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Abstract A quasiconformal tree is a doubling metric tree in which the diameter of each arc
is bounded above by a fixed multiple of the distance between its endpoints. We study the
geometry of these trees in two directions. First, we construct a catalog of metric trees in a
purely combinatorial way, and show that every quasiconformal tree is bi-Lipschitz equiva-
lent to one of the trees in our catalog. This is inspired by results of Herron and Meyer and
of Rohde for quasi-arcs. Second, we show that a quasiconformal tree bi-Lipschitz embeds
in a Euclidean space if and only if its set of leaves admits such an embedding. In particular,
all quasi-arcs bi-Lipschitz embed into some Euclidean space.
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1. Introduction

In this paper, a (metric) tree is a compact, connected, locally connected metric space
with the property that each pair of distinct points forms the endpoints of a unique arc.
In some sense, trees make up the simplest class of one-dimensional continua and are
ubiquitous in analysis and geometry.

Within the class of all trees, an important role has been played by the class of
quasiconformal trees studied in [2, 3, 16]. By definition, these are trees T that satisfy
two simple geometric properties:

� T is doubling: there is a constant N such that each ball in T can be covered by
N balls of half the radius.

� T is bounded turning: there is a constant C such that each pair of points
x;y 2 T can be joined by a continuum whose diameter is at most Cd.x;y/.
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These conditions are both invariant under quasisymmetric mappings, making the class
of quasiconformal trees a natural quasisymmetrically invariant class. We do not recall
the definition of quasisymmetric mappings here (see [2] or [13]) but merely note that
they are an important generalization of conformal mappings to arbitrary metric spaces.

Quasiconformal trees appear in several fields of analysis. For instance, Julia sets
of semihyperbolic polynomials (e.g., z2 C i ) are quasiconformal trees (see [5, p. 95]
and [6]), and quasiconformal trees T in R

2 (often called Gehring trees) were recently
characterized by Lin and Rhode [19] in terms of the laminations of the conformal map
f WC nD!C n T .

Quasiconformal trees generalize two more well-known types of spaces. For one,
quasiconformal trees that are simply topological arcs (i.e., have no branching) are called
quasi-arcs and have been studied in complex analysis and analysis on metric spaces for
decades [9]. For example, the famous von Koch snowflake is a quasi-arc. A well-known
result of Tukia and Väisälä [26] shows that quasi-arcs are exactly those spaces that are
quasisymmetrically equivalent to the unit interval Œ0; 1�.

Quasiconformal trees also generalize (doubling) geodesic trees. Geodesic trees are
trees in which, for each pair of points x, y, the unique arc joining them has (finite)
length equal to d.x;y/. Thus, in geodesic trees all paths are “straight” (isometric to
intervals in the real line), whereas paths in quasiconformal trees may be fractal, like the
von Koch snowflake. Geodesic trees are of course standard objects of study in many
parts of mathematics and computer science. Recently, Bonk and Meyer [2] generalized
the result of Tukia and Väisälä mentioned above by showing that each quasiconformal
tree is quasisymmetric to a geodesic tree.

Rather than studying the quasisymmetric geometry of quasiconformal trees, this
paper is concerned with the finer notion of bi-Lipschitz geometry. Recall that a mapping
f between two metric spaces is called bi-Lipschitz (or L-bi-Lipschitz to emphasize the
constant) if there is a constant L� 1 such that

L�1d.x;y/� d
�
f .x/; f .y/

�
�Ld.x;y/; for all x;y 2X:

Thus, bi-Lipschitz mappings preserve distances up to constant factors. All bi-Lipschitz
mappings are quasisymmetric, but the converse is false. For example, one may param-
etrize the von Koch snowflake K by a quasisymmetric map Œ0; 1�! K but not by a
bi-Lipschitz map.

Given a metric space X , natural questions in the bi-Lipschitz world are as follows:

� Uniformization: Which metric spaces are bi-Lipschitz equivalent to X (i.e.,
admit a surjective bi-Lipschitz mapping onto X )?

� Embeddability: Does X admit a bi-Lipschitz embedding into some Euclidean
space R

n (i.e., a bi-Lipschitz mapping from X into R
n)?

The first of these questions is about recognizing or providing models for spaces up to
bi-Lipschitz equivalence—that is, up to bounded distortion of their metrics. The sec-
ond is about understanding which spaces can be viewed as subsets of Euclidean space
up to bounded distortion, and in complete generality is a major problem in analysis,
geometry, and computer science [12, 21].
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We study both of these questions for quasiconformal trees. Concerning the first, we
give a “combinatorial model” for generating quasiconformal trees based on a purely
discrete construction and then show that every quasiconformal tree is bi-Lipschitz
equivalent to one of our combinatorial constructions. This is in the vein of the com-
binatorial models for quasi-arcs up to bi-Lipschitz equivalence given by Herron and
Meyer [14] and by Rohde [22], although the construction for trees is more elaborate.
Our main theorem on this topic is Theorem 1.4.

Concerning the second question, we build on ideas from [24] to show that every
quasi-arc admits a bi-Lipschitz embedding into some Euclidean space and use this to
show that the bi-Lipschitz embedding properties of quasiconformal trees are completely
controlled by their sets of leaves (Theorem 1.8). We leave open the main question of
whether all quasiconformal trees admit bi-Lipschitz embeddings into Euclidean space;
see below for additional background and discussion.

We now discuss these ideas in more detail.

1.1. Combinatorial models for quasiconformal trees up to bi-Lipschitz equivalence
We first give a way to define metric spaces using certain sequences of combinatorial
graphs—that is, G D .V;E/, where V is the vertex set and E is the edge set. This
is inspired by the ideas of [14] and [22] concerning quasi-arcs, with a number of new
wrinkles in the case of trees. To simplify the presentation as much as possible, a number
of definitions are postponed until Section 2.

Let A be an “alphabet”: a set of the form ¹1; : : : ; nº, or AD N. Denote by " the
empty word and by jwj the length of a word—that is, the number of letters. Let A0 D
¹"º, and for each k 2N denote by Ak the set of all words made from the alphabet A of
length exactly k. Define the set of finite words

A� D

1[
kD0

Ak :

Denote also by AN the set of infinite words formed by the alphabet A, and AN

u � A
N

the set of all infinite words that begin with a given finite word u 2A�.

DEFINITION 1.1
We consider the following combinatorial data C D .A; .Gk/k2N/, where

(1) A is a finite or infinite alphabet: AD ¹1; : : : ;M º for some integer M � 2, or
ADN;

(2) for each k 2N, Gk D .Ak ;Ek/ is a connected combinatorial graph on the
vertex set Ak with the following properties:
(a) For each w 2Ak , the subgraph of GkC1 induced by the vertex set
¹wi W i 2Aº is connected.

(b) If ¹w;uº 2Ek , then there is a pair .i; j / 2A�A such that
¹wi;uj º 2EkC1.

We next define a way to “move between” different infinite word sets AN

u using the
structure of the combinatorial data. Moves between AN

u and AN

v are always permitted if
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u and v are adjacent words of equal length, but in general we take into account the full
scope of the combinatorial data.

Thus, given combinatorial data C D .A; .Gk/k2N/, we say that two infinite word
sets AN

u1
and AN

u2
combinatorially intersect, and write AN

u1
^C A

N

u2
¤; if the following

holds:

For each n >max
®
ju1j; ju2j

¯
; there exist words w1;w2 2A

n, beginning

with u1 and u2; respectively, that are adjacent in Gn:(1.1)

In other words, two word sets AN

u1
and AN

u2
combinatorially intersect if their

restrictions to every sufficiently large finite level are adjacent. Below, in Definition 3.2,
we will give a precise definition of the set AN

u1
^C A

N

u2
and show that its non-emptiness

is equivalent to (1.1).
Given this notion of combinatorial intersection, we can describe how to move

between two infinite words, as follows.

DEFINITION 1.2
Given two words w;w0 2AN, we say that ¹AN

w1
; : : : ;AN

wn
º is a chain joining w with w0

if w 2AN

w1
, w0 2AN

wn
and for every i D 1; : : : ; n� 1, we have AN

wi
^C A

N

wiC1
¤;.

Now that we have a way to move between two infinite words, we can define a distance
on AN by assigning costs to each chain with a “diameter function” as follows.

DEFINITION 1.3
Given an alphabet A, a diameter function is a function � WA�! Œ0; 1� such that

(1) �."/D 1;
(2) for each w 2Ak and i 2A, �.wi/D 0 for all but finitely many i 2A; and
(3) limn!1max¹�.w/ Ww 2Anº D 0.

The class of all diameter functions on A is defined by D.A/. Given 0 < ı1 � ı2 � 1
and finite A, we denote by D.A; ı1; ı2/ the collection of all diameter functions on the
alphabet A such that

for each w 2A� and i; j 2A; �.wi/D�.wj / and
�.wi/

�.w/
2 ¹ı1; ı2º:

Note that, in Definition 1.3, (2) is automatic if A is finite, and (3) is automatic if � 2
D.A; ı1; ı2/ and ı2 < 1. In (3), Condition (2) implies that the maximum is actually
achieved, even if A is infinite.

Given combinatorial data C D .A; .Gk/k2N/ and � 2D.A/, we define a pseudo-
metric DC ;� on AN by

(1.2) DC ;�.w;u/D inf
NX
iD0

�.vi /;

where the infimum is taken over all chains ¹AN

vi
º joining w with u.
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We prove in Lemma 3.8 that DC ;� is indeed always a pseudometric on AN. Tak-
ing the quotient space A WD AN= � under the equivalence relation w � w0 whenever
DC ;�.w;w

0/D 0, we obtain a metric space

.A; dC ;�/;

where dC ;�.Œw�; Œv�/DDC ;�.w; v/.
To help digest the definition, we provide a number of examples illustrating this

combinatorial construction in Section 6 below.
Our main theorem on these combinatorial models is as follows.

THEOREM 1.4
(1) If C defines combinatorial data and � 2D.A/, then the space .A; dC ;�/ is

compact, connected, and bounded turning with constant C D 1.
(2) If, in addition, each graph Gk in the combinatorial data is a combinatorial

tree, then the space .A; dC ;�/ is a metric tree.
(3) Conversely, if X is an arbitrary quasiconformal tree, then there exist

combinatorial data C D .A; .Gk/k2N/ and a diameter function
� 2D.A;K1;K2/ such that each Gk is a combinatorial tree and X is
bi-Lipschitz equivalent to the space .A; dC ;�/. The choice of alphabet, the
constants K1 and K2, and the bi-Lipschitz constant depend only on the
doubling and bounded turning constants of X and on diam.X/.

Parts (1) and (2) of Theorem 1.4 are proven in Proposition 3.10, and Part (3) is proven
(with a more detailed statement) in Theorem 5.1.

We emphasize that an important feature of Theorem 1.4 is that all quasiconformal
trees are built (up to bi-Lipschitz equivalence) not only from combinatorial objects but
from the simple homogeneous word sets AN and the additional data provided by ¹Gkº
and the diameter function. In some sense, one can view the construction in [14], which
combinatorially builds bi-Lipschitz models of all quasi-arcs, as being a special case of
the above construction in the case where A has two elements and the graphs Gk are
combinatorial arcs, and so we show that the above re-interpretation and expansion of
their construction yields all quasiconformal trees up to bi-Lipschitz equivalence. Later,
in Section 6, we provide some concrete examples and pictures of the combinatorial
construction described above, including describing in more detail how quasi-arcs fit
into our picture.

REMARK 1.5
The metric space .A; dC ;�/ constructed from given combinatorial data and diameter
function need not be doubling in general, even if the alphabet A is finite, the graphs
Gk are all combinatorial trees, and the diameter function � lies in D.A; ı1; ı2/ for
0 < ı1 < ı2 < 1.

However, in Proposition 4.1 we give some sufficient conditions that imply that the
space .A; dC ;�/ is doubling. In Theorem 1.4(3), the space .A; dC ;�/ that we construct
always satisfies these conditions. This is stated explicitly in Theorem 5.1.
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1.2. Combinatorial descriptions of metric spaces with good tilings
Some techniques in the proof of Theorem 1.4(3) can be used for a more general class
of metric spaces that can be tiled in a uniform fashion. Roughly speaking, we say that
a metric space has a “good tiling” if there exists an alphabet A, a constant r 2 .0; 1/,
and a tiling decomposition ¹Xw W w 2 A�º of X such that each tile Xw has diameter
comparable to r jwj and any two nonintersecting tiles Xw , Xu have distance at least a
fixed multiple of max¹r jwj; r jujº. See Section 7 for a precise definition.

In Proposition 7.1, we show that any such space is bi-Lipschitz equivalent to a
space .A; dC ;�/ for some combinatorial data C and �.w/D r jwj. Spaces with good
tilings include many attractors of iterated function systems such as the square, the cube,
the Sierpiński carpet, the Sierpiński gasket, and others; see Example 7.2 for further
discussion.

We note that Proposition 7.1 is not a generalization of Theorem 1.4: if X is a
quasiconformal tree, the combinatorial data that Proposition 7.1 will provide may not
consist of combinatorial trees, as required by Theorem 1.4. The proof also proceeds
differently, and in fact we do not know if every quasiconformal tree possesses a good
tiling in the sense given in Section 7.

1.3. Bi-Lipschitz embeddings of quasi-arcs and quasiconformal trees
We now turn our attention to the problem of finding bi-Lipschitz embeddings of quasi-
conformal trees into Euclidean space. The most natural question is as follows.

QUESTION 1.6
Does every quasiconformal tree have a bi-Lipschitz embedding into some Euclidean
space R

n?

We do not answer this question here and, indeed, it may be rather difficult to answer. In
the special case of doubling, geodesic trees, the answer is known to be positive, by a the-
orem of Gupta–Krauthgammer–Lee [10]; see also [11, Corollary 8]. Lee–Naor–Peres
also give an alternative proof of the result for geodesic trees in [18, Theorem 2.12].

By adapting techniques of Romney and the second named author, we make
progress on Question 1.6 in the case where the quasiconformal tree has no branching,
as follows.

PROPOSITION 1.7
Every quasi-arc admits a bi-Lipschitz embedding into some Euclidean space R

n.

Proposition 1.7 is a simplified version of Proposition 8.2 below, where we identify the
sharp dimension n for the embedding. We note that Herron and Meyer proved Proposi-
tion 1.7 in the special case of quasi-arcs with Assouad dimension less than 2; see [14,
Theorem C].

Using Proposition 8.2, and results of Lang and Plaut [17] and of Seo [25], we end
by giving a criterion that can answer Question 1.6 in certain examples. If X is a metric
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tree, we denote by L.X/ be the set of leaves of X ; that is,

L.X/ WD
®
x 2X WX n ¹xº is connected

¯
:

THEOREM 1.8
A quasiconformal tree X admits a bi-Lipschitz embedding into some Euclidean space
if and only if L.X/ admits a bi-Lipschitz embedding into some Euclidean space.

Theorem 1.8 is a simplified version of the quantitative statement of Theorem 8.1.

REMARK 1.9
If X is a quasiconformal tree, the set L.X/ need not be closed and may even be dense
in X . Thus, Theorem 1.8 does not necessarily always reduce Question 1.6 to a simpler
problem.

In many particular cases, however, it may be significantly easier to check the
embeddability of L.X/ rather than X itself. For example, in many concrete settings,
the leaf set L.X/ is an ultrametric space, and every doubling ultrametric space bi-
Lipschitz embeds into some Euclidean space [20].

REMARK 1.10
An equivalent reformulation of Theorem 1.8 is that a subset E of a quasiconformal
tree X admits a bi-Lipschitz embedding into some Euclidean space if and only if the
minimal subtree of X containing E does.

1.4. Outline of the paper
In Section 2, we review some elementary notions from graph theory concerning com-
binatorial graphs and trees. In Section 3, we provide more details on our combinatorial
models and prove parts (1) and (2) of Theorem 1.4. In Section 4, we work in the case
of combinatorial trees and identify conditions on A, C , and � that guarantee that the
metric tree .A; dC ;�/ is doubling.

In Section 5, we prove a more detailed version of Part (3) of Theorem 1.4. The basic
idea is to construct an n-adic decomposition .Xw/w2¹1;:::;nº� of a given quasiconformal
tree X for some n� 2 that satisfies the following properties:

(1) Each Xw is the union of its children Xw1; : : : ;Xwn, which are themselves
trees. Each two of the children intersect in at most one point, which has
valency 2 in X .

(2) Each child Xwi of Xw has diameter comparable to that of Xw .
(3) Any two points x, y on Xw \X nXw have distance comparable to the

diameter of Xw .

This is accomplished by performing certain subdivisions and gluings on top of a con-
struction of Bonk and Meyer [2]. Once we have such a decomposition, we can build
combinatorial data C and a diameter function � such that .A; dC ;�/ is bi-Lipschitz
equivalent to X .
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Section 6 contains some examples and pictures that illustrate how our combinato-
rial data yields metric spaces in a few concrete cases.

Section 7 considers more general metric spaces, not necessarily trees, that admit a
notion of “good tiling.” We show that such spaces can also be viewed from our com-
binatorial data, in a slightly different way than Theorem 1.4. In particular, we describe
how some self-similar spaces like the unit square and the Sierpiński gasket can be con-
structed in our framework.

Finally, in Section 8, we prove a quantitative version of Proposition 1.7 and then
apply a bi-Lipschitz welding result of Lang and Plaut [17] and a bi-Lipschitz embed-
ding characterization of Seo [25] to complete the proof of Theorem 1.8.

2. Preliminaries

In this section, we introduce some further preliminary definitions and results related to
the combinatorial models defined in Section 1.1.

