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ABSTRACT: Seagliders are buoyancy-driven autonomous underwater vehicles whose subsurface position estimates are

typically derived from velocities inferred using a flight model. We present a method for computing velocities and positions

during the different phases typically encountered during a dive–climb profile based on a buoyancy-driven flight model.

We compare these predictions to observations gathered from a Seaglider deployment on the acoustic tracking range in

Dabob Bay (200m depth, mean vehicle speeds ;30 cm s21), permitting us to bound the position accuracy estimates and

understand sources of various errors. We improve position accuracy estimates during long vehicle accelerations by nu-

merically integrating the flight model’s fundamental momentum-balance equations. Overall, based on an automated esti-

mation of flight-model parameters, we confirm previous work that predicted vehicle velocities in the dominant dive and

climb phases are accurate to ,1 cm s21, which bounds the accumulated position error in time. However, in this energetic

tidal basin, position error also accumulates due to unresolved depth-dependent flow superimposed upon an inferred depth-

averaged current.
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1. Introduction

Autonomous underwater gliders, such as the University of

Washington Seaglider, have been routinely used for decades to

collect physical, chemical, and biological oceanographic data

during deployments to various ocean basins lasting days to

over a year. Recently, there has been interest in using gliders

as a platform for acoustic receiving (Van Uffelen et al. 2013,

2016). Gliders equipped with acoustic receiving devices can

complement or be used in place of more traditional, and more

expensive, moored systems or ship-based receivers. However,

particularly for measurements of active acoustic transmissions,

it is important to have precise positioning of the receiver, as

position affects source–receiver range, which in turn affects the

interpretation of measured acoustic arrival times. Further,

proper analysis of mesoscale oceanographic features, such as

fronts and eddies, from glider data collected in GPS-denied

environments, such as under ice (Webster et al. 2014) or during

repetitive subsurface profiles (dive–climb cycles) often re-

quires accurate knowledge of vehicle position.

Glider positions are estimated from vehicle velocities.

Recent work has investigated the use of velocimeters or

onboardADCPs to measure vehicle speed directly through the

water (Todd et al. 2017; Bennett et al. 2019; Merckelbach et al.

2019). However, in addition to the energy expense, proper

interpretation of these data requires an accurate understanding

of sensor-mounting geometry and vehicle attack angle, either

assumed or inferred from a flight model, to estimate speed

along the glide slope (see discussion of attack angle under

section 2).

In lieu of these instruments, most vehicle velocities are es-

timated using a flight model (Eriksen et al. 2001). Prior work

assessing the overall accuracy of these estimated glider veloc-

ities suggests that flight models can estimate velocities through

the water to within 1 cm s21 both vertically (Merckelbach et al.

2010; Frajka-Williams et al. 2011; Rudnick et al. 2013) and

horizontally (Todd et al. 2017; Rudnick et al. 2018) in the open

ocean. The final estimation of glider position also requires a

model or direct measurement of depth-dependent currents

acting upon the glider, especially in parts of the ocean with

strong current structure. Further, different variants of a flight

model (discussed below) may yield different position esti-

mates. For example, a previous study estimated position un-

certainties of Seagliders deployed in the Philippine Sea using

long-range broadband acoustic signals. The acoustically de-

rived position estimates differed from positions based on flight

models by on the order of 650–750m RMS with a difference of

;100m RMS between two flight models for 1000-m-deep

profiles (Van Uffelen et al. 2016, their Table 1).

To identify and potentially reduce the sources of these po-

sitional uncertainties when using a flight model, we deployed a

Seaglider on a high-resolution acoustic tracking range, per-

mitting us to bound the positional accuracy of the flight-model

approach. Here we describe the method traditionally used to

estimate subsurface positions, improve its estimation of ve-

locities and positions, and characterize the magnitude of un-

certainty of each component of the method against the ground

truth of locations provided by the tracking array. Key to

the approach is attention to how vehicle motion is estimated
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during the distinct phases of glider flight during the profile. In

particular, we improve the estimation of velocities and posi-

tions during long vehicle accelerations, which historically have

been neglected.

2. Data and methods

a. The Dabob Bay deployment

We deployed the University of Rhode Island’s Seaglider

SG653 in September 2018 on the Dabob Bay acoustic track-

ing range operated by the Naval Undersea Warfare Center

(NUWC) Division Keyport in Washington State (Snyder et al.

2019). The deployment lasted 68 h during which the vehicle

completed 86 profiles. Target profile depths varied between 45

and 126m depending on the water depth and desire to avoid

bottom-mounted tracking range gear. Profiles typically lasted

;45min and covered ;500m over ground, attaining a mean

vehicle speed of ;30 cm s21. To record flight headings and

vehicle pitch, in-water compass calibration profiles were per-

formed to calibrate the onboard Sparton digital compass

(model SP3003D). Analysis of heading turn rates indicates the

accuracy of reported headings was within 18. GPS locations

were recorded by the vehicle at the beginning and end of

each profile. The average position uncertainty reported by

the Garmin GPS engine (model 15H-W) was 8.3 m. The

vehicle was instrumented with a variety of standard and

experimental sensors in addition to the acoustic pinger used

by the tracking range.

