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Abstract

Most research aimed at measuring biomarkers on the skin is only concerned with sensing chemicals in sweat using electrical
signals, but these methods are not truly non-invasive nor non-intrusive because they require substantial amounts of sweat to get a
reading. This project aims to create a truly non-invasive wearable sensor that continuously detects the gaseous acetone (a
biomarker related to metabolic disorders) that ambiently comes out of the skin. Composite films of polyaniline and cellulose acetate,
exhibiting chemo-mechanical actuation upon exposure to gaseous acetone, were tested in the headspaces above multiple
solutions containing acetone, ethanol, and water to gauge response sensitivity, selectivity, and repeatability. The bending of the
films in response to exposures to these environments was tracked by an automatic video processing code, which was found to out-
perform an off-the-shelf deep neural network-based tracker. Using principal component analysis, we showed that the film bending is
low dimensional with over 90% of the shape changes being captured with just two parameters. We constructed forward models to
predict shape changes from the known exposure history and found that a linear model can explain 40% of the observed variance in
film tip angle changes. We constructed inverse models, going from third order fits of shape changes to acetone concentrations
where about 45% of the acetone variation and about 30% of ethanol variation are captured by linear models, and non-linear models
did not perform substantially better. This suggests there is sufficient sensitivity and inherent selectivity of the films. These models,
however, provide evidence for substantial hysteretic or long-time-scale responses of the PANI films, seemingly due to the presence
of water. Further experiments will allow more accurate discrimination of unknown exposure environments. Nevertheless, the sensor
will operate with high selectivity in low sweat body locations, like behind the ear or on the nails.
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Introduction

The presence and concentrations of gaseous products of metabolic processes in the breath, often volatile organic compounds
(VOCs), are well-established indicators of the state of one’s health, and measuring these has been the subject of much research
[1-12]. However, even the apparently trivial work of blowing into a breathalyzer is a task that requires active intent and thus may
suffer from subject compliance issues for continuous health monitoring. Further, the results of such breathalyzer analyses provide
only a momentary snapshot. This has given rise to a new, totally non- intrusive vision for health monitoring. This new vision, the
subject of many recent investigations, is that of continuous biomarker monitoring via wearable devices [13—25].
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Most investigations aimed at monitoring biomarkers with wearables, including the few fully functional and available devices, involve
change independently of the health conditions being monitored. This shortcoming is best put by Ganguly et al. who acknowledge
that the “influence of a sweat constituent, such as an electrolyte, on a given biomarker (in the sweat) and the corresponding sensor
readout is not accounted for,” by the currently available sweat monitors because standardizing sensor readouts across the
multitudinous compositions of sweat is such a monumental challenge [13]. Further, sweat is not continuously emitted in stable
quantities, again making continuous monitoring challenging.

One proposed solution for truly continuous, truly non-invasive monitoring is skin gas sensing: that is, via analysis of the gaseous
biomarkers continuously and ambiently emitted directly from the skin. Biomarkers observed in the breath are known to be emitted
from the skin, continuously and in quantities proportional to quantities seen in the breath, allowing for easy selection of target
analytes [4—6, 30—33]. Further, the continuous emanation of skin gases means that their analysis could proceed non-invasively and
with no conscious effort from the subject. Thus, skin-gas biomarker monitoring combines the most attractive features of breath
sensing and sweat sensing.

The first step toward novel wearable devices for continuous, non-invasive skin-gas sensing is the establishment of sensing
materials that are sensitive and selective to analytes of interest. One such analyte of interest that is found in breath and skin-gas is
acetone, the concentration of which in the breath has been studied in relation to blood sugar levels and fat burning rates and could

sensitivity and selectivity of a novel chemo-mechanical actuator, developed to detect gaseous acetone [14].

The chemo-mechanical actuator we propose is a polyaniline-cellulose acetate (PANI-CA) composite film that bends upon exposure
to gaseous acetone; we refer to this response as being chemo-mechanical, as the film responds with mechanical deformation when
exposed to acetone [14]. This chemo-mechanical response is to be contrasted from electrochemical responses previously used for
acetone sensing [35]. Previous tests of this novel chemo-mechanical actuating material focused on the responses of single
exposures to dilutions of acetone in water and dilutions of three alcohols in water [14]. The alcohol tested in this previous
investigation that elicited the greatest bending response was ethanol, which is not just an important interferent to be aware of but
also a target analyte not just for measuring intoxication but also liver disease, so it was investigated here as the most relevant
possible interferant to acetone sensing [12]. This previous investigation of the novel PANI-CA chemo-mechanical actuator and the
relevance of acetone and ethanol inspired our current investigation of the PANI-CA response to repeated exposure to various
dilutions of acetone and ethanol. Such new work was explicitly aimed at investigating the influence of repeated exposure to species
eliciting actuator responses from the start, something not previously investigated at all, but interest in investigating methods of
tracking the actuator response grew along the way.