2.1. Words
Recall from Section 1.1 that we start with an alphabet AD ¹1; : : : ;M º for some integer
M � 2, or ADN. In addition to the sets A�, AN, AN

u defined above, we also set a few
other pieces of notation. For w 2A� and k � jwj, define

Akw D ¹wu W u 2A
k�jwjº; A�w D ¹wu W u 2A

�º:

Given n 2 N and w 2 AN, denote by w.n/ the unique word u 2 An such that
w D uw0 for some w0 2 AN. Similarly, if n 2 N and w 2 A�, w.n/ denotes the initial
subword of w with length n, and we set w.n/Dw if n� jwj.

Finally, given k 2 N and u 2 Ak , denote by u" the unique element of Ak�1 such
that u 2Ak

u"
.

2.2. Combinatorial graphs and trees
Definition 1.1 above uses some graph theory terminology. A combinatorial graph is a
pair G D .V;E/ of a finite or countable vertex set V and an edge set

E �
®
¹v; v0º W v; v0 2 V and v¤ v0

¯
:

If ¹v; v0º 2E , we say that the vertices v and v0 are adjacent in G.
A combinatorial graph G0 D .V 0;E 0/ is a subgraph of G D .V;E/ (and we write

G �G0) if V 0 � V and E 0 �E . We commonly generate subgraphs of G D .V;E/ by
starting with a vertex set V 0 � V and considering the subgraph of G induced by V 0:
the graph G0 D .V 0;E 0/, where E 0 is the set of all edges between two vertices of V 0.

A path in G is a set � D ¹¹v1; v2º; : : : ; ¹vn�1; vnºº �E; in this case, we say that �
joins v1, vn. The path � D ¹¹v1; v2º; : : : ; ¹vn�1; vnºº is a combinatorial arc or simple
path if for all i; j 2 ¹1; : : : ; nº, vi D vj if and only if i D j ; in this case we say that
the endpoints of the arc � are the points v1, vn. A combinatorial graph G D .V;E/ is
connected if for any distinct v; v0 2 V there exists a path � in G that joins v with v0.
A component of a combinatorial graph G is a maximal connected subgraph of G.
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A graph T D .V;E/ is a combinatorial tree if for any distinct v, v0 there exists
unique combinatorial arc � whose endpoints are v and v0. Given a combinatorial tree
T D .V;E/ and a point v 2 V , define the valencies

Val.T; v/ WD card¹e 2E W v 2 eº and Val.T / WDmax
v2V

Val.T; v/

and the set of leaves Leaves.T / WD ¹v 2 V W Val.T; v/ D 1º. Here, card denotes the
cardinality of a finite or countable set, taking values in N[ ¹1º.

Given a combinatorial graph G D .V;E/ and a vertex v 2 V , we write G n ¹vº to
be the subgraph ofG induced by V n¹vº. Note that, if T is a tree, then every component
of T n ¹vº is a tree.

3. A model for bounded turning metric spaces and trees

3.1. Combinatorial data
Recall the notion of combinatorial data C D .A; .Gk/k2N/ from Definition 1.1, where
A is an alphabet and Gk D .Ak ;Ek/ are combinatorial graphs on the vertex sets Ak ,
satisfying certain axioms. For the remainder of Section 3, we fix combinatorial data
C D .A; .Gk/k2N/.

Our first lemma gives some basic structural properties of these graphs. In particu-
lar, if each Gk is a combinatorial tree, then the pair .i; j / 2A�A of Definition 1.1(2b)
is unique.

LEMMA 3.1
Let k � j and v¤w 2Aj .

(1) If v and w are adjacent in Gj , then there are words v0 and w0 in Ak�j such
that vv0 and ww0 are adjacent in Gk .

(2) If Gk is a combinatorial tree and there are words v0 and w0 in Ak�j such that
vv0 and ww0 are adjacent in Gk , then v and w are adjacent in Gj .

(3) If Gk is a combinatorial tree and v and w are adjacent in Gj , then there is a
unique pair of words .v0;w0/ in Ak�j �Ak�j such that vv0 and ww0 are
adjacent in Gk .

Proof
The first statement is an immediate consequence of (2b) in Definition 1.1, and induction
on k � j .

For the second, suppose that v andw were not adjacent inGj , under these assump-
tions.

Let v D u0; u1; : : : ; un�1; un D w be a path from v to w in Gj . Note that n � 2.
Then, by the first statement in the lemma and Part (2) of Definition 1.1, there is a simple
path from vv0 2Akv to ww0 2Akw in Gk of the form

elements of Aku0 ; elements of Aku1 ; : : : ; elements of Akun :

On the other hand, there is also an adjacency between vv0 and ww0 in Gk . This contra-
dicts the assumption that Gk is a tree.
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For the third claim, the existence of v0 and w0 follows from (1). Suppose that the
uniqueness failed. We consider the following two possible cases.

Suppose first that there are two distinct v0; v00 2 A and w0 2 A such that both vv0

and vv00 are adjacent to ww0. Then there exists two combinatorial arcs in Gk that
join vv0 with vv00: one through the vertices of Gk restricted on Akv (by (2a) in Defi-
nition 1.1), and another is ¹¹vv0;ww0º; ¹ww0; vv00ºº. This contradicts the fact that Gk
is a tree.

The other possibility is that there are two distinct v0; v00 2 A and two distinct
w0;w00 2A such that vv0 is adjacent to ww0, and vv00 are adjacent to ww00. Then there
exist two combinatorial arcs in Gk that join vv0 with vv00: one through the vertices of
Gk restricted on Akv (by (2a) in Definition 1.1) and another through the vertices of Gk
restricted on Akw along with edges ¹vv0;ww00º and ¹vv00;ww00º. This again contradicts
the fact that Gk is a tree. �

3.2. Combinatorial intersection and chains
Recall the notion of combinatorial intersection AN

u ^C A
N

v defined in (1.1) in Sec-
tion 1.1. There, we defined only what it means for this set to be non-empty, but here we
actually give a meaning to the set itself.

DEFINITION 3.2
Given u1; u2 2A�, we define

AN

u1
^C A

N

u2
WD ¹w 2AN

u1
W 8n >max

®
ju1j; ju2j

¯
there exists u 2Anu2

with ¹w.n/;uº 2Enº

[ ¹w 2AN

u2
W 8n >max

®
ju1j; ju2j

¯
there exists u 2Anu1

with ¹w.n/;uº 2Enº:(3.1)

The set AN

u1
^C A

N

u2
is called the combinatorial intersection of AN

u1
and AN

u2
.

We now show that this definition agrees with that in (1.1) and give an equivalent refor-
mulation in the case of trees.

LEMMA 3.3
Let u1; u2 2A�. The following are equivalent:

(1) The set AN

u1
^C A

N

u2
is non-empty.

(2) For every k >max¹ju1j; ju2jº there exists v1 2Aku1 and v2 2Aku2 such that
¹v1; v2º 2Ek .

If each graph Gk is a combinatorial tree, then (1) and (2) are also equivalent to the
following:

(3) There exists k >max¹ju1j; ju2jº and v1 2Aku1 , v2 2Aku2 such that
¹v1; v2º 2Ek .
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Proof
We start by showing the equivalence of (1) and (2). That (1) implies (2) follows imme-
diately from the definition of AN

u1
^C A

N

u2
.

To show that (2) implies (1), we will inductively construct elements of AN

u1
^C

AN

u2
. Let k0 D max¹ju1j; ju2jº and choose u1i1 2 A

k0C1
u1 , u2j1 2 A

k0C1
u2 such that

¹u1i1; u2j1º 2 Ek0C1. By (2b) in Definition 1.1, given that ¹u1i1 	 	 	 in�k; u2j1 	 	 	
jn�kº 2 En for some n � k C 1, there exist in�kC1; jn�kC1 2 A such that ¹u1i1 	 	 	
in�kC1; u2j1 	 	 	jn�kC1º 2EnC1. Set now

w1 D u1i1i2 	 	 	 and w2 D u2j1j2 	 	 	

and note that both w1 and w2 are in AN

u1
^C A

N

u2
.

Assume now that each graph Gk is a combinatorial tree. Clearly, (2) implies (3) so
it suffices to show that (3) implies (2). Assume there is an integer k0 �max¹ju1j; ju2jº
and words w1 2 A

k0
u1 and w2 2 A

k0
u2 such that ¹w1;w2º 2 Ek0 . If k � k0, then by

Lemma 3.1(1), there exist v1 2 Akw1 and v2 2 Akw2 (hence, v1 2 Aku1 and v2 2 Aku2 )
such that ¹v1; v2º 2 Ek . If k is an integer with max¹ju1j; ju2jº � k � k0, then by
Lemma 3.1(2), there exist v1 2 Aku1 and v2 2 Aku2 such that w1 2 Akv1 , w2 2 Akv2 and
¹v1; v2º 2Ek . Therefore, (2) holds. �

The next lemma gives a description of the set AN

u1
^C A

N

u2
in the case that each Gk is a

combinatorial tree.

LEMMA 3.4
Let u1; u2 2A� with ju1j � ju2j, let k1 D ju1j, and let u02 D u2.k1/.

(1) If u02 D u1 (that is, u2 2A�u1 ), then AN

u2
�AN

u1
^C A

N

u2
.

Suppose additionally that each Gk is a combinatorial tree. Then:

(2) If AN

u1
^C A

N

u2
¤;, then either ¹u1; u02º 2Ek1 or u1 D u02.

(3) If ¹u1; u02º 2Ek1 , then AN

u1
^C A

N

u2
contains exactly two elements: one in

AN

u1
and one in AN

u2
. The converse is also true.

Proof
Let u1; u2; v 2A�, and k1 2N be as in the statement, and let k2 D ju2j.

To prove (1), assume that u02 D u1; that is, u2 2 A
k2
u1 . Let w 2 AN

u2
. By Defini-

tion 1.1(2a), the subgraph of Gk2C1 induced by Ak2C1u1 is connected. Fix v 2 Ak2C1u1

adjacent tow.k2C1/. Applying Definition 1.1(2b), we find a sequence ¹i1; i2; : : : º �A
such that for each n 2 N, vi1 	 	 	 in is adjacent to w.k2 C n C 1/. Since vi1 	 	 	 in 2
A
k2CnC1
u1 , by definition, w 2AN

u1
^C A

N

u2
.

Assume now for the rest of the proof that each Gk is a combinatorial tree. To
prove (2), assume that AN

u1
^C A

N

u2
¤ ;. By Lemma 3.3(2), we have that there exists

v1 2 A
k2C1
u1 and v2 2 A

k2C1
u2 such that ¹v1; v2º 2 Ek2C1. Applying Lemma 3.1(2), we

have that either u1 D u02 or ¹u1; u02º 2Ek1 .
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To prove (3), assume that ¹u1; u02º 2 Ek1 , and let v1 and v2 be as in the proof

of (2)—that is, v1 2 A
k2C1
u1 , v2 2 A

k2C1
u2 , and ¹v1; v2º 2 Ek2C1. By Definition

(2b) of 1.1, there exist i1; i2; 	 	 	 2 A and j1; j2; 	 	 	 2 A such that for all m 2 N,
¹v1i1 	 	 	 im; v2j1 	 	 	jmº 2 Ek2C1Cm. It follows that the words w1 D v1i1i2 	 	 	 2 AN

u1

and w2 D v2j1j2 	 	 	 2AN

u2
are in AN

u1
^C A

N

u2
.

Suppose now that there exist two distinctw01;w1 2A
N

u1
such thatw01;w1 2A

N

u1
^C

AN

u2
. Let l > k2 be an integer such that w1.l/¤ w01.l/. By Definition 3.2, there exist

v; v0 2 AN

u2
� AN

u0
2

such that ¹w1.l/; vº and ¹w01.l/; v
0º are in El . This contradicts the

uniqueness statement of Lemma 3.1(3).
Finally, for the converse of (3), simply note that if AN

u1
^C A

N

u2
contains exactly

two elements, then by (2), either u1 D u02, or u1 is adjacent to u02. However, the former
is false since in that case, by (1), AN

u1
^C A

N

u2
would be an infinite set. �

We now study chains, as defined in Definition 1.2 of Section 1.1. The following lemma
shows that, if each Gk in the combinatorial data is a combinatorial tree, chains must
respect the “between-ness” relation in each Gk .

LEMMA 3.5
Suppose that each graph Gk is a combinatorial tree. Let w1;w2;w3 2 Ak , and let
w2 be on the unique combinatorial arc in Gk that joins w1 and w3. If u1 2 AN

w1
and

u3 2A
N

w3
, then for every chain ¹AN

v1
; : : : ;AN

vn
º joining u1 with u3, there exists v 2A�

and i 2 ¹1; : : : ; nº such that AN

w2v
�AN

vi
.

Proof
We may assume that the three words w1, w2, w3 are distinct; otherwise, the lemma is
trivial.

As a start, we note that u1 has an initial w1 substring and an initial v1 substring,
so either v1 is an initial substring of w1 or vice versa. A similar consideration applies
to u3, vn, and w3.

For each i 2 1; : : : ; n, we define a subset Pi � Ak D V.Gk/ as follows: If jvi j <
k, then let Pi D Akvi . If jvi j � k, then let Pi D ¹vi .k/º. In either case, Pi induces a
connected subgraph of Gk .

CLAIM 3.6
P1 contains w1 and Pn contains w3.

Proof
If jv1j < k, then v1 is an initial substring of w1, and so P1 D Akv1 3 w1. If jv1j � k,
then w1 D v1.k/ 2 P1.

By the same argument, Pn contains w3. �

CLAIM 3.7
For each i 2 ¹1; : : : ; n� 1º, either Pi \PiC1 ¤ ; or there is an edge ¹a; bº 2Ek with
a 2 Pi and b 2 PiC1.
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Proof
Assume without loss of generality that jvi j � jviC1j. Since ¹viº is a chain, AN

vi
^C

AN

viC1
¤;.

Case 1: If jviC1j � jvi j < k, then Pi D Akvi and PiC1 D AkviC1 . These contain
adjacent elements by Lemma 3.3(2).

Case 2: If k � jviC1j � jvi j, then Pi D ¹vi .k/º and PiC1 D ¹viC1.k/º. By
Lemma 3.3(3) and Lemma 3.1(2), the elements vi .k/ and viC1.k/ are either equal or
adjacent in Gk .

Case 3: If jviC1j < k � jvi j, then Pi D ¹vi .k/º and PiC1 D AkviC1 . If vi .k/ 2

AkviC1 , then clearly Pi � PiC1. Otherwise, since AN

v1
^C A

N

viC1
¤;, by Lemma 3.1(2),

there exist j; l 2 A and v0 2 Ajvi j�jviC1j such that vij is adjacent to viv0l , and since
vi .k/ … A

k
viC1

, we have by Lemma 3.1(2) that vi .k/ (which is in Pi ) is adjacent to
.viC1v

0/.k/ (which is in PiC1). This completes the proof of the claim. �

Thus, the union of the sets P1;P2; : : : ;Pn induces a connected subgraph of Gk that
contains w1 and w3. It therefore must contain w2, so w2 2 Pi for some i .

If jvi j < k, then this means that w2 2 Pi D Akvi . Thus, AN

w2
� AN

vi
, which proves

the lemma in this case.
If jvi j � k, then w2 2 Pi D ¹vi .k/º. Thus, w2v D vi for some word v, which

proves the lemma in this case. �

3.3. Diameter functions and metrics
Recall the notion of a diameter function � on an alphabet A (and the class D.A/ of all
diameter functions on A) from Definition 1.3. For the remainder of Section 3, we fix
a diameter function � 2D.A/.

Given C and�, we defined the distanceDC ;� onAN in (1.2) by taking an infimum
over chains. We first prove that DC ;� is indeed a pseudometric as claimed.

LEMMA 3.8
The function DC ;� is a pseudometric on AN.

Proof
First, notice that for any w 2 AN and any n 2 N, ¹AN

w.n/
º is a chain that joins w with

w. Thus,

DC ;�.w;w/��
�
w.n/

�
� max
v2An

�.v/;

which vanishes as n!1 by property (3) in Definition 1.3. Hence, DC ;�.w;w/D 0.
The symmetry of DC ;� is trivial, as any chain joining w with u is also a chain

joining u with w.
For the triangle inequality, fix � > 0. Let ¹AN

w1
; : : : ;AN

wn
º be a chain joining w with

u, and let ¹AN

u1
; : : : ;AN

um
º be a chain joining u with v such that

nX
iD1

�.wi / <
�

2
CDC ;�.w;u/ and

nX
jD1

�.uj / <
�

2
CDC ;�.u; v/:
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By Lemma 3.4(1), we have that AN

wn
^C A

N

u1
¤ ;, and so ¹AN

w1
; : : : ;AN

wn
;AN

u1
; : : : ;

AN

um
º is a chain joining w with v. Thus, DC ;�.w; v/�DC ;�.w;u/CDC ;�.u; v/C �.

As � was chosen arbitrarily, the lemma follows. �

We now describe more precisely the metric space .A; dC ;�/ associated to a given com-
binatorial data C and diameter function � on A, introduced briefly in Section 1.1.

To turnDC ;� into a metric, we define a relation on AN. In particular, we write w �
u (for convenience we drop the dependence on C , �) if and only if DC ;�.w;u/D 0.
Since DC ;� is a pseudometric, it follows that � is an equivalence relation. Using this
identification, we define

ADAN=� and Aw DA
N

w=� for each w 2A�:

Based on DC ;�, we define a function dC ;� on A�A in the usual way: if Œw�; Œu� 2A,
then set

dC ;�
�
Œw�; Œu�

�
WDDC ;�.w;u/:

The function dC ;� is well-defined. To see why this is true, let w;w0; u;2
AN such that Œw� D Œw0�. By Lemma 3.8, we have that DC ;�.w;u/ � DC ;�.w;

w0/ C DC ;�.w
0; u/ D DC ;�.w

0; u/. Similarly, DC ;�.w
0; u/ � DC ;�.w;u/ and thus,

DC ;�.w
0; u/DDC ;�.w;u/.

