Bi-Lipschitz geometry of quasiconformal trees

Guy C. David and Vyron Vellis

Abstract A quasiconformal tree is a doubling metric tree in which the diameter of each arc
is bounded above by a fixed multiple of the distance between its endpoints. We study the
geometry of these trees in two directions. First, we construct a catalog of metric trees in a
purely combinatorial way, and show that every quasiconformal tree is bi-Lipschitz equiva-
lent to one of the trees in our catalog. This is inspired by results of Herron and Meyer and
of Rohde for quasi-arcs. Second, we show that a quasiconformal tree bi-Lipschitz embeds
in a Euclidean space if and only if its set of leaves admits such an embedding. In particular,
all quasi-arcs bi-Lipschitz embed into some Euclidean space.
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1. Introduction

In this paper, a (metric) tree is a compact, connected, locally connected metric space
with the property that each pair of distinct points forms the endpoints of a unique arc.
In some sense, trees make up the simplest class of one-dimensional continua and are
ubiquitous in analysis and geometry.

Within the class of all trees, an important role has been played by the class of
quasiconformal trees studied in [2, 3, 16]. By definition, these are trees 7" that satisfy
two simple geometric properties:

e T is doubling: there is a constant N such that each ball in 7' can be covered by
N balls of half the radius.

o T is bounded turning: there is a constant C such that each pair of points
x,y €T can be joined by a continuum whose diameter is at most Cd(x, y).
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These conditions are both invariant under quasisymmetric mappings, making the class
of quasiconformal trees a natural quasisymmetrically invariant class. We do not recall
the definition of quasisymmetric mappings here (see [2] or [13]) but merely note that
they are an important generalization of conformal mappings to arbitrary metric spaces.

Quasiconformal trees appear in several fields of analysis. For instance, Julia sets
of semihyperbolic polynomials (e.g., z2 + i) are quasiconformal trees (see [5, p. 95]
and [6]), and quasiconformal trees T in R? (often called Gehring trees) were recently
characterized by Lin and Rhode [19] in terms of the laminations of the conformal map
f:C\D—>C\T.

Quasiconformal trees generalize two more well-known types of spaces. For one,
quasiconformal trees that are simply topological arcs (i.e., have no branching) are called
quasi-arcs and have been studied in complex analysis and analysis on metric spaces for
decades [9]. For example, the famous von Koch snowflake is a quasi-arc. A well-known
result of Tukia and Viisild [26] shows that quasi-arcs are exactly those spaces that are
quasisymmetrically equivalent to the unit interval [0, 1].

Quasiconformal trees also generalize (doubling) geodesic trees. Geodesic trees are
trees in which, for each pair of points x, y, the unique arc joining them has (finite)
length equal to d(x, y). Thus, in geodesic trees all paths are “straight” (isometric to
intervals in the real line), whereas paths in quasiconformal trees may be fractal, like the
von Koch snowflake. Geodesic trees are of course standard objects of study in many
parts of mathematics and computer science. Recently, Bonk and Meyer [2] generalized
the result of Tukia and Viisild mentioned above by showing that each quasiconformal
tree is quasisymmetric to a geodesic tree.

Rather than studying the quasisymmetric geometry of quasiconformal trees, this
paper is concerned with the finer notion of bi-Lipschitz geometry. Recall that a mapping
f between two metric spaces is called bi-Lipschitz (or L-bi-Lipschitz to emphasize the
constant) if there is a constant L > 1 such that

L7 'd(x,y) < d(f(x),f(y)) <Ld(x,y), forallx,yelX.

Thus, bi-Lipschitz mappings preserve distances up to constant factors. All bi-Lipschitz
mappings are quasisymmetric, but the converse is false. For example, one may param-
etrize the von Koch snowflake K by a quasisymmetric map [0, 1] — K but not by a
bi-Lipschitz map.

Given a metric space X, natural questions in the bi-Lipschitz world are as follows:

e Uniformization: Which metric spaces are bi-Lipschitz equivalent to X (i.e.,
admit a surjective bi-Lipschitz mapping onto X)?

o Embeddability: Does X admit a bi-Lipschitz embedding into some Euclidean
space R” (i.e., a bi-Lipschitz mapping from X into R")?

The first of these questions is about recognizing or providing models for spaces up to
bi-Lipschitz equivalence—that is, up to bounded distortion of their metrics. The sec-
ond is about understanding which spaces can be viewed as subsets of Euclidean space
up to bounded distortion, and in complete generality is a major problem in analysis,
geometry, and computer science [12, 21].
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We study both of these questions for quasiconformal trees. Concerning the first, we
give a “combinatorial model” for generating quasiconformal trees based on a purely
discrete construction and then show that every quasiconformal tree is bi-Lipschitz
equivalent to one of our combinatorial constructions. This is in the vein of the com-
binatorial models for quasi-arcs up to bi-Lipschitz equivalence given by Herron and
Meyer [14] and by Rohde [22], although the construction for trees is more elaborate.
Our main theorem on this topic is Theorem [.4.

Concerning the second question, we build on ideas from [24] to show that every
quasi-arc admits a bi-Lipschitz embedding into some Euclidean space and use this to
show that the bi-Lipschitz embedding properties of quasiconformal trees are completely
controlled by their sets of leaves (Theorem 1.8). We leave open the main question of
whether all quasiconformal trees admit bi-Lipschitz embeddings into Euclidean space;
see below for additional background and discussion.

We now discuss these ideas in more detail.

1.1. Combinatorial models for quasiconformal trees up to bi-Lipschitz equivalence
We first give a way to define metric spaces using certain sequences of combinatorial
graphs—that is, G = (V, E), where V is the vertex set and E is the edge set. This
is inspired by the ideas of [14] and [22] concerning quasi-arcs, with a number of new
wrinkles in the case of trees. To simplify the presentation as much as possible, a number
of definitions are postponed until Section 2.

Let A be an “alphabet”: a set of the form {1,...,n}, or A = N. Denote by ¢ the
empty word and by |w| the length of a word—that is, the number of letters. Let A° =
{&}, and for each k € N denote by A¥ the set of all words made from the alphabet A of
length exactly k. Define the set of finite words

o0
A* = U Ak,
k=0

Denote also by A" the set of infinite words formed by the alphabet 4, and ALY € AN
the set of all infinite words that begin with a given finite word u € A*.

DEFINITION 1.1
We consider the following combinatorial data € = (A4, (Gg)key), Where

(1) A is a finite or infinite alphabet: A = {1, ..., M} for some integer M > 2, or
A=N;
(2) foreach k € N, G = (A%, Ex) is a connected combinatorial graph on the
vertex set A* with the following properties:
(a) For each w € A*, the subgraph of Gy +1 induced by the vertex set
{wi :i € A} is connected.
(b) If {w,u} € Ey, then there is a pair (i, j) € A X A such that
{wi,uj} € Eg41.

We next define a way to “move between” different infinite word sets A} using the
structure of the combinatorial data. Moves between A} and Al are always permitted if
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u and v are adjacent words of equal length, but in general we take into account the full
scope of the combinatorial data.

Thus, given combinatorial data € = (A4, (Gg)ren), We say that two infinite word
sets A§1 and A§2 combinatorially intersect, and write A§1 Ne A§2 # @ if the following
holds:

For each n > max{|u1 [, |u2|}, there exist words wy, w, € A", beginning
(1.1)  with u; and u,, respectively, that are adjacent in G,,.

In other words, two word sets A§1 and A§2 combinatorially intersect if their
restrictions to every sufficiently large finite level are adjacent. Below, in Definition 3.2,
we will give a precise definition of the set AL e A§2 and show that its non-emptiness
is equivalent to (1.1).

Given this notion of combinatorial intersection, we can describe how to move
between two infinite words, as follows.

DEFINITION 1.2
Given two words w, w’ € AV, we say that {AIE1 .

; N 7o 4N P N N
ifwed,  weAd, andforeveryi =1,...,n—1, wehave 4, Ae Awi+l # 0.

N . . e . . /
.+, Ay, } 18 @ chain joining w with w

Now that we have a way to move between two infinite words, we can define a distance
on AN by assigning costs to each chain with a “diameter function” as follows.

DEFINITION 1.3
Given an alphabet A, a diameter function is a function A : A* — [0, 1] such that
D Ale)=1;
(2) for each w € A¥ andi € A, A(wi) = 0 for all but finitely many i € A; and
(3) lim,— o max{A(w) :w € A"} =0.
The class of all diameter functions on A is defined by D(A). Given 0 < §; <6, <1
and finite A, we denote by D (4, 81, §,) the collection of all diameter functions on the
alphabet A such that
A(wi)
A(w)

foreachw € A* and i, j € A, A(wi) = A(wj) and € {81,8,).

Note that, in Definition 1.3, (2) is automatic if A is finite, and (3) is automatic if A €
D(A,81,8,) and 6 < 1. In (3), Condition (2) implies that the maximum is actually
achieved, even if A is infinite.

Given combinatorial data € = (A, (Gg)ren) and A € D(A), we define a pseudo-
metric De,a on AN by

N
(1.2) De a(w.u) =inf ) A(v;).
i=0

where the infimum is taken over all chains {Alﬁi } joining w with u.
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We prove in Lemma 3.8 that D¢ a is indeed always a pseudometric on AN, Tak-
ing the quotient space + := A"/ ~ under the equivalence relation w ~ w’ whenever
De a(w,w') =0, we obtain a metric space

(A, de n),

where d‘@,A([w]’ [U]) = De,A(wv U).

To help digest the definition, we provide a number of examples illustrating this
combinatorial construction in Section 6 below.

Our main theorem on these combinatorial models is as follows.

THEOREM 1.4

(1) If € defines combinatorial data and A € D(A), then the space (A, de p) is
compact, connected, and bounded turning with constant C = 1.

(2) If, in addition, each graph Gy in the combinatorial data is a combinatorial
tree, then the space (+, de A) is a metric tree.

(3) Conversely, if X is an arbitrary quasiconformal tree, then there exist
combinatorial data € = (A, (Gg)ren) and a diameter function
A € D(A, K1, K3) such that each Gy, is a combinatorial tree and X is
bi-Lipschitz equivalent to the space (A, de a). The choice of alphabet, the
constants Ky and K, and the bi-Lipschitz constant depend only on the
doubling and bounded turning constants of X and on diam(X).

Parts (1) and (2) of Theorem 1.4 are proven in Proposition 3.10, and Part (3) is proven
(with a more detailed statement) in Theorem 5.1.

We emphasize that an important feature of Theorem 1.4 is that all quasiconformal
trees are built (up to bi-Lipschitz equivalence) not only from combinatorial objects but
from the simple homogeneous word sets AY and the additional data provided by {Gy}
and the diameter function. In some sense, one can view the construction in [14], which
combinatorially builds bi-Lipschitz models of all quasi-arcs, as being a special case of
the above construction in the case where A has two elements and the graphs Gy are
combinatorial arcs, and so we show that the above re-interpretation and expansion of
their construction yields all quasiconformal frees up to bi-Lipschitz equivalence. Later,
in Section 6, we provide some concrete examples and pictures of the combinatorial
construction described above, including describing in more detail how quasi-arcs fit
into our picture.

REMARK 1.5
The metric space (4, de ) constructed from given combinatorial data and diameter
function need not be doubling in general, even if the alphabet A is finite, the graphs
Gy, are all combinatorial trees, and the diameter function A lies in D(A4,8;,8,) for
0<61 <8 <.

However, in Proposition 4.1 we give some sufficient conditions that imply that the
space (A, de, a) is doubling. In Theorem 1.4(3), the space (+, de,a) that we construct
always satisfies these conditions. This is stated explicitly in Theorem 5.1.



194 Guy C. David and Vyron Vellis

1.2. Combinatorial descriptions of metric spaces with good tilings

Some techniques in the proof of Theorem 1.4(3) can be used for a more general class
of metric spaces that can be tiled in a uniform fashion. Roughly speaking, we say that
a metric space has a “good tiling” if there exists an alphabet A, a constant r € (0, 1),
and a tiling decomposition {X, : w € A*} of X such that each tile X,, has diameter
comparable to 7! and any two nonintersecting tiles X,,, X, have distance at least a
fixed multiple of max{r®! r}. See Section 7 for a precise definition.

In Proposition 7.1, we show that any such space is bi-Lipschitz equivalent to a
space (4, de a) for some combinatorial data € and A(w) = rlvl. Spaces with good
tilings include many attractors of iterated function systems such as the square, the cube,
the Sierpinski carpet, the Sierpiniski gasket, and others; see Example 7.2 for further
discussion.

We note that Proposition 7.1 is not a generalization of Theorem 1.4: if X is a
quasiconformal tree, the combinatorial data that Proposition 7.1 will provide may not
consist of combinatorial trees, as required by Theorem 1.4. The proof also proceeds
differently, and in fact we do not know if every quasiconformal tree possesses a good
tiling in the sense given in Section 7.

1.3. Bi-Lipschitz embeddings of quasi-arcs and quasiconformal trees
We now turn our attention to the problem of finding bi-Lipschitz embeddings of quasi-
conformal trees into Euclidean space. The most natural question is as follows.

QUESTION 1.6
Does every quasiconformal tree have a bi-Lipschitz embedding into some Euclidean
space R"?

We do not answer this question here and, indeed, it may be rather difficult to answer. In
the special case of doubling, geodesic trees, the answer is known to be positive, by a the-
orem of Gupta—Krauthgammer—Lee [10]; see also [11, Corollary 8]. Lee—Naor—Peres
also give an alternative proof of the result for geodesic trees in [18, Theorem 2.12].

By adapting techniques of Romney and the second named author, we make
progress on Question 1.6 in the case where the quasiconformal tree has no branching,
as follows.

PROPOSITION 1.7
Every quasi-arc admits a bi-Lipschitz embedding into some Euclidean space R".

Proposition 1.7 is a simplified version of Proposition 8.2 below, where we identify the
sharp dimension 7 for the embedding. We note that Herron and Meyer proved Proposi-
tion 1.7 in the special case of quasi-arcs with Assouad dimension less than 2; see [14,
Theorem C].

Using Proposition 8.2, and results of Lang and Plaut [17] and of Seo [25], we end
by giving a criterion that can answer Question 1.6 in certain examples. If X is a metric
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tree, we denote by £(X) be the set of leaves of X ; that is,

£(X):={x € X : X\ {x} is connected}.

THEOREM 1.8
A quasiconformal tree X admits a bi-Lipschitz embedding into some Euclidean space
if and only if £(X) admits a bi-Lipschitz embedding into some Euclidean space.

Theorem 1.8 is a simplified version of the quantitative statement of Theorem 8.1.

REMARK 1.9

If X is a quasiconformal tree, the set £(X) need not be closed and may even be dense
in X . Thus, Theorem 1.8 does not necessarily always reduce Question 1.6 to a simpler
problem.

In many particular cases, however, it may be significantly easier to check the
embeddability of £(X) rather than X itself. For example, in many concrete settings,
the leaf set £(X) is an ultrametric space, and every doubling ultrametric space bi-
Lipschitz embeds into some Euclidean space [20].

REMARK 1.10

An equivalent reformulation of Theorem 1.8 is that a subset E of a quasiconformal
tree X admits a bi-Lipschitz embedding into some Euclidean space if and only if the
minimal subtree of X containing E does.

1.4. Outline of the paper
In Section 2, we review some elementary notions from graph theory concerning com-
binatorial graphs and trees. In Section 3, we provide more details on our combinatorial
models and prove parts (1) and (2) of Theorem 1.4. In Section 4, we work in the case
of combinatorial trees and identify conditions on A, €, and A that guarantee that the
metric tree (4, de a) is doubling.

In Section 5, we prove a more detailed version of Part (3) of Theorem 1.4. The basic
idea is to construct an n-adic decomposition (Xy )ye(1,....»}+ of a given quasiconformal
tree X for some n > 2 that satisfies the following properties:

(1) Each X, is the union of its children Xy1,..., Xy», which are themselves
trees. Each two of the children intersect in at most one point, which has
valency 2 in X.

(2) Each child Xy,; of X, has diameter comparable to that of X,,.

(3) Any two points x, y on Xy, N X \ X, have distance comparable to the
diameter of Xy,.

