
Peachy Parallel Assignments (EduPar 2022)
H. Martin Bücker∗, Henri Casanova†, Rafael Ferreira da Silva‡,

Alice Lasserre§, Derrick Luyen†, Raymond Namyst§,
Johannes Schoder∗, Pierre-André Wacrenier§, David P. Bunde¶

∗Institute for Computer Science, Friedrich Schiller University Jena, Jena, Germany
{martin.buecker, johannes.schoder}@uni-jena.de

†Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA
{henric,dluyen}@hawaii.edu

‡National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
silvarf@ornl.gov

§Computer Science Department, University of Bordeaux, Inria Bordeaux Sud-Ouest, Talence, France
alice.lasserre@etu.u-bordeaux.fr, {raymond.namyst,pierre-andre.wacrenier}@u-bordeaux.fr

¶Computer Science Department, Knox College, Galesburg, IL, USA
dbunde@knox.edu

Abstract—The presentation of Peachy Parallel Assign-
ments in several workshops on parallel and distributed
computing education aims to promote the reuse of high-
quality assignments, both saving precious faculty time and
improving the quality of course assignments. Presented
assignments are selected competitively— they must have
been successfully used in a real classroom, be easy for
other instructors to adopt, and be “cool and inspirational”
to encourage students to spend time on them and talk about
them with others. Winning assignments are also archived on
the Peachy Parallel Assignments website.

In this installment of Peachy Parallel Assignments, we
present three new assignments. The first assignment is to
simulate an Abelian Sandpile, with grains of sand moving
from tall piles to shorter ones. This is a discrete simula-
tion that creates colorful and intricate images. The second
assignment is a Big Data problem in which students use
the MapReduce paradigm to recreate “Warming Stripes”, a
visualization of climate data that highlights climate change.
The third assignment introduces climate-oriented optimiza-
tion by asking students to schedule distributed workflows
to minimize their carbon footprint.

Index Terms—Peachy Parallel Assignments, Parallel com-
puting education, High-Performance Computing education,
Parallel programming, Curriculum Development, Abelian
Sandpile, Parallel Simulation, MapReduce, Big Data, Warm-
ing Stripes, Distributed Workflow Scheduling, Carbon Foot-
print
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I. INTRODUCTION

One aspect of teaching is to assign the homework and
laboratory exercises that students use to learn the mate-
rial and demonstrate their mastery of it. Creating high-
quality assignments can be time-consuming, requiring
both a good idea and developing the necessary materials
(assignment description, given code, etc). It can also be
risky since even an assignment that seems good initially
may have hidden prerequisite knowledge or simply be
harder than the instructor intended.

Peachy Parallel Assignments aim to address this chal-
lenge by encouraging the reuse of high-quality assign-
ments. They are selected competitively based on the
following criteria:

• Tested: All assignments must have been successfully
used with real students

• Adoptable: The assignments must be useful to other
instructors, with clear descriptions and the resources
needed for adoption by others (handouts, given
code, references for more information, etc). Ideally,
they focus on core PDC topics using widely-used
languages and toolsets, with suggested customiza-
tions that can make them suitable for students at a
variety of levels.

• Cool and inspirational: The assignments must moti-
vate students through the artifacts they create (e.g.
images) or the concepts taught. Ideally, students
should want to talk about the assignment with
friends and show it off to others.

Assignments selected as Peachy Parallel Assignments









available in a public git repository [?]. The repository
contains a Jupyter notebook that specifies the assignment
in the form of a template to be completed by the students
to obtain the solution.

1) Intended Audience and Necessary Prerequisites: The
assignment is designed within a course on big data
processing at Friedrich Schiller University Jena. This
course is relevant not only for different computer science
degree programs but also for students enrolled in the
master’s program “Computational and Data Science”.
The latter is an interdisciplinary degree program that is
open to students with a bachelor’s degree in a wide va-
riety of scientific areas, including computer science and
mathematics as well as natural and engineering sciences.
In general, the overall course is designed to be accessible
to students with diverse scientific backgrounds and lit-
tle programming experience. However, for this specific
assignment, moderate programming skills in Python, a
basic understanding of MapReduce, and experiences in
using the Apache Hadoop Streaming API are required.

2) Problem Formulation and Main Concepts: As a first
step, the assignment asks the students to download
temperature data from Germany’s National Meteorolog-
ical Service, Deutscher Wetterdienst (DWD). The Federal
Republic of Germany comprises 16 constituent states.
The data consist of monthly average temperature values
of different states over a time span starting 1881. These
values are distributed across 12 input files storing the
average temperature of one month for every year (row)
in every state (column). The task is to compute the
annual average temperatures in Germany for all years.
Since the focus of this assignment is on the MapReduce
programming paradigm rather than on general-purpose
programming, the Jupyter notebook of the assignment
provides software that the students will use to visualize
the results.