The Dabob Bay facility (12 km long, 2.5 km wide, 200m

deep) is instrumented with a series of short-baseline acoustic

tracking arrays that were used to locate the Seaglider during

daytime operations. Due to various tracking-range restrictions

only 16 profiles had acoustic tracking through their entirety

(the ‘‘tracked profiles’’). The range operates by using differ-

ences in time of receipt of a synchronized acoustic ping from

the vehicle by clusters of hydrophones at known locations to

estimate position based on sound velocity through the water.

The ping encodes a phase-shift key enabling high temporal

resolution and superior rejection of any hull-coupled reemissions

of the ping.

The pinger was resynchronized;45.5 h after the start of the

deployment and required a 0.1 s adjustment to the ping time,

indicating a small pinger clock drift. Under a constant ping

interval assumption (nominally every 4 s), the error in travel

time measured by the range tracking system grows linearly

with the number of pings from the time of synchronization. The

resulting localization error is then related to this travel time

error by sound speed. The expected tracking error was cor-

rected based on sound speed estimated from a conductivity–

temperature–depth (CTD) cast conducted by the range during

the deployment. Ray bending effects in this shallow (;200m)

basin are estimated to be negligible.

Once drift corrections were applied and smoothing of range-

acquired positions was performed due to known acoustic issues

yielding slight timing mismatches, the horizontal acoustic

tracking uncertainty is estimated to be less than 1m, consistent

with the range operator’s reports. However, due to the track

array geometry, the vertical acoustic tracking uncertainty

(.5m) is larger than the vertical track location uncertainty

using depth inferred from the Seaglider’s pressure sensor

(Kistler model 4260M060, ,1m uncertainty); therefore, the

latter was used for all vertical positions.

Dabob Bay, part of Hood Canal and the Salish Sea, expe-

riences substantial tidal exchanges. The tracked profiles appear

to cover at least one complete semidiurnal ebb–flood cycle.

However, no independent measurements of tidal height or

current were obtained on the range during the deployment,

which limits our ability to independently model those motions.

Tidal models (NOAA 2020) of Dabob Bay suggest a height

change of 2m during the tracked portion of the deployment

with estimated tidal currents of 2 cm s21.

Using three-dimensional positions and time stamps from

the aligned track data, vehicle track speed components were

computed by taking the center-first difference between

successive estimates. Speed magnitude along the vehicle

flight track is computed as the square root of the sum of the

squared speed components. These speeds were interpolated

from the track time grid to the nearest glider time sample,

allowing comparison with the speed estimates from the

method described below.

b. A method for estimating Seaglider positions by

profile phase

Direct measurement of vehicle speed and location along its

glide path is typically unavailable. Although measured rate of

change of pressure provides an indication of a vehicle’s vertical

velocity (rise/fall rate), horizontal velocity estimates are flight

model based, from which displacements and hence locations

are derived relative to a GPS fix at profile start. Further, the

vehicle undergoes several substantial periods of drift and ac-

celeration that must be accounted for in addition to the errors

in GPS location. We describe the phase-based method that

accounts for these different flight regimes for typical Seaglider

profiles.

A typical Seaglider profile consists of several distinct phases

(see Fig. 1, top panel):

d an initial surface drift phase during which the vehicle, pos-

itively buoyant and pitched steeply downward, acquires a

starting GPS fix, optionally loiters to collect surface observa-

tions before engaging the variable buoyancy device (VBD) to

become negatively buoyant,
d a flare phase during which the increasingly negatively buoy-

ant vehicle accelerates steeply downward from the surface

rapidly before ‘‘flaring’’ to its desired downward glide

pitch angle,
d the dive phase during which the vehicle flies steadily at a

desired vertical speed and glide slope,
d an apogee phase, starting when the vehicle reaches a pre-

determined depth, during which it pitches to a shallower

downward angle (typically 258 from horizontal) and pumps

the VBD system to become neutrally buoyant, decelerating

to zero vertical speed but maintaining some forward speed,
d an optional loiter phase during which the vehicle drifts,

collecting data at the apogee depth,

1112 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 38

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 06/08/21 05:35 PM UTC



d a climb pump phase during which the vehicle pitches upward

to achieve the desired glide slope and pumps to increase

buoyancy, accelerating the vehicle,
d the climb phase during which the vehicle once again flies

steadily at the desired vertical speed and glide slope toward

the surface, and
d a final surface drift phase that begins when the vehicle

achieves a preset shallow depth (typically ;2m) and during

which it pitches fully down, increases buoyancy to expose the

antenna, gathers a final GPS fix, and finalizes the data files,

marking the end of the profile.

The vehicle speed during each phase is modeled and esti-

mated differently. The velocity of the initial surface drift (and

surface loiter) phase is computed from the differences between

the GPS fixes of previous surfacing and profile start. The final

surface drift phases as well as any apogee loiter phase are as-

sumed to have no speed through the water. A buoyancy-driven

‘‘hydrodynamic’’ flight model (HDM; Eriksen et al. 2001),

summarized briefly below, estimates the horizontal and verti-

cal speed during all other phases.

c. The flight model

Consider a Seaglider flying at a given glide angle umeasured

positive anticlockwise from horizontal as shown in Fig. 2.

Given forces (units: N) of lift L normal to the glide slope

(of sign opposite to u), drag D opposing vehicle velocity, and

buoyancy B (of the same sign as u), the following momentum-

balance equations describe the change in the horizontal U and

upward-positive vertical W vehicle speed components relative

to water motion, where W 5 U tanu:

M
dU

dt
52L sinu2D cosu , (1)

FIG. 1. (top) Depth vs time and phase structure for profile 69. (middle) Along-track

speeds from both acoustic tracking-range (red) and method predictions (blue) for same

profile. (bottom) Subsurface position error marked by phase. See main text for definitions

and discussion.