This is accomplished by performing certain subdivisions and gluings on top of a con-
struction of Bonk and Meyer [2]. Once we have such a decomposition, we can build
combinatorial data € and a diameter function A such that (4, de, a) is bi-Lipschitz
equivalent to X.
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Section 6 contains some examples and pictures that illustrate how our combinato-
rial data yields metric spaces in a few concrete cases.

Section 7 considers more general metric spaces, not necessarily trees, that admit a
notion of “good tiling.” We show that such spaces can also be viewed from our com-
binatorial data, in a slightly different way than Theorem 1.4. In particular, we describe
how some self-similar spaces like the unit square and the Sierpinski gasket can be con-
structed in our framework.

Finally, in Section 8, we prove a quantitative version of Proposition 1.7 and then
apply a bi-Lipschitz welding result of Lang and Plaut [17] and a bi-Lipschitz embed-
ding characterization of Seo [25] to complete the proof of Theorem 1.8.

2. Preliminaries

In this section, we introduce some further preliminary definitions and results related to
the combinatorial models defined in Section 1.1.

2.1. Words

Recall from Section 1.1 that we start with an alphabet A = {1,..., M} for some integer
M > 2. or A =N. In addition to the sets A*, AV, Al,f defined above, we also set a few
other pieces of notation. For w € A* and k > |w|, define

k . k— .
AR = fwu i u e ARVl Al ={wu:ue A"}

Given n € N and w € AN, denote by w(n) the unique word u € A" such that
w = uw’ for some w’ € AN. Similarly, if » € N and w € A*, w(n) denotes the initial
subword of w with length n, and we set w(n) = w if n > |w|.

Finally, given k € N and u € A%, denote by u" the unique element of 4¥~! such
that u € Aﬁr'

2.2. Combinatorial graphs and trees
Definition 1.1 above uses some graph theory terminology. A combinatorial graph is a
pair G = (V, E) of a finite or countable vertex set V' and an edge set

EcC{{v.v}:v,v" eV andv #v'}.

If {v,v’} € E, we say that the vertices v and v’ are adjacent in G.

A combinatorial graph G’ = (V', E’) is a subgraph of G = (V, E) (and we write
G CG)if V' CV and E' C E. We commonly generate subgraphs of G = (V, E) by
starting with a vertex set V' C V and considering the subgraph of G induced by V':
the graph G’ = (V', E’), where E’ is the set of all edges between two vertices of V.

A pathin G isasety = {{vy,v2},...,{vn—1,Vn}} C E; in this case, we say that y
joins vy, v,. The path y = {{v1,v2},...,{vn—1,V,}} is @ combinatorial arc or simple
path if for all i, j € {1,...,n}, v; = v; if and only if i = j; in this case we say that
the endpoints of the arc y are the points vy, v,. A combinatorial graph G = (V, E) is
connected if for any distinct v, v’ € V there exists a path y in G that joins v with v’.
A component of a combinatorial graph G is a maximal connected subgraph of G.
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A graph T = (V, E) is a combinatorial tree if for any distinct v, v’ there exists
unique combinatorial arc y whose endpoints are v and v’. Given a combinatorial tree
T = (V,E) and a point v € V, define the valencies

Val(T,v) :=card{e € E:v e} and Val(T) := ma;c Val(T, v)
ve

and the set of leaves Leaves(T") := {v € V : Val(T,v) = 1}. Here, card denotes the
cardinality of a finite or countable set, taking values in N U {oco}.

Given a combinatorial graph G = (V, E) and a vertex v € V, we write G \ {v} to
be the subgraph of G induced by V' \ {v}. Note that, if T is a tree, then every component
of T\ {v} is a tree.

3. Amodel for bounded turning metric spaces and trees

3.1. Combinatorial data
Recall the notion of combinatorial data € = (A, (Gg)ren) from Definition 1.1, where
A is an alphabet and Gy = (4%, E}) are combinatorial graphs on the vertex sets A¥,
satisfying certain axioms. For the remainder of Section 3, we fix combinatorial data
€ = (A, (Gr)ken)-

Our first lemma gives some basic structural properties of these graphs. In particu-
lar, if each Gy is a combinatorial tree, then the pair (i, j) € A x A of Definition 1.1(2b)
is unique.

LEMMA 3.1
Letk > jandv #we Al.

(1) If v and w are adjacent in G j, then there are words v' and w' in A*=T such
that vv’ and ww’ are adjacent in Gy.

(2) If Gy is a combinatorial tree and there are words v' and w' in A*=T such that
vv’ and ww' are adjacent in Gy, then v and w are adjacent in G ;.

(3) If G is a combinatorial tree and v and w are adjacent in G, then there is a
unique pair of words (v, w') in A¥=7 x A¥=J such that vv’ and ww’ are
adjacent in Gy,.

Proof
The first statement is an immediate consequence of (2b) in Definition 1.1, and induction
onk—j.

For the second, suppose that v and w were not adjacent in G ;, under these assump-
tions.

Let v =ug,u1,...,Up—1,U, = w be a path from v to w in G;. Note that n > 2.
Then, by the first statement in the lemma and Part (2) of Definition 1.1, there is a simple
path from vv’ € A{f to ww’ € A{Z in G of the form

elements of AX

k k
o elements of Au1 ,..., elements of Au”.

On the other hand, there is also an adjacency between vv’ and ww’ in Gg. This contra-
dicts the assumption that Gy is a tree.
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For the third claim, the existence of v’ and w’ follows from (1). Suppose that the
uniqueness failed. We consider the following two possible cases.

Suppose first that there are two distinct v/, v” € A and w’ € A such that both vv’
and vv” are adjacent to ww’. Then there exists two combinatorial arcs in Gy that
join vv’ with vv”: one through the vertices of Gy restricted on AX (by (2a) in Defi-
nition 1.1), and another is {{vv’, ww’}, {fww’, vv”}}. This contradicts the fact that G
is a tree.

The other possibility is that there are two distinct v/, v” € A and two distinct
w’, w” € A such that vv’ is adjacent to ww’, and vv” are adjacent to ww”. Then there
exist two combinatorial arcs in Gy that join vv’ with vv”: one through the vertices of
Gy restricted on A]lf (by (2a) in Definition 1.1) and another through the vertices of G
restricted on AX along with edges {vv’, ww”} and {vv”, ww"}. This again contradicts
the fact that Gy, is a tree. O

3.2. Combinatorial intersection and chains

Recall the notion of combinatorial intersection A§ Ae A§ defined in (1.1) in Sec-
tion 1.1. There, we defined only what it means for this set to be non-empty, but here we
actually give a meaning to the set itself.

DEFINITION 3.2
Given u;,u, € A*, we define

AE‘I Ae AEZ ={we A§1 :Vn > max{|u1|, |u2|} there exists u € Ay,
with {w(n),u} € E,}
U{w e Afz :Vn > max{|u1|, |u2|} there exists u € 4y,

3.1 with {w(n),u} € E,}.

The set A, Ae Al is called the combinatorial intersection of A} and A} .

We now show that this definition agrees with that in (1.1) and give an equivalent refor-
mulation in the case of trees.

LEMMA 3.3
Let uy,uy € A*. The following are equivalent:

(1) The set AEI] Ae A§2 is non-empty.

(2) Forevery k > max{|uy|, |uz|} there exists vy € Aﬁ
{v1,v2} € Eg.

. and v, € Al,jz such that

If each graph Gy is a combinatorial tree, then (1) and (2) are also equivalent to the
following:
k

uy’

(3) There exists k > max{|uy|, |uz|} and vy € AY , v3 € A’,jz such that

{Ul, U2} (S Ek.
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Proof
We start by showing the equivalence of (1) and (2). That (1) implies (2) follows imme-
diately from the definition of A} Ae A} .

To show that (2) implies (1), we will inductively construct elements of Agl Ae
Ay, Let ko = max{|uy|,|uz|} and choose u;i; € A’;?H, Upjy € Aﬁg“ such that
{urit,uzj1} € Egy41. By (2b) in Definition 1.1, given that {uqiy - ip—g,Usj1---
Jn—k} € E, for some n > k + 1, there exist ip—k+41, jn—k+1 € A such that {uqi;---

In—k+1,U2J1" " jn—k+1} € En+1. Set now
w1=u1i1i2~-- and w2=u2j1j2---

and note that both w; and w, are in A§1 Ne AE‘z.

Assume now that each graph Gy is a combinatorial tree. Clearly, (2) implies (3) so
it suffices to show that (3) implies (2). Assume there is an integer ko > max{|uy|, [u2|}
and words w; € Aﬁ? and w, € Aﬁg such that {wy,w,} € Eg,. If k > ko, then by
Lemma 3.1(1), there exist v; € A’,j)l and v, € Aﬁz (hence, vq € Aﬁl and v, € Aﬁz)
such that {vy,v,} € E. If k is an integer with max{|u|,|uz|} < k < k¢, then by
Lemma 3.1(2), there exist v; € A’,jl and v, € Aﬁz such that w; € A{jl, Wy € A’;z and

{v1,v2} € Ef. Therefore, (2) holds. O

The next lemma gives a description of the set A}  Ne A§2 in the case that each G is a
combinatorial tree.

LEMMA 3.4
Let uy,u, € A* with |u1| < |UZ|, letk; = |M1|, and let M’z = uz(k]).

(1) Ifuly =uy (that is, u € A% ), then A}, C Ay Ae A
Suppose additionally that each Gy is a combinatorial tree. Then:

2) ]ng1 Ae Agz # @, then either {u,ub} € Eg, oruy = u).
(3) If {u1,uy} € Ex,, then Agl Ae A§2 contains exactly two elements: one in
A§1 and one in A§2. The converse is also true.
Proof
Letuy,us,v € A*, and ky € N be as in the statement, and let k, = |u»|.

To prove (1), assume that u), = uy; that is, u, € Aﬁ% Let w € A§2. By Defini-
tion 1.1(2a), the subgraph of Gy, induced by Aﬁf“ is connected. Fix v € Aﬁf“
adjacent to w(k, + 1). Applying Definition 1.1(2b), we find a sequence {iy,i3,...} C A
such that for each n € N, viy ---i, is adjacent to w(k, + n + 1). Since viy---i, €
Aﬁf‘”’“, by definition, w € A}, Ae Ay,

Assume now for the rest of the proof that each Gy is a combinatorial tree. To

prove (2), assume that A§1 Ae Al,fz # (. By Lemma 3.3(2), we have that there exists

vy € Aﬁzl'H and vy € A{ZH such that {vy,v2} € Eg,+1. Applying Lemma 3.1(2), we

have that either u; = u} or {uy,uj} € Ey,.
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To prove (3), assume that {ul,u/z} € Ey,, and let vy and v, be as in the proof
of (2)—that is, v € Aﬁ%‘“, vy € A%H, and {vy,v2} € Eg,+1. By Definition
(2b) of 1.1, there exist iy,ip,--- € A and ji, jo,--- € A such that for all m € N,
{viit - im,v2j1 " jm} € Egy+1+4m- It follows that the words wy = viiyiz--- € AI;I]
and wy = Va1 /2 € Ay, arein A)] Ae A}

Suppose now that there exist two distinct w}, w € Aﬁl such that w}, w € Agl Ae
A§2~ Let [ > k» be an integer such that wy (/) # w1 (/). By Definition 3.2, there exist
v.v' € A} € AN such that {wy(!),v} and {w] (/). v’} are in E;. This contradicts the
uniqueness staterrzlent of Lemma 3.1(3).

Finally, for the converse of (3), simply note that if A}, Ae A}, contains exactly
two elements, then by (2), either u; = u’z, or u; is adjacent to u’z. However, the former
is false since in that case, by (1), AE’l Ae A,Ifz would be an infinite set. Il

We now study chains, as defined in Definition 1.2 of Section 1.1. The following lemma
shows that, if each Gy in the combinatorial data is a combinatorial tree, chains must
respect the “between-ness” relation in each Gg.

LEMMA 3.5

Suppose that each graph Gy is a combinatorial tree. Let wi, w,, ws € A¥, and let
wy be on the unique combinatorial arc in Gy that joins wi and ws. If uy € AEI and
Uz € A§)3’ then for every chain {AEl yeens A§n}joining uy with us, there exists v € A*
andi € {1,...,n} such that Aﬁzv C AE’i.

Proof

We may assume that the three words w, w,, ws are distinct; otherwise, the lemma is
trivial.

As a start, we note that u; has an initial w, substring and an initial v; substring,
so either vy is an initial substring of w; or vice versa. A similar consideration applies
to us, vy, and ws.

For each i € 1,...,n, we define a subset P; C A% = V(Gy) as follows: If |v;| <
k, then let P; = Algi. If |v;| > k, then let P; = {v;(k)}. In either case, P; induces a
connected subgraph of Gy.

CLAIM 3.6

Py contains wy and P, contains ws.

Proof
If |vq| < k, then vy is an initial substring of w;, and so P; = A’,jl > wy. If |vi] >k,
then w; = vy (k) € P;.

By the same argument, P, contains ws. g

CLAIM 3.7
Foreachi € {1,...,n— 1}, either P; N Pi11 # @ or there is an edge {a,b} € Ej. with
aebp; and b € Pi+1.
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Proof
Assume without loss of generality that |v;| > |v;+1|. Since {v;} is a chain, Alﬁi Ae
Alsli+1 # 9.

Case 1: If |vij41| < |vi| <k, then P; = Algi and P41 = A{jiH. These contain
adjacent elements by Lemma 3.3(2).

Case 2: If k < |vjy1| < |vi|, then P; = {v;(k)} and P;+; = {vi+1(k)}. By
Lemma 3.3(3) and Lemma 3.1(2), the elements v; (k) and v; 4+ (k) are either equal or
adjacent in Gg.

Case 3: If |vj41| < k < |vi|, then P; = {v;(k)} and P;;, = Algl_+l. If v;(k) €
A’,jiH , then clearly P; C P; ;. Otherwise, since AIEII Ae A1§i+1 # 0, by Lemma 3.1(2),
there exist j,/ € A and v’ € Alil=lvi1l guch that v;J is adjacent to v;v’l, and since
vi(k) ¢ A’EHI, we have by Lemma 3.1(2) that v; (k) (which is in P;) is adjacent to
(vi+1v") (k) (which is in P;41). This completes the proof of the claim. O

Thus, the union of the sets Pi, P»,..., P, induces a connected subgraph of Gy that
contains w and ws. It therefore must contain w,, so w, € P; for some i.

If |v;| < k, then this means that w, € P; = A{fi. Thus, AEZ - AISII, , which proves
the lemma in this case.

If |v;| > k, then w, € P; = {v;(k)}. Thus, wov = v; for some word v, which
proves the lemma in this case. ]

3.3. Diameter functions and metrics
Recall the notion of a diameter function A on an alphabet A (and the class £ (A) of all
diameter functions on A) from Definition 1.3. For the remainder of Section 3, we fix
a diameter function A € D(A).

Given € and A, we defined the distance De A on AN'in (1.2) by taking an infimum
over chains. We first prove that D¢ a is indeed a pseudometric as claimed.

LEMMA 3.8
The function De A is a pseudometric on AN,

Proof
First, notice that for any w € AN and any n € N, {AE (n)} is a chain that joins w with
w. Thus,

D‘C’,A(U), U)) =< A(U)(l’l)) = 523); A(U)v

which vanishes as n — oo by property (3) in Definition 1.3. Hence, De a(w,w) = 0.
The symmetry of De  is trivial, as any chain joining w with u is also a chain
joining u with w.
For the triangle inequality, fix € > 0. Let {AEl e Aﬁn} be a chain joining w with

u, and let {4} ...., A} } be a chain joining u with v such that

n n
€ €
ZE_I A(w;) < 3 + Dea(w,u) and jz_l A(uj) < 3 + De a(u,v).
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By Lemma 3.4(1), we have that A} Ae Agl £ @, and so {Aﬁl,...,Aﬁn,Agl,...,
A} }is a chain joining w with v. Thus, De a(w,v) < De,a(w,u) + De a(u,v) +e.

As € was chosen arbitrarily, the lemma follows. O

We now describe more precisely the metric space (#4, de, a) associated to a given com-
binatorial data € and diameter function A on A, introduced briefly in Section 1.1.

