
using the three construction methods, deployment breaks the
mirror symmetry of the original pattern and hence the full
point group symmetry of the original tiling is not preserved.
Nevertheless, the fivefold, eightfold, and 12-fold symmetry
can still be observed in the Fourier transforms of all snap-
shots as the quasicrystal kirigami patterns designed using our
methods preserve rotational symmetry.

VI. DISCUSSION

All together, our strategies for designing a deployable qua-
sicrystal kirigami structure are based on taking any planar
tiling pattern and adding tiles to it, removing tiles from it,
or changing the connectivity of tiles in it. These approaches
preserve some of the symmetries of the tilings and exhibit
highly unusual geometrical, topological, and mechanical fea-
tures throughout deployment.

Besides the fivefold Penrose tiling, eightfold Ammann-
Beenker tiling, and 12-fold Stampfli tilings, we note that our
three design methods can be applied to many other tilings
with a single center of N-fold rotational symmetry for achiev-
ing a variety of rotational symmetry-preserving deployable
structures. Since the deployable structures produced by our
three proposed design methods are significantly different
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FIG. 15. Fourier transforms of deployable quasicrystal patterns. (a) Fourier transforms of the five-layer deployable Penrose pattern
designed using the expansion method. (b) Fourier transforms of the five-layer deployable Ammann-Beenker pattern designed using the
Hamiltonian method. (c) Fourier transforms of the five-layer deployable Stampfli pattern designed using the removal method. Each image
comes from fitting the current tile vertex coordinates into a 1001 × 1001 image, then taking the Fourier transform as described in Sec. V. For
each 1001 × 1001 Fourier transform image, only the center 201 × 201 pixels are shown so that details and symmetries can be seen. For each
plot, the top row is the Fourier transform of the pattern’s contracted state. The second, third, and fourth rows are, respectively, the Fourier
transforms of the pattern 0.1, 1.0, and 10 s into deployment (simulated as described in Appendix B). We note that different methods need
different amounts of time to deploy using our simulation methods. Since deployment speed is not uniform, we label the Fourier transform

images with �, a measure of pattern displacement. For each pattern we calculate �(t ) = 1
s

√∑n
i ||v̂i (t )−v̂i (0)||22

n , where s is the edge length of tiles
in the pattern, n is the total number of tile vertices, and v̂i(t ) is the coordinate location of vertex i at time t . Intuitively, � is a measure of
displacement from initial state per tile vertex, normalized by the length of tile edges in the pattern. We can see that the largest displacement
occurs with the Hamiltonian method. We remark that the bright cross around the origin in each image is an artifact caused by the Hanning
window, which is applied for noise removal.

from traditional kirigami structures in the sense that they are
ordered but aperiodic throughout the entire deployment pro-
cess, they naturally complement prior kirigami approaches
and may well pave the way for the design of novel deployable
structures.

The special nature of quasicrystals may also make our
designed patterns useful for applications that require both
order and aperiodicity. Specifically, the combination of de-

ployability and quasiperiodic translational order suggests that
the designed quasicrystal kirigami patterns may be useful for
information storage and retrieval, analogous to the recent use
of the Penrose tilings for visual secret sharing [42], physical
cryptography, and unusual mechanical and optical properties
given the nature and form of the deployed patterns.

The deployment simulation codes and the kirigami patterns
are available on GitHub at [43].
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APPENDIX A: PHYSICAL MODEL

To verify that our deployment simulation matches how a
physical system might behave, we constructed physical mod-
els of examples of the patterns and methods we used. We
produced models for the Penrose pattern with the expansion
method [Fig. 1(a)], the Stampfli pattern with the removal
method [Fig. 4(d)], and the Ammann-Beenker pattern with
the Hamiltonian method [Fig. 7(d)]. In the models we used
rigid cardstock for the tiles and thread for the hinges between
tiles. Because the holes the thread passed through had to be
within the interior of each tile, tiles in the model were not
constrained together at exactly their vertices. However, the
model was still able to approximate the deployment behavior
of the patterns. Animations of physical models deploying
were produced via stop-motion with a series of photographs
of the models. Between each pair of consecutive photographs,
tiles were individually moved outward.