FIG. 2. Diagram of the forces on a Seaglider during the dive

phase. Forces are lift (L), drag (D), and buoyancy (B). Glider ve-

locity through the water isU andW in the x and z directions, where

u is the glide angle, f is the measured pitch angle, and a is the

attack angle.
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M
dW

dt
5B1L cosu2D sinu . (2)

Lift and drag forces are assumed to take the bulk for-

mula forms:

L5ql2aa , (3)

D5ql2(bqs 1 ca2) , (4)

where a is the lift coefficient, a the attack angle, b the drag

coefficient, c the induced drag coefficient, q the dynamic

pressure, and s is a parameter specifying departure of drag

from linear dependence on dynamic pressure (s 5 0 for a

conventional constant drag coefficient). The ratio of lift and

drag forces to dynamic pressure have the dimension of area,

which we parameterize as l2; the nominal Seaglider hull length

l 5 1.8m is used. Dynamic pressure q 5 r0(U
2 1 W2)/2 where

r0 is a reference density, here fixed at a nominal 1027.5 kgm23.

Wind tunnel studies established that the Seaglider hull shape

has a drag coefficient that varies inversely with the square root

of speed such that s 5 21/4 (Hubbard 1980). The angle of at-

tack a is measured positive anticlockwise from the glide slope,

hence of the same sign as lift and opposite sign to buoyancy,

vertical velocity, and vehicle pitch angle f. In this convention,

pitch angle is the sum of the glide slope angle u and vehicle

angle of attack a, that is, f 5 a 1 u, so glide slope angle is

always steeper than pitch angle, irrespective of sign.

Vehicle buoyancy B is given by

B5 g[rV(t,p,T)2M], (5)

where g is the gravitational acceleration, r the in situ water

density, M the glider mass, and V(t, p, T) the volume of the

glider, which depends on time t, pressure p, and water tem-

perature T. The buoyancy force B results from the difference

between themass of the gliderM and the seawater displaced by

the glider volume V. The total volume V varies over the course

of a profile due to the glider’s hydraulically pumped VBD,

compressibility of the hull and sensors with pressure, and the

expansion of the hull and sensors with temperature:

V(t,p,T)5V
hull

(t)e2[kp2t(T2T0)] , (6)

V
hull

(t)5 (V
0
2 dV

0
)1V

VBD
(t) , (7)

where VVBD(t) is the volume of the VBD system around a

nominal reference point, V0 is a (computed) total reference

volume, T0 is an arbitrary reference temperature, k is the

overall compressibility of the combined hull, any syntactic

foam or foam-filled fairing elements, and sensors for the ve-

hicle, and t is the volumetric thermal expansion. The term dV0

captures any unmodeled bias in vehicle volume (hence density)

due to, for example, oil expansion with temperature, water

uptake by the fiberglass fairing elements, biofouling, etc. In

general, there are no independent measurements of long-term

uncommanded changes in vehicle density. In this model these

changes are reflected as volume changes against an assumed

constant mass. Alternatively, these changes could be reflected

as changes in mass against a constant volume; this is the ap-

proach taken by Rudnick et al. (2013). The convention of

subtracting dV0 from V0 is arbitrary and historical; increasing

dV0 implies a decrease in overall vehicle volume and hence an

increase in its density given constant M.

d. Solutions during steady flight

In steady flight during the dive and climb phases the forces

are in balance and dU/dt and dW/dt both vanish. Given an

accurate set of flight parameters that characterize the partic-

ular vehicle and an estimate of buoyancyB, Eqs. (3) and (4) are

TABLE 1. HDM flight parameters for SG653 in Dabob Bay, September 2018.

Parameter SG653 Units Description

a 0.002 238 7 degrees21 Lift coefficient

b 0.019 109 5 m1/4 kg1/4 s21/2 Drag coefficient

c 5.7 3 1026 degrees22 Induced drag coefficient

V0 55 052.1 cm3 Maximum volume at T 5 T0 5 158C, p 5 0 dbar

assuming vehicle mass M 5 55 783 g

k 5.529 3 1026 dbar21 Vehicle compressibility

t 7.05 3 1025 8C21 Vehicle thermal expansion

FIG. 3. Lift and drag error estimates for SG653 in Dabob Bay,

September 2018. The red circled3 indicates the lift–drag pair that

minimized theRMS value of the vertical velocities of the combined

profiles (0.622 cm s21). Contours show thedifference in expectedRMS

of measured vs predicted vertical velocity from the minimum value,

contoured at an interval of 0.2 up to 0.8 cm s21. The green circled 3
indicates the default lift–drag pair for Seagliders carrying a standard

instrument package. Black 3 symbols indicate stalled solutions.
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used to solve iteratively for q and a while satisfying the steady

versions of Eqs. (1) and (2). Thus, buoyancy serves to constrain

the values of q and a and hence vertical and horizontal speeds.