To turn De a into a metric, we define a relation on AN In particular, we write w ~
u (for convenience we drop the dependence on €, A) if and only if De a(w,u) =0.
Since D¢ a is a pseudometric, it follows that ~ is an equivalence relation. Using this
identification, we define

A=A/~ and Ay = A/~ foreach w € A*.

Based on D¢ a, we define a function de A on #4 X 4 in the usual way: if [w], [u] € A,
then set

de a([w]. [u]) := De a(w,u).

The function de a is well-defined. To see why this is true, let w,w,u, €
AN such that [w] = [w']. By Lemma 3.8, we have that De a(w,u) < De a(w,
w') + Dea(w',u) = De a(w',u). Similarly, De a(w’,u) < De a(w,u) and thus,
De a(w',u) = De a(w,u).

LEMMA 3.9
The function de a is a metric on A and for each w € A*, diam A, < A(w).

Proof
We first show that de A is a metric. It is clear that de A is non-negative, symmetric and
de.a([w], [4]) = 0 if and only if [w] = [u] in 4. The triangle inequality follows from
Lemma 3.8.

Let w € A* and [uy], [u2] € #Aw. We may choose u; and u5 in Ay,. The set {AE}
is then a chain joining u; with u5 and de a([u1], [u2]) < A(w). Therefore, diam AL <
A(w). 0

We use standard metric space terminology when discussing (#4, de a). In particular, if
[w] € A and r > 0, we write B([w], r) for the open ball centered at [w] of radius r in
this space.

3.4. Bounded turning spaces
We now work toward the following proposition, which proves Parts (1) and (2) of The-
orem 1.4.

PROPOSITION 3.10

The metric space (4, de, a) is compact, path-connected, and 1-bounded turning. More-
over, if each combinatorial graph Gy is a combinatorial tree, then the metric space is
a tree.
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(Here we are using the shorthand “C-bounded turning” for “bounded turning with con-
stant C”.)

The separate statements of Proposition 3.10 are proven in Lemmas 3.12, 3.14, 3.15,
and 3.17.

LEMMA 3.11
Fix w € A*. Let

I ={ieA:Awi)>0}.
If diam (A ) > 0, then
eA’w - UfA’wi-

i€l

Proof

The assumption that diam(+,,) > 0 implies that / is non-empty. Let k = |w]|.
Consider any [v] € #A,,; without loss of generality, v(k) = w. We will show that

[v] = [u] for some u € Ujes AY.. If v(k + 1) € {wi :i € I}, then we are done, so

suppose it is not. Then there is a simple path

u15u2""7ul’l
in the combinatorial tree G4, such that u; = v(k + 1), u, = wi fc bor somei € I,
andu; ¢{wi:iel}forl <j<n-1
By Lemma 3.1, there is u € AE‘n such that for each m, either u(k + m) € Aﬁj_”:

or u(k + m) is adjacent to some element of Aﬁj_”: In either case, for each m > 1, we
N N
have that Aun—l Ae Au(k +m) # (. Therefore, the set

N N N

up’ Up—1’
is a chain that joins v to u € +,;. Note that A(uj) =0 for 1 < j <n — 1. Therefore,
De a(v,u) < A(u(k + m)) < max{A(r) ‘re Ak+m} —0 asm— 0.

It follows that [v] = [u] € Ay ;. This completes the proof. O
We can now prove a slightly stronger version of the first statement in Proposition 3.10.

LEMMA 3.12
For each w € A*, the metric space (A, de, a) is compact.

In particular, taking w = ¢, we see that (4, de a) is compact, as required in Proposi-
tion 3.10.

Proof

We show that (#A,,de a) is sequentially compact. Let ([w,]) be a sequence in
Ay . Suppose that this sequence has no convergent subsequence. This implies that
diam(y ) > 0; otherwise, (Jw,]) would be constant.
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Let
I ={i € A: A(wi)>0}.

Note that /; is finite by Definition 1.3. Thus, by Lemma 3.11, there exists i; € I; and
a subsequence ([w}]) of ([wy,]) in Ay, .

We proceed by induction to construct sets I, € A, indices i, € I, and subse-
quences ([w)'']) of ([wy]) contained in Ay, iy.. iy, -

Assuming that there is a subsequence ([W})']) € Ay, iy, » 16t

Imyr={i € A: A(wiy+++imi) >0},

which is finite as above. As above, diam(sy;,..i,,) > 0; otherwise, ([w)']) would be
constant—-hence, convergent. Thus, by Lemma 3.11, there is i;,4+1 € I,,+1 S A and a
subsequence ([w' 1)) of ([w*]) in Awi iy, -

Set u = wiyiz+-- € AN and consider the subsequence ([w”]) of ([wy,]). Then
de A([w]. [u]) < A(u(n)) — 0 as n — oo, contradicting our assumption. Thus,
(A, de,a) is compact. O

We now work toward the connectedness properties. The following definition is conve-
nient: An €-path in a metric space (X,d) is a finite sequence (x1,...,X;) such that
d(xj,xj+1) <€ foreachi € {1,...,n — 1}. We say that the e-path joins a and b if
a=2x1and b = x,,.

LEMMA 3.13
Let [w1], [wz] € A with de a([w1], [w2]) <7, and let € > 0. Then there is an €-path
Jjoining [w1] and [w,] of diameter less than r.

Proof
Fix [w], [wa], r > 0, and € > 0 as in the statement of the lemma. Let {4} ,..., 4, }
be a chain joining w; with w, such that

r —de,a([wi], [w2])

k
;Awo < dea (1], [w]) + > <r.

Note that for any i, j € {1,...,k} and any w; € AEI,- and w; € As/’ we may use a
subset of this same chain to join them and so obtain

(3.2) d'f,A([wt'], [wj]) <r.

By Property (3) in Definition 1.3, there exists m € N such that A(u) < €/2 for all
u € A™. By the properties of G,, and Lemma 3.3, there exists a path

k
y =l b}, g up )} C U Ay

i=1
such that wy € Als, and w, € A§/ . Foreach i € {1,...,n}, let v; = u§1°°, and let
1 n
vo = w; and v,+1 = wyp. Then foreachi =1,...,n —1,
de a([vi]. vit1]) < AW) + A(uj, ) <€/2+€/2 =k,

and similarly, dee,a([w1]. [v1]) < A(u}) < € and de A ([w2]. [va]) < Auy) <e.
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Thus, ([vo], [v1],...,[Vn+1]) is an e-path joining [w;] to [w;]. Its diameter is less
than r by (3.2). (|

The following lemma completes the proof of the topological properties in Proposi-
tion 3.10.

LEMMA 3.14
The metric space (A, de,a) has the property that B([wo].r) is connected for each
[wo] € A and r > 0.

In particular, the space is connected, locally connected, and path-connected.

Proof

The second sentence follows from the first: connectedness by taking r = 1 > diam(),
local connectedness by, e.g., [27, Chapter I, Line 15.1], and path-connectedness by the
Hahn—Mazurkiewicz theorem and Lemma 3.12.

For the first sentence, fix wg € AN and r > 0. To show that B([wo], r) is connected,
it suffices to show that for any € > 0, each [w] € B([wo], 7) can be joined to [we] by an
€-path contained in B([wo], r).

The point [w] is less than e-distance away from an element [w’] of B([we],7).
There is an e-path joining [wp] to [w'] inside B([wo],r), by Lemma 3.13. Since
de a([w'], [w]) < e, appending [w] to this path yields an e-path joining [wo] to [w]
inside B([wy],r). O

LEMMA 3.15
The metric space (A, de a) is 1-bounded turning.

Proof
Let [w1], [ws] € A, with r = de a([w1], [wz]) > 0. Let € > 0. By Lemma 3.13, there is
an e-path (v, v1,...,y,) joining [w;] to [w,] with diameter at most r + €.

Define a compact set Ko C 4 by
n —
Ke= [ B([v;]. 2¢).
j=0

Note that each ball in this union is connected, by Lemma 3.14. Since B([v;],2¢) N
B([vj+1],2¢€) # @ foreach j =0...n — 1, it follows that K, is also connected. More-
over,

(3.3) diam(K¢) <r + Se.

The sets K1, K12, K1/3,... are each compact, connected, and contain both [w;] and
[wy]. They therefore admit a subsequence that converges in the Hausdorff metric to a
compact, connected set that contains [w;] and [w;]. By (3.3), this set has diameter r.
This completes the proof. ]
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3.5. Metric trees

We now prove the second half of Proposition 3.10—namely, that if each combinatorial
graph in our data is in fact a combinatorial tree, then the resulting metric space is a met-
ric tree. Thus, for the remainder of Section 3, we assume that each combinatorial
graph Gy is a metric tree, and we rename the graphs 7} to reflect this.

LEMMA 3.16
Suppose that w,w’, wo € AX and wy is on the unique combinatorial arc in Ty, that joins
w with w'. If there exist u € ALY and u' € Aﬁ, such that [u] = [u'], then [u] € Ay,

Proof
Let w, w’, wo be as in the statement of the lemma. We claim that for any € > 0 suffi-
ciently small, there exists v € Aﬁ 0 such that De a(u,v) < €. Assuming this claim, by
Lemma 3.12, it follows that there exists ug € sy, such that De A (4,uo) = 0, and we
obtain that [u] € Ay, .

To prove the claim, fix € > 0. Since De a(u,u’) = 0, there exists a chain

{A},..... A}, } that joins u with u’ such that ) /L, A(w;) < €. By Lemma 3.5,
there exist lp € {l,...,m} and v € Aﬁo N AEIO. In particular, {Aﬂl,...,Aﬁlo} is a

chain joining u with v. It follows that

l() m
Dea(u,v) <Y A(w) <Y Adwy) <e.
I=1 I=1
As € > 0 was arbitrary, this proves the initial claim and hence the lemma. (]

LEMMA 3.17
The metric space (A, de a) is a metric tree.

Proof

First of all, since (4, de a) is Hausdorff and path-connected, it is also arcwise con-
nected; see, e.g., [28, Section 31]. Let [w1], [wz] be two distinct arbitrary points in .
We will show that there is a point of #4 \ {[w;], [w2]} (in fact, a whole continuum) that
every path y from [w;] to [w;] must contain. This clearly implies that there can be no
simple closed path containing [w;] and [w5], and therefore that »4 is a metric tree. (See
[7, Theorem 1.1] for various characterizations of metric trees, called dendrites there,
from which we are using characterization (20).)

Foreachn e N, let

{vn,h cees Un,m(n)} - A"

be all the vertices of T}, lying on the unique combinatorial arc that joins w;(n) with
wy(n), ordered so that v, 1 = w1 (1), Vp m@p) = w2(n), and {v, i, V1) € E, for all
i=1,....mn)—1.

Note that for each n € N and i € {1,...,m(n + 1)}, the word v,41,;(n) lies
on the combinatorial arc from wi(n) to wy(n)—i.e., is equal to v, ; for some
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Jj €{1,...,m(n)}. Indeed, if not, then the combinatorial arc {v,,1, ..., Vn m(m)} avoids
Up+1,i (1), and so by Definition 1.1, Properties (2a) and (2b), we can form an arc from
wi(n + 1) to wa(n + 1) that avoids v, 41 ;, contradicting the uniqueness of this arc in
Th+1.

Conversely, if n e N and i € {1,...,m(n)}, then some v,41,; has v,41,;(n) =
Uy ,i. If not, then using Definition 1.1, Properties (2a) and (2b), we could construct a
separate combinatorial arc joining w;(n + 1) and w,(n + 1) that does contain some
child of v, ;, violating the tree condition.

The upshot of the previous two paragraphs is that each A
some ef\w,,‘j, and each +, . contains some

Un,i
In particular, for each n € N,

vn41; 18 contained in

Un+1,j°

m(n+1) m(n)

U ‘Avn—}—l.i < U cA)Un,[‘
i=1

i=1
Let
m(n) oo
K, = U Avm C A, and K := ﬂ K, C A.
i=1 n=1

Note that the above sets are all compact by Lemma 3.12.

CLAIM 3.18
We have that [w1], [wz] € K.

Proof

We have that w; = v,,; for each n, so w; € Alﬁml for each n. Hence, [w1] € Ay, |
K, for each n, and [wq] is therefore in K. Similarly, [w,] € K. |
CLAIM 3.19

The set K contains a continuum that joins [wy] with [w,].

Proof

For any § > 0, there exists n € N such that sup,,c 4» A(w) < §/2. We first claim that
foranyi =1,...,m(n), there exists a point [v;] € A,, , N K. Indeed, by the discussion
at the beginning of the proof of this lemma, there is a sequence

Ay . DA DA

Un.i Un+1.iy = “°Vn+42.ip 2.

By compactness of 4 and the definition of K, there is an element of K in the intersec-
tion of these.

It is then immediate that ([w1], [v1], [v2], ..., [Vm@)]. [w2]) is a 6-path in K joining
[w1] with [w,]. As the choice of § > 0 was arbitrary, it follows that [w;] and [w,] must
lie in the same connected component of K (see [27, Chapter I, (9.2), p. 15]), which
must also be closed as K is compact. (|
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CLAIM 3.20
The set K is contained in every path y from [w1] to [w,] in A.

Proof

Fix such a path y, and let € > 0 and [vo] € K. Choose n € N such that sup,,c 4» A(w) <
€. Leti €{l,...,m(n)} such that [vo] € Ay, ;. Let {T, ; = (V;, E;)}; enumerate the
components of 7, \ {v,,;}. Foreach j,let X; = UweV, Ay . These are compact sets:
each can be rewritten as X; = J,, eV; . A(w)=0 “dw» and this is a finite union of compact
sets by Definition 1.3(2) and Lemma 3.12.

Moreover, the union of these sets contains # \ sy, ;. Finally, the sets {X;} also
have the property that X; N X ;s C A, ; whenever j # j’. Indeed, if [v] € X; N X,
then [v] = [u] = [u'], where u(n) € T,,; and u(n) € T, ;-. The unique combinatorial
arc from u(n) to u(n’) in T,, contains v, ;, so by Lemma 3.16 we have that [v] = [u] €

Ay, ;-
If neither of [w] or [wy] is contained in A, ;, then wy (n) and w2 (n) are contained
in different subgraphs 7}, ; and hence [w;], [w;] are contained in different sets X ;. In

either case, the path y must intersect Avn.i . Thus,

de.a(y.[vo]) < A(wn,i) <e.

Since € > 0 was arbitrary, we have [vg] € y. O

Thus, every path in 4 from [w1] to [w;] contains K, which contains a fixed continuum
joining [w;] and [w2]. In particular, any two such paths must intersect somewhere other
than their endpoints. This shows that + is a metric tree. O

REMARK 3.21

Given wy,w, € AN, let K C #4 be as in the proof of Lemma 3.17. We showed above
that K contains a continuum that joins [w] with [w;] and, conversely, that every path
in #4 that joins [w;] with [w;] contains K. Therefore, K is the unique arc that joins
[wq] with [w,] in A.

Together, Lemmas 3.14, 3.15, and 3.17 prove Proposition 3.10.

4. Doubling metric trees

Recall that a metric space is C-doubling if there exists a constant C > 1 such that for
any x € X and r > 0, the ball B(x, r) can be covered by at most C balls of radius r/2.
Our goal here is to give some sufficient conditions for our combinatorial construction
to yield a doubling metric tree.

For the remainder of Section 4, we assume that A is an alphabet and € =
(A, (Ty)ren) is combinatorial data as in Definition 1.1, with the additional assump-
tion that each graph T} is a combinatorial tree.
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PROPOSITION 4.1
Fix N,ng €N, ¢ > 1, and 81,8, € (0,1). There exists C > 1, depending only on these
constants, with the following property. Assume that:

(P1) cardA < N.

P2) Val(Ty) <ng forall k € N.

(P3) Forallwe A* andi € A, 61 A(w) < A(wi) <5 A(w).

(P4) Suppose that for some k € N and some distinct u,uy,u, € A", we have
Al ne AIE,- #@ fori =1,2. If w; € Al ne Alsifori = 1,2, then
de a([wi]. [wz]) = ¢ Au).