APPENDIX B: DEPLOYMENT SIMULATION

The deployment simulation is implemented in Python us-
ing the Pymunk library [44], which is a wrapper for the
Chipmunk2D rigid body physics engine [45].

More specifically, we first read the vertex coordinates of
each tile of a kirigami pattern in Python and set each tile as
a rigid body using the Body class. Each body is associated
with a Shape defined by the vertices of its tile, which Pymunk
uses to detect collisions between shapes and to ensure that
the geometry of a shape is preserved throughout the simu-
lation. We use PinJoint to add connection pins that link
tiles as specified in the connectivity of the pattern. When a
Pinjoint is added between two points xi and x j on two tiles’
shapes, those points are set to remain a distance of di j apart,
where di j = ‖xi(0) − x j (0)‖2 is their Euclidean distance in
the initial contracted state. If we add a Pinjoint between
two vertices that share a position in the contracted state, those
vertices will be fixed at a distance of 0 apart. This helps pre-
serve the connectivity of the tiles throughout the deployment.
To simulate ideal expansion cuts, we set Pinjoints between
vertices that are on opposite ends of the same edge, so they
are fixed to remain a distance of that edge length apart.

To deploy the pattern we add a spring to the simulation
for every tile in the hull of the pattern. One end of the spring
is attached to the center of the hull tile, and the other end is
extended radially from the pattern center and attached to a
circle also centered at the pattern center, but with radius larger
than the maximum radius of the deployed state of the pattern
(i.e., the circle is large enough such that the deployed state of
the pattern can never reach it). Once the simulation starts, the
springs pull all hull tiles outward to deploy the pattern until its
area becomes stable (i.e., reaching the fully deployed state).
This gives us the deployment path xi(t ) for each vertex xi of
each tile of the pattern.
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ployable polygons and polyhedra, Mech. Mach. Theory 43, 627
(2008).

[37] L. Cabras and M. Brun, Auxetic two-dimensional lattices with
Poisson’s ratio arbitrarily close to −1, Proc. R. Soc. London
Ser. A 470, 20140538 (2014).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.033114 for the videos of the
deployment of physical and numerical models of several qua-
sicrystal kirigami patterns.

[39] W. T. Tutte, A theorem on planar graphs, Trans. Am. Math. Soc.
82, 99 (1956).

[40] S. Guest, The stiffness of prestressed frameworks: A unifying
approach, Int. J. Solids Struct. 43, 842 (2006).

[41] M. Baake, Quasicrystals (Springer, Berlin, 2002), pp. 17–48.
[42] X. Yan, W. Q. Yan, L. Liu, and Y. Lu, Penrose tiling for visual

secret sharing, Multimed. Tools. Appl. 79, 32693 (2020).
[43] https://github.com/lliu12/kirigami_sim/.
[44] V. Blomqvist, Pymunk, http://www.pymunk.org.
[45] Chipmunk2D, http://chipmunk-physics.net/.

033114-19

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1103/PhysRevB.34.596
https://doi.org/10.1103/PhysRevB.34.617
https://doi.org/10.1103/PhysRevLett.59.1010
https://doi.org/10.1103/PhysRevB.39.10519
https://doi.org/10.1103/PhysRevB.42.8091
https://doi.org/10.1107/S0108767394001649
https://doi.org/10.1126/science.aav0790
https://doi.org/10.1126/science.aar8412
https://doi.org/10.1007/BF02293033
https://www.e-periodica.ch/digbib/view?pid=hpa-001%3A1986%3A59%3A%3A5#1265
https://doi.org/10.1016/S0020-7683(96)00125-4
https://doi.org/10.1016/j.ijsolstr.2007.02.023
https://doi.org/10.1016/j.mechmachtheory.2007.04.011
https://doi.org/10.1098/rspa.2014.0538
http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.033114
https://doi.org/10.1090/S0002-9947-1956-0081471-8
https://doi.org/10.1016/j.ijsolstr.2005.03.008
https://doi.org/10.1007/s11042-020-09568-0
https://github.com/lliu12/kirigami_sim/
http://www.pymunk.org
http://chipmunk-physics.net/