LEMMA 3.9
The function dC ;� is a metric on A and for each w 2A�, diam Aw ��.w/.

Proof
We first show that dC ;� is a metric. It is clear that dC ;� is non-negative, symmetric and
dC ;�.Œw�; Œu�/D 0 if and only if Œw�D Œu� in A. The triangle inequality follows from
Lemma 3.8.

Let w 2 A� and Œu1�; Œu2� 2Aw . We may choose u1 and u2 in Aw . The set ¹AN

wº

is then a chain joining u1 with u2 and dC ;�.Œu1�; Œu2�/��.w/. Therefore, diam AN

w �

�.w/. �

We use standard metric space terminology when discussing .A; dC ;�/. In particular, if
Œw� 2A and r > 0, we write B.Œw�; r/ for the open ball centered at Œw� of radius r in
this space.

3.4. Bounded turning spaces
We now work toward the following proposition, which proves Parts (1) and (2) of The-
orem 1.4.

PROPOSITION 3.10
The metric space .A; dC ;�/ is compact, path-connected, and 1-bounded turning. More-
over, if each combinatorial graph Gk is a combinatorial tree, then the metric space is
a tree.
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(Here we are using the shorthand “C -bounded turning” for “bounded turning with con-
stant C ”.)

The separate statements of Proposition 3.10 are proven in Lemmas 3.12, 3.14, 3.15,
and 3.17.

LEMMA 3.11
Fix w 2A�. Let

I D
®
i 2A W�.wi/ > 0

¯
:

If diam.Aw/ > 0, then

Aw �
[
i2I

Awi :

Proof
The assumption that diam.Aw/ > 0 implies that I is non-empty. Let k D jwj.

Consider any Œv� 2Aw ; without loss of generality, v.k/D w. We will show that
Œv� D Œu� for some u 2 [i2IAN

wi . If v.k C 1/ 2 ¹wi W i 2 I º, then we are done, so
suppose it is not. Then there is a simple path

u1; u2; : : : ; un

in the combinatorial tree GkC1 such that u1 D v.k C 1/, un D wi f c bor some i 2 I ,
and uj … ¹wi W i 2 I º for 1� j � n� 1.

By Lemma 3.1, there is u 2 AN

un
such that for each m, either u.k Cm/ 2 AkCmun�1

or u.k Cm/ is adjacent to some element of AkCmun�1
. In either case, for each m� 1, we

have that AN

un�1
^C A

N

u.kCm/
¤;. Therefore, the set

¹AN

u1
; : : : ;AN

un�1
;AN

u.kCm/º

is a chain that joins v to u 2Awi . Note that �.uj /D 0 for 1� j � n� 1. Therefore,

DC ;�.v;u/��
�
u.kCm/

�
�max

®
�.r/ W r 2AkCm

¯
! 0 as m!1:

It follows that Œv�D Œu� 2Awi . This completes the proof. �

We can now prove a slightly stronger version of the first statement in Proposition 3.10.

LEMMA 3.12
For each w 2A�, the metric space .Aw ; dC ;�/ is compact.

In particular, taking w D ", we see that .A; dC ;�/ is compact, as required in Proposi-
tion 3.10.

Proof
We show that .Aw ; dC ;�/ is sequentially compact. Let .Œwn�/ be a sequence in
Aw . Suppose that this sequence has no convergent subsequence. This implies that
diam.Aw/ > 0; otherwise, .Œwn�/ would be constant.
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Let

I1 D
®
i 2A W�.wi/ > 0

¯
:

Note that I1 is finite by Definition 1.3. Thus, by Lemma 3.11, there exists i1 2 I1 and
a subsequence .Œw1n�/ of .Œwn�/ in Awi1 .

We proceed by induction to construct sets Im � A, indices im 2 Im and subse-
quences .Œwmn �/ of .Œwn�/ contained in Awi1i2:::im .

Assuming that there is a subsequence .Œwmn �/�Awi1���im , let

ImC1 D
®
i 2A W�.wi1 	 	 	 imi/ > 0

¯
;

which is finite as above. As above, diam.Awi1���im/ > 0; otherwise, .Œwmn �/ would be
constant—-hence, convergent. Thus, by Lemma 3.11, there is imC1 2 ImC1 �A and a
subsequence .ŒwmC1n �/ of .Œwmn �/ in Awi1���imC1 .

Set u D wi1i2 	 	 	 2 A
N and consider the subsequence .Œwnn �/ of .Œwn�/. Then

dC ;�.Œw
n
n �; Œu�/ � �.u.n// ! 0 as n ! 1, contradicting our assumption. Thus,

.Aw ; dC ;�/ is compact. �

We now work toward the connectedness properties. The following definition is conve-
nient: An �-path in a metric space .X;d/ is a finite sequence .x1; : : : ; xn/ such that
d.xi ; xiC1/ � � for each i 2 ¹1; : : : ; n � 1º. We say that the �-path joins a and b if
aD x1 and b D xn.

LEMMA 3.13
Let Œw1�; Œw2� 2A with dC ;�.Œw1�; Œw2�/ < r , and let � > 0. Then there is an �-path
joining Œw1� and Œw2� of diameter less than r .

Proof
Fix Œw1�, Œw2�, r > 0, and � > 0 as in the statement of the lemma. Let ¹AN

u1
; : : : ;AN

uk
º

be a chain joining w1 with w2 such that
kX
iD1

�.ui /� dC ;�
�
Œw1�; Œw2�

�
C
r � dC ;�.Œw1�; Œw2�/

2
< r:

Note that for any i; j 2 ¹1; : : : ; kº and any wi 2 AN

ui
and wj 2 AN

uj
, we may use a

subset of this same chain to join them and so obtain

(3.2) dC ;�
�
Œwi �; Œwj �

�
< r:

By Property (3) in Definition 1.3, there exists m 2 N such that �.u/� �=2 for all
u 2Am. By the properties of Gm and Lemma 3.3, there exists a path

� D
®
¹u01; u

0
2º; : : : ¹u

0
k�1; u

0
kº
¯
�

k[
iD1

Amui

such that w1 2 AN

u0
1

and w2 2 AN

u0n
. For each i 2 ¹1; : : : ; nº, let vi D u0i1

1, and let

v0 Dw1 and vnC1 Dw2. Then for each i D 1; : : : ; n� 1,

dC ;�
�
Œvi �; ŒviC1�

�
��.u0i /C�.u

0
iC1/� �=2C �=2D �;

and similarly, dC ;�.Œw1�; Œv1�/��.u01/� � and dC ;�.Œw2�; Œvn�/��.u0n/� �.
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Thus, .Œv0�; Œv1�; : : : ; ŒvnC1�/ is an �-path joining Œw1� to Œw2�. Its diameter is less
than r by (3.2). �

The following lemma completes the proof of the topological properties in Proposi-
tion 3.10.

LEMMA 3.14
The metric space .A; dC ;�/ has the property that B.Œw0�; r/ is connected for each
Œw0� 2A and r > 0.

In particular, the space is connected, locally connected, and path-connected.

Proof
The second sentence follows from the first: connectedness by taking r D 1� diam.A/,
local connectedness by, e.g., [27, Chapter I, Line 15.1], and path-connectedness by the
Hahn–Mazurkiewicz theorem and Lemma 3.12.

For the first sentence, fixw0 2AN and r > 0. To show that B.Œw0�; r/ is connected,
it suffices to show that for any � > 0, each Œw� 2B.Œw0�; r/ can be joined to Œw0� by an
�-path contained in B.Œw0�; r/.

The point Œw� is less than �-distance away from an element Œw0� of B.Œw0�; r/.
There is an �-path joining Œw0� to Œw0� inside B.Œw0�; r/, by Lemma 3.13. Since
dC ;�.Œw

0�; Œw�/ < �, appending Œw� to this path yields an �-path joining Œw0� to Œw�
inside B.Œw0�; r/. �

LEMMA 3.15
The metric space .A; dC ;�/ is 1-bounded turning.

Proof
Let Œw1�; Œw2� 2A, with r D dC ;�.Œw1�; Œw2�/ > 0. Let � > 0. By Lemma 3.13, there is
an �-path .v0; v1; : : : ; vn/ joining Œw1� to Œw2� with diameter at most r C �.

Define a compact set K� �A by

K� D

n[
jD0

B
�
Œvj �; 2�

�
:

Note that each ball in this union is connected, by Lemma 3.14. Since B.Œvj �; 2�/ \
B.ŒvjC1�; 2�/¤; for each j D 0 : : : n� 1, it follows that K� is also connected. More-
over,

(3.3) diam.K�/� r C 5�:

The sets K1;K1=2;K1=3; : : : are each compact, connected, and contain both Œw1� and
Œw2�. They therefore admit a subsequence that converges in the Hausdorff metric to a
compact, connected set that contains Œw1� and Œw2�. By (3.3), this set has diameter r .
This completes the proof. �
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3.5. Metric trees
We now prove the second half of Proposition 3.10—namely, that if each combinatorial
graph in our data is in fact a combinatorial tree, then the resulting metric space is a met-
ric tree. Thus, for the remainder of Section 3, we assume that each combinatorial
graph Gk is a metric tree, and we rename the graphs Tk to reflect this.

LEMMA 3.16
Suppose thatw;w0;w0 2Ak andw0 is on the unique combinatorial arc in Tk that joins
w with w0. If there exist u 2AN

w and u0 2AN

w0 such that Œu�D Œu0�, then Œu� 2Aw0 .

Proof
Let w, w0, w0 be as in the statement of the lemma. We claim that for any � > 0 suffi-
ciently small, there exists v 2 AN

w0
such that DC ;�.u; v/ < �. Assuming this claim, by

Lemma 3.12, it follows that there exists u0 2Aw0 such that DC ;�.u;u0/D 0, and we
obtain that Œu� 2Aw0 .

To prove the claim, fix � > 0. Since DC ;�.u;u
0/ D 0, there exists a chain

¹AN

w1
; : : : ;AN

wm
º that joins u with u0 such that

Pm
lD1�.wl / < �. By Lemma 3.5,

there exist l0 2 ¹1; : : : ;mº and v 2 AN

w0
\ AN

wl0
. In particular, ¹AN

w1
; : : : ;AN

wl0
º is a

chain joining u with v. It follows that

DC ;�.u; v/�

l0X
lD1

�.wl /�

mX
lD1

�.wl / < �:

As � > 0 was arbitrary, this proves the initial claim and hence the lemma. �

LEMMA 3.17
The metric space .A; dC ;�/ is a metric tree.

Proof
First of all, since .A; dC ;�/ is Hausdorff and path-connected, it is also arcwise con-
nected; see, e.g., [28, Section 31]. Let Œw1�, Œw2� be two distinct arbitrary points in A.
We will show that there is a point of A n ¹Œw1�; Œw2�º (in fact, a whole continuum) that
every path � from Œw1� to Œw2� must contain. This clearly implies that there can be no
simple closed path containing Œw1� and Œw2�, and therefore that A is a metric tree. (See
[7, Theorem 1.1] for various characterizations of metric trees, called dendrites there,
from which we are using characterization (20).)

For each n 2N, let

¹vn;1; : : : ; vn;m.n/º �A
n

be all the vertices of Tn lying on the unique combinatorial arc that joins w1.n/ with
w2.n/, ordered so that vn;1 D w1.n/, vn;m.n/ D w2.n/, and ¹vn;i ; vn;iC1º 2En for all
i D 1; : : : ;m.n/� 1.

Note that for each n 2 N and i 2 ¹1; : : : ;m.n C 1/º, the word vnC1;i .n/ lies
on the combinatorial arc from w1.n/ to w2.n/—i.e., is equal to vn;j for some
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j 2 ¹1; : : : ;m.n/º. Indeed, if not, then the combinatorial arc ¹vn;1; : : : ; vn;m.n/º avoids
vnC1;i .n/, and so by Definition 1.1, Properties (2a) and (2b), we can form an arc from
w1.nC 1/ to w2.nC 1/ that avoids vnC1;i , contradicting the uniqueness of this arc in
TnC1.

Conversely, if n 2 N and i 2 ¹1; : : : ;m.n/º, then some vnC1;j has vnC1;j .n/ D
vn;i . If not, then using Definition 1.1, Properties (2a) and (2b), we could construct a
separate combinatorial arc joining w1.nC 1/ and w2.nC 1/ that does contain some
child of vn;i , violating the tree condition.

The upshot of the previous two paragraphs is that each AvnC1;i is contained in
some Avn;j , and each Avn;i contains some AvnC1;j .

In particular, for each n 2N,

m.nC1/[
iD1

AvnC1;i �

m.n/[
iD1

Avn;i :

Let

Kn WD

m.n/[
iD1

Avn;i �A; and K WD

1\
nD1

Kn �A:

Note that the above sets are all compact by Lemma 3.12.

CLAIM 3.18
We have that Œw1�; Œw2� 2K .

Proof
We have that w1 D vn;1 for each n, so w1 2 AN

vn;1
for each n. Hence, Œw1� 2Avn;1 �

Kn for each n, and Œw1� is therefore in K . Similarly, Œw2� 2K . �

CLAIM 3.19
The set K contains a continuum that joins Œw1� with Œw2�.

Proof
For any ı > 0, there exists n 2 N such that supw2An�.w/ < ı=2. We first claim that
for any i D 1; : : : ;m.n/, there exists a point Œvi � 2Avn;i \K . Indeed, by the discussion
at the beginning of the proof of this lemma, there is a sequence

Avn;i 
AvnC1;i1

AvnC2;i2


 : : :

By compactness of A and the definition of K , there is an element of K in the intersec-
tion of these.

It is then immediate that .Œw1�; Œv1�; Œv2�; : : : ; Œvm.n/�; Œw2�/ is a ı-path inK joining
Œw1� with Œw2�. As the choice of ı > 0 was arbitrary, it follows that Œw1� and Œw2� must
lie in the same connected component of K (see [27, Chapter I, (9.2), p. 15]), which
must also be closed as K is compact. �
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CLAIM 3.20
The set K is contained in every path � from Œw1� to Œw2� in A.

Proof
Fix such a path � , and let � > 0 and Œv0� 2K . Choose n 2N such that supw2An�.w/ <
�. Let i 2 ¹1; : : : ;m.n/º such that Œv0� 2Avn;i . Let ¹Tn;j D .Vj ;Ej /ºj enumerate the
components of Tn n ¹vn;iº. For each j , let Xj D

S
w2Vj

Aw . These are compact sets:
each can be rewritten as Xj D

S
w2Vj ;�.w/D0

Aw , and this is a finite union of compact
sets by Definition 1.3(2) and Lemma 3.12.

Moreover, the union of these sets contains A nAvn;i . Finally, the sets ¹Xj º also
have the property that Xj \Xj 0 �Avn;i whenever j ¤ j 0. Indeed, if Œv� 2Xj \Xj 0 ,
then Œv�D Œu�D Œu0�, where u.n/ 2 Tn;j and u.n/ 2 Tn;j 0 . The unique combinatorial
arc from u.n/ to u.n0/ in Tn contains vn;i , so by Lemma 3.16 we have that Œv�D Œu� 2
Avn;i .

If neither of Œw1� or Œw2� is contained in Avn;i , thenw1.n/ andw2.n/ are contained
in different subgraphs Tn;j and hence Œw1�, Œw2� are contained in different sets Xj . In
either case, the path � must intersect Avn;i . Thus,

dC ;�
�
�; Œv0�

�
��.wn;i / < �:

Since � > 0 was arbitrary, we have Œv0� 2 � . �

Thus, every path in A from Œw1� to Œw2� contains K , which contains a fixed continuum
joining Œw1� and Œw2�. In particular, any two such paths must intersect somewhere other
than their endpoints. This shows that A is a metric tree. �

REMARK 3.21
Given w1;w2 2 AN, let K �A be as in the proof of Lemma 3.17. We showed above
that K contains a continuum that joins Œw1� with Œw2� and, conversely, that every path
in A that joins Œw1� with Œw2� contains K . Therefore, K is the unique arc that joins
Œw1� with Œw2� in A.

Together, Lemmas 3.14, 3.15, and 3.17 prove Proposition 3.10.

4. Doubling metric trees

Recall that a metric space is C -doubling if there exists a constant C � 1 such that for
any x 2X and r > 0, the ball B.x; r/ can be covered by at most C balls of radius r=2.
Our goal here is to give some sufficient conditions for our combinatorial construction
to yield a doubling metric tree.

For the remainder of Section 4, we assume that A is an alphabet and C D

.A; .Tk/k2N/ is combinatorial data as in Definition 1.1, with the additional assump-
tion that each graph Tk is a combinatorial tree.
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PROPOSITION 4.1
Fix N;n0 2 N, c > 1, and ı1; ı2 2 .0; 1/. There exists C > 1, depending only on these
constants, with the following property. Assume that:

(P1) cardA�N .
(P2) Val.Tk/� n0 for all k 2N.
(P3) For all w 2A� and i 2A, ı1�.w/��.wi/� ı2�.w/.
(P4) Suppose that for some k 2N and some distinct u;u1; u2 2An, we have

AN

u ^C A
N

ui
¤; for i D 1; 2. If wi 2AN

u ^C A
N

ui
for i D 1; 2, then

dC ;�.Œw1�; Œw2�/� c
�1�.u/.

Then .A; dC ;�/ is C -doubling.