Then (A, de ) is C-doubling.

REMARK 4.2
Items (P1), (P2), and (P3) of Proposition 4.1 are rather innocuous, while (P4) requires
some more thought. Essentially, (P4) prevents the space from “collapsing” too many
far away points close together, which may violate doubling. In Lemma 4.8, we provide
a more easily checkable condition that implies (P4), and in Example 6.10 we show that
(P4) is necessary in Proposition 4.1.

Note also that if w;, w! € A} Ae AEI,-’ then de A ([w;], [w;]) = 0. Therefore, in
(P4), we may assume that w; € (A} Ae 4;)) N A}

Recall the definition of a parent word u™. For the proof of Proposition 4.1, we make
the following definition. Given r > 0, define

A*(r):={we A*: A(w) <r and A(w’) > r}.

REMARK 4.3
The set A*(r) induces a partition on AN—namely, A" = [ J, ¢ 4+, Ay » and for distinct
w,u € A*(r), we have A)) N AL = 0.

LEMMA 4.4
Let A and € satisfy (P2). Then for each r > 0 and for each w € A*(r), there exist at
most ng words u € A*(r) \ {w} such that A} re AL} # 0.

Proof
Let r > 0 and w € A*(r). To prove the claim, let uy,...,u, be words in A*(r) \ {w}
such that A% Ae AE{ # @ for each i.

Let ko = |w|. If |u;| < ko, then by Lemmas 3.3 and 3.4, there exists a unique
u; € Al,j? such that {w,u}} € Ex,.If [u;| > ko, thenlet u; = u; (ko), and by Lemma 3.1,
we have that {w,u;} € Ei,. We claim thatif i # j, then u} 7 u’;. Assuming the claim,
by (P2) we have that n < ng, and so the proof is complete once we establish this claim.
To do so, we fix distinct i, j € {1,...,n} and consider three possible cases.

Case 1. Suppose that |u;| > ko and |u | > ko. For a contradiction, assume that

u; = u’J = u’. By Remark 4.3, we have that u’ # w. Therefore, by Lemma 3.4,

{u',w} € E,. Let k = max{|u;|, |u;|}. By Lemma 3.1, there exist unique w” € Ak
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: k : k
and unique u” € A}, such that {w”,u"} € Ej. By Remark 4.3, either u” ¢ A, or

u” ¢ Aﬁj. Assuming the former (without loss of generality), by Lemma 3.3, we have

Ay Ae Ay =0, which is a contradiction.

Case 2. Suppose that |u;| < k¢ and |u;| < ko. For a contradiction, assume that
u; =u; =u'. Then 4, N A,/ # @, which contradicts Remark 4.3.

Case 3. Suppose that |u;| < ko and |u ;| > ko. By Remark 4.3, u} # w. Now apply
the arguments of Case 1 to the triple u;, w, and u ;. O

Proof of Proposition 4.1

Let [w] € 4 and r > 0. To prove the proposition, it suffices to prove that the doubling
property holds for the ball B([w],r) if r < ¢! diam +. Let u¢ be the unique element
of A*(c87'r) such that w € A .

CLAIM 4.5
There exist at most ng words u € A*(c87'r) \ {uo} such that A§0 ne Al £ 0, and each
such word u satisfies

e85 r > Au) > cr.

Proof of Claim 4.5
By Lemma 4.4, there exist at most n¢ such words u € A*(c87!r) \ {uo}. Moreover, by
(P3), for each u € A*(c87'r),

cSl_lr >A@) =8 At >cr. d

CLAIM 4.6
If u € A*(c87'r) and AEIO ne AL = @, then for any w' € AL}, we have de a([w],
[w]) >r.

Proof of Claim 4.6
Let y C # be the unique arc with endpoints [w] and [w’]. For each k, let Py be the
simple path in Ty from w(k) to w’(k).

Let n = max{|ul, [uo|}. Then P, must contain a vertex v € A" \ (4, U A}); oth-
erwise, Ago ne AL # . Consider the following two possible cases.

Case 1. Suppose that v € A*(c¢87'r) or v has a descendent in A*(¢87!r). Then v
is adjacent to two distinct vertices v and v, of P,. Fori = 1,2, let w; € All\f be such
that w; (k) € Py and is adjacent to an element of A’;i for each k > n. By Remark 3.21,
both [w] and [w] are in y. Therefore, by the 1-bounded turning property of 4, by

(P3), and by (P4),
de,a([w], [w']) =diamy > de a([w1]. [w2]) = ¢ A() > r.

Case 2. Suppose that v is contained in A}, for some v’ € A*(cé71r). Let m =
|v’|. First, note that P,, must contain v’; if not, then out of P, we could construct a
combinatorial arc in 7, that does not contain v, which implies that there are two distinct
combinatorial arcs in 7, with the same endpoints. The latter, however, contradicts the
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fact that T, is a tree. Second, by Remark 4.3, we have that A}, N Ago = @. Since
N N _ 4N N N g Qi N N _
Auo C Auo(m) = Aw(m), it follows that Av, NnNA m) = @. Similarly, Av, N Aw(m) =0.

w

Therefore, v’ is adjacent to two distinct vertices of P,,. Now working as in Case 1, we
obtain that de A ([w], [w']) > c7TAQ') > r. O
CLAIM 4.7

Let u € A*(c¢87'r), and let k be the smallest positive integer such that

_ log(2¢)~'51)
log(82)
Then

diam(A,) <r/2

foreachv € ALqu.

Proof of Claim 4.7
By the upper bound in (P3), we have that for every v € A

diam(s,) < A(v) <85 A() <8567 er <r)2. O

|ul+k
u B

Let {u1,...,u,} be all the words u € A*(c8;1r) \ {uo} such that A,Ifo ne A # 0. By
Claim 4.6,
P
B([wl.r) < | Au;-
i=0

Claim 4.5 implies that p < ng. Claim 4.7 implies that each of the sets +,; in this union
can be covered by at most N* sets of diameter < r/2; hence, N* balls of radius r/2.
This completes the proof. ]

We now give some sufficient conditions for (P4) which are easier to verify.

For the next lemma, we use the following notation. Consider combinatorial data
€ = (A, (T)ken) as fixed at the beginning of this section. For each k € N and w € A,
let de AL+ be all words u € AXF! for which there exists u’ € A¥+1\ A+ with
{u,u'} € Egq1.

LEMMA 4.8
Let € = (A, (T )ren) be combinatorial data as fixed at the beginning of this section,
and let A € D(A). Assume that the following conditions hold for each k > 0.
(1) Suppose that w,u,u' € A* are distinct with {w,u},{w,u'} € Ex. If
wi, wj,ul ,u'l" € AKFV with {wi,ul}, {wj,u'l'\ € Exyq, theni # j.
(2) For any w € A and any distinct u,u’ € 8fA’fU+1, the arc
{uur), ... {uy, u'}} joining u with u' in Ty 41 satisfies
Aw) + A(uy) + -+ Aluy) + AW > A(w).
Then (P4) of Proposition 4.1 holds with ¢ = 1.
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In particular, diam(A,) = A(u) for each u € A* with at least two neighbors in
Tiu-
For the proof of the lemma, given a chain € = {AE’1 ey Agﬂ} joining two words in
AN, we define the depth of € to be the number Depth(€) := max{|u;|,...,|u,|} and
the A-length of € to be

0e) =" Aduy).

i=1

Proof

Fix k € N and let w,uy,u, € A¥ be distinct points such that {w,u;} and {w,u,} are
in Eg. Let wy,wy € Ay, wi € A} , and w} € A}, such that for any n > k and any
i €{1,2}, w;(n) is adjacent to w}(n). We will show that de_a ([w1], [w2]) = A(w).

On the one hand, { A} } is a chain joining w; with wy, so de a ([w1], [w2]) < A(w).
For the opposite inequality, fix € = {4} ..... A} } tobe a chainin A" joining w; with
wy. We start by doing four reductions.

First, if Aﬁ C Alsli for some i, then we can replace € with €' = {Aﬁ}, which has
smaller A-length. Therefore, we may assume that for all i, either A} N Alﬁi =0, or
Ay C Ay,

Second, dropping some of the sets in the chain, if necessary, we may assume that
Ay, C Ay forall i

Third, if AIEI[_ C AISI/_ , then we can drop AISII_.

Fourth, let P; be the combinatorial arc in 7} that joins wi (1) with w’ (7). We first
claim that P; contains wi(/), wa (/). By Definition 2a, the subgraph of 7; induced by
the vertex set A%, is connected so there exists a combinatorial arc P’ with vertices
in Alw that has endpoints w(/), wx(/). Adding the two points w}(l), w5 (l) along
with edges {w1 (1), w|(/)}, {w2(/), w5(])}, we obtain a combinatorial arc in 7} that has
endpoints w1} (l), w5 (/) and contains w;(/), wx(!). By uniqueness of this arc, it must
be P;, and the proof of the claim is complete. Now, it follows from Lemma 3.5 that for
any [ > Depth(€),

J 4)c4y) u-u4l .

veP;

CLAIM 4.9
The collection

@:{Aﬁ;Aﬁmvg A%A@}
1

forms a chain joining w1 and w,.

Proof

First, there exists v € P; such that w, € AIEI , which implies that there exists v; such that
w; € A§ C Aﬁli. Therefore, w; is contained in some element of €’ and similarly for
Wwso.
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Enumerate the arc P; = {vg,...,v},;} so that vy = wi(l), vi = wi(l), v), =
wa (1), v}, = wy(l), and for any j, v'; is adjacent to v/, ;.
{my,...,ms} C{1,...,n} such that

(1) AY c Al L and AN, c 4

vy my Up

Umyg

Now there exists a set

(2) for all v}, there exists vy, , such that AIEI, C All\fm ;and
i J

@3) if AN, cAY  and AN, AN | thenm; < my.
v; Um Vi Vi I

Now it is easy to see that Alﬁm[ Ne Alﬁmiﬂ # @, so the set €' = {Alﬁm[ =

1,...,s} forms a chain joining w; and w;. ]

The fourth reduction says, in other words, that we may drop all sets AE’I, from the chain
such that A} N Uver, Al =9.
The four reductions imply that we may assume that for all 7,

(i) Ay, CAy;

(i) if j #1, then A, N A, = 0;

(iii) for all / > Depth(€), there exists v € P; such that A} C A} ; and
(iv) for all I > Depth(€), | J,ep, Ay C Ay, U---U Ay .

Let ko = Depth(€) and iy € {1,...,n} such that |v;,| = ko. If ko = |w|, then

€ = {All'}, and the A-length of € is equal to A(w).
T
io
valency 2 in Py, because the endpoints of Py, are in Aﬁ?_l and not in Aﬂo_l.

Assume now that ko > |w]|. Then v; is contained in Py,_;. Moreover, viT0 has

By (iii) and Assumption (1) of the lemma, Ak‘% N Py, has at least two elements. By
UiO
(i), (iv), and the assumption that |v;,| = Depth(€), each element of A];‘; N Py, must
0
be in {vi,...,v,}. Enumerate them as {v;,vj,,.... vj,}. Since vlTO has valency 2 in
Pyo—1, the elements of {v;,,v},,...,v;,} contain the vertices of a simple path joining

L . k
two distinct points of 85Av? .
io
But then, by Assumption (2) of the lemma,
Aj) + -+ A(v;,) = A,
and we can replace € with the chain

k
CULAT P\ {4t €AY ),
o o
which has at most the A-length of €.
Working in similar fashion, we can show that if Depth(€) > |w|, then there exists
a chain €’ joining w; with w, such that Depth(€’) = Depth(€) — 1 and has at most
the A-length of €. Applying a backward induction on the depth of €, we obtain that

(e) = L({Ay}) = Aw).
Therefore, de A ([w1], [w2]) > A(w).
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For the final statement in the lemma, any u € A¥ with two distinct neighbors must
have at least two distinct words in its combinatorial boundary, and so

diam(A,) > A(w)

by the first part of the lemma. The reverse inequality follows from Lemma 3.9. U

For examples of combinatorial data and diameter functions satisfying the assumptions
of Proposition 4.1 and Lemma 4.8, see Section 6.

5. Characterization of quasiconformal trees

We now claim that our combinatorial constructions above describe all quasiconfor-
mal trees up to bi-Lipschitz equivalence. The following result proves Part (3) of Theo-
rem |.4, while providing additional details, and is the goal of this section.

THEOREM 5.1
Let (X,d) be an N -doubling, C -bounded turning tree. Then for any M € N sufficiently
large, K1 > 0 sufficiently small, and K, € [%, 1), there exist

(1) an alphabet A={1,...,M},
(2) combinatorial data € = (A, (Tx)ren) with each Ty, a combinatorial tree, and
(3) a diameter function A € D (A, K1, K»)

such that (A, de a) is bi-Lipschitz equivalent to X .

The sufficient condition on M depends only on N and C. The sufficient condition
on Ky depends only on M, N, and C. The bi-Lipschitz constant depends only on N,
C, K,/ K1, and diam(X).

Moreover, (€, A) satisfies the conditions of Proposition 4. 1.

We first make some small reductions. If X is a single point, then Theorem 5.1 is easy.
For example, one may take M =2, A € D(A, %, %), and each T} a combinatorial
arc. Thus, we may assume that diam(X) > 0 and so, by rescaling, that diam(X) = 1.
We may also assume that the bounded turning constant C is equal to 1 by replacing
the metric d on X with a bi-Lipschitz equivalent 1-bounded turning metric (see [2,
Lemma 2.5]). All these assumptions are in force for the remainder of Section 5.

Thus, we fix an N -doubling, 1-bounded turning metric tree X of diameter 1.

5.1. Subdividing into a uniform number of pieces

To prove Theorem 5.1, we use a construction of Bonk and Meyer [2] to decompose the
tree X into suitable pieces. We then modify this construction to decompose X into an
equal number of pieces at each scale. We first summarize the results we need from [2,
Section 5].

PROPOSITION 5.2 (Bonk-Meyer [2])
Let § > 0 sufficiently small, depending on N. Then there is a constant M(N,§) € N,
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and for each n € N, there exists a 8" -separated set V,, C X satisfying

icr,c...

with the following properties.
Write T, for the collection of closures of components of X \ V,,. Then

(1) Each T € Ty, is a connected subset (hence, subtree) of X with
BATNX\T CV,.

(2) Distinct elements T, T’ € T, have at most one point in common, and such a
common point is an element of Vy,.

(3) Each element of V,, is in exactly two elements of T,.

(4) Each element of Tp1 (n > 1) is in exactly one element of T, and each
element of T, is the union of all elements of T, 41 inside it.

(5) We have §" <diam(T') < Ké&" for each T € T,, where K is a constant
depending only on N.

(6) Each element of T, contains at least two and at most M (N, §) elements of

Tn+1.
(7) Each element of T, intersects at most M(N, §) other elements of Ty,.

Proof

The first four items appear explicitly in [2, Lemma 5.1]. The fifth appears in [2, Equa-
tion (5.3)]. The existence of the upper bound M (N, §) in (6) and (7) is an immediate
consequence of (1)—(5) and the doubling property, as in [2, Lemma 5.7]. The lower
bound of two in (6) follows from (4) and (5)if § < 1/K. O

Bonk and Meyer refer to the elements of 7, as “n-tiles,” but we will reserve the word
“tiles” for the modifications we construct below. Before that, we observe that adjacency
graphs induced by these sets form combinatorial trees.

LEMMA 5.3
Let X be a metric tree. Let 8 be a finite collection of compact, connected subsets of X
such that UgesS = X and no point of X is in more than two different sets of §.

Then the graph G such that

V(G)={S €8}, E(G)={{S,5YSV(G): S # S and SN S’ # 0}

is a combinatorial tree.

Proof
The connectedness of G follows easily from the facts that X is connected, all S € §
are compact, and UgecgS = X.

To see that G is a combinatorial tree, we will use the following simple equivalent
characterization of combinatorial trees: A connected finite graph is a combinatorial tree
if and only if the removal of any edge disconnects it.