Polyaniline (PANI), a conjugated polymer derived from the organic solvent aniline, has long been known to exhibit intrinsic electrical
conductivity. PANI can exist as fully oxidized pernigraniline, half oxidized-half reduced emeraldine, or fully reduced
leucoemeraldine, and each of these oxidation states has a fully protonated salt and a fully deprotonated base version; the
emeraldine salt is known to conduct most strongly [1]. The structure of the leucoemeraldine salt is presented in Fig_1A. Cellulose
acetate (CA) is a derivative of the enormously abundant and inexpensive biopolymer cellulose. Because CA has much more robust
mechanical properties than PANI, PANI and CA have been combined as a composite, PANI-CA (Fig_1B), to take advantage of
PANI’s conductivity while mitigating PANI’s relatively poor stability and mechanical properties [2].

Fig 1. A novel chemo-mechanical actuator.

(A) The structure of leucoemeraldine salt of PANI. (B) A film of polyaniline cellulose acetate (PANI-CA) composite. (C) A PANI-
CA film bending in response to gases in the headspace of the conical flask. The solution in the flask has water, acetone,
and/or ethanol.

https://doi.org/10.1371/journal.pone.0267311.g001

This PANI-CA composite has previously been shown to exhibit chemo-mechanical actuation upon exposure to gaseous acetone,
bending in response to acetone exposure. Presented here is a study of the repeated exposure of strips cut from PANI-CA
composite films to the headspaces above samples of pure acetone, pure ethanol, and mixtures of these with each other and with
water [2]. Our study is aimed at establishing the sensitivity, selectivity, and reproducibility of sensing acetone vapor by measuring
the chemo-mechanical actuation of the PANI-CA composite films.

Methods

Fabricating the PANI-CA films
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The novel, chemo-mechanical actuating films were prepared by first proton-doping leucoemeraldine base PANI (Sigma) with
concentrated hydrochloric acid (Fisher) for 24 hours, then washing off the acid with water and drying at room temperature in an
open container. Dry, doped PANI was suspended in acetone (Fisher) and combined with 50,000 g/mol number-average molecular
weight CA (Sigma) in a 1:5 mass ratio. This mixture was then dried in a loosely covered container at room temperature to leave
behind a composite film. Fig_1B displays an image of a PANI-CA composite film representative of those used in the experiments
presented here.

Testing the chemo-sensitivity of PANI-CA films

Strips measuring approximately 6 mm by 25 mm were cut from full PANI-CA films. We tested 8 strips, obtained by cutting out 2
strips each from 4 larger films. Any small residual curvature in these strips was left uncorrected before testing. Headspace
exposure environments were prepared by pouring 60 mL of various pure solvents or mixtures of solvents into 125 mL conical flasks.
The headspace exposure environments used here were those above the solvents and mixtures that are identified in Table 1. Each
PANI-CA strip was exposed to each of the 6 headspace environments 5 times, giving a total of 30 exposure tests with each PANI-
CA strip. The exposure order for each PANI-CA strip was randomized (the random order drawn from a uniform distribution over all
permutations using MATLAB); 5 unique sets of random permutations of the integers 1 through 6 were generated and strung
together to make a string of 30 exposure tests for each test specimen. Ethanol used here was manufactured by Decon Labs, Inc.
Water used here was purified from tap water with an ELGA PURELAB Chorus purification system.