From q and a, the total vehicle speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 1W2

p
and glide

slope u are determined.

e. Solutions during accelerated flight

The flare, apogee, and climb pump phases, by contrast, in-

volve lengthy (;2min) linear VBD-induced accelerations. The

steady flight model does not apply during these phases, where

buoyancy B and pitch f change rapidly. Historically, motions

during these phases have been neglected and velocities were

assumed to be zero. Here, however, speed is estimated by

solving Eqs. (1) and (2) directly. Substituting Eqs. (3) and (4)

yields expressions for the rates of change ofU andW over time:

dU

dt
5
r
0
l2

2M
[2aaWV2 (b1 ca2)UV] , (8)

dW

dt
5

B

M
1
r
0
l2

2M
[aaUV2 (b1 ca2)WV] . (9)

Given initial U and W values from rest or the steady flight

model and measured f and B, Eqs. (8) and (9) are numerically

integrated to find subsequent speed components as well as

glide and attack angles.

During the dive and climb phases the vehicle course and

speed is controlled through small roll, pitch, and VBD

adjustments; the small accelerations induced by them are

neglected in estimating vehicle trajectory.

f. Estimating depth-varying currents and final method-

predicted speeds

The phase-based method combines the speed estimates for

each phase with vehicle heading to estimate horizontal dis-

placement through the water, assuming vehicle velocity di-

rection is that of the compass. These computed displacements

provide a prediction of the vehicle’s expected surfacing loca-

tion in still water relative to the starting GPS fix. However, the

ocean is rarely still, and the vehicle’s surfacing position reflects

additional displacements from unmeasured currents that can

vary with depth and time over the course of a profile. By de-

fault, and in the absence of an alternative model of these cur-

rents (or their direct measurement), the difference between the

predicted surfacing position and the final GPS position is used

to estimate a uniform depth-averaged current (DAC), which is

assumed to displace the vehicle horizontally during all phases

of the profile, excluding the initial surface drift phase which

is directly measured as mentioned previously. Estimates of

vehicle horizontal speed over ground and hence location

are based on the combination of each phase’s relative speed

through the water and the DAC estimate. The final estimated

along-track speed is based on combined vertical, horizontal, and

DAC speeds along the glide path of the vehicle, referred to as

the ‘‘method-predicted’’ or ‘‘method-estimated’’ speed below.

g. Estimating flight model parameters

To predict vehicle motion relative to in situ water velocities

using the HDM, accurate determination of flight model and

buoyancy parameters is required. Using the steady version of

(1) with the bulk formula parameterizations (3) and (4) for lift

and drag leads to an expression for dynamic pressure:

q5
B sinu

2l2bqs

(
11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4cbqs

a2 tan2u

r )
. (10)

Given a set of assumed values of the flight model parameters

and measured pitch f and buoyancy B, Eq. (10) can be itera-

tively solved with f as an initial guess for u to converge to

steady flight model predictions of q, u,U, andW. Estimation of

the flight model parameters is accomplished by a multivariable

optimization that minimizes a statistical cost function con-

structed from multiple realizations of observed values of pitch

and buoyancy, typically over multiple profiles (Eriksen et al.

2001). Customarily the cost function has been based on the

misfit between observed and predicted vertical velocity W

(Frajka-Williams et al. 2011). (The former, of course, neglects

water vertical motions such as those due to internal gravity

waves, a principal source of the difference.)

Establishing accurate buoyancy parameters, especially the ve-

hicle’smaximumvolumeV0, is critical to obtaining accurate speed

and position estimates based on the hydrodynamic model. If the

estimated value of V0 is, for example, too high, the vehicle will

appear less dense and hence more buoyant. Thus, the predicted

dive speeds will appear slower and predicted climb speeds will

appear faster than actual, leading to rapidly growing position er-

rors during the dive only to improve equally rapidly on the climb.

The appendix describes the automated system used to ac-

curately estimate the flight and buoyancy parameters. Table 1

lists the flight parameters employed to analyze this deploy-

ment. The lift and drag parameters were estimated using a

subset of the trackedprofiles that straddled an ebb–flood cycle to

reduce any directional tidal impact on the estimates (Fig. 3). The

lift parameter is 63% smaller and the drag parameter is 70%

larger than default Seaglider values established by regressions

FIG. 4. Difference of acoustically tracked and model-predicted

along-track vehicle speeds by depth for dive (blue) and climb (red)

phases for profile 69. Solid lines indicate median-filtered differences

using 5 samples (25 s). Black line highlights zero speed difference.
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over numerous previous deployments. The increased drag

parameter for this deployment is consistent with the vehicle

carrying several experimental sensors providing significant

additional drag elements. Other parameter values are Seaglider

defaults, appropriate for this shallow deployment.

h. An alternative model during steady flight

During steady flight, the buoyancy term can be eliminated

from the flight model and vehicle speeds can be estimated

based solely on measured vehicle vertical velocity and pitch.

This variant, called the ‘‘glide slope’’ model (GSM) in Van

Uffelen et al. (2016), which also requires an accurate estimate

of the lift and drag parameters, is used by Todd et al. (2017) and

Rudnick et al. (2018).