This course assignment covers several main concepts.
While the task is simple in a general-purpose program-
ming language, it is more difficult in the MapReduce
programming paradigm. The reason is that MapReduce
forces the programmer to employ a three-phase ap-
proach, starting with the map phase, followed by the
group-by-keys phase, ending with the reduce phase. For
beginners, it is difficult to reformulate a given problem
under the severe constraints of this three-step approach.
The concept of finding a suitable reformulation of a
given problem in terms of mappers and reducers is
shown via a mapper whose key-value pairs at the output
represent a year as the key and temperatures averaged
over all states as the value. The group-by-keys phase
then rearranges all values at the output of the map phase
into different groups at the input of the reduce phase.
Each group is associated with a key which corresponds
to a particular year in this MapReduce program. For each
year, a reducer then averages over all months.

3) Data Science Workflows: Without considering details,
a typical workflow of a data science project consists
of the following four phases: (1) data acquisition, (2)
data pre-processing, (3) computations to analyze data,
and (4) result validation. This assignment uses averaging
temperatures over time as a simple example and guides
students through all of these stages. In particular, it
shows that the last step is essential, as the data set
provided by the DWD may be incomplete. For instance,
when students downloaded the data from DWD in late
2020, the temperatures of the last few months of that
year were missing. So, if they don’t take steps to remedy
the situation with missing data for winter 2020, the
average temperature of this year will be too high. From
this example, the students are encouraged to critically
evaluate the quality of the data set.

4) Software Engineering and Reusability: In the actual
assignment, we use data sets that are small. The reason
is that this introductory example is designed to start
learning MapReduce. That is, we consider this assign-
ment similar to a “Hello World!” program that can
first be executed on the student’s local machine and
that intentionally postpones the additional challenges
of accessing a departmental compute cluster. However,
the cluster is used to execute the final implementation
of this assignment not only for small data sets but
optionally also for larger data sets to be downloaded
by the students from various different sources. It is also
used in all later programming assignments for the course
(not detailed in this manuscript).

Climate data sets can grow very fast in size, for exam-
ple by increasing the number of weather stations and/or
the time resolution. Also, different shapes of input data
are possible. For instance, there could be different input
data files associated with individual weather stations
rather than with months. We ask the students to design
a MapReduce implementation that is relatively invari-
ant to different data formats. In particular, the mapper
should be capable of averaging any kind of data and not
be restricted to the computation of average temperatures.
Therefore, it should include a data-pre-processing stage
that reorders and rearranges the input, enabling it to
process different data in the same way. The aim is to
encourage students to pay attention to good software
engineering practices.

5) Hardware Infrastructure: Besides using a local ma-
chine, it is recommended to run the assignment on a
Hadoop cluster. In our course, we use the Hadoop par-
tition of the Ara cluster of Friedrich Schiller University
Jena, consisting of 16 compute nodes, each equipped
with 192 GB RAM and two Intel Xeon Gold 6140s, each
with 18 cores and 2.3 GHz.

B. Classroom Evaluation

The assignment has been tested in a big data course for
two subsequent years. A subset of eight participants of



the course in winter 2021/2022 took part in an optional
survey that collected student feedback. The survey con-
sisted of three multiple-choice questions each with five
possible answers which are given below in parentheses
with an italic font. The remaining questions left room
for students to write freely. Although the sample size
is small, we believe the survey results are interesting.
Specifically, we found the following:

• Six students thought that the prerequisites taught
in class were sufficient for the assignment, while
two thought their knowledge was absolutely suffi-
cient. Choices: (absolutely sufficient, sufficient, neutral,
insufficient, absolutely insufficient).

• Seven students found the assignment to be reasonable
and one student thought it was difficult. Choices: (too
difficult, difficult, reasonable, easy, too easy).

• We asked the students whether and why the assign-
ment increased or decreased their interest in MapRe-
duce. Seven participants answered that it increased
their interest in MapReduce. Answers mentioned an
up-to-date problem, a practicably relevant exercise,
and a rapid and simple approach.

• Seven participants remarked that the assignment
helped in understanding the typical steps of a data
science project, from data acquisition to the evalua-
tion of the results.

• Four students found that the assignment helped
them to solve more complex assignments that fol-
lowed later in the course. Some students mentioned
that it also prepared them to start their homework
projects which were mandatory for the admission to
the final exam.

• Seven participants found the assignment to be
mostly cool and one person very cool, mainly be-
cause of the real practical data and up-to-date topic.
Choices: (very cool, mostly cool, okay, mostly boring,
very boring).