Thus, suppose that the removal of an edge {S, S’} from G left it connected. Let
S = 80,81,...,8, = S’ be the ordered vertices along a simple path from S to S” in G
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avoiding this edge; note that n > 2. Letx e SNS’, pe SN S;,andg e S' N S,_;.
The points x, p, and g are distinct, by the assumption that no point is in more than two
elements of &. Similarly, x is disjoint from S; foreach 1 <i <n —1.

There is an arc from p to ¢ in S U S’, which must pass through x. Since X is
a metric tree, p and ¢ must be in distinct connected components of X \ {x}. On the
other hand, U?_!S; is a connected subset of X \ {x} containing both, and we reach a
contradiction. O

We now modify the construction of Proposition 5.2 so that each tile has an equal num-
ber of children. This requires us to give up some control on the diameters of the tiles.
However, it is crucial to retain the property that the boundary points of a given tile are
“well-separated,” in the sense that the distance between two distinct boundary points of
a tile is always comparable to the diameter of the tile. This is Property (6) of Lemma 5.4
below.

Fix § sufficiently small, depending on N, so that Proposition 5.2 holds and so that
in addition K§ < 1/2, where K is the constant from Proposition 5.2(5). Thus, we have
constants K = K(N) and M (N, §) from Proposition 5.2, Items (5) and (6).

LEMMA 5.4

Let M > M(N.$), Ky € (0, K~18°22MH1] and K, € [3,1). Let A={1,....M}.
Then there is a collection of closed subsets Xy, C X for all w € A*, satisfying the

following properties:

(1) Foreach w € A*, Xy, is a connected subset (hence, subtree) of X, and
X, =X.

(2) Foreachw € A* andi € A, Xywi C Xw. Moreover, Xy, = UiGA Xuwi-

(3) Foreachw € A* andi € A,

K diam X, <diam X,,; < K, diam X,,.

(4) Foreach w € A* \ {e} and every x € Xy, N X \ Xy, we have that x is a leaf
of X and contained in Xy for exactly one w' € A1\ {w}.

(5) For every distinct w,w’ € A* with |w| = |w’| we have that Xy, N Xy is
either a point or empty.

(6) There exists K3 € (0, 1) such that for all w € A* and for all distinct
x,y € Xy N X\ Xy, we have

d(x,y) > K3 diam X,,.

Proof
Fix §, M, K, Ky, K, as above, and let A = {1,..., M}. We prove the lemma for
K;=4§/K.

We start the proof by noting that it suffices to prove the lemma with (5) replaced
by the following property:

(5") Forevery w € A* and distinct i, j € A, we have that X,,; N X,,; is either a
point or empty.
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Indeed, assume that the lemma holds with (5) replaced by (5’). Given distinct w, w’ €
A* with |w| = |w’|, there exists maximal (in word length) wo € A* such that w,w’ €
AL%'. There also exist distinct i, j € A such that w € A‘u')‘;)‘i and w € A‘u:‘;)‘j. By (2) and
(5), we have that Xy, N Xy C Xyyyj N X, > Which is either a point or empty.

We relabel the collections 7;, constructed in Proposition 5.2. Set T, = X . We write

71 =A{T1,...,Tin.}. Assume now that for some n € N and some w € N, we have
defined T}, to be an element of 7. Then we write {Ty1,. .., Twm, ) to be the elements

of 7, +1 contained in T, . By Proposition 5.2(6), we have 2 < m,, < M. Therefore, for
every T, defined, we have w € A*. We set ‘W to be the set of all words w in A* for
which Ty, has been defined. Given integern > 0 and w € A*, we denote W" = WN A",
Wy =WN Ay, and W) =WnN AL

We now define the family { Xy, }ye4+ in an inductive manner.

STEPO.Set X, =T, = X.

INDUCTIVE HYPOTHESIS. Suppose that for some integer k > 0, we have defined
closed sets {Xy, },,c4% such that the properties of the lemma up to level k hold, with
K3 = §/K; that is, we assume that the following conditions hold:

(1) Foreach! <k and w € A’, X, is a connected subset of X.
(2) Foreachl <k—1,we Al,and i € A, we have Xwi € Xy. Moreover,
Xy = UieA Xuwi-
(3) Foreachl <k—1,we Al and i € A, we have
K diam X, <diam X,,; < K, diam X,,.

(4) Foreachl <k, w e A"\ {} and every x € X,, N X \ X,,, we have that x is a
leaf of X, and contained in X, for exactly one w’ € A% \ {w}.

(5) Foreach! <k — 1, w € A" and distinct i,j € A wehave that Xy); N Xy is
either a point or empty.

(6) Foreach! <k, w € Al and distinct X,y € Xyy N X \ Xy, we have

d(x,y) > (8/K)diam Xy,.

In addition, we make the following inductive assumption:

(7) For each w € A¥ | there exists u € W and distinct Uiy, ..., uig € W,L”|+1 such
_1 4
that X, = szl Tui -

Note that (7) holds when k = 0.

INDUCTIVE STEP. We now describe the construction of the sets { Xy, },,c 4x+1 . Fix
aword w € A*. By Assumption (7), Xy = Ty;; U---U Ty, . For simplicity, we assume
that i; = j for all j. By Proposition 5.2(6), g < M.

Case 1: ¢ = M. In this case, we set Xy,; =Ty for j =1,... . M.

Case 2: g < M. Let n be the smallest integer such that

q
5.1 > card(Wy ) > M.
j=1
By Proposition 5.2(6), 2 <n <log, M + 1.
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Case 2.1: The sum in (5.1) is equal to M. In this case, we set
q
{Xypi:i €A := {Tv ‘v e U W;’;rl”'}.
j=1

Case 2.2: The sum in (5.1) is strictly greater than M. Enumerate the elements of
U‘]I':I W,fj_Hl”‘ ={uy,...,u,} sothat foreachi € {1,...,r}, the set

Ty, N Xy \ (T, U---UTy,)

contains only one point. In other words, the sets Xy, \ Ty, (Xw \ Tu;) \ Tu,, etc. are
connected. That this is possible follows from Lemma 5.3 and the fact that every finite
combinatorial tree has a leaf.

By minimality of n, we have that r < M. Now let m be the smallest integer in
{1,...,r} such that

m
(5.2) anrd(W,’}iH”') +(r—m)>M.
i=1
Note that if m = r, then (5.2) holds by (5.1), so such a minimal m exists.
Case 2.2.1: The sum in (5.2) is equal to M . Then, by the assumption of Case 2.2,
we have m < r, and we set

m
(Xpi i€ A} = {Tv e | wrthiu {um+1,...,ur}}.
j=1
Case 2.2.2: The sum in (5.2) is strictly greater than M. As before, enumerate the
elements of Wi = (u,niy. ... . umis} so that for each j € {1,....1}, the set

Tumij N Tum \ (Tumi1 u..-u Tumij)

contains only one point.
By the minimality of m (and the fact that » < M), we have
m—1
> card(Wi ) + (r— (m—1)) <M —1,

i=1

and so
m—1

(5.3) > card(Wptty + (r —m) < M —2.
i=1

Let

m—1
p=M—1—(r—m)— Z card(W,:’iH”').

i=1
Note that p > 1 by (5.3). Moreover, p </ — 1 = card 'W,Z',;flul — 1; otherwise,
m
anrd('W,;’[H"l) +(r-my<M-—1,

i=1

contradicting (5.2).
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Define now
m—1

U= Wt Udumir. . oumipy Ufimgr. )
i=1

Note that card(U) = M — 1 by choice of p. Set
{Xwi i € A} :={Ty v € UYU{Tu,, \ (Tupi, U-+-U Tupi,)}-

To complete the inductive step and the proof of Lemma 5.4, it remains to check
that the inductive properties (1)—(7) above are satisfied up to level k¥ + 1.

Property (1) holds: If w € A¥, each X,,; is either equal to some T, constructed
in Proposition 5.2, and hence connected by Proposition 5.2(1), or (as is possible in
Case 2.2.2) is a connected union of finitely many such 7.

It also straightforward to check that Property (7) holds. In Cases 1, 2.1, and 2.2.1
of the construction, each X,,; for wi € Ak g exactly equal to some set Ty, as con-
structed in Proposition 5.2 and therefore is a finite union of sets 7T5;. In Case 2.2.2,
there is also the possibility that Xy; is of the form Ty, \ (Ty,,,i; U---U Ty,,i,), where
U, € Wand iy € A. In that case, Xy,; is also equal to a finite union of children of 7,,,,,;
namely, {7y, 1k #i1.....ip}.

To see that Property (2) holds, set w € A¥ . In the construction of {Xpi:i € A}, we
write Xy, as a finite union 7, U --- U Tp,4, where these sets come from Proposition 5.2.
In each case, the sets Xy,; are constructed to be subsets of these T,; and exhaust each
of them.

For Property (4), set wi € Al andx € Xy N X \ Xwi. The construction of Xy,;
and Proposition 5.2(2,3) ensures that x is contained in at most one other Xy,; (j # i)
and is a leaf of X,; in this case.

If x € Xyi N Xy for some w # w’ € A¥, then by induction, x is a leaf of Xy,
and hence of Xy,;. Moreover, in this case, x cannot be contained in any other X,,~ by
induction or in any other element X,,; (j # i) since a leaf of X,, can only be in one of
the nontrivial connected subsets X,;.

To see that Property (5) holds, consider w € A¥ and the set X wi N Xy (fori #
J). By (1), this intersection is either empty, a point, or a non-trivial continuum. By
construction, each of the two sets Xy,; N Xy,; is a finite union of distinct elements of
some 7, constructed in Proposition 5.2, and so the intersection cannot be a continuum
by Proposition 5.2(2).

For Property (3), fix w € AX and i € A. By (7), there exists u € W/ and uj €
‘W1 such that T,,; C X,y C Ty, By the design above, there exists v € W, and vj’ €
WL+ such that T, C Xy; C Ty and 2 < n <log, M + 1. Therefore, applying
Proposition 5.2(5),

Ky < K~lgloe2M+1 < M < K§<K,.
- — diamX,, — ~
Finally, for Property (6), fix w € A¥*! and distinct x, y € X, N X \ X,,. By (7),
we know that Xy, = Tys, U -+ U Ty, for some u € W' and uiy, ..., ui, € W1 By

Proposition 5.2(1), x, y have distance at least §/*!, so

dist(x, y) > 8/ > (§/K)diam T}, > (§/K) diam Xy, . O
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We call the sets X, constructed in Lemma 5.4 “tiles.” We observe that these new tiles
also maintain the property that they can touch only a controlled number of tiles of the
same scale.

LEMMA 5.5
There is a constant ny, depending only on the doubling constant of X and the constants
from Lemma 5.4, such that if w € A*, then

card{v € A1 v £ w, X, N X,y # B} < no.

Proof
Let

W ={ved® v£w X,N X, #0).

For each v € W, Lemma 5.4(5) implies that X, N X, is a single point, which we call
Xy € Xy N Xy. Moreover, if v,v" € W and v # v/, then xy, Xy € Xy N X \ Xy. By
Property (4) of Lemma 5.4, we have that x, # x,, and by Property (6), we have that

d(xy,xy) > Kz diam(Xy,).

Since all the points {x, : v € W} are contained in X,,, the doubling property of X
completes the proof. 0

5.2. Definition of combinatorial data

Fix § as above in Lemma 5.4, and apply Lemma 5.4 with fixed parameters M € N
and K7, K5 € (0, 1) as in the statement of that lemma. Let A = {1,..., M'}. We define
combinatorial data € = (A4, (Tk )xen) by setting T = (A¥, Ex), where two words v, w
of A¥ are adjacent if and only if X, N Xy, # 0.

LEMMA 5.6

€ satisfies the conditions of Definition 1.1, and each graph Ty is a combinatorial tree.

Proof
Property (1) of Definition 1.1 is immediate. That 7} is a (connected) combinatorial tree
follows from Lemma 5.3.

Property (2a) of Definition 1.1 holds similarly, taking X = X,,, which is con-
nected, and again using Lemma 5.3.

For Property (2b), consider {w,u} € E. Then there is a point x € Xy, N X,,. By
Lemma 5.4(2), there are words wi and uj such that x € X,; N X,;, and therefore
{U)i,uj}EEk+1. O

One basic consequence of this construction of combinatorial data is the following.

LEMMA 5.7
Ifw,u € A* and A Ne AN # 0, then X\, N Xy # 0.
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Proof

Let w,u € A* with Aﬁ Ae Afj # (. By Lemma 3.3, there are then k € N, w’ € Aﬁ,
and 1’ € AKX with {w’,u’} € Ey. It follows from the definition of € that X,,» N X,/ # @,
Xuw C Xy, and X,y C X,,. This proves the lemma. O

5.3. Definition of diameter function
We continue to use the quasiconformal tree X fixed at the start of Section 5, and the
constants M, Ky, K, and combinatorial data € = (A, (T )ren) fixed at the start of
Section 5.2.
We now define a diameter function A € D(A4, K, K») with the following two
rules.
o A(e)=1.
o Suppose that for some w € A*, we have defined A(w):
(1) If A(w) < diam Xy, then we define A(wi) = K, A(w) foralli € A.
(2) If A(w) > diam Xy, then we define A(wi) = K;A(w) forall i € A.

This satisfies Definition 1.3, with Property (3) following from the fact that K; < K, <
1.

We now show that A(w) is always comparable to diam(Xy,). This argument is
very similar to the proof of Theorem A in [14, Section 4.1].

LEMMA 5.8
Forall w € A%,

(5.4) (K2/K1) ' A(w) < diam(Xy,) < (K2/ K1) A(w).

Proof
By Lemma 5.4(3), we have for all w € A*:

K diam(Xy,) < diam(Xy,;) < K, diam(Xy,).

Note that (5.4) holds for w = & since A(e) = diam(X,;) = 1. Assume by induc-
tion that we have a word w such that (5.4) holds. Consider any i € A. There are two
possibilities.

Case I: A(w) < diam(Xy). In this case, we have

A(wi) = KrA(w) < Kp diam(Xy) < (K>/ K1) diam(Xy,;)
and
diam(X,,;) < Kp diam(Xy) < K2(K2/ K1) A(w) = (K2 / K1) A(wi),

which together prove (5.4) for the word wi in case 1.
Case 2: A(w) > diam(X,,). In this case, we have

A(wz) = KlA(LU) < Kl(Kz/Kl)dlam(Xw) < (Kz/K])dlam(Xw,)
and
diam(X ;) < Ko diam(Xy) < K2 A(w) = (K2/ K1) A(wi),

which together prove (5.4) for the word wi in case 2. (|
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As in Section 3.3, let ~ be the equivalence relation on A" induced by the diameter
function A, and let A = AN/ ~ and A, = A / ~.

5.4. Proof of Theorem 5.1
A consequence of Lemma 5.4(2) is that for each x € X, there exists an infinite word
wy € AN such that x € Xy(n) for all n € N. We therefore define a map f: X — s by

S (x) = [wy].

LEMMA 5.9
The map f : X — A defined above is well-defined and surjective.

Proof

Suppose that there exist two words w,u € AN such that forall n € N, x € Xwm N
Xu(n)- Then, by the construction of the combinatorial data €, for each n € N we have
{w(n),u(n)} € E,. (Recall that E,, is the set of edges of T,,.) Thus, for each n € N, the
set { A} (,)> A3y} 15 @ chain that joins w with u, and so dea([w], [u]) < A(w(n)) +

w(n)’

A(u(n)) — 0 as n — oco. We therefore have that de a ([w], [u]) = 0, which implies that
[w] = [u]. This shows that f is well-defined.

To show that f is surjective, consider an arbitrary [u] € 4. We have nested com-
pact tiles

Xu) 2 Xu@) 2 Xu@) - --
in X.Let x € NpenXy@m). If f(x) = w € #, then by definition of f, we have
X € Xy@m) N Xy@) forallneN.
As before, u(n) and w(n) are adjacent in 7, for each n, and hence again
de a([u]. [w]) < A(u(n)) + A(w(n)) — 0.
Thus, [u] = [w] = f(x), and f is surjective. O

The proof of Theorem 5.1 concludes with the next two results.
PROPOSITION 5.10

The map f :(X,d)— (A, de, ) is bi-Lipschitz, with constant depending only on K1,
K>, and K;.

Proof
Fixx,y e X.