REMARK 4.2
Items (P1), (P2), and (P3) of Proposition 4.1 are rather innocuous, while (P4) requires
some more thought. Essentially, (P4) prevents the space from “collapsing” too many
far away points close together, which may violate doubling. In Lemma 4.8, we provide
a more easily checkable condition that implies (P4), and in Example 6.10 we show that
(P4) is necessary in Proposition 4.1.

Note also that if wi ;w0i 2 A
N

u ^C A
N

ui
, then dC ;�.Œwi �; Œw0i �/ D 0. Therefore, in

(P4), we may assume that wi 2 .AN

u ^C A
N

ui
/\AN

u .

Recall the definition of a parent word u". For the proof of Proposition 4.1, we make
the following definition. Given r > 0, define

A�.r/ WD
®
w 2A� W�.w/ < r and �.w"/� r

¯
:

REMARK 4.3
The set A�.r/ induces a partition on AN—namely, AN D

S
u2A�.r/A

N

u , and for distinct
w;u 2A�.r/, we have AN

w \A
N

u D;.

LEMMA 4.4
Let A and C satisfy (P2). Then for each r > 0 and for each w 2 A�.r/, there exist at
most n0 words u 2A�.r/ n ¹wº such that AN

w ^C A
N

u ¤;.

Proof
Let r > 0 and w 2 A�.r/. To prove the claim, let u1; : : : ; un be words in A�.r/ n ¹wº
such that AN

w ^C A
N

ui
¤; for each i .

Let k0 D jwj. If jui j < k0, then by Lemmas 3.3 and 3.4, there exists a unique
u0i 2A

k0
ui such that ¹w;u0i º 2Ek0 . If jui j � k0, then let u0i D ui .k0/, and by Lemma 3.1,

we have that ¹w;u0i º 2Ek0 . We claim that if i ¤ j , then u0i ¤ u
0
j . Assuming the claim,

by (P2) we have that n� n0, and so the proof is complete once we establish this claim.
To do so, we fix distinct i; j 2 ¹1; : : : ; nº and consider three possible cases.

Case 1. Suppose that jui j � k0 and juj j � k0. For a contradiction, assume that
u0i D u0j D u0. By Remark 4.3, we have that u0 ¤ w. Therefore, by Lemma 3.4,

¹u0;wº 2 Ek0 . Let k D max¹jui j; juj jº. By Lemma 3.1, there exist unique w00 2 Ak
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and unique u00 2 Aku0 such that ¹w00; u00º 2 Ek . By Remark 4.3, either u00 … Akui or

u00 … Akuj . Assuming the former (without loss of generality), by Lemma 3.3, we have

AN

w ^C A
N

ui
D;, which is a contradiction.

Case 2. Suppose that jui j � k0 and juj j � k0. For a contradiction, assume that
u0i D u

0
j D u

0. Then AN

ui
\AN

uj
¤;, which contradicts Remark 4.3.

Case 3. Suppose that jui j � k0 and juj j � k0. By Remark 4.3, u0i ¤w. Now apply
the arguments of Case 1 to the triple u0i , w, and uj . �

Proof of Proposition 4.1
Let Œw� 2A and r > 0. To prove the proposition, it suffices to prove that the doubling
property holds for the ball B.Œw�; r/ if r < c�1 diam A. Let u0 be the unique element
of A�.cı�11 r/ such that w 2AN

u0
.

CLAIM 4.5
There exist at most n0 words u 2A�.cı�11 r/n¹u0º such that AN

u0
^C A

N

u ¤;, and each
such word u satisfies

cı�11 r > �.u/� cr:

Proof of Claim 4.5
By Lemma 4.4, there exist at most n0 such words u 2A�.cı�11 r/ n ¹u0º. Moreover, by
(P3), for each u 2A�.cı�11 r/,

cı�11 r > �.u/� ı1�.u
"/� cr: �

CLAIM 4.6
If u 2 A�.cı�11 r/ and AN

u0
^C A

N

u D ;, then for any w0 2 AN

u , we have dC ;�.Œw�;
Œw0�/� r .

Proof of Claim 4.6
Let � � A be the unique arc with endpoints Œw� and Œw0�. For each k, let Pk be the
simple path in Tk from w.k/ to w0.k/.

Let nDmax¹juj; ju0jº. Then Pn must contain a vertex v 2An n .Anu0 [A
n
u/; oth-

erwise, AN

u0
^C A

N

u ¤;. Consider the following two possible cases.
Case 1. Suppose that v 2A�.cı�11 r/ or v has a descendent in A�.cı�11 r/. Then v

is adjacent to two distinct vertices v1 and v2 of Pn. For i D 1; 2, let wi 2 AN

v be such
that wi .k/ 2 Pk and is adjacent to an element of Akvi for each k � n. By Remark 3.21,
both Œw1� and Œw2� are in � . Therefore, by the 1-bounded turning property of A, by
(P3), and by (P4),

dC ;�
�
Œw�; Œw0�

�
D diam� � dC ;�

�
Œw1�; Œw2�

�
� c�1�.v/� r:

Case 2. Suppose that v is contained in A�v0 for some v0 2 A�.cı�11 r/. Let m D
jv0j. First, note that Pm must contain v0; if not, then out of Pm we could construct a
combinatorial arc in Tn that does not contain v, which implies that there are two distinct
combinatorial arcs in Tn with the same endpoints. The latter, however, contradicts the
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fact that Tn is a tree. Second, by Remark 4.3, we have that AN

v0 \ A
N

u0
D ;. Since

AN

u0
�AN

u0.m/
DAN

w.m/
, it follows that AN

v0 \A
N

w.m/
D;. Similarly, AN

v0 \A
N

w.m/
D;.

Therefore, v0 is adjacent to two distinct vertices of Pm. Now working as in Case 1, we
obtain that dC ;�.Œw�; Œw0�/� c�1�.v0/� r . �

CLAIM 4.7
Let u 2A�.cı�11 r/, and let k be the smallest positive integer such that

k �
log..2c/�1ı1/

log.ı2/
:

Then

diam.Av/ < r=2

for each v 2AjujCku .

Proof of Claim 4.7
By the upper bound in (P3), we have that for every v 2AjujCku ,

diam.Av/��.v/� ı
k
2�.u/ < ı

k
2 ı
�1
1 cr � r=2: �

Let ¹u1; : : : ; upº be all the words u 2A�.cı�11 r/ n ¹u0º such that AN

u0
^C A

N

u ¤;. By
Claim 4.6,

B
�
Œw�; r

�
�

p[
iD0

Aui :

Claim 4.5 implies that p � n0. Claim 4.7 implies that each of the sets Aui in this union
can be covered by at most N k sets of diameter < r=2; hence, N k balls of radius r=2.
This completes the proof. �

We now give some sufficient conditions for (P4) which are easier to verify.
For the next lemma, we use the following notation. Consider combinatorial data

C D .A; .Tk/k2N/ as fixed at the beginning of this section. For each k 2N and w 2Ak ,
let @CAkC1w be all words u 2 AkC1w for which there exists u0 2 AkC1 n AkC1w with
¹u;u0º 2EkC1.

LEMMA 4.8
Let C D .A; .Tk/k2N/ be combinatorial data as fixed at the beginning of this section,
and let � 2D.A/. Assume that the following conditions hold for each k � 0.

(1) Suppose that w;u;u0 2Ak are distinct with ¹w;uº; ¹w;u0º 2Ek . If
wi;wj;ul; u0l 0 2AkC1 with ¹wi;ulº; ¹wj;u0l 0º 2EkC1, then i ¤ j .

(2) For any w 2Ak and any distinct u;u0 2 @CAkC1w , the arc
¹¹u;u1º; : : : ; ¹un; u

0ºº joining u with u0 in TkC1 satisfies

�.u/C�.u1/C 	 	 	 C�.un/C�.u
0/��.w/:

Then (P4) of Proposition 4.1 holds with c D 1.
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In particular, diam.Au/ D �.u/ for each u 2 A� with at least two neighbors in
Tjuj.

For the proof of the lemma, given a chain C D ¹AN

u1
; : : : ;AN

un
º joining two words in

AN, we define the depth of C to be the number Depth.C/ WDmax¹ju1j; : : : ; junjº and
the �-length of C to be

`.C/ WD

nX
iD1

�.ui /:

Proof
Fix k 2 N and let w;u1; u2 2 Ak be distinct points such that ¹w;u1º and ¹w;u2º are
in Ek . Let w1;w2 2 AN

w , w01 2 A
N

u1
, and w02 2 A

N

u2
such that for any n � k and any

i 2 ¹1; 2º, wi .n/ is adjacent to w0i .n/. We will show that dC ;�.Œw1�; Œw2�/D�.w/.
On the one hand, ¹AN

wº is a chain joiningw1 withw2, so dC ;�.Œw1�; Œw2�/��.w/.
For the opposite inequality, fix C D ¹AN

v1
; : : : ;AN

vn
º to be a chain in AN joining w1 with

w2. We start by doing four reductions.
First, if AN

w � A
N

vi
for some i , then we can replace C with C 0 D ¹AN

wº, which has
smaller �-length. Therefore, we may assume that for all i , either AN

w \ A
N

vi
D ;, or

AN

vi
�AN

w .
Second, dropping some of the sets in the chain, if necessary, we may assume that

AN

vi
�AN

w for all i .
Third, if AN

vi
�AN

vj
, then we can drop AN

vi
.

Fourth, let Pl be the combinatorial arc in Tl that joins w01.l/ with w02.l/. We first
claim that Pl contains w1.l/, w2.l/. By Definition 2a, the subgraph of Tl induced by
the vertex set Alw is connected so there exists a combinatorial arc P 0 with vertices
in Alw that has endpoints w1.l/, w2.l/. Adding the two points w01.l/, w

0
2.l/ along

with edges ¹w1.l/;w01.l/º, ¹w2.l/;w
0
2.l/º, we obtain a combinatorial arc in Tl that has

endpoints w01.l/, w
0
2.l/ and contains w1.l/, w2.l/. By uniqueness of this arc, it must

be Pl , and the proof of the claim is complete. Now, it follows from Lemma 3.5 that for
any l �Depth.C/, [

v2Pl

AN

v �A
N

v1
[ 	 	 	 [AN

vn
:

CLAIM 4.9
The collection

C 0 D
°
AN

vi
WAN

vi
\
[
v2Pl

AN

v ¤;
±

forms a chain joining w1 and w2.

Proof
First, there exists v 2 Pl such that w1 2AN

v , which implies that there exists vi such that
wi 2 A

N

v � A
N

vi
. Therefore, w1 is contained in some element of C 0 and similarly for

w2.
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Enumerate the arc Pl D ¹v00; : : : ; v
0
pC1º so that v00 D w

0
1.l/, v

0
1 D w1.l/, v

0
p D

w2.l/, v0pC1 D w
0
2.l/, and for any j , v0j is adjacent to v0jC1. Now there exists a set

¹m1; : : : ;msº � ¹1; : : : ; nº such that

(1) AN

v0
1

�AN

vm1
, and AN

v0p
�AN

vms
;

(2) for all v0i , there exists vmj such that AN

v0
i

�AN

vmj
; and

(3) if AN

v0
i

�AN

vmj
and AN

v0
iC1

�AN

vms
, then mj �ms .

Now it is easy to see that AN

vmi
^C A

N

vmiC1
¤ ;, so the set C 0 D ¹AN

vmi
W i D

1; : : : ; sº forms a chain joining w1 and w2. �

The fourth reduction says, in other words, that we may drop all sets AN

vi
from the chain

such that AN

vi
\
S
v2Pl

AN

v D;.
The four reductions imply that we may assume that for all i ,

(i) AN

vi
�AN

w ;
(ii) if j ¤ i , then AN

vi
\AN

vj
D;;

(iii) for all l �Depth.C/, there exists v 2 Pl such that AN

v �A
N

vi
; and

(iv) for all l �Depth.C/,
S
v2Pl

AN

v �A
N

v1
[ 	 	 	 [AN

vn
.

Let k0 D Depth.C/ and i0 2 ¹1; : : : ; nº such that jvi0 j D k0. If k0 D jwj, then
C D ¹AN

wº, and the �-length of C is equal to �.w/.

Assume now that k0 > jwj. Then v"i0 is contained in Pk0�1. Moreover, v"i0 has

valency 2 in Pk0�1 because the endpoints of Pk0�1 are in Ak0�1ui and not in Ak0�1w .

By (iii) and Assumption (1) of the lemma,Ak0
v
"

i0

\Pk0 has at least two elements. By

(ii), (iv), and the assumption that jvi0 j D Depth.C/, each element of Ak0
v
"

i0

\ Pk0 must

be in ¹v1; : : : ; vnº. Enumerate them as ¹vj1 ; vj2 ; : : : ; vjpº. Since v"i0 has valency 2 in
Pk0�1, the elements of ¹vj1 ; vj2 ; : : : ; vjpº contain the vertices of a simple path joining

two distinct points of @CA
k0

v
"

i0

.

But then, by Assumption (2) of the lemma,

�.vj1/C 	 	 	 C�.vjp /��.v
"
i0
/;

and we can replace C with the chain

C [ ¹AN

v
"

i0

º n ¹AN

vi
W vi 2A

k0

v
"

i0

º;

which has at most the �-length of C .
Working in similar fashion, we can show that if Depth.C/ > jwj, then there exists

a chain C 0 joining w1 with w2 such that Depth.C 0/D Depth.C/ � 1 and has at most
the �-length of C . Applying a backward induction on the depth of C , we obtain that

`.C/� `
�
¹AN

wº
�
D�.w/:

Therefore, dC ;�.Œw1�; Œw2�/��.w/.



214 Guy C. David and Vyron Vellis

For the final statement in the lemma, any u 2Ak with two distinct neighbors must
have at least two distinct words in its combinatorial boundary, and so

diam.Au/��.w/

by the first part of the lemma. The reverse inequality follows from Lemma 3.9. �

For examples of combinatorial data and diameter functions satisfying the assumptions
of Proposition 4.1 and Lemma 4.8, see Section 6.

5. Characterization of quasiconformal trees

We now claim that our combinatorial constructions above describe all quasiconfor-
mal trees up to bi-Lipschitz equivalence. The following result proves Part (3) of Theo-
rem 1.4, while providing additional details, and is the goal of this section.

THEOREM 5.1
Let .X;d/ be anN -doubling, C -bounded turning tree. Then for anyM 2N sufficiently
large, K1 > 0 sufficiently small, and K2 2 Œ

1
2
; 1/, there exist

(1) an alphabet AD ¹1; : : : ;M º,
(2) combinatorial data C D .A; .Tk/k2N/ with each Tk a combinatorial tree, and
(3) a diameter function � 2D.A;K1;K2/

such that .A; dC ;�/ is bi-Lipschitz equivalent to X .
The sufficient condition on M depends only on N and C . The sufficient condition

on K1 depends only on M , N , and C . The bi-Lipschitz constant depends only on N ,
C , K2=K1, and diam.X/.

Moreover, .C ;�/ satisfies the conditions of Proposition 4.1.

We first make some small reductions. If X is a single point, then Theorem 5.1 is easy.
For example, one may take M D 2, � 2 D.A; 1

3
; 1
3
/, and each Tk a combinatorial

arc. Thus, we may assume that diam.X/ > 0 and so, by rescaling, that diam.X/D 1.
We may also assume that the bounded turning constant C is equal to 1 by replacing
the metric d on X with a bi-Lipschitz equivalent 1-bounded turning metric (see [2,
Lemma 2.5]). All these assumptions are in force for the remainder of Section 5.
Thus, we fix an N -doubling, 1-bounded turning metric tree X of diameter 1.

5.1. Subdividing into a uniform number of pieces
To prove Theorem 5.1, we use a construction of Bonk and Meyer [2] to decompose the
tree X into suitable pieces. We then modify this construction to decompose X into an
equal number of pieces at each scale. We first summarize the results we need from [2,
Section 5].

PROPOSITION 5.2 (Bonk–Meyer [2])
Let ı > 0 sufficiently small, depending on N . Then there is a constant M.N; ı/ 2 N,
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and for each n 2N, there exists a ın-separated set Vn �X satisfying

V1 � V2 � : : :

with the following properties.
Write Tn for the collection of closures of components of X n Vn. Then

(1) Each T 2 Tn is a connected subset (hence, subtree) of X with
;¤ T \X n T � Vn.

(2) Distinct elements T;T 0 2 Tn have at most one point in common, and such a
common point is an element of Vn.

(3) Each element of Vn is in exactly two elements of Tn.
(4) Each element of TnC1 (n� 1) is in exactly one element of Tn, and each

element of Tn is the union of all elements of TnC1 inside it.
(5) We have ın � diam.T /�Kın for each T 2 Tn, where K is a constant

depending only on N .
(6) Each element of Tn contains at least two and at most M.N; ı/ elements of

TnC1.
(7) Each element of Tn intersects at most M.N; ı/ other elements of Tn.

Proof
The first four items appear explicitly in [2, Lemma 5.1]. The fifth appears in [2, Equa-
tion (5.3)]. The existence of the upper bound M.N; ı/ in (6) and (7) is an immediate
consequence of (1)–(5) and the doubling property, as in [2, Lemma 5.7]. The lower
bound of two in (6) follows from (4) and (5) if ı < 1=K . �

Bonk and Meyer refer to the elements of Tn as “n-tiles,” but we will reserve the word
“tiles” for the modifications we construct below. Before that, we observe that adjacency
graphs induced by these sets form combinatorial trees.

LEMMA 5.3
Let X be a metric tree. Let S be a finite collection of compact, connected subsets of X
such that [S2SS DX and no point of X is in more than two different sets of S .

Then the graph G such that

V.G/D ¹S 2 Sº;E.G/D
®
¹S;S 0º � V.G/ W S ¤ S 0 and S \ S 0 ¤;

¯
is a combinatorial tree.