• Seven students did not think that the assignment
changed their awareness of the climate crisis, mostly
because their level of awareness was already high.
Two students noted that it was interesting to repro-
duce the warming stripes.

IV. PERFORMANCE AND CARBON FOOTPRINT OF

DISTRIBUTED WORKFLOW EXECUTIONS

Our third assignment exposes students to the notion
that, in addition to performance, a pressing concern
for the execution of distributed applications is their
carbon footprint. Students are presented with a scientific
workflow application and are asked to reason about
and experiment with different execution scenarios with
the reduction of the carbon footprint as an objective.
This assignment requires no programming and active
learning is achieved via interactive, in-the-browser simu-
lation experiments. No hardware or software is required
besides a web browser. This assignment is hosted on the

EduWRENCH site, which hosts several pedagogic mod-
ules that cover all prerequisite material if needed [?]. Al-
though intended for advanced undergraduate students,
to date, this assignment has been used in one offering of
a graduate-level HPC course. Feedback gathered from
that one course was very positive. It was also used to
improve the pedagogic content and its presentation.

A. Overview and Prerequisites

The premise of this assignment is that students work
for an organization that needs to repeatedly execute an
astronomy scientific workflow (738 tasks with a 7.5GB
total data footprint). The organization has access (i) to
a local cluster where nodes are powered by a non-
green energy source and can be turned off or down-
clocked to improve power efficiency; and (ii) to a few
virtual machine instances running on a remote cloud
whose physical nodes are powered by a green energy
source. Students are tasked with reasoning about the
workflow execution and optimizing it for various ob-
jectives and using various methods, including resource
provisioning, resource configuration, and task schedul-
ing decisions. Students do this interactively through
their browser. The simulator is hosted on a back-end
server. It is implemented using the WRENCH (https://
wrench-project.org) and SimGrid (https://simgrid.org)
simulation frameworks [?].

The prerequisites for this assignment include basic
knowledge of parallel computing concepts (multi-core
and multi-node parallelism, speedup, efficiency), of dis-
tributed computing concepts (network data transfers,
network data proximity), and of workflows (task data
dependencies, width). In courses focused on parallel
and distributed computing, it may be that students
already have covered these prerequisites. Regardless,
this assignment is hosted on the EduWRENCH site
(https://eduwrench.org), which hosts several pedagogic
modules that cover all the above concepts and more.
These modules all include learning objectives, pedagogic
narratives, interactive simulation applications, practice
questions, as well as open-ended questions. It should
thus be straightforward for an instructor to point stu-
dents to particular prerequisite content that they must
cover before starting on the assignment.

B. Assignment Description

The assignment is available at https://eduwrench.
org/pedagogic_modules/workflow_co2/ as a single
page with two tabs, each with learning objectives, a
narrative, an interactive simulation application, and a
set of questions. No software download/installation is
required, and any teacher/student at any institution can
go through the assignment today via any Web browser.

Tab #1 – The first tab introduces the workflow of in-
terest, which is an instance of the Montage astronomy

https://wrench-project.org
https://wrench-project.org
https://simgrid.org
https://eduwrench.org
https://eduwrench.org/pedagogic_modules/workflow_co2/
https://eduwrench.org/pedagogic_modules/workflow_co2/


application. This workflow is to be executed on a 64-
node cluster powered by a power plant that generates
291 gCO2e (gram CO2 equivalent) per kWh. The cluster
nodes can be configured to operate in one of seven
power states (p-states), each corresponding to a different
trade-off between compute speed and power consump-
tion. Furthermore, a number of nodes can be powered
off. The assignment makes the simplifying assumption
that all powered on nodes operate in the same p-state
(i.e., the cluster is homogeneous). Students are provided
with an in-the-browser simulation application in which
they can pick the number of nodes that are powered
on and their p-state, simulate the workflow execution
(which takes a few seconds), and see the simulation
output as execution time, power consumed, and gCO2e
generated.

Students are then asked to answer three questions. The
first question establishes a baseline for execution time,
parallel speedup, and parallel efficiency when powering
on all nodes in their highest p-state (i.e., aiming for
highest performance). The second question states that,
in fact, it is only necessary to execute the workflow in
under 3 minutes. Students are then asked to evaluate
two (for now mutually exclusive) options for minimizing
CO2 emission given this execution time bound: power
off some nodes or downclock all nodes. They are asked
to perform a binary search to identify the minimum
number of nodes to power on and the minimum p-state
to use, and then report to their hypothetical boss on the
merit of each option. Finally, the third question presents
students with a heuristic designed by their hypothetical
boss. This heuristic combines both power management
techniques (powering off and downclocking) and stu-
dents are asked to evaluate how well this heuristic
works. It turns out that it leads to lower CO2 emission
than both previously evaluated options, showing that
combining power management techniques can be useful.