Using the steady version of (1) together with (3) and (4)

eliminates dependence on buoyancy B, giving

ca2 1 aa tanu1 bqs 5 0, (11)

an equation quadratic in attack angle a. For known values of

the flightmodel parameters a, b, c, and s, glide slope angle u can

be found by iterative solution to the transcendental equation

for the root of Eq. (11), given knowledge of pitch angle f, and,

in the case s 6¼ 0, vertical speed component W:

f5 u2
a tanu

2c

8<
:12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4bc

a2 tan2u

�
rW2

2 sin2u

�ss 9=
; . (12)

FIG. 5. Speed comparisons for the available acoustically tracked profiles. As in Fig. 1, red

points are acoustic-range estimated vehicle speeds; blue points are phase-based method pre-

dicted speeds. Each profile’s dive and climb phase duration is normalized to 1000 s for ease of

comparison. Speeds are not normalized and are offset from the previous profile by 50 cm s21,

indicated by black lines.
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Solutions are valid for attack angles such that the discriminant

in Eq. (12) is positive. That is, the limiting (stall) attack angle

as is

a
s
52

ffiffiffiffiffiffiffi
bqs

c

r
u

juj . (13)

This formulation utilizes measured vertical velocity de-

rived from vehicle pressure rate of change, neglecting

vertical water velocity. For constant drag coefficient be-

havior (s5 0), the GSM predicts glide slope angle uwithout

reliance on buoyancy B, while the horizontal speed com-

ponent U is estimated from glide slope and vertical vehicle

speed. The GSM cannot be used, in particular, during the

apogee phase because the attack angle becomes large

while the pitch approaches the stall angle and the vehicle

pressure rate of change becomes small; in this case, the

GSM predicts initially accelerating and overall excessive

horizontal velocities.

During steady flight, however, the GSM provides nearly

identical velocity predictions to the HDM when given the

same lift and drag parameters and accurate estimates of

buoyancy B. Indeed, significant differences in speeds be-

tween the GSM and HDM during the dive and climb phases

are diagnostic of misestimation of buoyancy B, typically a

poor estimate of V0 or of incremental changes to dV0 in-

dicating, for example, biofouling. For example, subse-

quent reanalysis using the model described here of the

Philippine Sea deployment data referenced in the intro-

duction improved the estimates of V0, bringing the GSM

and HDM results into agreement and accounting for the

reported ;100 m RMS discrepancy between them. The

analysis of the Dabob Bay deployment data here also

provided an improved V0, accounting for the position

discrepancies between GSM and HDM reported by Snyder

et al. (2019).

Using theGSM to estimate lift and drag parameters requires

an alternative constraint to buoyancy utilized by the HDM-

based regressions discussed above. Rudnick et al. (2018) ob-

served that the depth-averaged current predicted by adjacent

profiles traveling in nearly opposite directions should be the

same and used that to compute the implied drag parameter

assuming a fixed lift coefficient and angle of attack. This

technique, as noted in that work, applies in ocean regimes

where the depth-averaged current is expected to be largely

constant between the required adjacent profiles, an assump-

tion that may be difficult to achieve in an energetic tidal basin

such as Dabob Bay.

Our use of the GSM during Seaglider deployments is ex-

pedient. It is employed at the beginning of the deployment to

estimate speeds before the vehicle’s buoyancy parameters can

be determined and it is used by the vehicle for onboard navi-

gation with respect to a depth-averaged current computed

from GSM estimates of displacements.

The analysis below makes exclusive use of the HDM.

FIG. 6. Median-filtered differences between acoustically tracked and phase-based method predicted vehicle

speeds using 5 samples (25 s) for dive (blue) and climb (red) phases by depth for the 16 available acoustically

tracked profiles. Black lines indicates zero speed difference for each profile. For the horizontal scale, the distance

between vertical black lines represents 15 cm s21.
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3. Results

a. Velocity estimates and position errors in Dabob Bay

The middle panel of Fig. 1 depicts both the along glider-

track measured speed (acoustic tracking-range based) and the

method-estimated speed, including DAC (1.50 cm s21), for

an example profile. (Similar figures for all tracked profiles

are available in the online supplemental data.) The RMS

error between the tracking range and method-estimated

speeds during the steady dive and climb phases for the

profile is 1.63 cm s21. This is largely due to the speed dif-

ferences seen in Fig. 1 just after flare (200–400 elapsed

seconds), just before apogee (600–900 s), and at the end of

climb phase (1800–2000 s). These transient velocity differ-

ences between the tracking-range and method-based speeds

during the dive and climb phases indicate nonconstant

currents unaccounted for by the mean DAC assumption.

Figure 4 shows the speed discrepancy according to the

depth of the profile, indicating a surface-intensified current

shallower than 20 m depth.

The changing speed estimates during accelerations are

clearly visible in the middle panel of Fig. 1, at the start (flare

phase) and in the middle (apogee and climb pump phases) of

the profile. Although additional examples in Fig. 5 suggest the

flight model captures the speeds during these phases reason-

ably well, some systematic discrepancies from the tracked

speed are apparent that are not easily attributable to unre-

solved currents, as discussed below.

During the flare phase, the model can misestimate the onset

of initial acceleration and tends to overestimate speed before

the pitch change just before the dive phase. This is especially

obvious in profile 1 and 2 (Fig. 5). The speed overestimation

during the flare phase may be due to undetected (unmodeled)

trapped air in the aft fairing and antenna stalk causing the

(increasingly negative) buoyancy during flare phase to be less

negative than is monitored by the vehicle buoyancy engine.

Much of this effect is transitory and is less evident in sub-

sequent profiles.