Proof
The connectedness of G follows easily from the facts that X is connected, all S 2 S

are compact, and [S2SS DX .
To see that G is a combinatorial tree, we will use the following simple equivalent

characterization of combinatorial trees: A connected finite graph is a combinatorial tree
if and only if the removal of any edge disconnects it.

Thus, suppose that the removal of an edge ¹S;S 0º from G left it connected. Let
S D S0; S1; : : : ; Sn D S

0 be the ordered vertices along a simple path from S to S 0 in G
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avoiding this edge; note that n � 2. Let x 2 S \ S 0, p 2 S \ S1, and q 2 S 0 \ Sn�1.
The points x, p, and q are distinct, by the assumption that no point is in more than two
elements of S . Similarly, x is disjoint from Si for each 1� i � n� 1.

There is an arc from p to q in S [ S 0, which must pass through x. Since X is
a metric tree, p and q must be in distinct connected components of X n ¹xº. On the
other hand, [n�1iD1Si is a connected subset of X n ¹xº containing both, and we reach a
contradiction. �

We now modify the construction of Proposition 5.2 so that each tile has an equal num-
ber of children. This requires us to give up some control on the diameters of the tiles.
However, it is crucial to retain the property that the boundary points of a given tile are
“well-separated,” in the sense that the distance between two distinct boundary points of
a tile is always comparable to the diameter of the tile. This is Property (6) of Lemma 5.4
below.

Fix ı sufficiently small, depending on N , so that Proposition 5.2 holds and so that
in addition Kı < 1=2, where K is the constant from Proposition 5.2(5). Thus, we have
constants K DK.N/ and M.N; ı/ from Proposition 5.2, Items (5) and (6).

LEMMA 5.4
Let M �M.N; ı/, K1 2 .0;K�1ılog2.M/C1�, and K2 2 Œ

1
2
; 1/. Let AD ¹1; : : : ;M º.

Then there is a collection of closed subsets Xw �X for all w 2A�, satisfying the
following properties:

(1) For each w 2A�, Xw is a connected subset (hence, subtree) of X , and
X" DX .

(2) For each w 2A� and i 2A, Xwi �Xw . Moreover, Xw D
S
i2AXwi .

(3) For each w 2A� and i 2A,

K1 diamXw � diamXwi �K2 diamXw :

(4) For each w 2A� n ¹"º and every x 2Xw \X nXw , we have that x is a leaf
of Xw and contained in Xw0 for exactly one w0 2Ajwj n ¹wº.

(5) For every distinct w;w0 2A� with jwj D jw0j we have that Xw \Xw0 is
either a point or empty.

(6) There exists K3 2 .0; 1/ such that for all w 2A� and for all distinct
x;y 2Xw \X nXw , we have

d.x;y/�K3 diamXw :

Proof
Fix ı, M , K , K1, K2 as above, and let A D ¹1; : : : ;M º. We prove the lemma for
K3 D ı=K .

We start the proof by noting that it suffices to prove the lemma with (5) replaced
by the following property:

(50) For every w 2A� and distinct i; j 2A, we have that Xwi \Xwj is either a
point or empty.
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Indeed, assume that the lemma holds with (5) replaced by (50). Given distinct w;w0 2
A� with jwj D jw0j, there exists maximal (in word length) w0 2 A� such that w;w0 2
A
jwj
w0 . There also exist distinct i; j 2 A such that w 2 Ajwjw0i and w 2 Ajwjw0j . By (2) and

(50), we have that Xw \Xw0 �Xw0j \Xw0j , which is either a point or empty.
We relabel the collections Tn constructed in Proposition 5.2. Set T" DX . We write

T1 D ¹T1; : : : ; Tm"º. Assume now that for some n 2 N and some w 2 N
n, we have

defined Tw to be an element of Tn. Then we write ¹Tw1; : : : ; Twmw º to be the elements
of TnC1 contained in Tw . By Proposition 5.2(6), we have 2�mw �M . Therefore, for
every Tw defined, we have w 2 A�. We set W to be the set of all words w in A� for
which Tw has been defined. Given integer n� 0 andw 2A�, we denote Wn DW\An,
Ww DW \A�w , and Wn

w DW \Anw .
We now define the family ¹Xwºw2A� in an inductive manner.
STEP 0. Set X" D T" DX .
INDUCTIVE HYPOTHESIS. Suppose that for some integer k � 0, we have defined

closed sets ¹Xwºw2Ak such that the properties of the lemma up to level k hold, with
K3 D ı=K; that is, we assume that the following conditions hold:

(1) For each l � k and w 2Al , Xw is a connected subset of X .
(2) For each l � k � 1, w 2Al , and i 2A, we have Xwi �Xw . Moreover,

Xw D
S
i2AXwi .

(3) For each l � k � 1, w 2Al , and i 2A, we have

K1 diamXw � diamXwi �K2 diamXw :

(4) For each l � k, w 2Al n ¹"º and every x 2Xw \X nXw , we have that x is a
leaf of Xw and contained in Xw0 for exactly one w0 2Al n ¹wº.

(5) For each l � k � 1, w 2Al and distinct i; j 2A we have that Xwi \Xwj is
either a point or empty.

(6) For each l � k, w 2Al and distinct x;y 2Xw \X nXw , we have

d.x;y/� .ı=K/diamXw :

In addition, we make the following inductive assumption:

(7) For each w 2Ak , there exists u 2W and distinct ui1; : : : ; uiq 2W
jujC1
u such

that Xw D
Sq
jD1 Tuij .

Note that (7) holds when k D 0.
INDUCTIVE STEP. We now describe the construction of the sets ¹Xwºw2AkC1 . Fix

a word w 2Ak . By Assumption (7), Xw D Tui1 [	 	 	[Tuiq . For simplicity, we assume
that ij D j for all j . By Proposition 5.2(6), q �M .

Case 1: q DM . In this case, we set Xwj D Tuj for j D 1; : : : ;M .
Case 2: q <M . Let n be the smallest integer such that

(5.1)
qX
jD1

card.WnCjuj
uj /�M:

By Proposition 5.2(6), 2� n� log2M C 1.
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Case 2.1: The sum in (5.1) is equal to M . In this case, we set

¹Xwi W i 2Aº WD
°
Tv W v 2

q[
jD1

W
nCjuj
uj

±
:

Case 2.2: The sum in (5.1) is strictly greater than M . Enumerate the elements ofSq
jD1W

n�1Cjuj
uj D ¹u1; : : : ; urº so that for each i 2 ¹1; : : : ; rº, the set

Tui \Xw n .Tu1 [ 	 	 	 [ Tui /

contains only one point. In other words, the sets Xw n Tu1 , .Xw n Tu1/ n Tu2 , etc. are
connected. That this is possible follows from Lemma 5.3 and the fact that every finite
combinatorial tree has a leaf.

By minimality of n, we have that r < M . Now let m be the smallest integer in
¹1; : : : ; rº such that

(5.2)
mX
iD1

card.WnCjuj
ui

/C .r �m/�M:

Note that if mD r , then (5.2) holds by (5.1), so such a minimal m exists.
Case 2.2.1: The sum in (5.2) is equal to M . Then, by the assumption of Case 2.2,

we have m< r , and we set

¹Xwi W i 2Aº WD
°
Tv W v 2

m[
jD1

WnCjuj
ui

[ ¹umC1; : : : ; urº
±
:

Case 2.2.2: The sum in (5.2) is strictly greater than M . As before, enumerate the
elements of W

nCjuj
um D ¹umi1; : : : ; umilº so that for each j 2 ¹1; : : : ; lº, the set

Tumij \ Tum n .Tumi1 [ 	 	 	 [ Tumij /

contains only one point.
By the minimality of m (and the fact that r <M ), we have

m�1X
iD1

card.WnCjuj
ui

/C
�
r � .m� 1/

�
�M � 1;

and so

(5.3)
m�1X
iD1

card.WnCjuj
ui

/C .r �m/�M � 2:

Let

pDM � 1� .r �m/�

m�1X
iD1

card.WnCjuj
ui

/:

Note that p � 1 by (5.3). Moreover, p � l � 1D card W
nCjuj
um � 1; otherwise,

mX
iD1

card.WnCjuj
ui

/C .r �m/�M � 1;

contradicting (5.2).
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Define now

U WD

m�1[
iD1

WnCjuj
ui

[ ¹umi1; : : : ; umipº [ ¹umC1; : : : ; urº:

Note that card.U/DM � 1 by choice of p. Set

¹Xwi W i 2Aº WD ¹Tv W v 2Uº [
®
Tum n .Tumi1 [ 	 	 	 [ Tumip /

¯
:

To complete the inductive step and the proof of Lemma 5.4, it remains to check
that the inductive properties (1)–(7) above are satisfied up to level kC 1.

Property (1) holds: If w 2 Ak , each Xwi is either equal to some Tv constructed
in Proposition 5.2, and hence connected by Proposition 5.2(1), or (as is possible in
Case 2.2.2) is a connected union of finitely many such Tv .

It also straightforward to check that Property (7) holds. In Cases 1, 2.1, and 2.2.1
of the construction, each Xwi for wi 2 AkC1 is exactly equal to some set Tu as con-
structed in Proposition 5.2 and therefore is a finite union of sets Tuj . In Case 2.2.2,
there is also the possibility that Xwi is of the form Tum n .Tumi1 [ 	 	 	 [ Tumip /, where
um 2W and ik 2A. In that case, Xwi is also equal to a finite union of children of Tum ;
namely, ¹Tumk W k ¤ i1; : : : ; ipº.

To see that Property (2) holds, set w 2Ak . In the construction of ¹Xwi W i 2Aº, we
write Xw as a finite union Tu1[ 	 	 	 [Tuq , where these sets come from Proposition 5.2.
In each case, the sets Xwi are constructed to be subsets of these Tuj and exhaust each
of them.

For Property (4), set wi 2AkC1 and x 2Xwi \X nXwi . The construction of Xwi
and Proposition 5.2(2,3) ensures that x is contained in at most one other Xwj (j ¤ i )
and is a leaf of Xwi in this case.

If x 2 Xwi \ Xw0i 0 for some w ¤ w0 2 Ak , then by induction, x is a leaf of Xw
and hence of Xwi . Moreover, in this case, x cannot be contained in any other Xw00 by
induction or in any other element Xwj (j ¤ i ) since a leaf of Xw can only be in one of
the nontrivial connected subsets Xwj .

To see that Property (5) holds, consider w 2 Ak and the set Xwi \Xwj (for i ¤
j ). By (1), this intersection is either empty, a point, or a non-trivial continuum. By
construction, each of the two sets Xwi \Xwj is a finite union of distinct elements of
some Tn constructed in Proposition 5.2, and so the intersection cannot be a continuum
by Proposition 5.2(2).

For Property (3), fix w 2 Ak and i 2 A. By (7), there exists u 2 W l and uj 2
W lC1 such that Tuj �Xw � Tu. By the design above, there exists v 2W lCn

u and vj 0 2
W lCnC1
u such that Tvj 0 � Xwi � Tv and 2 � n � log2M C 1. Therefore, applying

Proposition 5.2(5),

K1 �K
�1ılog2MC1 �

diamXwi
diamXw

�Kı �K2:

Finally, for Property (6), fix w 2 AkC1 and distinct x;y 2Xw \X nXw . By (7),
we know that Xw D Tui1 [ 	 	 	 [ Tuin for some u 2W l and ui1; : : : ; uin 2W lC1. By
Proposition 5.2(1), x, y have distance at least ılC1, so

dist.x; y/� ılC1 � .ı=K/diamTu � .ı=K/diamXw : �
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We call the sets Xw constructed in Lemma 5.4 “tiles.” We observe that these new tiles
also maintain the property that they can touch only a controlled number of tiles of the
same scale.

LEMMA 5.5
There is a constant n0, depending only on the doubling constant ofX and the constants
from Lemma 5.4, such that if w 2A�, then

card¹v 2Ajwj W v¤w;Xv \Xw ¤;º � n0:

Proof
Let

W D ¹v 2Ajwj W v¤w;Xv \Xw ¤;º:

For each v 2W , Lemma 5.4(5) implies that Xw \Xv is a single point, which we call
xv 2 Xw \ Xv . Moreover, if v; v0 2W and v ¤ v0, then xv; xv0 2 Xw \ X nXw . By
Property (4) of Lemma 5.4, we have that xv ¤ xv0 , and by Property (6), we have that

d.xv; xv0/�K3 diam.Xw/:

Since all the points ¹xv W v 2 W º are contained in Xw , the doubling property of X
completes the proof. �

5.2. Definition of combinatorial data
Fix ı as above in Lemma 5.4, and apply Lemma 5.4 with fixed parameters M 2 N

and K1;K2 2 .0; 1/ as in the statement of that lemma. Let AD ¹1; : : : ;M º. We define
combinatorial data C D .A; .Tk/k2N/ by setting Tk D .Ak ;Ek/, where two words v, w
of Ak are adjacent if and only if Xv \Xw ¤;.

LEMMA 5.6
C satisfies the conditions of Definition 1.1, and each graph Tk is a combinatorial tree.

Proof
Property (1) of Definition 1.1 is immediate. That Tk is a (connected) combinatorial tree
follows from Lemma 5.3.

Property (2a) of Definition 1.1 holds similarly, taking X D Xw , which is con-
nected, and again using Lemma 5.3.

For Property (2b), consider ¹w;uº 2 Ek . Then there is a point x 2 Xw \Xu. By
Lemma 5.4(2), there are words wi and uj such that x 2 Xwi \ Xuj , and therefore
¹wi;uj º 2EkC1. �

One basic consequence of this construction of combinatorial data is the following.

LEMMA 5.7
If w;u 2A� and AN

w ^C A
N
u ¤;, then Xw \Xu ¤;.
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Proof
Let w;u 2 A� with AN

w ^C A
N
u ¤ ;. By Lemma 3.3, there are then k 2 N, w0 2 Akw ,

and u0 2Aku with ¹w0; u0º 2Ek . It follows from the definition of C thatXw0 \Xu0 ¤;,
Xw0 �Xw , and Xu0 �Xu. This proves the lemma. �

5.3. Definition of diameter function
We continue to use the quasiconformal tree X fixed at the start of Section 5, and the
constants M , K1, K2 and combinatorial data C D .A; .Tk/k2N/ fixed at the start of
Section 5.2.

We now define a diameter function � 2 D.A;K1;K2/ with the following two
rules.

� �."/D 1.
� Suppose that for some w 2A�, we have defined �.w/:

(1) If �.w/� diamXw , then we define �.wi/DK2�.w/ for all i 2A.
(2) If �.w/ > diamXw , then we define �.wi/DK1�.w/ for all i 2A.

This satisfies Definition 1.3, with Property (3) following from the fact that K1 <K2 <
1.

We now show that �.w/ is always comparable to diam.Xw/. This argument is
very similar to the proof of Theorem A in [14, Section 4.1].

LEMMA 5.8
For all w 2A�,

(5.4) .K2=K1/
�1�.w/� diam.Xw/� .K2=K1/�.w/:

Proof
By Lemma 5.4(3), we have for all w 2A�:

K1 diam.Xw/� diam.Xwi /�K2 diam.Xw/:

Note that (5.4) holds for w D " since �."/ D diam.X"/ D 1. Assume by induc-
tion that we have a word w such that (5.4) holds. Consider any i 2 A. There are two
possibilities.

Case 1: �.w/� diam.Xw/. In this case, we have

�.wi/DK2�.w/�K2 diam.Xw/� .K2=K1/diam.Xwi /

and

diam.Xwi /�K2 diam.Xw/�K2.K2=K1/�.w/D .K2=K1/�.wi/;

which together prove (5.4) for the word wi in case 1.
Case 2: �.w/ > diam.Xw/. In this case, we have

�.wi/DK1�.w/�K1.K2=K1/diam.Xw/� .K2=K1/diam.Xwi /

and

diam.Xwi /�K2 diam.Xw/ < K2�.w/D .K2=K1/�.wi/;

which together prove (5.4) for the word wi in case 2. �
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As in Section 3.3, let � be the equivalence relation on AN induced by the diameter
function �, and let ADAN=� and Aw DA

N

w=�.

5.4. Proof of Theorem 5.1
A consequence of Lemma 5.4(2) is that for each x 2 X , there exists an infinite word
wx 2 A

N such that x 2 Xw.n/ for all n 2 N. We therefore define a map f WX !A by
f .x/D Œwx �.

LEMMA 5.9
The map f WX!A defined above is well-defined and surjective.

Proof
Suppose that there exist two words w;u 2 AN such that for all n 2 N, x 2 Xw.n/ \
Xu.n/. Then, by the construction of the combinatorial data C , for each n 2 N we have
¹w.n/;u.n/º 2En. (Recall that En is the set of edges of Tn.) Thus, for each n 2N, the
set ¹AN

w.n/
;AN

u.n/
º is a chain that joins w with u, and so dC ;�.Œw�; Œu�/ ��.w.n//C

�.u.n//! 0 as n!1. We therefore have that dC ;�.Œw�; Œu�/D 0, which implies that
Œw�D Œu�. This shows that f is well-defined.

To show that f is surjective, consider an arbitrary Œu� 2A. We have nested com-
pact tiles

Xu.1/ 
Xu.2/ 
Xu.3/ : : :

in X . Let x 2 \n2NXu.n/. If f .x/Dw 2A, then by definition of f , we have

x 2Xw.n/ \Xu.n/ for all n 2N:

As before, u.n/ and w.n/ are adjacent in Tn for each n, and hence again

dC ;�
�
Œu�; Œw�

�
��

�
u.n/

�
C�

�
w.n/

�
! 0:

Thus, Œu�D Œw�D f .x/, and f is surjective. �

The proof of Theorem 5.1 concludes with the next two results.