Table 1. Volatile mixtures tested.
https://doi.org/10.1371/journal.pone.0267311.t001

Each headspace exposure test consisted of recording a video of the PANI-CA strip suspended in the headspace above a solution,
as shown in Fig_1C. All headspace exposure tests of a given PANI-CA strip were conducted in immediate succession with 60
seconds between exposure tests. In the 60 seconds between successive exposure tests, the PANI-CA strip was suspended in an
empty 125 mL conical flask as if a headspace exposure test were ongoing. The duration 60 seconds was selected to allow for
substantial recovery of the PANI-CA strip from its final bent state resulting from the previous test, based on time-constants of
deformation observed in pilot trials. Flasks not being actively used for a test were covered with paraffin film to minimize changes in
headspace composition between tests. Each headspace exposure test was run until the PANI-CA strip reached a clear maximum
deflection or appeared to reach a steady state of deflection, as determined by visual inspection. All headspace exposure tests were
recorded with the 12 MP camera on a Samsung Galaxy S8+ smartphone that was mounted in a tripod. The 60 second interludes
between exposure tests were not recorded.

Computer vision-based automatic tracking of filament shape

First, the videos were analyzed by manually determining the timestamp of the maximum deflection in each test video. After this
manual analysis, we performed computer vision-based tracking of the bending film, described in sequence below. For this
computer-based analysis and for the rest of the manuscript, only 4 out of the 8 strips were analyzed: specimens 1 through 4,
collected from films 1 and 2, exhibited high degrees of non-ideal deformation, twisting laterally out of the video image plane. We
ignored films exhibiting such out of plane deformation in this study; we will examine them in a future study or engineer forming
processes to prevent them in future work.

Videos were first cropped and magnified to focus on the filament, cropping out inconsequential visual details such as the flask
holding the solution. These cropped videos were then processed by a bespoke MATLAB program, which first splits the video into
frames at 30 Hz, and then converts them into binary black and white images (Fig_2). From the binary black and white image, we
extracted the shape of the filament as follows: we computed a single contiguous path from the root of the filament to the tip of the
filament by scanning each horizontal line of pixels, and then computing the mean of the black pixels on that line as the midpoint of
the filament. This procedure works well when the filament monotonically goes down from root to tip and does not curl upwards. To
also track the midpoint when the curve curls upwards, for each horizontal like of pixels we also performed a k-means clustering,
with two clusters. If the two clusters are substantial and are separated by the typical thickness of the filament, then it means that the
current level has two sections of the filament, one going down and another going up after having curled up. We then stepped from
the root downward following either the global mean or one of the two clusters of the k-means process and rearranging these points
in a list in a manner that they form a single path that went from root to tip even when the filament curled up. We defined the filament
tip as the last 25% of the total length along the filament and computed the angle that this tip made with the horizontal. This mean tip
angle was computed by considering all the points that comprise the tip (last 25%), performing a principal components analysis
(PCA), and then picking the direction of the first principal component vector. By definition, this is the direction in which the cluster of
points have the greatest variance, which we define to be the filament direction.
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Fig 2. Image processing and computer vision.

Some steps in the automatic analysis of the video are outlined. (A) RGB images from the video frames are converted to
binary black and while images. (B) Binary images are processed to extract a contiguous midline through the filament. This
midline path is then used to determine shape features such as angle of turn, curvature, etc.
https://doi.org/10.1371/journal.pone.0267311.g002

Tracking the filament with manual labeling and DeepLabCut

We used two other methods of tracking the filament shape. First, we did manual tracking of the filament shape by the following
method: a computer program displayed a frame of the video at 5 seconds apart to a human user; the human user then clicks on 7
points on the filament, starting from root to tip, and then moving to the next frame. The 7 points are asked to be roughly equidistant,
but for our analysis, they need not be exactly equidistant. We used cubic spline interpolation to densely fill the rest of the filament
between these points. This manual tracking provided a ‘ground truth’ for evaluating the accuracy of the automatic tracking. We
performed this manual tracking for two of the filaments.

Our automatic tracking algorithm from the previous paragraph relied on relatively classical image processing and machine learning
methods: binary thresholding and k-means clustering. We sought to test whether more modern computer vision techniques could
track the filament better. To do this, we used the Deep Neural Networks based software called DeepLabCut [36]. This software
allows a user to train the system by clicking on a few key points on a few frames (5—-20 frames, say), and then using ‘transfer
learning’ to allow it to deduce the salient features of these key points so that it may identify them in the rest of the frames [37]. We
processed one of the longer videos with this procedure.

Filament shape complexity: Dimensionality reduction

While the filament shapes look relatively simple to the human eye, we sought to see if the set of filament shapes was indeed as low
dimensional as it seemed. So, we performed principal components analysis on the full set of points comprising the tracked filament
shapes, across all time and across all exposure conditions. This PCA then results in the principal components, which are the
directions along which the shape variance is highest (first PC), second highest (second PC) and so on. This method allows us to
see what the effective dimensionality of the filament shape is—that is, how many numbers it takes to represent the shape of the
filament to a certain degree of accuracy.