Apogee phase speed is somewhat underestimated and

the predicted minimum speed is consistently smaller than ob-

served. It may be that the simple parameterization of form and

induced drag fails to describe flight in this regime. As the ve-

hicle moves to its apogee pitch (258) and begins decelerating

the predicted attack angles become high (approaching 108),
likely slowing it differently than the simple drag parameteri-

zation predicts.

Figure 5 shows acoustically tracked versus method-estimated

speeds, and Fig. 6 shows the speed differences relative to depth

for the 16 tracked profiles of the deployment. Table 2 sum-

marizes the mean differences between acoustically tracked

versus method-estimated speeds for the tracked profiles

during different phases. As expected, the estimated speeds

during the acceleration phases report higher mean differ-

ences and standard deviations. The mean method-estimated

speeds during dive and climb phases, however, are only slightly

underestimated. No consistent velocity discrepancies that

might be associated with roll side slip (Todd et al. 2017) were

observed.

The mean DAC magnitude over the tracked profiles

was 2.3 6 0.5 cm s21, a nearly 50% reduction compared

with a mean DAC magnitude of 4.7 6 1.9 cm s21 com-

puted under the historical assumption of zero speed

during the acceleration phases. Nonzero speed estimates

during the acceleration phases lead to longer predicted

distances traveled over ground and hence smaller dis-

placements from predicted surfacing locations to final

GPS fixes, reducing DAC magnitudes.

b. Localization estimation and errors in Dabob Bay

Given the method-based speed estimates for the various

phases, displacements are computed from the initial GPS po-

sition, localizing the vehicle during a profile. We compute the

(three-dimensional) distance between the acoustic-range track

location and the method-localized solution and observe how

the position error changes, reflecting the contributions of ve-

locity discrepancies.

The lower panel of Fig. 1 shows the instantaneous localiza-

tion error relative to profile start for profile 69. Given the speed

differences by depth shown in Fig. 4, the error in position in-

creases near the bottom of the dive phase and then again at the

TABLE 2.Mean differences between acoustically tracked and

HDM-estimated speeds for the 16 different tracked profile

phases.

Profile phase Mean speed difference (cm s21)

Flare 27.0 6 9.4

Apogee 2.0 6 2.4

Climb pump 21.7 6 2.7

Dive and climb 0.4 6 2.9

FIG. 7. Position over ground relative to profile 69 start. Acoustic-

range surfacing location (blue star) and GPS-determined surfacing

location (red diamond) with combined starting and final GPS error

shown as red circle. Black lines between tracks indicate corre-

sponding tracking-range positions at same time as phase-based

method predicted positions. RMS of position errors is 8.4m.

Maximum position error is 17.9m (see Fig. 1).
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top of the climb phase. However, overall the localization

error is small (;4% of the 460 m distance covered over

ground) as can be seen in the course-over-ground plot for

profile 69 in Fig. 7. Relative localization errors expressed as

fraction of distance made over ground for all 16 tracked

profiles are shown in Fig. 8.

While some of the position errors are due to poor estimates

of accelerated flight, most are attributable to transient current

FIG. 8. Relative localization error as a percentage of the tracked distance over ground by profile. Colors and

markers are by phase as in Fig. 1. Each profile time is normalized to 3000 s.

FIG. 9. (top)Depth vs time and phase structure for profile 57. (middle)Measured along-track

speeds from both acoustic tracking-range (red) and phase-based method predictions (blue)

for same profile. (bottom) Subsurface position error marked by phase.
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variations with depth during dive and climb phases that are on

the order of theDACmagnitude. A striking example occurs on

profile 57, shown in detail in Fig. 9, with a substantial maximum

position error of 13% of the distance over ground. The local-

ization error for this profile is relatively constant until just

before apogee when the error abruptly increases, continuing

through the apogee and climb pump phases and into the climb

phase itself. This is likely due to increased currents deeper than

60m depth (Fig. 10).

The absolute position estimates (and hence errors) as well

as DAC misestimates depend on the accuracy of the GPS

fixes at the start and end of the profile. As mentioned, the

average GPS fix error for this deployment was on the order

of 8.3 m, adding a potential 8:3
ffiffiffi
2

p
5 11:7m overall absolute

position error to these estimates based on the two indepen-

dent measurements.

4. Discussion

Overall, we find the positional accuracy of the phase-based

method using the buoyancy-driven HDM flight model to be

quite good. Consistent with prior work from open-ocean

deployments of gliders (Todd et al. 2017; Rudnick et al. 2018),

we find the method can yield accurate velocities, on average, to

1 cm s21 (or better) during the long dive and climb phases of

a profile implying horizontal positional errors should grow

slowly and linearly from known starting positions. For exam-

ple, the dive phase of profile 69 (Fig. 1) shows no position error

increase and in spite of errors introduced by misestimated

apogee and climb-pump phase velocities, the profile accumu-

lated only;10m of error over 30 mins, a position error rate of

;0.5 cms21. Similarly, small position errors can be seen in profiles

60 and 62 (Fig. 8), recorded apparently during slack tide.

Accurate estimation of the flight-model and buoyancy

parameters, especially vehicle volume, is critical to achiev-

ing this level of position accuracy. This investigation joins

previous work (Frajka-Williams et al. 2011; Eriksen et al.