PROPOSITION 5.10
The map f W .X;d/! .A; dC ;�/ is bi-Lipschitz, with constant depending only on K1,
K2, and K3.

Proof
Fix x;y 2X .

We first claim that dC ;�.f .x/; f .y//�
K1
K2
d.x;y/. Suppose that f .x/D Œw� and

f .y/D Œu�. Let ¹AN

w1
; : : : ;AN

wm
º be a chain joining w with u. Since w 2AN

w1
, we have

w1 Dw.jw1j/, and therefore x 2Xw1 ; similarly, y 2Xwm .
We also have Xwi \XwiC1 ¤; for each i 2 ¹1; : : : ;m� 1º, by Lemma 5.7.
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Therefore, using the triangle inequality and (5.4), we have

(5.5)
mX
iD1

�.wi /�
K1

K2

mX
iD1

diamXwi �
K1

K2
d.x;y/:

Taking the infimum over all possible chains, we obtain dC ;�.f .x/; f .y//�
K1
K2
d.x;y/,

as desired.
We now claim that

(5.6) dC ;�
�
f .x/; f .y/

�
. d.x;y/;

with implied constant depending only on K1, K2, K3.
Let w0 be a word in W of maximal length such that x;y 2Xw0 . Then, there exists

distinct i; j 2 A such that w0i;w0j 2W , x 2 Xw0i and y 2 Xw0j . Set k D jw0j. We
consider the following two possible cases.

Suppose first that Xw0i \Xw0j D ;. Let � be the unique arc in X with endpoints
x, y. Note that � �Xw0 as Xw0 is connected. Assuming Xw0i \Xw0j D;, it follows
that � n .Xw0i [Xw0j / is a nonempty relatively open subset of � . There must therefore
exist some l 2An¹i; j º such that �\@Xw0l contains two distinct points v, v0 of @Xw0l .

By the 1-bounded turning property of X and Lemma 5.4(6),

d.x;y/� diam� � d.v; v0/�K3 diam.Xw0l /:

On the other hand, f .x/; f .y/ 2Aw0 and so, by Lemma 3.9 and (5.4), we have

dC ;�
�
f .x/; f .y/

�
� diam Aw0 ��.w0/�

K2

K1
diam.Xw0/:

Therefore, using Lemma 5.4(3),

d.x;y/�K3 diam.Xw0l /�K3K1 diam.Xw0/�
K21K3

K2
dC ;�

�
f .x/; f .y/

�
:

This completes the proof of (5.6) in the case where Xw0i \Xw0j D;.
Suppose now that Xw0i \ Xw0j ¤ ;. Find words w;u 2 A� of maximal lengths

such that w0w;w0u 2W�, x 2 Xw0w , y 2 Xw0u and Xw0w \Xw0u ¤ ;. Then there
exist w0wi;w0uj 2A� such that Xw0wi \Xw0u D;, Xw0uj \Xw0w D;, x 2Xw0wi
and y 2Xw0uj .

Let z be the unique point of Xw0w \ Xw0u and again set � to be the unique arc
from x to y in X , which must pass through z. Choose k 2 A such that z 2 Xw0wk .
Note that k ¤ i by the maximality of w, and that z 2 @Xw0wk . The sub-arc of � from
x to z must also contain a point v 2 @Xw0wk distinct from z, by Lemma 5.4(4).

Hence, again by 1-bounded turning and Lemma 5.4(6), we have

d.x; z/� d.v; z/�K3 diam.Xw0wk/:

Similarly,

d.y; z/�K3 diam.Xw0ul /;

for some l 2A.
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By the 1-bounded turning property and Lemma 5.4(3),

d.x;y/�
1

2

�
d.x; z/C d.y; z/

�
�
1

2
K3
�
diam.Xw0wk/C diam.Xw0ul /

�
�
1

2
K3K1

�
diam.Xw0w/C diam.Xw0u/

�
:

On the other hand, f .x/ 2 Aw0w , f .y/ 2 Aw0u and ¹AN

w0w
;AN

w0u
º is a chain

joining f .x/ and f .y/. Therefore, by Lemma 3.9 and by (5.4),

dC ;�
�
f .x/; f .y/

�
� diam Aw0w C diam Aw0w ��.w0w/C�.w0u/

�
K2

K1

�
diam.Xw0w/C diam.Xw0u/

�
:

Therefore,

dC ;�
�
f .x/; f .y/

�
�

2K2

K21K3
d.x;y/:

This completes the proof of (5.6) and hence of the proposition. �

Finally, to prove the “moreover” piece of Theorem 5.1, we now show the following.

LEMMA 5.11
The combinatorial data C and diameter function� defined above satisfy the conditions
of Proposition 4.1 for some choice of N , n0, c, ı1, ı2.

Proof
Property (P1) of Proposition 4.1 follows from our choice of a finite alphabet A D
¹1; : : : ;M º. Property (P2) follows from Lemma 5.5 and the definition of the combi-
natorial trees Tk in our combinatorial data. Property (P3) is immediate from our con-
struction of �, with ı1 DK1 and ı2 DK2.

It remains to verify Property (P4) of Proposition 4.1. Consider k 2 N and distinct
u;u1; u2 2A

� such that ¹u;u1º and ¹u;u2º are inEn. Let alsow1;w2 2AN

u , v1 2AN

u1
,

and v2 2AN

u2
such that for all n� k and i 2 ¹1; 2º, ¹wi .n/; vi .n/º 2En.

For each i 2 ¹1; 2º, let xi 2X denote the unique point such that

xi 2

1\
nD0

Xwi .n/:

By definition, we have f .xi /Dwi . Notice that x1 and x2 are both in Xu as wi 2AN

u .
We first claim that for i 2 ¹1; 2º,

(5.7) xi 2Xui \Xu � @Xu:

It follows from the definition of C that

;¤Xwi .n/ \Xvi .n/ �Xwi .n/ \Xui

for all n > k. Hence,

dist.xi ;Xui /� diam.Xwi .n//! 0 as n!1;

and so xi 2Xu \Xui � @Xu.
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We next claim that x1 ¤ x2. Suppose to the contrary that x1 D x2 D x, and choose
n > k such that w1.n/ ¤ w2.n/. Then Xw1.n/ and Xw2.n/ are distinct subsets of Xu
with x 2Xw1.n/\Xw2.n/. In addition, we showed in (5.7) that x 2Xu1 . It follows that
there is an element v 2Anu1 with x 2Xv . The word v, beginning as it does with u1 ¤ u,
is distinct from both w1.n/ and w2.n/, and so the three words v, w1.n/, and w2.n/ are
distinct and of the same length n. Moreover, x 2Xw1.n/ \Xw2.n/ \Xv . However, this
contradicts Lemma 5.4(4).

Thus, x1 and x2 are distinct elements of @Xu. By Lemma 5.4(6) and (5.4),

d.x1; x2/�K3 diam.Xu/� .K3K1=K2/�.u/:

By Proposition 5.10, f is bi-Lipschitz with constant depending only on K1, K2, K3.
Therefore,

dC ;�
�
Œw1�; Œw2�

�
D dC ;�

�
f .x1/; f .x2/

�
� c�.u/;

for some c depending only on K1, K2, K3. This completes the proof. �

6. Examples and simple cases of quasiconformal trees

In this section, we discuss some examples and simple special cases of quasiconformal
trees based on our construction.

6.1. Quasi-arcs
Here we discuss combinatorial data and diameter functions that give rise to quasi-arcs.
We start with a corollary in which the conditions of Proposition 4.1 can be verified,
using Lemma 4.8.

LEMMA 6.1
Let C D .A; .Tk/k2N/ be combinatorial data such that cardADN � 2 and each Tk D
.Ak ;Ek/ is a combinatorial arc. Let� 2D.A/ satisfy Property (P3) of Proposition 4.1
and assume that for all k � 0 and w 2Ak ,

(6.1)
X

wi2A
kC1
w

�.wi/��.w/:

Then .A; dC ;�/ is a doubling bounded turning arc.

Proof
First, since cardA DM , (P1) of Proposition 4.1 is immediately satisfied, and since
each Tk is a combinatorial arc, Val.Tk/D 2 and Condition (P2) of Proposition 4.1 is
also satisfied. Since cardA� 2, Assumption (1) of Lemma 4.8 is satisfied and by (6.1),
Assumption (2) of Lemma 4.8 is satisfied. Hence, by Lemma 4.8 and Proposition 3.10,
.A; dC ;�/ is doubling and bounded turning.

It remains to show that .A; dC ;�/ is an arc. By design, there exist exactly two
words w1;w2 2 AN such that for all n 2 N, the valency of wi .n/ in Tn is 1. Recalling
the definition of K from the proof of Lemma 3.17, we note that K D A. Therefore,
.A; dC ;�/ is an arc. �
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EXAMPLE 6.2
Let M 2 ¹2; 3; : : : º and AD ¹1; : : : ;M º. Let CM D .A; .Gk/k2N/, where for each k 2
N, the graph Gk is a simple path with the following two rules:

(1) For each w 2A� and i 2 ¹1; : : : ;M � 1º, we have that wi is adjacent to wi 0,
where i 0 D i C 1.

(2) If wiv;wjv0 2A� with i < j , jvj D jv0j and wiv is adjacent to wjv0, then
wivM is adjacent to wjv01.

In other words, each word in Ak is simply adjacent to the following word in lexico-
graphic order in Gk .

Let ı 2 .M�1; 1� and � 2 D.A;M�1; ı/. We write A D AN= � and for each
w 2A�, Aw DA

N

w=�.
The following lemma summarizes some properties of this construction.

LEMMA 6.3
(1) Suppose v; v0 2Ak , with v coming earlier than v0 in lexicographic order.

Then Av \Av0 ¤; if and only if v and v0 are adjacent in Gk .
(2) In case (1), ŒvM1�D Œv011� is the unique element of Av \Av0 ¤;.
(3) For each v 2A�, the set Av is a topological arc with

M�1�.v/� diam Av ��.v/.

Proof
We begin with (1). Suppose v; v0 2 Ak , with v preceding v0 in lexicographic order,
and Av \Av0 ¤;. This means that there are infinite words w, w0 with Œvw�D Œv0w0�.
Suppose v and v0 were not adjacent; let u be a word on the simple path Tk between them
(and hence lexicographically between v and v0). Let n 2N be such that �.t/ < 1

2
�.u/

for all t 2An.
Because u is lexicographically between v and v0, each t 2 Anu is lexicographi-

cally between .vw/.n/ and .v0w0/.n/, and hence is on the unique simple path between
.vw/.n/ and .v0w0/.n/ in Tn. By Lemma 3.16, Œvw� and Œv0w0� are both in At for each
t 2Anu. In particular, all At for t 2Anu share a common point. Therefore, by Lemma 3.9
and our choice of n above,

(6.2) diam.Au/� 2max
®
diam.At / W t 2A

n
u

¯
<�.u/:

On the other hand, our combinatorial data CM satisfies the assumptions of
Lemma 4.8. Indeed, Lemma 4.8(1) holds because the graphs Gk in CM consist simply
of arcs in lexicographical order, and Lemma 4.8(2) holds because any pair u, u0 of
distinct vertices in some @CAkC1w are separated by at least M other vertices, each with
diameter function giving weight �M�1�.w/.

Therefore, by Lemma 4.8, diam.Au/D�.u/, which contradicts (6.2).
This proves the “forward direction” of (1). For the other direction, it is immediate

from the construction of CM that if v and v0 are adjacent in Tk , with v lexicographically
preceding, then for each n 2N,

dC ;�.vM
1; v011/��.vM n/C�.v01n/! 0 as n!1;

and so ŒvM1�D Œv011� 2Av \Av0 .
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For (2), suppose there was a point p other than ŒvM1� D Œv011� in Av \Av0 .
Then there would be an infinite word w 2AN, w¤M1 such that pD Œvw�. Choose n
such that the nth letter of w is not M . Then vw.n/ and v01n are not adjacent in TkCn,
but Œvw� 2Avw.n/ \Av01n . This contradicts (1).

For Fact (3), it is an immediate consequence of Remark 3.21 that each Av is a
topological arc. The diameter of Av is at most�.v/ by Lemma 3.9. If v has at least two
neighbors in Tjvj, then diam.Tjvj/D�.v/ by Lemma 4.8. Otherwise, vi has at least two
neighbors in TjvjC1 for some i 2 A, and so Lemma 4.8 says that diam.Avi /D�.vi/.
Therefore,

diam Av � diam Avi D�.vi/�M
�1�.v/: �

PROPOSITION 6.4
The space .A; dC ;�/ is a quasi-arc.

Proof
By Lemma 6.3, we know that .A; dC ;�/ is a topological arc, and by Theorem 3.10, we
know that .A; dC ;�/ is bounded turning. Moreover, Property (P3) of Proposition 4.1 is
satisfied, and for any w 2A� and i 2A,

X
i2A

�.wi/�

MX
iD1

1

M
D 1;

and (6.1) holds. Therefore, by Lemma 6.1, .A; dC ;�/ is doubling. �

We note that a more refined statement holds; see Lemma 8.3. Furthermore, the converse
of Proposition 6.4 is also true: every quasi-arc is bi-Lipschitz equivalent to .A; dC ;�/
for some ı 2 ŒM�1; 1/ and some � 2D.A;M�1; ı/; see Proposition 8.4.

6.2. The Vicsek tree and variations
Here we discuss a concrete example of a self-similar quasiconformal tree—the Vicsek
tree—and how it can be viewed through our construction.

EXAMPLE 6.5
The Vicsek tree V is defined as the attractor of the iterated function system ¹�1; : : : ; �5º
on C with

�1.z/D
1

3
.z � 2C 2i/; �2.z/D

1

3
.zC 2C 2i/;

�3.z/D
1

3
.zC 2� 2i/; �4.z/D

1

3
z; �5.z/D

1

3
.z � 2� 2i/:

Let A D ¹1; : : : ; 5º. For k 2 N, we define trees Tk D .Ak ;Ek/ as follows. First,
E1 D ¹¹i; 4º W i D 1; 2; 3; 5º. Inductively, assume that for some k 2N, we have defined
Tk D .A

k ;Ek/ such that

� if w 2Ak�1 and i 2 ¹1; 2; 3; 5º, then wi and w4 are adjacent.
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Figure 1. (Color online) On the left, we have V while on the right, we have the trees T1 and T2 of C .

� if w;u 2Ak�1, i; j 2A with i � j , and wi is adjacent to uj , then either
.i; j /D .1; 3/, or .i; j /D .1; 4/, or .i; j /D .2; 4/, or .i; j /D .2; 5/, or
.i; j /D .3; 4/, or .i; j /D .4; 5/.

For the definition of TkC1, fix w;u 2Ak�1.

(1) If i 2A, then wii1 is adjacent to wii2 with i1; i2 2A if and only if
i1 2 ¹1; 2; 3; 5º and i2 D 4.

(2) If w1 is adjacent to u3, then w11 is adjacent to u33.
(3) If w1 is adjacent to u4, then w13 is adjacent to u41.
(4) If w2 is adjacent to u4, then w25 is adjacent to u42.
(5) If w2 is adjacent to u5, then w22 is adjacent to u55.
(6) If w3 is adjacent to u4, then w31 is adjacent to u43.
(7) If w4 is adjacent to u5, then w45 is adjacent to u52.

Figure 1 shows an illustration of V as well as the first two combinatorial trees, T1
and T2.1

Define a diameter function � W A� ! Œ0; 1� by simply setting �.w/ D 3�jwj.
Clearly, � 2D.A; 1=3; 1=3/.

CLAIM 6.6
The space .A; dC ;�/ is bi-Lipschitz equivalent to V.

Proof
The proof essentially follows that of Theorem 5.1. For each w D i1 	 	 	 in 2 A�, let
Xw D �i1 ı 	 	 	 ı �in.V/. The collection of sets ¹Xw Ww 2A�º satisfies the conclusions
of Lemma 5.4. Moreover, given k 2 N and distinct w;u 2 Ak , we have that Xw \

1. This picture of V was generated using the IFS Construction Kit (version April 11, 2019) created by Larry
Riddle. It is available at http://larryriddle.agnesscott.org/ifskit/download.htm.

http://larryriddle.agnesscott.org/ifskit/download.htm
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Xu ¤ ; if and only if w is adjacent to u in Tk . Define now F W A! V such that if
wD i1i2 	 	 	 2A

N, then

F
�
Œw�
�
WD

1\
nD1

Xi1���in ; for wD i1i2 	 	 	 2A
N:

The rest of the proof is as in Section 5.4, and we leave the details to the reader. �

It follows immediately from Claim 6.6 that .A; dC ;�/ is doubling since V is. One could
also see this by noting that Conditions (P1), (P2), and (P3) from Proposition 4.1 are
clearly satisfied by this combinatorial data. To show that (P4) also holds, we verify
Lemma 4.8. Item (1) of Lemma 4.8 is easy to check. For Item (2), take any w 2Ak and
any u;u0 2 @CAkC1w . The combinatorial arc that joins u with u0 in TkC1 contains three
vertices, ¹u;w4;u0º, and so the total �-length of this combinatorial arc is

�.u/C�.w4/C�.u0/D
1

3
�.w/C

1

3
�.w/C

1

3
�.w/D�.w/:

Therefore, Lemma 4.8 holds in this example, and so does Assumption (P4) of Proposi-
tion 4.1. Thus, all the conditions of Proposition 4.1 are satisfied, and .A; dC ;�/ can be
seen to be doubling by this proposition.

One may obtain new self-similar quasiconformal trees by keeping the same com-
binatorial data as the Vicsek tree but altering the diameter function �. We describe two
examples.