We first claim that de A (f(x), f(¥)) = %d(x, ¥). Suppose that f(x) = [w] and
f(y) =[u]. Let {4}, ..... A}, } bea chain joining w with u. Since w € A}, , we have

wi = w(|w;]), and therefore x € Xy, ; similarly, y € Xy, .
We also have Xy, N Xwi+1 # @ foreachi e {l,...,m —1}, by Lemma 5.7.
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Therefore, using the triangle inequality and (5.4), we have

m Ky K,
5.5 A(w;) > — diam X, > —d(x, y).
(5.5 Z (w;) > K> ; 1am Xq; = K, (x,y)

i=1

Taking the infimum over all possible chains, we obtain dee a (f(x), f(y)) = %d(x, ),
as desired.
We now claim that

(5.6) de a(f(x). () Sd(x.).

with implied constant depending only on Ky, K>, K3.

Let wg be a word in ‘W of maximal length such that x, y € Xy,,. Then, there exists
distinct i, j € A such that woi,woj € W, x € Xy and y € Xy ;. Set k = |wo|. We
consider the following two possible cases.

Suppose first that Xy,,; N Xy, ; = 9. Let y be the unique arc in X with endpoints
x, y. Note that y € Xy, as Xy, is connected. Assuming Xy; N Xy, ; = 0, it follows
that ¥ \ (Xwei U Xw,,) is a nonempty relatively open subset of y. There must therefore
exist some / € A\ {i, j } such that y N 9X,,; contains two distinct points v, v’ of 9Xy,;.

By the 1-bounded turning property of X and Lemma 5.4(6),

d(x,y)>diamy > d(v,v") > K3 diam(X ;).
On the other hand, f(x), f(y) € Ay, and so, by Lemma 3.9 and (5.4), we have

de.a (/). () = diam Ay, = AQwo) < 12 diam(Xa,).
1

Therefore, using Lemma 5.4(3),

K?K
K>

This completes the proof of (5.6) in the case where Xy,; N Xy, = 0.

Suppose now that Xy,,; N Xy, 7 9. Find words w,u € A* of maximal lengths
such that wow, wou € W*, x € Xyow, ¥ € Xyou and Xyqw N Xyou 7# 9. Then there
exist wowi, wouj € A* such that Xogwi N Xwou =9, Xwouj N Xwow = 9, X € Xygwi
and y € Xyquj-

Let z be the unique point of Xy, N Xywyu and again set y to be the unique arc
from x to y in X, which must pass through z. Choose k € A such that z € Xy, k.
Note that k # i by the maximality of w, and that z € 0X,,k. The sub-arc of y from
X to z must also contain a point v € X,k distinct from z, by Lemma 5.4(4).

Hence, again by 1-bounded turning and Lemma 5.4(6), we have

d(x,y) > Kzdiam(X,01) > K3 Ky diam(Xy,) = ——de a (f(x), ().

d(x,z) > d(v,z) > Kzdiam(X k).
Similarly,
d(y,z) > K3 diam(Xwoul)7

for some / € A.
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By the 1-bounded turning property and Lemma 5.4(3),

d(x.y) > %(d(x,Z) 4 d(y.2) > %Ka (diam(Xugu) + diam(X o))

1
> §K3K1 (diam(Xugw) + diam(Xugu))-

On the other hand, f(x) € Awqw. (V) € Augy and {A} . A} ,} is a chain

wow’

joining f(x) and f(y). Therefore, by Lemma 3.9 and by (5.4),
df,A(f(x), f(y)) < diam sy + diam Ay < A(wow) + A(wou)

K, . .
< ?2 (dlam(Xwow) + dlam(XwOu)).
1

Therefore,
2K,
d , < d(x,y).
ea(f(0).10)) = rp-d(x.y)
This completes the proof of (5.6) and hence of the proposition. O

Finally, to prove the “moreover” piece of Theorem 5.1, we now show the following.

LEMMA 5.11
The combinatorial data € and diameter function A defined above satisfy the conditions
of Proposition 4.1 for some choice of N, ny, ¢, 81, 8>.

Proof

Property (P1) of Proposition 4.1 follows from our choice of a finite alphabet A =
{1,..., M}. Property (P2) follows from Lemma 5.5 and the definition of the combi-
natorial trees Ty in our combinatorial data. Property (P3) is immediate from our con-
struction of A, with §; = K; and 6, = K5>.

It remains to verify Property (P4) of Proposition 4.1. Consider k € N and distinct
u,uy,up € A* such that {u,u,} and {u, u,} are in E,. Let also wy, w, € AE’, v € AEII,
and v, € A§2 such that for all n > k and i € {1,2}, {w;(n),v;(n)} € E,.

For each i € {1,2}, let x; € X denote the unique point such that

[ele]
X; € ﬂ Xw,-(n)-
n=0

By definition, we have f(x;) = w;. Notice that x; and x, are both in X}, as w; € Ag.
We first claim that for i € {1,2},

5.7 X; € Xy, N Xy C0Xy.
It follows from the definition of € that
D # Xuw;n) N Xo;(n) S Xy, () N Xy
for all n > k. Hence,
dist(x;, Xy;) < diam(Xy, ) >0 asn — oo,

and so x; € Xy N Xy, € 0X,.
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We next claim that x; # x,. Suppose to the contrary that x; = x, = x, and choose
n > k such that wy(n) # wa(n). Then Xy, () and Xy, () are distinct subsets of X,
with x € Xy, (n) N Xo, (n)- In addition, we showed in (5.7) that x € X, . It follows that
there is an element v € Ay, with x € X,. The word v, beginning as it does with u; # u,
is distinct from both w; (n) and w,(n), and so the three words v, wy(n), and w,(n) are
distinct and of the same length 7. Moreover, x € Xy, () N Xy, ) N X». However, this
contradicts Lemma 5.4(4).

Thus, x1 and x, are distinct elements of dX,,. By Lemma 5.4(6) and (5.4),

d(xl,xz) > K3 dlam(Xu) > (K3K1/K2)A(u)

By Proposition 5.10, f is bi-Lipschitz with constant depending only on K, K3, K3.
Therefore,

de,a([wi]. [w2]) = de,a(f(x1), f(x2)) = cAu),
for some ¢ depending only on K1, K>, K3. This completes the proof. |

6. Examples and simple cases of quasiconformal trees

In this section, we discuss some examples and simple special cases of quasiconformal
trees based on our construction.

6.1. Quasi-arcs

Here we discuss combinatorial data and diameter functions that give rise to quasi-arcs.
We start with a corollary in which the conditions of Proposition 4.1 can be verified,
using Lemma 4.8.

LEMMA 6.1

Let € = (A, (Ty)ken) be combinatorial data such that card A = N > 2 and each Ty, =
(A¥, Ey) is a combinatorial arc. Let A € D(A) satisfy Property (P3) of Proposition 4.1
and assume that for all k > 0 and w € Ak,

(6.1) > Adwi)= Aw).
wiEAkwJrl

Then (A, de,a) is a doubling bounded turning arc.

Proof

First, since card A = M, (P1) of Proposition 4.1 is immediately satisfied, and since
each Ty is a combinatorial arc, Val(T}) = 2 and Condition (P2) of Proposition 4.1 is
also satisfied. Since card A > 2, Assumption (1) of Lemma 4.8 is satisfied and by (6.1),
Assumption (2) of Lemma 4.8 is satisfied. Hence, by Lemma 4.8 and Proposition 3.10,
(4, de,a) is doubling and bounded turning.

It remains to show that (#,de A) is an arc. By design, there exist exactly two
words wy, wy € AN such that for all n € N, the valency of w;(n) in T, is 1. Recalling
the definition of K from the proof of Lemma 3.17, we note that K = +4. Therefore,
(4, de,p) is an arc. O
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EXAMPLE 6.2
Let M €{2,3,...}and A={l,...,M}. Let €y = (A, (Gr)ren), Wwhere for each k €
N, the graph Gy is a simple path with the following two rules:

(1) Foreachw € A* and i € {1,..., M — 1}, we have that wi is adjacent to wi’,
where i’ =i + 1.

(2) If wiv,wjv’ € A* withi < j, |[v| = |[v'] and wiv is adjacent to wjv’, then
wivM is adjacent to wjv'l.

In other words, each word in A* is simply adjacent to the following word in lexico-
graphic order in Gy.

Let § € (M~',1] and A € D(A,M~1,8). We write A = AY/ ~ and for each
w € A*, Ay = AN/ ~.

The following lemma summarizes some properties of this construction.

LEMMA 6.3
(1) Suppose v,v' € AX, with v coming earlier than v’ in lexicographic order.
Then Ay, N Ay # @ if and only if v and v’ are adjacent in Gy,.
(2) Incase (1), [vM®] = [v'1°°] is the unique element of A, N Ay # @.
(3) Foreach v € A*, the set Ay is a topological arc with
M~1A®v) < diam A, < A(v).

Proof

We begin with (1). Suppose v, v’ € A¥, with v preceding v’ in lexicographic order,
and 4, N s, # @. This means that there are infinite words w, w’ with [vw] = [v'w’].
Suppose v and v’ were not adjacent; let u be a word on the simple path Ty between them
(and hence lexicographically between v and v”). Let n € N be such that A(?) < %A(u)
forall t € A™.

Because u is lexicographically between v and v’, each t € A% is lexicographi-
cally between (vw)(n) and (v'w’)(n), and hence is on the unique simple path between
(vw)(n) and (vV'w’)(n) in T,,. By Lemma 3.16, [vw] and [v'w’] are both in A, for each
t € A7 In particular, all #; for ¢ € A], share a common point. Therefore, by Lemma 3.9
and our choice of n above,

(6.2) diam(A,) < 2max{diam(A;) : 1 € A%} < A(u).

On the other hand, our combinatorial data €js satisfies the assumptions of
Lemma 4.8. Indeed, Lemma 4.8(1) holds because the graphs G in €y consist simply
of arcs in lexicographical order, and Lemma 4.8(2) holds because any pair u, u’ of
distinct vertices in some de A’l‘UJrl are separated by at least M other vertices, each with
diameter function giving weight > M~ A(w).

Therefore, by Lemma 4.8, diam(+,,) = A(u), which contradicts (6.2).

This proves the “forward direction” of (1). For the other direction, it is immediate
from the construction of €y that if v and v’ are adjacent in T, with v lexicographically
preceding, then for each n € N,

de AWM, 0'1°) < A(WM™) + A('1") >0 asn — oo,
and so [vM ] = [v'1°°] € A, N Ay
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For (2), suppose there was a point p other than [uM*°] = [v'1%°] in A, N A,.
Then there would be an infinite word w € AN, w # M > such that p = [vw]. Choose n
such that the nth letter of w is not M. Then vw(n) and v'1" are not adjacent in Tk,
but [vw] € Ay ) N sAyr1n. This contradicts (1).

For Fact (3), it is an immediate consequence of Remark 3.21 that each A, is a
topological arc. The diameter of #4,, is at most A(v) by Lemma 3.9. If v has at least two
neighbors in Tj,|, then diam(7j,|) = A(v) by Lemma 4.8. Otherwise, vi has at least two
neighbors in T}y 41 for some i € A, and so Lemma 4.8 says that diam(A,;) = A(vi).
Therefore,

diam A, > diam #A,; = A(vi) > M~ 1A®v). O

PROPOSITION 6.4
The space (A, de ) is a quasi-arc.

Proof

By Lemma 6.3, we know that (4, de a) is a topological arc, and by Theorem 3.10, we
know that (A, de a) is bounded turning. Moreover, Property (P3) of Proposition 4.1 is
satisfied, and for any w € A* and i € 4,

Mo
ZA(u)i)zzﬁzl,

icd i=1
and (6.1) holds. Therefore, by Lemma 6.1, (4, de a) is doubling. O

We note that a more refined statement holds; see Lemma 8.3. Furthermore, the converse
of Proposition 6.4 is also true: every quasi-arc is bi-Lipschitz equivalent to (A, de a)
for some § € [M !, 1) and some A € D(A, M~ ,§); see Proposition 8.4.

6.2. The Vicsek tree and variations
Here we discuss a concrete example of a self-similar quasiconformal tree—the Vicsek
tree—and how it can be viewed through our construction.

EXAMPLE 6.5
The Vicsek tree V is defined as the attractor of the iterated function system {¢y, ..., ¢s}
on C with

¢1(z)=%(z—2+2i), ¢2(z)=%(z+2+2i),

BE=3E12-2), g =1z s =5 -2-20)

Let A={1,...,5}. For k € N, we define trees Ty = (4%, E}) as follows. First,
E; ={{i,4}:i =1,2,3,5}. Inductively, assume that for some k € N, we have defined
T = (A¥, Ey) such that

o ifwed*landi e {1,2,3,5}, then wi and w4 are adjacent.
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Figure 1. (Color online) On the left, we have V while on the right, we have the trees T and 75 of €.

o ifw,u eAk_l, i,j € Awithi < j,and wi is adjacent to uj, then either
(i,j)=(,3),0r (i,j)=(1,4),0r (i, j)=(2,4),0r (i, j)=(2,5),0r
(i,j)=@3,4),0r(i,j)=(4)5).

For the definition of Ty, fix w,u € Ak-1

(1) If i € A, then wii; is adjacent to wii, with i1,i, € A if and only if
ir€{l,2,3,5) and i, = 4.
(2) If wl is adjacent to u3, then w1l is adjacent to u33.
(3) If wl is adjacent to u4, then w13 is adjacent to u41.
(4) If w2 is adjacent to u4, then w25 is adjacent to u42.
(5) If w2 is adjacent to u5, then w22 is adjacent to u55.
(6) If w3 is adjacent to u4, then w31 is adjacent to u43.
(7) If w4 is adjacent to u5, then w45 is adjacent to u52.

Figure 1 shows an illustration of V as well as the first two combinatorial trees, T;
and T5.'

Define a diameter function A : A* — [0,1] by simply setting A(w) = 37l
Clearly, A € D(A,1/3,1/3).

CLAIM 6.6
The space (A, de a) is bi-Lipschitz equivalent to V.

Proof

The proof essentially follows that of Theorem 5.1. For each w =iy ---i,, € A*, let
Xy =¢i, o---0¢;, (V). The collection of sets {X,, : w € A*} satisfies the conclusions
of Lemma 5.4. Moreover, given k € N and distinct w,u € Ak , we have that X, N

1. This picture of V was generated using the IFS Construction Kit (version April 11, 2019) created by Larry
Riddle. It is available at http://larryriddle.agnesscott.org/ifskit/download.htm.
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Xy # @ if and only if w is adjacent to u in T. Define now F : A — V such that if
W =iqip--- € AN, then

o0
F([w]): ﬂXil“'in’ forwziliz---eAN.
n=1
The rest of the proof is as in Section 5.4, and we leave the details to the reader. O

It follows immediately from Claim 6.6 that (4, de a) is doubling since V is. One could
also see this by noting that Conditions (P1), (P2), and (P3) from Proposition 4.1 are
clearly satisfied by this combinatorial data. To show that (P4) also holds, we verify
Lemma 4.8. Item (1) of Lemma 4.8 is easy to check. For Item (2), take any w € A¥ and
any u,u’ € de Aﬁ“. The combinatorial arc that joins u with u’ in Ty contains three
vertices, {u, w4,u’}, and so the total A-length of this combinatorial arc is

A) + A(wd) + A@') = %A(w) + %A(w) + %A(w) = A(w).

Therefore, Lemma 4.8 holds in this example, and so does Assumption (P4) of Proposi-
tion 4.1. Thus, all the conditions of Proposition 4.1 are satisfied, and (4, de a) can be
seen to be doubling by this proposition.

One may obtain new self-similar quasiconformal trees by keeping the same com-
binatorial data as the Vicsek tree but altering the diameter function A. We describe two
examples.

EXAMPLE 6.7

Keep the same combinatorial data € = {T} } for V defined above, but now use the diam-
eter function A,(w) = 2~ "I rather than A(w) = 371! as before. Then the associated
quotient space (A', de,a,) is a “snowflake” of the previous example, in the following
sense: It is bi-Lipschitz equivalent to the space (V, |- |?), where p = }gigg The proof
parallels that of Claim 6.6, with the only difference being that the tiles X,, of V under

the snowflaked Euclidean metric | - |? have diameters (371%1)? = 271wl = A, (w).