2001; Pelland et al. 2016; Bennett et al. 2019) demonstrating

that the HDM-based regressions, utilizing measured pres-

sure rate of change, are able to accurately resolve these

parameters using routinely gathered flight data, especially

when the vehicle explores different glide slopes. The in-

clusion into the regression cost function of measured along-

track or horizontal vehicle speeds from velocimeters or

onboard ADCPs, even intermittently, would further con-

strain and improve flight model parameter estimates, espe-

cially the drag coefficient.

On the relatively short and shallow dives investigated here,

prior versions of the phase-based method assumed the hori-

zontal velocity of the glider during the acceleration phases

of a profile vanished, which distorted both the position and

DAC estimates. As dives lengthen from 45min to 8 h typical

of 1000m ocean deployments, the dive and climb phases

dominate the profile and hence the position error intro-

duced by the zero-speed assumption in these phases could

be neglected. Directly solving the HDM momentum-balance

equations now largely eliminates this source of error, although

opportunities remain for improvement.

The principal residual source of position uncertainty is

the variance of unresolved depth-dependent currents. Short

of a model of such variable currents, bottom-mounted ADCPs

or acoustic positioning systems such as the one used here

will be required to detect the impact of these currents.

Nevertheless, heuristically, with accurate flight parameters,

glider position error via the HDM should grow roughly

linearly from either GPS location during a profile at

;1 cm s21 plus the average variance of DACmagnitude. For

profiles of this deployment, which last 45 min, and a mea-

sured DAC variance of 0.5 cm s21, profile error estimates

should amount to ;47m, which, indeed, comfortably bounds

the measured errors from the tracked dives. The 650m RMS

difference between flight model positions and acoustically

derived positions for 1000-m dives in the Philippine Sea, noted

in the introduction, are consistent with a 7 cm s21 DAC vari-

ance, which is plausible for this highly energetic region where

mean DACs were 18 cm s21 and mean surface drifts were

42 cm s21 (Van Uffelen et al. 2013).
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APPENDIX

Determining HDM Flight Model Parameters
Automatically

Separately we (JSB, FRS, CCE) developed a system (Bennett

et al. 2019) that automatically solves the regressions to de-

termine the hydrodynamic flight model parameters for ev-

ery profile, incrementally, either during or postdeployment.

Based on regression procedures developed by Eriksen et al.

(2001) and Frajka-Williams et al. (2011), and similar to the

method presented by Rudnick et al. (2013), the incremental,

per-profile approach permits the system to detect and

compensate for possible issues during a deployment that

impact lift, drag, or buoyancy such as biofouling, sensor

implosion, water incursion into vehicle fairings and syn-

tactic foam, and ice sloughing. It can alert the pilot of pos-

sible issues with flight dynamics and improvements to

navigation. The system can also be applied to completed

Seaglider deployments.

Given predeployment measurement of the overall vehicle

mass M, the goal of the system is to recover—via various re-

gressions and using per-profile measurements of variable

buoyancy-engine displacement [VVBD(t)], pitch f, water tem-

perature T, pressure p, and in situ seawater density—accurate

values for the flight parameters for each profile as the de-

ployment progresses, and hence recover accurate per-profile

glider speeds and glide angles. The system performs, for each

profile, several, sequenced regressions, described below, that

minimize the overall root-mean-square difference in vertical

velocity as measured by the pressure sensor versus the model

(wrms) of the profiles.

The hydrodynamic flight model describes the vehicle’s

steady flight in still water. To accurately estimate the flight

parameters, the system employs heuristics to select profile

data points that reflect steady flight. Measurements are

discarded when the buoyancy engine is accelerating the

vehicle during the flare, apogee, and climb phases. While

Frajka-Williams et al. (2011) observed that some rolls could

momentarily accelerate the vehicle (see their Fig. 6), this

was likely due to pitch/roll mechanism coupling in that

version of the vehicle. Analyzing rolls over many deploy-

ments we found this effect to be rare, small, and (even in the

deployment they analyzed) negligible. Thus, data during

rolls and small pitch adjustments are retained, which per-

mits, for example, compass-calibration profiles employing

constant roll to be used in the regressions.

The seawater temperature and in situ density used dur-

ing the regressions are estimated from the uncorrected

values returned from the conductivity–temperature (CT)

instrument, before any speed-dependent thermal-inertia

adjustments are performed; the typical impact of these

adjustments for the purposes of estimating the flight pa-

rameters was found to be negligible. However, any con-

ductivity anomalies (e.g., from bubbles or organisms) electrical

spikes in temperature, etc. are removed. Other quality-control

heuristics ensure that the pressure sensor, compass (for pitch),

and the CT system are operating properly before using a pro-

file’s data. Finally, the system selects points where the mea-

sured vertical velocity is changing slowly, indicating relatively

quiet water.

Overall, for new each profile, the system first determines any

adjustments to buoyancy B by solving for changed volume (dV0)

and compressibility (k) against an estimated reference volume

(V0), assuming the current best estimates of lift (a) coeffi-

cient, drag (b) coefficient, and compressibility. Second, the

system determines the current flight regime itself, lift and

drag in particular, using subsets of adjacent profiles selected

at regular intervals.

At the beginning of a deployment the system assumes the

vehicle’s flight regime is characterized by a set of previ-

ously characterized default flight parameters by vehicle type

(Seaglider, Deepglider, etc.). Subsequent regressions, how-

ever, can determine whether these parameter values are in-

appropriate and the system will reprocess previous profiles

with improved sets of parameters.