EXAMPLE 6.7
Keep the same combinatorial data C D ¹Tkº for V defined above, but now use the diam-
eter function �2.w/D 2�jwj rather than �.w/D 3�jwj as before. Then the associated
quotient space .A0; dC ;�2/ is a “snowflake” of the previous example, in the following

sense: It is bi-Lipschitz equivalent to the space .V; j 	 jp/, where p D log.2/
log.3/ . The proof

parallels that of Claim 6.6, with the only difference being that the tiles Xw of V under
the snowflaked Euclidean metric j 	 jp have diameters .3�jwj/p D 2�jwj D�2.w/.

EXAMPLE 6.8
We again keep the combinatorial data C D ¹Tkº of the Vicsek tree but modify the
diameter function once more. Define a diameter function �3 by setting �3."/D 1 and
inductively setting

�3.wi/D

´
1
2
�3.w/ if i 2 ¹2; 4; 5º
1
4
�3.w/ if i 2 ¹1; 3º:

In this case, the space .A00; dC ;�3/ is a quasiconformal tree which contains both geo-
desic segments (e.g., the path from Œ11� to Œ31�) and nongeodesic “snowflake” seg-
ments (e.g., the path from Œ21� to Œ51�).

REMARK 6.9
A similar example to the Vicsek tree appears in [3, 4] in the form of the continuum self-
similar tree (CSST). The CSST is a quasiconformal tree, and hence by Theorem 1.4 is
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bi-Lipschitz to one of our combinatorial models. However, it is not obvious to us that
there is a simple concrete or dynamical way to form “tiles” in the CSST that satisfy all
the assumptions in Lemma 5.4, as we did for the Vicsek tree.

6.3. A nondoubling tree
Below we give an example which illustrates the importance of Condition (P4) for the
conclusions of Proposition 4.1. Thus, we will construct combinatorial data C in which
all graphs Gk are trees, satisfying all the conditions of Proposition 4.1 except (P4), and
for which the resulting metric tree is not doubling.

EXAMPLE 6.10
Let C be the combinatorial data of Example 6.5. For each n 2 N, let wn D 2 	 	 	2 D
2n 2 An, and let un;1; : : : ; un;Nn denote those elements of An such that wn1un;i has
valence 1 in T2nC1.

Define � WA�! Œ0; 1� with the following rules:

(1) If w is a word of the form wn1vu, where v 2An n ¹un;1; : : : ; un;Nnº and
u 2A�, then let �.wn1vu/D 4�uj�.wn1v/D 3�2n�14�juj.

(2) For all other words w 2A�, let �.w/D 3�jwj.

We see that for each n 2N, the following hold:

� If v 2 ¹un;1; : : : ; un;Nnº, then Awn1v is bi-Lipschitz homeomorphic to V scaled
by a factor of 3�2n�1.

� If v 2An n ¹un;1; : : : ; un;Nnº, then diam Awn1v D 0. (Indeed, two elements of
Awn1v can be joined by a chain of 3k steps at level k, each with the � value
being 3�2n�14�k for arbitrary k 2N, which forces the distance to be zero.)

Therefore, for each n 2 N, the point Œwn131� 2A has at least Nn branches, each of
diameter at least 3�2n�1. Since Nn!1 as n!1, it follows that .A; dC ;�/ is not
doubling.

Note also that A, C , and� satisfy Properties (P1), (P2), (P3), but not (P4). Indeed,
the fact that diam Awn1v D 0 for certain words, as in the second bullet above, already
violates (P4).

7. Combinatorial descriptions of more general spaces with “good tilings”

In this section, we axiomatize a notion of a “good tiling” of a compact space and show
that every compact space with such a tiling (not necessarily a tree) can be built from
our combinatorial data.

Let X be a compact space for which there is a finite alphabet A, constants r 2
.0; 1/, C > 1, and a collection of nonempty closed, connected subsets ¹Xw W w 2 A�º
with the following properties:

(1) X" DX .
(2) For all w 2A� and all i 2A, Xwi �Xw . Moreover,

S
i2AXwi DXw .

(3) For all w 2A�, C�1r jwj � diamXw � Cr jwj.
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(4) If for k 2N and w;u 2Ak , we have Xw \Xu D;, then
d.Xw ;Xu/� C

�1rk .

Tilings of metric spaces with very similar properties have certainly been considered
by other authors (e.g., [2, 15]). The goal here is simply to write down some simple
conditions that can be interpreted in our framework.

For each k 2N, define a graph Gk D .Ak ;Ek/ with the rule that for words w;u 2
Ak , w is adjacent to u if and only if Xw \Xu ¤ ;. It is easy to see that the collection
C D .A; .Gk/k2N/ is combinatorial data in the sense of Definition 1.1. Define also
� WA�! Œ0; 1�, with �.w/D r jwj. Clearly, � 2D.A; r; r/.

PROPOSITION 7.1
The space .X;d/ is bi-Lipschitz homeomorphic to .A; dC ;�/.

Before the proof, we re-emphasize two points about Proposition 7.1. First, even if X
is a metric tree, Proposition 7.1 does not force the combinatorial data C to consist of
combinatorial trees. The second point is that in general, it is not obvious to us which
spaces admit good tilings in the sense of this section. Thus, Proposition 7.1 is not in
itself a generalization of Theorem 1.4 and proceeds along different lines. The tiles we
constructed for quasiconformal trees in Lemma 5.4 do not satisfy the conditions of this
section as they may in principle fail Conditions (3) or (4) of this section.

However, Proposition 7.1 does yield descriptions of some natural examples, as we
show following the proof.

Proof of Proposition 7.1
Since r < 1, Property (3) in conjunction with the compactness of sets ¹Xw W w 2 A�º,
gives that for any w 2 AN, the set

T
n2NXw.n/ contains exactly one point which we

denote by xw .
Let w;u 2 AN such that xw ¤ xu. Then there exists n 2 N such that Xw.n/ \

Xu.n/ D ;. Let AN

w1
; : : : ;AN

wn
be a chain joining w with u. Then xw 2Xw1 , xu 2Xwn

and Xwi \XwiC1 ¤; for all i 2 ¹1; : : : ; n� 1º. By the triangle inequality,

d.xw ; xu/�

nX
iD1

diamXwi � C
nX
iD1

�.wi /:

Taking the infimum over all such chains, we obtain that d.xw ; xu/� CdC ;�.Œw�; Œu�/.
Therefore, if Œw�D Œu�, then xw D xu.

We can now define F WA! X with F.Œw�/D xw . By the preceding paragraph,
F is well defined and C -Lipschitz.

To see why F is bi-Lipschitz, fix w;u 2AN.
If d.xw ; xu/D 0 (i.e., xw D xu), then for all n 2N,Xw.n/\Xu.n/ ¤;. Therefore,

w.n/ is adjacent or equal to u.n/ for all n, and it follows that dC ;�.Œw�; Œu�/D 0.
If xw ¤ xu, then there exists n 2 N such that Xw.n/ \Xu.n/ ¤ ; and Xw.nC1/ \

Xu.nC1/ D ;. It follows that w.n/ is adjacent to u.n/ in Gn and ¹AN

w.n/
;AN

u.n/
º is a
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Figure 2. (Color online) On the left we have the graphsG1,G2 for the Sierpiński gasket, while on the right we
have the graphsG1,G2 for the square.

Figure 3. (Color online) Possible graphsG1 andG2 for the standard Sierpiński carpet.

chain joining w with u. Therefore,

d
�
F
�
Œw�
�
;F
�
Œu�
��
� dist.Xw.nC1/;Xu.nC1//

� C�1rnC1 D .2C=r/�12rn

D .2C=r/�1
�
�
�
w.n/

�
C�

�
u.n/

��
� .2C=r/�1dC ;�

�
Œw�; Œu�

�
: �

EXAMPLE 7.2
Proposition 7.1 applies to many metric spaces which are attractors for certain iterated
function systems, like the square, the Sierpiński gasket, and the Sierpiński carpet. See
Figures 2 and 3 for possible graphs G1 and G2 for the gasket, square, and carpet.

8. Bi-Lipschitz embeddability of quasiconformal trees

This section is devoted to the proof of the following quantitative version of Theo-
rem 1.8.
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THEOREM 8.1
Let X be a C -doubling, c-bounded turning tree. Assume that L.X/ admits an
L-bi-Lipschitz embedding into some RM . ThenX admits anL0-bi-Lipschitz embedding
into some R

N . Here N and L0 depend only on C , c, M , and L0.

The proof of Theorem 8.1 consists of two steps. In Section 8.1, we prove the spe-
cial case of embeddability of quasi-arcs—i.e., quasiconformal trees in which the set of
leaves consists of exactly two points. This is done in Proposition 8.2 below, which is a
stronger version of Proposition 1.7 from the introduction.

Then, in Section 8.2, we employ a bi-Lipschitz welding theorem of Lang and Plaut
[17] and a characterization of metric spaces admitting bi-Lipschitz embedding into
Euclidean spaces by Seo [25] to complete the proof of Theorem 8.1.

8.1. Bi-Lipschitz embeddability of quasi-arcs
The main result of this subsection is the following special case of Theorem 1.8, where
the leaf set L.X/ consists of only two points. In particular, this gives a detailed, sharp
version of Proposition 1.7.

We first introduce a piece of terminology: A metric spaceX is .C; s/-homogeneous
for some C; s � 0, if every subset of diameter d can be covered by at most C��s sets of
diameter at most �d . In particular, every doubling metric space is .C; s/-homogeneous
for some C and s, depending on the doubling constant [13, Section 10.13].

PROPOSITION 8.2
Given s � 1, C > 0, and c � 1, there exists L D L.c;C; s/ > 1 with the following
property: If � D .Œ0; 1�; d/ is c-bounded turning and .C; s/-homogeneous, then it is
L-bi-Lipschitz embeddable in R

bscC1.

Proposition 8.2 generalizes Theorem C in [14], where it was assumed that s < 2. We
remark that the dimension bsc C 1 in Proposition 8.2 is sharp when s > 1, in the sense
that there exists a 1-bounded turning, .C; s/-homogeneous metric d on Œ0; 1� (namely
the snowflaked Euclidean metric j 	 j1=s) such that .Œ0; 1�; d/ cannot be bi-Lipschitz
embedded in R

bsc.
For the proof of Proposition 8.2, we may assume that diam� D 1. The proof uses a

construction of Herron and Meyer [14] and a bi-Lipschitz embedding method of Rom-
ney and Vellis [24] (see also [1] and [29]).

Let M 2 ¹2; 3; : : : º, A D ¹1; : : : ;M º and CM D .A; .Gk/k2N/ be as in Exam-
ple 6.2.

LEMMA 8.3 ([14, Lemma 3.1])
If d 2 .M�1; 1/ and� 2D.A;M�1; ı/, then the space .A; dCM ;�/ is s-homogeneous
with s D log.M/= log.1=ı/.

The following result can be obtained following the arguments of [14, Theorem B]
essentially verbatim; we provide a brief reference to the necessary arguments.
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PROPOSITION 8.4
Let s � 1, c � 1, and � a c-bounded turning and s-homogeneous metric arc with
diam� D 1. Then for any M 2 ¹2; 3; : : : º and any ı 2 .M�1=s; 1/, there exists � 2
D.A;M�1; ı/ and an L-bi-Lipschitz homeomorphism f W �! .A; dCM ;�/. The con-
stant L depends only on c, s, and M .

Proof
Exactly following the procedure in [14, p. 622], we divide � into M sub-arcs of
equal diameter then iterate this procedure on each sub-arc. Letting CM D .A D

¹1; : : : ;M º;Gk/ as above yields an assignment to each element w 2 A� of an
arc �w � � , with nesting and adjacency properties reflecting that of CM and
supw2Ak diam.�w/! 0 as k!1.

The argument in [14, pp. 622–623] provides a diameter function � 2D.A;M�1;

ı/ such that

�.w/� diam.�w/;

with implied constant depending only on c, s, and M .
Defining F WA! � by F.Œw�/ D \1

kD1
�w.k/, we see exactly as in Lemma 5.9

and Proposition 5.10 of the present paper that F is well-defined, surjective, and bi-
Lipschitz. Taking f D F �1 completes the proof. �

We now fix parameters M and ı that will enable us to use a construction from [24].
Given s � 1, let

� n be the minimal integer satisfying n > .bsc C 1� s/�1,
� pD bsc � 1C n�1

n
D bsc � 1

n
> 0,

� M0 D 9
n.bscC1/,

� M DM
1Cp
0 , and

� ıDM�10 .

The above parameters all depend on s, but we suppress this in the notation. Observe
that ı >M�1=s �M�1 in all cases, and in fact ı is an integer multiple of M�1. Only
ı and M will play a direct role below.

Given Proposition 8.4, the proof of Proposition 8.2 now reduces to the following
lemma.

LEMMA 8.5
Let s � 1 and choose M and ı as above. Let � 2D.A;M�1; ı/. Then there is a bi-
Lipschitz embedding of .A; dCM ;�/ into R

bscC1 with bi-Lipschitz constant depending
only on M , ı and s, and thus only on s.

The construction of the embedding follows ideas and notation from [24]. We fix
parameters M and ı as in the statement of Lemma 8.5 and write C D CM . We also fix
� 2D.A;M�1; ı/ for the remainder of this subsection.
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Let

I D Œ0; 1�� ¹0ºbsc

LD
��
¹0º � Œ0; 1=2�

�
[
�
Œ0; 1=2�� ¹1=2º

��
� ¹0ºbsc�1;

with the convention that E � ¹0º0 DE . An I -segment (resp. L-segment) is the image
of I (resp. L) under a similarity mapping of RbscC1 and is parallel to the coordinate
axes.

Given an I - or L- segment � with length ` and endpoints x�, y�, we define the
cubic thickening Q.�/ of � to be the union of all closed cubes parallel to coordinate
axes, of side length .1� 2ı/` and centered on points z 2 � such that

min
®
jz � x�j; jz � y�j

¯
� `.1� 2ı/=2:

Define also C.�/ to be the closed cube which is parallel to coordinate axes, has side
length `, and is centered on the midpoint of � . The intersection Q.�/ \ @C.�/ has
exactly two components which we call the entrances of Q.�/.

For each � 2 ¹I;Lº, we define two polygonal arcs J.�/ and J0.�/ in the following
lemma.

LEMMA 8.6
Given � 2 ¹I;Lº, there exist two polygonal arcs J.�/ and J0.�/, each contained in
Q.�/, whose endpoints are the same as those of � and that satisfy the following prop-
erties:

(J1) The arcs J.�/, J0.�/ consist of M -many I -segments and L-segments 	i ,
i 2 ¹1; : : : ;M º, labeled according to their order in J.�/ with 	1 containing
the origin. Each 	i in J.�/ has length ı, and each 	i in J0.�/ has length
M�1.

(J2) The segments 	1 and 	M are I -segments.
(J3) For all i 2 ¹1; : : : ;M � 1º, Q.	i /\Q.	iC1/ is an entrance of Q.	i / and an

entrance of Q.	iC1/. If i; j 2 ¹1; : : : ;M º, with ji � j j> 1, then
Q.	i /\Q.	j /D;.

(J4) If E1, E2 are the entrances of Q.�/, then an entrance of Q.	1/ is contained
in E1, and an entrance of Q.	M / is contained in E2. Moreover, for any
i 2 ¹2; : : : ;M � 1º, Q.	i /\ @Q.�/D;.

Proof
The constructions of J0.I / and J0.L/ are quite simple. Write I D

SM
mD1 	m with

	m D
hm� 1
M

;
m

M

i
� ¹0ºbsc �R

bscC1

and set J0.I / D
SM
mD1 	m D I . Similarly write L D

SM
mD1 	m, where 	m is an L-

segment if mD MC1
2

and an I -segment otherwise and each 	m has length 1=M . Set

J0.L/D
SM
mD1 	m.

The constructions of J.I / and J.L/ are more complicated and can be found in [24,
Sections 6.1 and 6.2] (where they are denoted as JI .N;n/ and JL.N;n/, respectively).
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Without describing the construction, we briefly explain how our parameters match with
those of [24]. The parameter N appearing in [24, p. 1181] matches our bsc � 1. Our
parameters p and n match the ones given there. Our parameter M0 corresponds to M
in [24, p. 1182], and our parameter M corresponds to M 1Cp in [24, p. 1182]. Making
allowances for the changes in notation, our desired properties of J.I / and J.L/ are
listed in [24, Section 3.3] as Properties (1)–(3). �

We record a few more simple consequences of Properties (J1)–(J4).

LEMMA 8.7
Consider � 2 ¹I;Lº, J 2 ¹J.�/;J0.�/º. Recall that J is a union of sets ¹	iºMiD1, each
of which is an I -segment or L-segment. Then

(1) For each i 2 ¹1; : : : ;M º, Q.	i /�Q.�/.
(2) For each i 2 ¹2; : : : ;M � 1º,

dist
�
Q.	i /; @Q.�/

�
�M�2:

(3) If i; j 2 ¹1; : : : ;M º with ji � j j> 1, then

dist
�
Q.	i /;Q.	j /

�
�M�2:

(4) Let E be the entrance of Q.�/ that contains an endpoint of 	1 (resp. endpoint
of 	M ), and let P be the bsc-dimensional plane that contains E . Then for all
i 2 ¹2; : : : ;M º (resp. i 2 ¹1; : : : ;M � 1º),

dist
�
Q.	i /;P

�
�M�2:

Proof
All four statements are obvious in the case J D J0.�/, so we now assume that J D
J.�/. Statement (1) is an immediate consequence of the fact that J � Q.�/ and of
Property (J4) of Lemma 8.6.

For the remaining three properties, it is useful to first observe that since ı is an
integer multiple of M�1, the sets Q.�/ and Q.	i / are each unions of axis-parallel
cubes whose vertices lie on the M�2-scale grid M�2ZbscC1.