EXAMPLE 6.8
We again keep the combinatorial data € = {7y} of the Vicsek tree but modify the
diameter function once more. Define a diameter function A3 by setting Az(¢) =1 and

inductively setting
1A3(w) ifi€{2,4,5
A3<wi>={f o) e
703(w) ifi €{1,3}.

In this case, the space (A", de a,) is a quasiconformal tree which contains both geo-
desic segments (e.g., the path from [1°°] to [3°°]) and nongeodesic “snowflake” seg-
ments (e.g., the path from [2°°] to [5%°]).

REMARK 6.9
A similar example to the Vicsek tree appears in [3, 4] in the form of the continuum self-
similar tree (CSST). The CSST is a quasiconformal tree, and hence by Theorem 1.4 is
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bi-Lipschitz to one of our combinatorial models. However, it is not obvious to us that
there is a simple concrete or dynamical way to form “tiles” in the CSST that satisfy all
the assumptions in Lemma 5.4, as we did for the Vicsek tree.

6.3. A nondoubling tree

Below we give an example which illustrates the importance of Condition (P4) for the
conclusions of Proposition 4.1. Thus, we will construct combinatorial data € in which
all graphs Gy are trees, satisfying all the conditions of Proposition 4.1 except (P4), and
for which the resulting metric tree is not doubling.

EXAMPLE 6.10
Let € be the combinatorial data of Example 6.5. For each n € N, let w, =2---2 =
2" € A", and let uy, 1,...,u,, N, denote those elements of A" such that wy,1u, ; has

valence 1 in T2 41.
Define A : A* — [0, 1] with the following rules:

(1) If wis a word of the form w,1vu, where v € A" \ {up,1,...,u, N, } and
u € A*, then let A(w, lvu) = 4 % A(w, 1v) = 372714,
(2) For all other words w € A*, let A(w) = 37",

We see that for each n € N, the following hold:

o Ifve{u,1,....unn,}, then Ay, 1, is bi-Lipschitz homeomorphic to V scaled
by a factor of 372771,
o Ifve A" \{un,1,...,un,n,}, then diam #A,,, 1, = 0. (Indeed, two elements of

Aw, 1v can be joined by a chain of 3K steps at level k, each with the A value
being 372n—14k for arbitrary k € N, which forces the distance to be zero.)

Therefore, for each n € N, the point [w,13°°] € A has at least N,, branches, each of
diameter at least 372”1, Since N, — oo as n — oo, it follows that (4, de ) is not
doubling.

Note also that A, €, and A satisfy Properties (P1), (P2), (P3), but not (P4). Indeed,
the fact that diam 4,1, = 0 for certain words, as in the second bullet above, already
violates (P4).

7. Combinatorial descriptions of more general spaces with “good tilings”

In this section, we axiomatize a notion of a “good tiling” of a compact space and show
that every compact space with such a tiling (not necessarily a tree) can be built from
our combinatorial data.

Let X be a compact space for which there is a finite alphabet A, constants r €
(0,1), C > 1, and a collection of nonempty closed, connected subsets {X,, : w € A*}
with the following properties:

(1) Xe=X.
(2) Forallw e A* and all i € A, Xy; C X,,. Moreover, | ;¢ 4 Xwi = Xw-
(3) Forall w e A*, C~'r™! < diam X,, < Crl®l.
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(4) If fork e Nand w,u € Ak, we have X, N X, = @, then
d(Xy. Xy) > C71rk,

Tilings of metric spaces with very similar properties have certainly been considered
by other authors (e.g., [2, 15]). The goal here is simply to write down some simple
conditions that can be interpreted in our framework.

For each k € N, define a graph Gy = (Ak, E}) with the rule that for words w, u €
Ak w is adjacent to u if and only if Xy, N X, # @. It is easy to see that the collection
€ = (A, (Gg)ren) is combinatorial data in the sense of Definition 1.1. Define also
A A* — [0, 1], with A(w) = r!®!. Clearly, A € D(A,r, 7).

PROPOSITION 7.1
The space (X, d) is bi-Lipschitz homeomorphic to (A, de a).

Before the proof, we re-emphasize two points about Proposition 7.1. First, even if X
is a metric tree, Proposition 7.1 does not force the combinatorial data € to consist of
combinatorial trees. The second point is that in general, it is not obvious to us which
spaces admit good tilings in the sense of this section. Thus, Proposition 7.1 is not in
itself a generalization of Theorem 1.4 and proceeds along different lines. The tiles we
constructed for quasiconformal trees in Lemma 5.4 do not satisfy the conditions of this
section as they may in principle fail Conditions (3) or (4) of this section.

However, Proposition 7.1 does yield descriptions of some natural examples, as we
show following the proof.

Proof of Proposition 7.1
Since r < 1, Property (3) in conjunction with the compactness of sets {X,, : w € A*},
gives that for any w € A", the set (Nneny Xw(m) contains exactly one point which we
denote by xy,.

Let w,u € AY such that x,, # x,. Then there exists n € N such that Xpm N
Xum) =9.Let Ay ..... A} be achain joining w with u. Then Xy € Xy, Xy € Xy,

and Xy, N Xy, ,, # 0 foralli € {l,...,n — 1}. By the triangle inequality,

n n
d(xy.x,) < Y_diam Xy, <C > A(w;).
i=1 i=1

Taking the infimum over all such chains, we obtain that d(xy,, xy,) < Cde a([w], [u]).
Therefore, if [w] = [u], then xy, = xy.

We can now define F : A — X with F([w]) = xy. By the preceding paragraph,
F is well defined and C -Lipschitz.

To see why F is bi-Lipschitz, fix w,u € AN,

If d(xy, xu) =0 (.., xy = xy), then forall n € N, Xy, (») N Xy (n) 7 9. Therefore,
w(n) is adjacent or equal to u(n) for all n, and it follows that de A ([w], [u]) = 0.

If xy # Xy, then there exists n € N such that Xy,(n) N Xyn) 9 and Xyy(n41) N
Xum+1) = 9. It follows that w(n) is adjacent to u(n) in G, and {Aﬁ(n), Ayt s a
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Figure 2. (Color online) On the left we have the graphs G, G» for the Sierpifiski gasket, while on the right we
have the graphs G, G, for the square.

11 12 13 21 22 23 31 32 33
18 14 28 24 38 34
17 16 15 27 26 25 37 36 3!
) 8 82 (83 41 42 43
88 84 48 44
L
87 86 85 47 46 _45
71
1 2 3 A 72 73 61 62 63 51 52 53
J 8 4 78 74 68 64 58 54
x‘s 5 77 76 75 67 66 65 57 56 55

Figure 3. (Color online) Possible graphs G and G for the standard Sierpifiski carpet.

chain joining w with u. Therefore,
d(F([w]), F([u])) = diSt(Xw(n-i-l)v Xu(n+l))

>Cc7 it =q@c/r) 2"

=2C/r)! (A(w(n)) + A(u(n)))

> (2C/r) " de,a([w], [u]). 0
EXAMPLE 7.2
Proposition 7.1 applies to many metric spaces which are attractors for certain iterated
function systems, like the square, the Sierpinski gasket, and the Sierpinski carpet. See
Figures 2 and 3 for possible graphs G; and G, for the gasket, square, and carpet.
8. Bi-Lipschitz embeddability of quasiconformal trees

This section is devoted to the proof of the following quantitative version of Theo-
rem 1.8.
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THEOREM 8.1

Let X be a C-doubling, c-bounded turning tree. Assume that £(X) admits an
L-bi-Lipschitz embedding into some R™ . Then X admits an L'-bi-Lipschitz embedding
into some RN . Here N and L' depend only on C, ¢, M, and L'.

The proof of Theorem 8.1 consists of two steps. In Section 8.1, we prove the spe-
cial case of embeddability of quasi-arcs—i.e., quasiconformal trees in which the set of
leaves consists of exactly two points. This is done in Proposition 8.2 below, which is a
stronger version of Proposition 1.7 from the introduction.

Then, in Section 8.2, we employ a bi-Lipschitz welding theorem of Lang and Plaut
[17] and a characterization of metric spaces admitting bi-Lipschitz embedding into
Euclidean spaces by Seo [25] to complete the proof of Theorem 8.1.

8.1. Bi-Lipschitz embeddability of quasi-arcs

The main result of this subsection is the following special case of Theorem 1.8, where
the leaf set £(X) consists of only two points. In particular, this gives a detailed, sharp
version of Proposition 1.7.

We first introduce a piece of terminology: A metric space X is (C, 5)-homogeneous
for some C,s > 0, if every subset of diameter d can be covered by at most Ce—* sets of
diameter at most ed . In particular, every doubling metric space is (C, s)-homogeneous
for some C and s, depending on the doubling constant [13, Section 10.13].

PROPOSITION 8.2

Given s > 1, C >0, and ¢ > 1, there exists L = L(c,C,s) > 1 with the following
property: If T = ([0,1],d) is c-bounded turning and (C, s)-homogeneous, then it is
L-bi-Lipschitz embeddable in RS1H1,

Proposition 8.2 generalizes Theorem C in [14], where it was assumed that s < 2. We
remark that the dimension |s| + 1 in Proposition 8.2 is sharp when s > 1, in the sense
that there exists a 1-bounded turning, (C, s)-homogeneous metric d on [0, 1] (namely
the snowflaked Euclidean metric | - |'/*) such that ([0,1],d) cannot be bi-Lipschitz
embedded in RS,

For the proof of Proposition 8.2, we may assume that diam I" = 1. The proof uses a
construction of Herron and Meyer [14] and a bi-Lipschitz embedding method of Rom-
ney and Vellis [24] (see also [1] and [29]).

Let M € {2,3,...}, A={l,...,M} and €p = (A,(Gr)ren) be as in Exam-
ple 6.2.

LEMMA 8.3 ([14, Lemma 3.1])
Ifd e (M7, 1) and A € D(A, M1, §), then the space (A, de,, a) is s-homogeneous
with s = log(M)/log(1/4).

The following result can be obtained following the arguments of [14, Theorem B]
essentially verbatim; we provide a brief reference to the necessary arguments.
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PROPOSITION 8.4

Let s > 1, ¢ > 1, and T a c-bounded turning and s-homogeneous metric arc with
diamT = 1. Then for any M € {2,3,...} and any § € (M /5 1), there exists A €
D(A, M~1,8) and an L-bi-Lipschitz homeomorphism f : T — (A, de,, a). The con-
stant L depends only on c, s, and M.

Proof
Exactly following the procedure in [14, p. 622], we divide I' into M sub-arcs of
equal diameter then iterate this procedure on each sub-arc. Letting € = (4 =
{l,...,M},Gy) as above yields an assignment to each element w € A* of an
arc y, € I', with nesting and adjacency properties reflecting that of € and
SUp,, e 4k diam(y,,) — 0 as k — oo.

The argument in [14, pp. 622-623] provides a diameter function A € D (A, M ™!,
8) such that

A(w) =~ diam(yy,),

with implied constant depending only on ¢, s, and M .

Defining F: A — T' by F([w]) = N7, Yw(k), We see exactly as in Lemma 5.9
and Proposition 5.10 of the present paper that F' is well-defined, surjective, and bi-
Lipschitz. Taking f = F~! completes the proof. g

We now fix parameters M and § that will enable us to use a construction from [24].
Given s > 1, let

e 71 be the minimal integer satisfying n > ([s| + 1 —s)7!,
p=Ils]-1+2L=|s]-1>0,

o My= 9n(|_sJ+1)’

o« M =M,"?, and

o« 5=M;".

The above parameters all depend on s, but we suppress this in the notation. Observe
that § > M 'S > M~ in all cases, and in fact § is an integer multiple of M ~'. Only
8 and M will play a direct role below.

Given Proposition 8.4, the proof of Proposition 8.2 now reduces to the following
lemma.

LEMMA 8.5

Let s > 1 and choose M and 8 as above. Let A € D(A, M1, 8). Then there is a bi-
Lipschitz embedding of (4, de,, a) into R+ \with bi-Lipschitz constant depending
only on M, § and s, and thus only on s.

The construction of the embedding follows ideas and notation from [24]. We fix
parameters M and § as in the statement of Lemma 8.5 and write € = €,7. We also fix
A € D(A, M~1,8) for the remainder of this subsection.
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Let
I =10,1] x {0}*

= (({0} x [0, 1/2]) U ([0, 1/2] x {1/2})) x {0}LsI~1,

with the convention that £ x {0}° = E. An I-segment (resp. L-segment) is the image
of I (resp. L) under a similarity mapping of RIJ*1 and is parallel to the coordinate
axes.

Given an /- or L- segment T with length £ and endpoints x*, y*, we define the
cubic thickening Q(t) of t to be the union of all closed cubes parallel to coordinate
axes, of side length (1 — 26)£ and centered on points z € T such that

min{|z —x*|, |z — y*|} = £(1 —25)/2.

Define also €(7) to be the closed cube which is parallel to coordinate axes, has side
length £, and is centered on the midpoint of t. The intersection Q(7) N d€(r) has
exactly two components which we call the entrances of Q(t).

For each t € {I, L}, we define two polygonal arcs J(t) and go(7) in the following
lemma.

LEMMA 8.6

Given t € {I, L}, there exist two polygonal arcs (t) and $o(7), each contained in
0O (1), whose endpoints are the same as those of T and that satisfy the following prop-
erties:

(J1) The arcs §(z), Fo(t) consist of M -many I -segments and L-segments o,

i €{l,...,M}, labeled according to their order in §(t) with o containing
the origin. Each o; in §(t) has length §, and each o; in $o(t) has length
ML

(J2) The segments o1 and opy are I -segments.

(J3) Foralli €{l,...,M —1}, Q(0;) N Q(0;+1) is an entrance of Q(o;) and an
entrance of Q(0i+1). Ifi,j €{1,...,M}, with |i — j| > 1, then
0(0:) N Q(0;) = 0

(J4) If Eq, E, are the entrances of Q(t), then an entrance of Q(01) is contained
in Eq, and an entrance of Q (o)) is contained in E,. Moreover, for any

ie{2,....M—1}, Q(0;)NIQ(x) =

Proof
The constructions of $o (1) and o (L) are quite simple. Write / = UM

m=1
-1 m
= O Ls] C RLSJ+1
Om [ M M] 0
and set Jo(/) = UM Om = I. Similarly write L = U 1 Om, Where o, is an L-

segment if m = M2+ 1 and an /-segment otherwise and each o, has length 1/M. Set

Fo(L) =Up—, Om.
The constructlons of §(I) and ¢ (L) are more complicated and can be found in [24,
Sections 6.1 and 6.2] (where they are denoted as J; (N, n) and Jr (N, n), respectively).

om With
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Without describing the construction, we briefly explain how our parameters match with
those of [24]. The parameter N appearing in [24, p. 1181] matches our |s| — 1. Our
parameters p and n match the ones given there. Our parameter My corresponds to M
in [24, p. 1182], and our parameter M corresponds to M '*7 in [24, p. 1182]. Making
allowances for the changes in notation, our desired properties of (/) and J(L) are
listed in [24, Section 3.3] as Properties (1)—(3). U

We record a few more simple consequences of Properties (J1)-(J4).

LEMMA 8.7
Consider t € {I,L}, J € {$(7), $o(7)}. Recall that J is a union of sets {U,-}inil, each
of which is an I -segment or L-segment. Then

(1) Foreachi €{l,...,M}, Q(o;) C Q(7).
(2) Foreachie€{2,...,M —1},

dist(Q(07),00(7)) > M 2.
3) Ifi,j €{l,....M}with|i — j| > 1, then

dist(Q(0;), 0(0;)) = M2,

(4) Let E be the entrance of Q(t) that contains an endpoint of o1 (resp. endpoint
of oy ), and let P be the |s |-dimensional plane that contains E. Then for all
ie{2,....,.M} (resp.i €{1,...,M —1}),

dist(Q(0i). P) = M.

Proof

All four statements are obvious in the case J = Jo(t), so we now assume that J =
J(t). Statement (1) is an immediate consequence of the fact that J € Q(tr) and of
Property (J4) of Lemma 8.6.