Forward and inverse predictive models

We constructed two types of models: (1) forward models that attempt to predict the filament bending response based on acetone
and ethanol exposures, and (2) inverse models that attempt to predict the acetone and ethanol concentrations based on
characteristics of the filament bending response.

Forward models.

As an example of a forward model, we computed a linear model from acetone and ethanol fractions in solution to the delta change
in the tip angle over a trial as well as the dominant time constants of the bending response. We tested whether inclusion of the
initial angle for each trial in the inputs changed the predictive power. A more general forward model would be a time-series model or
differential equation model that aims to explain the shape changes of the filament given the changes in the acetone or ethanol
fractions.

Inverse models.

As an example of inverse models that go from the bending response to the acetone and ethanol concentrations, we first fit a triple
exponential to the tip angle transient response to every new exposure: , with the coefficients (ag, a1, as, ag) and the exponents (A,
Ao, A3) being the unknowns solved by fitting to the data. These parameters describe how the tip angle changes. We then fit a linear
model that took these parameters as input during each exposure phase to predict the corresponding acetone and ethanol
concentrations.

Results

Validating the automatic tracking of filament shape

In Eig_3A, we can see a depiction of the filament shape changes, specifically, its dramatic bending as it is exposed to acetone. Such
automatic tracking of the filament shape was well-correlated with the manually collected tracking data. Specifically, as seen in Eig
3B, the tip angle variation computed using automatic tracking is closely predicted by the tip angle changes computed by manually
obtained tracking data, having a 93% R for a cubic polynomial model that predicts the automatic results from the manual results.
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Fig 3. Validating automatic filament tracking.

(A) Automatically reconstructed filament shape changes are shown for one trial. The final 25% of the filament length, labeled
by the red and black solid circles are used to compute the tip direction (green). (B) Automatic computer-vision-based tracking
the filament agrees well with manual tracking of the filament.

https://doi.org/10.1371/journal.pone.0267311.g003

Deep neural network based filament tracking using DeepLabCut

As seen in Fig 4, the automatic computer vision-based tracking of 7 key points on the filament was not as good as the classical
image processing based approach, especially in the initial few frames of the video. The initial few frames of the video were critical
for the tasks herein, because those frames represented the initial few seconds of exposure, which often involved fast changes in
filament shape. Because this approach was not clearly better than our other approaches, we did not pursue this approach further
for this project. The software, DeepLabCut, may have had difficulty with tracking the 7 key points because, except for the root and
the tip, the points do not lie on visually distinctive regions.

Fig 4. Tracking with deep neural networks.

DNN-based tool DeepLabCut produced tracking well correlated with the manually obtained ground truth. The colored dots are
the key point location predicted by the tool. The predicted key points had greater errors in the initial frames of the video
compared to the later frames.

https://doi.org/10.1371/journal.pone.0267311.9g004

Simplicity and dimensionality of film shape

We found that the filament shape can be quite accurately represented using 1 to 4 parameters. Specifically, Fig 5A shows the
cumulative variance explained by the first few principal components (PCs). The first PC accounts for around 80% of the variance,
and the first two PCs can capture 95% of the shape variance. This means that representing the shape of the filament as a linear
combination of the first two PCs (plus the mean shape) can represent the filament with high accuracy. As seen in Fig_5B, a linear
combination of the first two PCs essentially changes the overall orientation of the filament. Using the third and the fourth principal
component in the linear sum results in capturing over 99.5% of the variance. Given the high explanatory power of a few principal
components, we posit that describing the filament shape with one or two variables would be sufficient to build predictive models
between filament shape and volatile compound concentrations.

Fig 5. Dimensionality of the bending filament.

(A) We find that one principal component captures about 80% of the variance across a whole thirty-exposure trial. Two
principal components capture over 95% and four capture over 99.5%. Curves are shown for specimen 5 (blue) and specimen
6 (red). (B) The shapes of the principal components are shown; linear combinations of the first two PCs produce different
orientations and the third and the fourth PCs control bending to the left versus the right.
https://doi.org/10.1371/journal.pone.0267311.9g005

Acetone and ethanol concentrations affect the speed but not steady state of the filament

We did not see any systematic correlation between the steady state bending state (tip angle) of the filament and the
acetone/ethanol concentrations. However, we do see systematic changes in the speed or vigor of the response with the nature of
the solution (Eig_6). A loose trend can be seen here that with increasing concentrations of acetone, a faster response time is
seen; here the response time reported is the time to maximum deflection.
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Fig 6. Speed of deflection.