Following Frajka-Williams et al. (2011), various sensitivity

analyses indicate that variance in several parameters have

negligible impact on speed estimates and can thus be esti-

mated once and fixed for each vehicle type. For example,

s is determined by hull shape. The induced drag parameter

c was empirically estimated for each vehicle type by inves-

tigating near-stall and flat-spin behavior of some profiles;

however, changing c even by an order of magnitude has very

little impact on the a and b choices found by the system. The

hull thermal expansion coefficient t is dominated by the hull

material and is treated as constant.

a. Determining Buoyancy Forcing: Estimating
V0, dV0, and k

Accurate determination of buoyancy forcing B for each

profile requires estimating the buoyancy parameters V0, dV0,

and k in Eqs. (6) and (7).

Estimating the overall reference volume V0 is done in two

steps. While processing the first profile, the system estimates

V0,initial viaM/rapo, where rapo is the measured in situ seawater

density at apogee when VVBD(t) 5 0. However, this initial

assumption is often poor. Typically, there are bubbles trap-

ped in the fairing that must be dissolved and the buoyancy

system is not always adjusted to reflect true neutral buoy-

ancy at apogee. Nevertheless, with a V0,initial estimated, the

system is able to then estimate, per profile, a dV0 such that

(V0,initial 2 dV0) reflects accurate vehicle density and there-

fore B.

Once the system estimates dV0 values for several additional,

early profiles with an assumed V0,initial it then recomputes a

final V0 that would reduce the mean dV0 value of these

profiles to zero. The contributing profiles are then re-

processed against these modified (V0 2 dV0) values and all

subsequent profiles assume this final V0. A typical V0,initial to

finalV0 adjustment is;100 cm3. Note that this procedure for

estimating V0 does not require an accurate vehicle mass M.

As long as the measurement of in situ seawater density is
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accurate, V0 (and its associated per-profile dV0) will be

scaled properly to yield accurate buoyancies, which are a

matter of relative, not absolute, densities.

Given a V0, the system regresses dV0 and then k for each

profile assuming the current best guess for lift and drag pa-

rameters in order to minimize the profile’s wrms. If the best

guess for lift and drag change subsequently (see below) dV0

and k are automatically reestimated.

The compressibility k of the vehicle is estimated using

profiles to depths greater than 500m where the effect on hull

volume is appreciable. While dominated by the compress-

ibility of the hull material (aluminum or carbon fiber) the

mean value of k was observed to change slightly per vehi-

cle and per deployment, which likely reflects the different,

combined compressibility of the hull, sensors, and fairing

components.

b. Determining Lift and Drag Flight Regimes

The system combines profile data and buoyancy B estimates

from subsets of adjacent profiles to estimate a single lift a and

drag b pair that minimizes the combined wrms of those profiles.

To compare solutions between different sets of profiles and

visualize the range of acceptable a–b pairs, the system imple-

ments this ‘‘regression’’ by solvingwrms at fixed a–b grid points.

The result of one such grid search for the Dabob Bay deploy-

ment is shown in Fig. 3.

The choice of grid points reflects empirical observations

of typical solution contours for a range of vehicle types.

Overall the minimized wrms solutions resembles a shallow

bowl where most of the minimum solutions typically lie in

the lower-left corner of the grid space. Very low-lift and

high-drag pairs in the upper-left corner of the space often

lead to substantially stalled solutions (indicated by black 3
symbols in Fig. 3).

The grid solution frequency varies as the deployment

unfolds. Initially a search is performed every 4 profiles until

profile 16, when it increases to every 8 profiles, until profile

40, when it increases to 16 profiles. More frequent early

solutions quickly characterize the vehicle, permitting the

pilot to adjust onboard flight parameters used for naviga-

tion. Later solutions permit detection of major changes in

lift and drag coefficients. If the lift and drag values do

change from the previous best guess from the last grid

search (say, due to biofouling), each intervening profile’s

dV0 and k is provisionally recomputed using the new values

of a and b; the a–b pair with the lowest wrms is applied to

each profile and the profile is reprocessed if needed using

any changed flight parameters. In this way all profiles are

constantly updated to reflect the best composite parameter

estimates.

Frajka-Williams et al. (2011) observed that the drag coeffi-

cient b is better constrained by combining profiles with very

different pitches angles and, therefore, angles of attack on

the water. The system attempts to combine recent profiles

that maximize the spread of pitch angles routinely ob-

tained by those profiles. However, to minimize the time to

compute a grid search, the system selects a subset of the

profiles that maximizes the spread of pitch angles within

those profiles and minimizes the number of total data

points used in the search.

Empirically we find that a spread of vehicle pitch angles

exceeding roughly 78 provide well-constrained values of b. For

long transects between distant targets, the desired vehicle

pitch requested on sequential profiles is often constant;

however, steeply pitched profiles occur when attempting to

achieve nearby waypoints/targets. If the set of profiles used

in a grid search does not have a good spread of pitch angles

the system alerts the pilot, recommending a steeply pitched

profile. This can often be accomplished automatically on long

transects by placing intermediate waypoints/targets along the

transects. Short transect or bowtie sampling patterns, in contrast,

provide steep profiles frequently enough to avoid the alert re-

quest. For example, the grid regression result shown in Fig. 3 is

based on a pitch angle spread of 188–288 where the steep profiles

regularly occurred as the vehicle approached the transect navi-

gation targets at the two ends of the Dabob Bay channel.
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