For the remaining three properties, it is useful to first observe that since § is an
integer multiple of M ™!, the sets Q(t) and Q(o;) are each unions of axis-parallel
cubes whose vertices lie on the M ~2-scale grid M ~27Ls1+1,

Statements (2) and (4) follow immediately from this observation and (J4). State-
ment (3) follows immediately from this observation and (J3). U

We now use Lemma 8.6 to construct arcs in RI$1+1 that mimic the metric properties of
the combinatorial construction €, A fixed below the statement of Lemma 8.5.

LEMMA 8.8
For each w € A*, there exists an I - or L-segment t,, with the following properties:

(1) If w,u € A¥ are adjacent, then v, and v, intersect at an endpoint, while
O (tw) N O(ty) is contained in an entrance of Q(ty) and an entrance of
0(w,). If w,u € A¥ are distinct but not adjacent, then Q(zy) N Q(z,) and
Tw N Ty are empty.
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(2) Forany w € A*, there exists T € {I, L} such that ty, and Q(ty,) are scaled
copies of T and Q(1), respectively, by a factor of A(w).

Proof
The construction is done in an inductive manner.

Let 7, := I ¢ RII+! Property (1) of the lemma is vacuous in this base case, while
property (2) is immediate.

Assume now that for some integer k > 0, we have defined /- and L-segments 7,
(for all j <k and w € A7) satisfying the properties of the lemma. Fix w € A¥, and
let u be the preceding vertex of A¥ in lexicographic order, assuming for the moment
that such a vertex exists. Let E be the entrance of Q(ty,) that intersects an entrance of
Q(t,). Suppose that 7,, is a rescaled copy of T € {I,L}. Let ¢, : RsI+1 — RlsI+1
be a similarity map such that Q(7) is mapped onto Q(ty,), the entrance of Q(t) that
contains the origin is mapped onto the entrance of Q(t,) that contains Q(ty) N Q(7y,),
and the other entrance of Q(t) is mapped to the other entrance of Q(ty,).

If there is no u € A¥ preceding w in lexicographic order, then w = 1¥ for some
k > 0. In that case, if k = 0, we set ¢, to be the identity, and if k > 1, we set u =
1¥=12 and do the analogous construction of ¢, to arrange that the entrance of Q(t)
that does not contain the origin is mapped onto the entrance of Q(ty) that contains
Q(tw) N O ().

We now define t,,; foreachi € A:

o If A(wl) = M1 A(w), then for each i € A, set Ty; = ¢y (0;), where

0; C Jo(7).
o If A(wl) =6A(w), then for each i € A, set Ty; = ¢y (07), Where o; C $(7).

This completes the definition of the arcs 7y, for all w € A¥*!. We now prove that
the family {r,, : w € Ak'H} satisfies Properties (1) and (2) of the lemma.

For Property (2) of the lemma, by design, and the inductive hypothesis (2), for all
i €A,

diam ty,; = diam ¢y, (0;) = M diamo; = A(w)diamo; = A(wi)diamt’
diam Q(7)
for some t’ € {I,L}. Therefore, diam Q(ty;) = A(wi)diam Q(z') for some 7/ €
{1, L}, and Property (2) holds for k + 1.

We now turn to the proof of (1). Let w € A¥ and i € A. Letalsou € A¥ and j € A.
We consider two cases.

Case 1. Assume that w = u and i # j. If wi is adjacent to wj, then by design
of paths g(r) and Jo(r), we have that 7,; and 7,,; share an endpoint and by (J3),
O(twi) N O(tyw;) is a common entrance of O(ty,;) and Q(ty;). If wi is not adjacent
to wyj, then again by (J3), O (ty;) N O (ty;) = ¥ which also implies that 7,,; N 7y,; = 0.

Case 2. Assume that ¥ # w. The proof splits in two subcases.

Case 2.1. Assume that i ¢ {1, M }. Then wi is not adjacent to uj, and by (J4),
O (i) is contained in the interior of Q(ty,) which is disjoint from Q, by the inductive
hypothesis. Therefore, Q(tyw;) N O(ty;) and tyy; N 7, are both empty.
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Case 2.2 Assume that i € {1, M }. Without loss of generality, we assume that i = 1;
the case i = M is similar. By design, Q(ty;) intersects one entrance of Q(ty,) but not
the other. Therefore, if u is not adjacent to w or if it is adjacent to w but is preceded by
w, then the inductive hypothesis implies that Q(ty1) N O (7y;) and 7,1 N 7,5 are both
empty. Assume now that u is adjacent to w and precedes w. Then the only j € A for
which Q(ty;) intersects the entrance of Q(t,) which contains Q(7y,) N O(ty) is j =
M . In this case, T3 N Ty is the common endpoint of 7y, and t,,. Therefore, Q (1) N
O(ryj) is nonempty and is contained in an entrance of Q(ty;) and an entrance of

gz(fuj)~ O
Lemma 8.8(2) implies that for all w € A*,

(8.1) 2712 A(w) < diamty, < A(w).

LEMMA 8.9

Let w,u € AX be adjacent words, with w preceding u in lexicographic order. If i €
AN{M} orif j € A\ {1}, then

dist(Q(rwi), Q(ruj)) Zs max{A(w), A(u)}.

Proof

Set E = Q(ty) N Q(1y). By Lemma 8.8, E is contained in an entrance of Q(ty,) and
in an entrance of Q(t,). Let P be the | |-dimensional plane in RISJ*! that contains
E. Then P separates the interior of Q(ty,;) from the interior Q(t,;). By Lemma 8.7,

dist(Q (twi), Q(tuj)) = max{dist(Q (tw;). P).dist(Q(zu;). P)}
s max{A(w), A(u)}. 0

For each w € A* and k > |w], set
o= 0@ @®={J) 0w Q=) ey
ueAf, ueAk nzlw|
By (8.1), if w € AN, then limy_ oo diam Q (T (n)) < limy—oo(|s] + 1)/25" = 0.
For each w € AN, denote by x,, the unique point
rw} =) QCwm) = [ ) Quim-
neN neN

Define a map F : (s, de a) — Q. C REIF by F([w]) = xy.

LEMMA 8.10
F is well-defined, and F(Ay) = @y for all w € A*.

Proof
Let [w] = [v] € A, with w # v. By Lemma 6.3, there is an n € N and u, u’ adjacent in
A" such that w = uM > and v = u’1%° (or vice versa).
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Foreach n € N, Q(t,pn) intersects with Q (,,717) on a common entrance. Denote
by p the unique point in (1), cn(Q(Tupn) N Q(twr17)). Then Q(ty (k) and Q(Tyk))
both contain p for all k, and hence F([v]) = F([w]) = p. So F is well-defined.

For the second part, fix n € N and w € A”. For k > n, note that {(ng )} converges
in Hausdorff distance to @,,. By construction, each point of F([+4,]) is contained in
the Hausdorff limit of the sets GZ,(,]f ), and hence in @,,. Thus, F(Ay) C @y .

For the other inclusion, fix p € @,,. Let v = w. For each k > 1, we inductively
set v € Al,,'fl_“:k - A‘,},”Hk to be a word with p € @,, . Let v be the infinite word such
that v(Jw| + k) = vg for all k > 0. Then immediately p = F([v]). Therefore, @,, <
F(Ay). O

It remains to show now that F' is L-bi-Lipschitz with L depending only on s.

Proof of Lemma 8.5
Fix distinct [w], [w’] € 4. Without loss of generality, assume that w precedes w’ in
lexicographic order. Let o be the unique arc in 4 whose endpoints are [w] and [w’].
Let also wg € A* be the longest word such that [w], [w'] € Ay,. Let also i,j € 4
such that [w] € #Ay,; and [w'] € Ay, ;. By maximality of wo, we have that i # j. We
consider the following possible two cases.
Case 1. Suppose that |[i — j| > 1. On one hand, there exists i’ € A such that

Awgir C 0 which implies that

M~ A(wo) < A(woi’) < diamo = de a ([w], [w']) < A(wo).
On the other hand, F([w]) € O(tyi), F([w']) € O(tw,;), and by Lemma 8.7,

M2 A(wo) = dist(Q(tuwgi). Q(Twy)) = |F([w]) = F([w'])]

< diam Q (1) < (Ls] +1)""*A(wo).

Therefore, de a ([w], [w']) ~5 A(wo) ~5 | F([w]) — F([w'])|. This completes the proof
in Case 1.

Case 2. Suppose that |i — j| = 1. Without loss of generality, assume that j =i 4 1.
Let k and / be the unique integers such that

Aypoimk U Ay i1t T C Ay iprk—1 U by, i1

Let also i’, j € A such that [w] € A, ;px-1;, and [w'] € A, 111 ;. Note that i’ #
M, while j’ # 1. On one hand, using the 1-bounded turning property of (+4, de o) and
Lemma 6.3, we have

max{A(woi M¥), A(wo j1')} < Mde a([w], [w'])
< M diam (s, ; pre—1 U Ay, iqi-1)
< 2M max{A(woi M*71), A(wo 171}

< 2M? max{A(woi M¥), A(wo j1")}.
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On the other hand, by Lemma 8.9,
|F([w]) — F([w'])| < max{diam Q(t,,;prx—1).diam Q (ty j11-1)}
< max{A(woi M¥71), A(wo j171)}
< dist(Q (tyginrk—1i)s Q(Tugink—1i7))
<[ F(tw]) = F([w)

with implied constants depending on the parameter s.
Therefore,

|F([w]) — F([w'])] ~s max{A(woi M*¥1), A(wo j1'™ 1)} x4 de a ([w], [w]).

)

This completes the proof in Case 2 and the proof of the lemma. (]

8.2. Proof of Theorem 8.1

Here we prove Theorem 1.8 using two bi-Lipschitz embedding results of Lang and
Plaut [17] and of Seo [25]. The first result says that one can “glue” two bi-Lipschitz
embeddings into a single embedding.

THEOREM 8.11 ([17, Theorem 3.2])

Let X be a metric space, and let X1, X2 C X be closed subsets such that X = X; U X5.
If X1 L1-bi-Lipschitz embeds in R™ and X, L,-bi-Lipschitz embeds in R"2, then X
L-bi-Lipschitz embeds in R"! Frat+l with [ depending on Ly, Ly, ny, and n.

Using Theorem 8.11, we show that balls of X that are appropriately far from £(X)
admit a bi-Lipschitz embedding into some Euclidean space quantitatively.

LEMMA 8.12

Let X be a doubling, bounded turning tree. For every 0 < B < 1, there exist L and
N depending only on the doubling constant of X, the bounded turning constant of X,
and B such that if B(x,r) is a ball with x € X \ £(X) and r < Bdist(x, £(X)), then
B(x,r) admits an L-bi-Lipschitz embedding into RN .

Proof
Fix 0 < B < 1.Let B = B(x,r) be aball with x € X \ £(X) and r < Bdist(x, £(X)).
Let D denote the doubling constant of X and H the bounded turning constant. We
will argue that B is contained in a union of at most K = K(8, D, H) quasi-arcs. By
Proposition 8.2 and Theorem 8.11, the latter implies that B admits an L-bi-Lipschitz
embedding into RY with N and L, depending only on K and D; hence, only on 8, D,
and H.

Let I be the collection of all arcs in X that join x to a leaf of X. For each y € T,
parametrize it by a continuous y: [0, 1] — X such that y(0) = x and y(1) € £(X). Let
xy = y(ty), where

t, =sup{t €[0,1]: y(r) € B}.



Bi-Lipschitz geometry of quasiconformal trees 241

In other words, x, is the “last” point on y contained in B. Similarly, let y, denote the
last point on y contained in B(x,r/B). Note that B and B(x,r/p) are disjoint from
£(X) by assumption, so the points x,, and y, must exist foreach y € I".

Two properties of these points are clear:

(1) If xy # x,, then y, # y,/. In particular,
(8.2) card{x, :y €'} <card{y, :y e I'}.
(2) We have d(x,,,x) =r and d(y,,x)=r/p foreachy e I'.

Finally, let T'y be the collection of arcs joining x to x,,, as y ranges in I'. We will
show that 'y contains a controlled finite number of distinct elements, by showing that
the collection {x, : y € I'} contains a controlled number of distinct elements. Since B
is contained in the union of all arcs of Iy, this will complete the proof.

Suppose y,y’ € T" have x, # x,,. We then claim that

d(yy,yy) = nr

for some constant 1 depending only on D and H.
Indeed, the arc [y, y,-] must contain x,, and hence its diameter is at least

1
> (- _—
d0yx)z (5 =1)r
and so
| 1 /1
d(yy.yy) > T dlam([yy,yy/]) > E(E — l)r =nr.

The total number of different arcs in I'y is controlled by the total number of dis-

tinct x,,, which is controlled by card{y, : y € I'} by (8.2). The points y, form an nr-

separated set in B(x,r/f), and so the cardinality of this set is bounded by a constant
K depending only on 7, 8, and the doubling constant D. O

The second bi-Lipschitz embedding result that we need is Seo’s general bi-Lipschitz
embeddability criterion [25]. In fact, we use a simplified version of Seo’s result pre-
sented by Romney in [23, Theorem 2.2]. Before stating the result, we recall a general-
ized notion of Whitney decomposition for metric measure spaces due to Christ [8] and
Seo [25].

DEFINITION 8.13 ([8, 23, 25])

Let (X,d, ) be a metric measure space, and let 2 be an open proper subset of X.
A collection @ of open subsets of 2 is a Christ—Whitney decomposition of Q if there
exist constants § € (0,1), C; > ¢ > 0, and a > 4 such that the following properties are
satisfied:

e UQe(Q Q is dense in Q.
(2) Forevery Q, Q' € @ with Q # Q’, wehave Q N Q' = @.
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(3) For every Q € @, there exists x € 2 and k € Z such that
B(x,co8%) C Q C B(x,C18%)

and

(a—2)C8k < dist(0. X \ Q) < (“Sﬁ)ak.

LEMMA 8.14 ([8, Theorem 11], [23, Lemma 2.5], [25, Lemma 2.1])
Let X be a doubling metric space and Y be a nonempty closed proper subset of X.
Then X \'Y has a Christ—-Whitney decomposition, with constants 8, co, C1, a absolute.

THEOREM 8.15 ([23, Theorem 2.2] [25, Theorem 1.1])

Let X be a complete metric measure space. Then X admits an L-bi-Lipschitz embed-
ding into some Euclidean space RM if and only if the following conditions hold for
some constants Ly, Lo, My, M5:

(1) X is doubling.

(2) There is a nonempty closed subset of Y C X which admits an L1-bi-Lipschitz
embedding into some RM1,

(3) There is a Christ-Whitney decomposition of X \ 'Y such that each cube
admits an L-bi-Lipschitz embedding into some RM2.

The distortion L and target dimension M of the embedding of X depend only on the
doubling constant of u, My, M», and Ly, L.

Proof of Theorem 8.1

It suffices to show that X satisfies the conditions of Theorem 8.15 with ¥ = £(X).
The doubling property (1) in Theorem 8.15 is satisfied by assumption. We assume that
£(X); hence, Y admits a bi-Lipschitz embedding into some RMi o (2) is assumed to
hold in Theorem 5.1. It remains to prove (3).

By Lemma 8.14, there exists a Christ—-Whitney decomposition @ for some con-
stants § € (0,1), C; > ¢o > 0, and a > 4. Let Q € @ be an arbitrary cube of this
decomposition.

The doubling property of X implies that there exists N € N, depending only on the
doubling constant of X and the constants of the Christ—-Whitney decomposition, and
there exist at most N balls By, ..., B, with centers on Q and of radius %dist( 0.,Y),
such that Q C By U---U B,,. In particular, the balls B; each satisfy the assumptions of
Lemma 8.12 with 8 = %

Thus, by Lemma 8.12, each B; admits an L’-bi-Lipschitz embedding into RM ',
where L’ and M’ depend only on the doubling and bounded turning constants of X.
By Theorem 8.11, Q € By U---U B,, admits an L,-bi-Lipschitz embedding into RM2,
where L, and M, depend only on the doubling and bounded turning constants of X.
This verifies Condition (3) of Theorem 8.15 and completes the proof of Theorem 8.1.

O
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