The time to maximum deflection changes systematically between exposures to the different acetone and ethanol
concentrations but there is a large range in the responses.

https://doi.org/10.1371/journal.pone.0267311.9006

Forward and inverse predictive models

Fig_7A and 7B show continuous time-series of acetone fraction, ethanol fraction, and the corresponding tip angle changes over
nearly 6000 seconds. The goal of predictive models is to relate the volatile compound concentrations to the tip angle (Eig_7A and
7B), and vice versa. We found that going from the shape changes (described via parameters of a triple exponential) to the acetone
concentration via a linear model has a 45% R° (which is 67% correlation between prediction and actual value). This R? value
indicates some predictive ability for the shape changes, but with some errors. Indeed, only the constant term and the exponents of
the exponential matter for this linear model; including the other coefficients increases R? by only 5%. Conversely, building a forward
model to predict the change in tip angle from the acetone and ethanol concentrations via a linear-model results in similar
explanatory power (about 40% F.’Q). We posit that a key mechanism for this not-too-high explanatory power is the presence of
history dependence (hysteresis), which could be captured by models with additional state variables—for instance, characterizing the
internal state of the filament and thus its propensity to bend.

Fig 7. Predictions from filament bending and predictions of filament bending.

(A) A sample series of 30 exposures to varying solution fractions of acetone, ethanol and water are shown. (B) The filament

tip angles (relative to some absolute orientation) are shown as a time series. These correspond to the exposures in panel-a.
Pred|ct|n% the acetone fraction in solution using a linear model based on fitting a triple exponential to transients gives

about 0.45 R* value, suggesting some but not perfect predictive ability. (D) Predicting the change in tip angle over a trial using

the acetone fraction, ethanol fraction, and the initial angle using a linear model gives about 0.4 R? value. (E) The initial angle

for each trial-which was the angle to which the filament relaxed after the previous trial-changes over time, suggesting

hysteresis, or slower time-scale processes over many tens of minutes.

https://doi.org/10.1371/journal.pone.0267311.g007

Discussion

The most striking result of this work is the degree of exposure-history dependence that the samples displayed. The next most
significant result reported here is the trend in response time reported in Fig_6. First there is the difference in response time seen
between exposures to solutions 1 and 2, which were pure acetone and pure ethanol. Then, there is the similarity in response time
seen between most exposures to solutions 3 and 4, which both consist of half acetone by volume fraction but are alternatively
completed by ethanol and water. Together, these demonstrate that not only is the sensitivity to acetone greater than the
sensitivity to ethanol when considered as pure solvents but also that the presence of acetone overpowers the response to
ethanol so much that responses to solutions 3 and 4 were largely indistinguishable. This is further supported by the response times
to exposures to solution 5, which was composed of equal volume fractions of ethanol and water; such response times mostly
resembled the response times to exposure to pure ethanol. This raises the question of the effect of water on the measurements,
which in turn guides us to position the sensor strips behind the ears or on the nails, for example.

Other important result includes the fact that our original tracking program strongly agreed with the manual tracking and the fact that
nearly all of the bending variance can be attributed to 4 principal components. These mean that no new computer vision tracking
program will have to be written for future experiments and that the performance consistency of samples made in the future can be
measured against this benchmark of 4 principal components to totally describe their motion. Furthermore, it has been made
apparent that additional sample modification is required for the use of DNN tracking to monitor sample bending; some method of
making points on the samples more visually distinctive would be needed. An ideal marking method would involve making marks
that are easy for the computer to see but also do not influence the motion of the sample by mechanical or chemical means.

Two other significant questions are raised here that will be the focus of future investigation. The first of these is if the tremendous
magnitude of exposure history dependence seen here retains this level of influence when the entire history of the sample includes
only exposures to analyte concentrations on the much lower magnitudes representative of VOC concentrations that are emitted
from human skin. The second is what extra steps can be taken to produce samples that behave more uniformly therefore efforts are
underway to standardize the size, shape and thickness of the sensing strips.
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