Tab #2 – In the second tab, students are told that their
organization has purchased 16 virtual machine instances
on a remote, green, cloud. As a result, the organization
now only powers on 12 nodes of the local cluster, all op-
erating at the lowest possible p-state. The remote cloud
is accessible via a network link with limited bandwidth.
The key issue now is to decide whether a task should
be executed on the local cluster or on the remote cloud.
Note that the remote cloud has storage, so the output
of a task executed on the cloud is available locally to a
subsequent child task that also executes on the cloud.
In other words, there is possibility of data locality. Like
the previous tab, this tab also includes an interactive
simulation application. Students can use it to see the
effect, in terms of performance and CO2 emission, of
running some fraction of tasks in particular workflow
levels on the remote cloud.

Students are then asked to answer five questions. The

first question establishes baselines for “all on the local
cluster" and “all on the cloud" executions. The second
question asks students to reason about, and then com-
pare using simulation, three options for executing the
first two levels of the workflow. Subsequent questions
guide students toward coming up with configurations
that execute fractions of some workflow levels on the
cloud, engaging in a “treasure hunt” for the configu-
ration that minimizes CO2 emission. In particular, for
the last question students are free to experiment with
whatever scheme they can come up with. During in-
class sessions in which students went through this as-
signment, the instructor observed students actively ex-
perimenting and trying to beat the footprint achieved
by other students, denoting a reasonably high level of
student engagement in the assignment. In the future,
we will run our simulator to exhaustively evaluate all
possible options so as to compute the actual optimal
CO2 emission for this (NP-complete) problem and state
its value in the assignment, so that students know how
far their solution is from the optimal.

C. Strengths and Weaknesses

The main weakness of this assignment is that it is
only in simulation: although it allows for active learn-
ing via interactive experiments, these experiments are
not “real”. This is a deliberate design choice of this
assignment and in fact of the EduWRENCH project as a
whole: programming is not required so that assignments
can be easily integrated in early courses and/or in non-
computer-science curricula. But, as a result, some of
the “excitement” is lost. Note, however, that student
feedback collected for this and other EduWRENCH as-
signments does not indicate that students deem this a
big impediment to their learning experience.

A strength of this assignment is that it should be
extremely easy to integrate into existing courses. Al-
though it has prerequisites, these prerequisites are cov-
ered in other modules available on the same Web site
(which also includes a handy glossary of terms). The key
strength of the assignment is that it teaches learning ob-
jectives that would be extremely difficult to achieve with-
out simulation. In most institutions, it would be close to
impossible to provide students with the necessary hard-
ware and software environments for running meaningful
experiments. Even if provided, students would have to
learn myriads of technical details and skills for using
these environments. This would preclude achieving the
learning objectives hands-on in most courses, and in
particular in undergraduate courses.

D. Previous Uses

This assignment was used in a graduate HPC course
(ICS 632) at the University of Hawai‘i at Mānoa in Fall
2021. 11 students completed a self-assessment question-
naire, and provided feedback on the pedagogic mate-



Table I: Student feedback (n = 11).

Question Choices #Answers

How easy / difficult is the assignment?

very easy 1
somewhat easy 6
neither easy nor difficult 4
somewhat difficult -
very difficult -

How useful is the assignment?

very useful 5
useful 3
somewhat useful 3
of little use -
not useful -

To what extent did the assignment help you learn new things?

to a great extent 5
to a moderate extent 4
to some extent 2
to a small extent -
not at all -

Are you interested in learning more about this topic?
yes 10
no 1

How useful is simulation in this assignment?

very useful 6
useful 3
somewhat useful 3
of little use -
not useful -

How valuable is the overall learning experience in the module?

very much 7
quite a bit 3
somewhat 1
a little -
not at all -

rial (9 were Computer Science graduate students and
2 Computer Science undergraduate students). All stu-
dent feedback is summarized in Table ??. These self-
assessment results are a good indication that the as-
signment accomplishes its objectives. Assessment results
showed that almost all students in the course scored
more than 90% on this assignment, which is expected
in a graduate course. Open-ended comments entered by
students in the self-assessment questionnaires were very
positive and include comments such as “The writing and
explanations are great, being able to do a lot of trial and
error is fun” and “The visual aspect of the simulation
really helped me understand what was happening”.
Finally, students have provided constructive feedback
on the assignment, all of which has been taken into
account for improving the pedagogic content and its
presentation.
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