Statements (2) and (4) follow immediately from this observation and (J4). State-
ment (3) follows immediately from this observation and (J3). �

We now use Lemma 8.6 to construct arcs in R
bscC1 that mimic the metric properties of

the combinatorial construction C , � fixed below the statement of Lemma 8.5.

LEMMA 8.8
For each w 2A�, there exists an I - or L-segment �w with the following properties:

(1) If w;u 2Ak are adjacent, then �w and �u intersect at an endpoint, while
Q.�w/\Q.�u/ is contained in an entrance of Q.�w/ and an entrance of
Q.�u/. If w;u 2Ak are distinct but not adjacent, then Q.�w/\Q.�u/ and
�w \ �u are empty.
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(2) For any w 2A�, there exists � 2 ¹I;Lº such that �w and Q.�w/ are scaled
copies of � and Q.�/, respectively, by a factor of �.w/.

Proof
The construction is done in an inductive manner.

Let �" WD I �R
bscC1. Property (1) of the lemma is vacuous in this base case, while

property (2) is immediate.
Assume now that for some integer k � 0, we have defined I - and L-segments �w

(for all j � k and w 2 Aj ) satisfying the properties of the lemma. Fix w 2 Ak , and
let u be the preceding vertex of Ak in lexicographic order, assuming for the moment
that such a vertex exists. Let E be the entrance of Q.�w/ that intersects an entrance of
Q.�u/. Suppose that �w is a rescaled copy of � 2 ¹I;Lº. Let �w W RbscC1! R

bscC1

be a similarity map such that Q.�/ is mapped onto Q.�w/, the entrance of Q.�/ that
contains the origin is mapped onto the entrance ofQ.�w/ that containsQ.�w/\Q.�u/,
and the other entrance of Q.�/ is mapped to the other entrance of Q.�w/.

If there is no u 2 Ak preceding w in lexicographic order, then w D 1k for some
k � 0. In that case, if k D 0, we set �w to be the identity, and if k � 1, we set u D
1k�12 and do the analogous construction of �w to arrange that the entrance of Q.�/
that does not contain the origin is mapped onto the entrance of Q.�w/ that contains
Q.�w/\Q.�u/.

We now define �wi for each i 2A:

� If �.w1/DM�1�.w/, then for each i 2A, set �wi D �w.	i /, where
	i � J0.�/.

� If �.w1/D ı�.w/, then for each i 2A, set �wi D �w.	i /, where 	i � J.�/.

This completes the definition of the arcs �w for all w 2 AkC1. We now prove that
the family ¹�w Ww 2AkC1º satisfies Properties (1) and (2) of the lemma.

For Property (2) of the lemma, by design, and the inductive hypothesis (2), for all
i 2A,

diam �wi D diam�w.	i /D
diamQ.�w/

diamQ.�/
diam	i D�.w/diam	i D�.wi/diam � 0

for some � 0 2 ¹I;Lº. Therefore, diamQ.�wi / D �.wi/diamQ.� 0/ for some � 0 2
¹I;Lº, and Property (2) holds for kC 1.

We now turn to the proof of (1). Let w 2Ak and i 2A. Let also u 2Ak and j 2A.
We consider two cases.

Case 1. Assume that w D u and i ¤ j . If wi is adjacent to wj , then by design
of paths J.�/ and J0.�/, we have that �wi and �wj share an endpoint and by (J3),
Q.�wi /\Q.�wj / is a common entrance of Q.�wi / and Q.�wj /. If wi is not adjacent
towj , then again by (J3),Q.�wi /\Q.�wj /D;which also implies that �wi \�wj D;.

Case 2. Assume that u¤w. The proof splits in two subcases.
Case 2.1. Assume that i … ¹1;M º. Then wi is not adjacent to uj , and by (J4),

Q.�wi / is contained in the interior ofQ.�w/ which is disjoint fromQu by the inductive
hypothesis. Therefore, Q.�wi /\Q.�uj / and �wi \ �uj are both empty.
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Case 2.2 Assume that i 2 ¹1;M º. Without loss of generality, we assume that i D 1;
the case i DM is similar. By design, Q.�wi / intersects one entrance of Q.�w/ but not
the other. Therefore, if u is not adjacent to w or if it is adjacent to w but is preceded by
w, then the inductive hypothesis implies that Q.�w1/\Q.�uj / and �w1 \ �uj are both
empty. Assume now that u is adjacent to w and precedes w. Then the only j 2 A for
which Q.�uj / intersects the entrance of Q.�u/ which contains Q.�w/\Q.�u/ is j D
M . In this case, �uM \ �w1 is the common endpoint of �w and �u. Therefore,Q.�wi /\
Q.�uj / is nonempty and is contained in an entrance of Q.�wi / and an entrance of
Q.�uj /. �

Lemma 8.8(2) implies that for all w 2A�,

(8.1) 2�1=2�.w/� diam �w ��.w/:

LEMMA 8.9
Let w;u 2 Ak be adjacent words, with w preceding u in lexicographic order. If i 2
A n ¹M º or if j 2A n ¹1º, then

dist
�
Q.�wi /;Q.�uj /

�
&s max

®
�.w/;�.u/

¯
:

Proof
Set E DQ.�w/\Q.�u/. By Lemma 8.8, E is contained in an entrance of Q.�w/ and
in an entrance of Q.�u/. Let P be the bsc-dimensional plane in R

bscC1 that contains
E . Then P separates the interior of Q.�wi / from the interior Q.�uj /. By Lemma 8.7,

dist
�
Q.�wi /;Q.�uj /

�
�max

®
dist

�
Q.�wi /;P

�
;dist

�
Q.�uj /;P

�¯
&s max

®
�.w/;�.u/

¯
: �

For each w 2A� and k � jwj, set

Q.k/
w WD

[
u2Akw

Q.�u/; Q.k/ WD
[
u2Ak

Q.�u/; Qw WD
\
n�jwj

Q.n/
w :

By (8.1), if w 2 AN, then limn!1 diamQ.�w.n// � limn!1.bsc C 1/
1=2ın D 0.

For each w 2AN, denote by xw the unique point

¹xwº WD
\
n2N

Q.�w.n//D
\
n2N

Qw.n/:

Define a map F W .A; dC ;�/!Q" �R
bscC1 by F.Œw�/D xw .

LEMMA 8.10
F is well-defined, and F.Aw/DQw for all w 2A�.

Proof
Let Œw�D Œv� 2A, with w ¤ v. By Lemma 6.3, there is an n 2N and u, u0 adjacent in
An such that wD uM1 and vD u011 (or vice versa).
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For each n 2N,Q.�uMn/ intersects withQ.�u01n/ on a common entrance. Denote
by p the unique point in

T
n2N.Q.�uMn/ \Q.�u01n//. Then Q.�w.k// and Q.�v.k//

both contain p for all k, and hence F.Œv�/D F.Œw�/D p. So F is well-defined.
For the second part, fix n 2 N and w 2 An. For k � n, note that ¹Q.k/

w º converges
in Hausdorff distance to Qw . By construction, each point of F.ŒAw �/ is contained in
the Hausdorff limit of the sets Q

.k/
w , and hence in Qw . Thus, F.Aw/�Qw .

For the other inclusion, fix p 2Qw . Let v0 D w. For each k � 1, we inductively
set vk 2 A

jwjCk
vk�1 � A

jwjCk
w to be a word with p 2Qvk . Let v be the infinite word such

that v.jwj C k/D vk for all k � 0. Then immediately p D F.Œv�/. Therefore, Qw �

F.Aw/. �

It remains to show now that F is L-bi-Lipschitz with L depending only on s.

Proof of Lemma 8.5
Fix distinct Œw�; Œw0� 2 A. Without loss of generality, assume that w precedes w0 in
lexicographic order. Let 	 be the unique arc in A whose endpoints are Œw� and Œw0�.
Let also w0 2 A� be the longest word such that Œw�; Œw0� 2 Aw0 . Let also i; j 2 A
such that Œw� 2Aw0i and Œw0� 2Aw0j . By maximality of w0, we have that i ¤ j . We
consider the following possible two cases.

Case 1. Suppose that ji � j j > 1. On one hand, there exists i 0 2 A such that
Aw0i 0 � 	 which implies that

M�1�.w0/��.w0i
0/� diam	 D dC ;�

�
Œw�; Œw0�

�
��.w0/:

On the other hand, F.Œw�/ 2Q.�w0i /, F.Œw
0�/ 2Q.�w0j /, and by Lemma 8.7,

M�2�.w0/� dist
�
Q.�w0i /;Q.�w0j /

�
�
ˇ̌
F
�
Œw�
�
�F

�
Œw0�

�ˇ̌
� diamQ.�w0/�

�
bsc C 1

�1=2
�.w0/:

Therefore, dC ;�.Œw�; Œw0�/�s �.w0/�s jF.Œw�/�F.Œw0�/j. This completes the proof
in Case 1.

Case 2. Suppose that ji�j j D 1. Without loss of generality, assume that j D iC1.
Let k and l be the unique integers such that

Aw0iMk [Aw0j1l
� 	 �Aw0iMk�1 [Aw0j1l�1

:

Let also i 0; j 0 2 A such that Œw� 2Aw0iMk�1i 0 and Œw0� 2Aw0j1l�1j 0
. Note that i 0 ¤

M , while j 0 ¤ 1. On one hand, using the 1-bounded turning property of .A; dC ;�/ and
Lemma 6.3, we have

max
®
�.w0iM

k/;�.w0j1
l/
¯
�MdC ;�

�
Œw�; Œw0�

�
�M diam.Aw0iMk�1 [Aw0j1l�1

/

� 2M max
®
�.w0iM

k�1/;�.w0j1
l�1/

¯
� 2M 2max

®
�.w0iM

k/;�.w0j1
l /
¯
:
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On the other hand, by Lemma 8.9,ˇ̌
F
�
Œw�
�
�F

�
Œw0�

�ˇ̌
.max

®
diamQ.�w0iMk�1/;diamQ.�w0j1l�1/

¯
.max

®
�.w0iM

k�1/;�.w0j1
l�1/

¯
. dist

�
Q.�w0iMk�1i 0/;Q.�w0iMk�1i 0/

�
�
ˇ̌
F
�
Œw�
�
�F

�
Œw0�

�ˇ̌
;

with implied constants depending on the parameter s.
Therefore,ˇ̌
F
�
Œw�
�
�F

�
Œw0�

�ˇ̌
�s max

®
�.w0iM

k�1/;�.w0j1
l�1/

¯
�s dC ;�

�
Œw�; Œw0�

�
:

This completes the proof in Case 2 and the proof of the lemma. �

8.2. Proof of Theorem 8.1
Here we prove Theorem 1.8 using two bi-Lipschitz embedding results of Lang and
Plaut [17] and of Seo [25]. The first result says that one can “glue” two bi-Lipschitz
embeddings into a single embedding.

THEOREM 8.11 ([17, Theorem 3.2])
LetX be a metric space, and letX1;X2 �X be closed subsets such thatX DX1[X2.
If X1 L1-bi-Lipschitz embeds in R

n1 and X2 L2-bi-Lipschitz embeds in R
n2 , then X

L-bi-Lipschitz embeds in R
n1Cn2C1, with L depending on L1, L2, n1, and n2.

Using Theorem 8.11, we show that balls of X that are appropriately far from L.X/

admit a bi-Lipschitz embedding into some Euclidean space quantitatively.

LEMMA 8.12
Let X be a doubling, bounded turning tree. For every 0 < ˇ < 1, there exist L and
N depending only on the doubling constant of X , the bounded turning constant of X ,
and ˇ such that if B.x; r/ is a ball with x 2X nL.X/ and r < ˇ dist.x;L.X//, then
B.x; r/ admits an L-bi-Lipschitz embedding into R

N .

Proof
Fix 0 < ˇ < 1. Let B DB.x; r/ be a ball with x 2X nL.X/ and r < ˇ dist.x;L.X//.
Let D denote the doubling constant of X and H the bounded turning constant. We
will argue that B is contained in a union of at most K D K.ˇ;D;H/ quasi-arcs. By
Proposition 8.2 and Theorem 8.11, the latter implies that B admits an L-bi-Lipschitz
embedding into R

N with N and L, depending only on K and D; hence, only on ˇ, D,
and H .

Let � be the collection of all arcs in X that join x to a leaf of X . For each � 2 � ,
parametrize it by a continuous � W Œ0; 1�!X such that �.0/D x and �.1/ 2L.X/. Let
x� D �.t� /, where

t� D sup
®
t 2 Œ0; 1� W �.t/ 2B

¯
:



Bi-Lipschitz geometry of quasiconformal trees 241

In other words, x� is the “last” point on � contained in B . Similarly, let y� denote the
last point on � contained in B.x; r=ˇ/. Note that B and B.x; r=ˇ/ are disjoint from
L.X/ by assumption, so the points x� and y� must exist for each � 2 � .

Two properties of these points are clear:

(1) If x� ¤ x� 0 , then y� ¤ y� 0 . In particular,

(8.2) card¹x� W � 2 �º � card¹y� W � 2 �º:

(2) We have d.x� ; x/D r and d.y� ; x/D r=ˇ for each � 2 � .

Finally, let �0 be the collection of arcs joining x to x� , as � ranges in � . We will
show that �0 contains a controlled finite number of distinct elements, by showing that
the collection ¹x� W � 2 �º contains a controlled number of distinct elements. Since B
is contained in the union of all arcs of �0, this will complete the proof.

Suppose �; � 0 2 � have x� ¤ x� 0 . We then claim that

d.y� ; y� 0/� 
r

for some constant 
 depending only on D and H .
Indeed, the arc Œy� ; y� 0 � must contain x� , and hence its diameter is at least

d.y� ; x� /�
� 1
ˇ
� 1

�
r;

and so

d.y� ; y� 0/�
1

H
diam

�
Œy� ; y� 0 �

�
�
1

H

� 1
ˇ
� 1

�
r D 
r:

The total number of different arcs in �0 is controlled by the total number of dis-
tinct x� , which is controlled by card¹y� W � 2 �º by (8.2). The points y� form an 
r -
separated set in B.x; r=ˇ/, and so the cardinality of this set is bounded by a constant
K depending only on 
, ˇ, and the doubling constant D. �

The second bi-Lipschitz embedding result that we need is Seo’s general bi-Lipschitz
embeddability criterion [25]. In fact, we use a simplified version of Seo’s result pre-
sented by Romney in [23, Theorem 2.2]. Before stating the result, we recall a general-
ized notion of Whitney decomposition for metric measure spaces due to Christ [8] and
Seo [25].

DEFINITION 8.13 ([8, 23, 25])
Let .X;d;�/ be a metric measure space, and let � be an open proper subset of X .
A collection Q of open subsets of � is a Christ–Whitney decomposition of � if there
exist constants ı 2 .0; 1/, C1 > c0 > 0, and a � 4 such that the following properties are
satisfied:

(1)
S
Q2QQ is dense in �.

(2) For every Q;Q0 2Q with Q¤Q0, we have Q\Q0 D;.
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(3) For every Q 2Q, there exists x 2� and k 2 Z such that

B.x; c0ı
k/�Q�B.x;C1ı

k/

and

.a� 2/C1ı
k � dist.Q;X n�/�

�aC1
ı

�
ık :

LEMMA 8.14 ([8, Theorem 11], [23, Lemma 2.5], [25, Lemma 2.1])
Let X be a doubling metric space and Y be a nonempty closed proper subset of X .
Then X n Y has a Christ–Whitney decomposition, with constants ı, c0, C1, a absolute.

THEOREM 8.15 ([23, Theorem 2.2] [25, Theorem 1.1])
Let X be a complete metric measure space. Then X admits an L-bi-Lipschitz embed-
ding into some Euclidean space R

M if and only if the following conditions hold for
some constants L1, L2, M1, M2:

(1) X is doubling.
(2) There is a nonempty closed subset of Y �X which admits an L1-bi-Lipschitz

embedding into some R
M1 .

(3) There is a Christ–Whitney decomposition of X n Y such that each cube
admits an L2-bi-Lipschitz embedding into some R

M2 .

The distortion L and target dimension M of the embedding of X depend only on the
doubling constant of �, M1, M2, and L1, L2.

Proof of Theorem 8.1
It suffices to show that X satisfies the conditions of Theorem 8.15 with Y D L.X/.
The doubling property (1) in Theorem 8.15 is satisfied by assumption. We assume that
L.X/; hence, Y admits a bi-Lipschitz embedding into some R

M1 , so (2) is assumed to
hold in Theorem 5.1. It remains to prove (3).

By Lemma 8.14, there exists a Christ–Whitney decomposition Q for some con-
stants ı 2 .0; 1/, C1 > c0 > 0, and a � 4. Let Q 2 Q be an arbitrary cube of this
decomposition.

The doubling property ofX implies that there existsN 2N, depending only on the
doubling constant of X and the constants of the Christ–Whitney decomposition, and
there exist at most N balls B1; : : : ;Bn with centers on Q and of radius 1

3
dist.Q;Y /,

such that Q�B1 [ 	 	 	 [Bn. In particular, the balls Bi each satisfy the assumptions of
Lemma 8.12 with ˇD 1

2
.

Thus, by Lemma 8.12, each Bi admits an L0-bi-Lipschitz embedding into R
M 0 ,

where L0 and M 0 depend only on the doubling and bounded turning constants of X .
By Theorem 8.11, Q�B1[ 	 	 	 [Bn admits an L2-bi-Lipschitz embedding into R

M2 ,
where L2 and M2 depend only on the doubling and bounded turning constants of X .
This verifies Condition (3) of Theorem 8.15 and completes the proof of Theorem 8.1.

�
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