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POTENTIAL FUNCTION-BASED FRAMEWORK FOR MINIMIZING
GRADIENTS IN CONVEX AND MIN-MAX OPTIMIZATION\ast 
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Abstract. Making the gradients small is a fundamental optimization problem that has eluded
unifying and simple convergence arguments in first-order optimization, so far primarily reserved for
other convergence criteria, such as reducing the optimality gap. In particular, while many different
potential function-based frameworks covering broad classes of algorithms exist for optimality gap-
based convergence guarantees, we are not aware of such general frameworks addressing the gradient
norm guarantees. To fill this gap, we introduce a novel potential function-based framework to study
the convergence of standard methods for making the gradients small in smooth convex optimization
and convex-concave min-max optimization. Our framework is intuitive and provides a lens for viewing
algorithms that makes the gradients small as being driven by a trade-off between reducing either
the gradient norm or a certain notion of an optimality gap. On the lower bounds side, we discuss
tightness of the obtained convergence results for the convex setup and provide a new lower bound
for minimizing norm of cocoercive operators that allows us to argue about optimality of methods in
the min-max setup.
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1. Introduction. One of the most basic facts in convex optimization is that
a differentiable convex function attains its minimum at a point where its gradient
equals zero, provided such a point exists. Thus, it is tempting to conclude that
there is no difference between minimizing the function value or its gradient (in any
suitable norm). This is only partially true, as we are almost never guaranteed to find
a point at which the function is minimized; instead, we opt for a more modest goal
of approximating such points. As it turns out, from an algorithmic point of view,
there are major differences between guarantees provided for the function value (or
optimality gap) and norm of its gradient.

Much of the standard optimization literature on smooth (gradient-Lipschitz) con-
vex first-order optimization has been concerned with providing guarantees for the op-
timality gap. There is comparatively much less work on guarantees for the norm of
the gradient, most of it being initiated after the work of Nesterov [50], which argued
that such guarantees are natural and more informative than those based on the func-
tion value for certain linearly constrained optimization problems that frequently arise
in applications. Further, unlike the optimality gap, which would require knowledge
of the minimum function value to be usable as a stopping criterion, the norm of the
gradient is readily available to the algorithm as a stopping criterion, as standard first-
order methods define their iterates based on the gradient information. This insight is
particularly useful for the design of parameter-free algorithms (i.e., algorithms that do
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POTENTIAL FUNCTIONS FOR MINIMIZING GRADIENTS 1669

not require knowledge of function parameters such as smoothness, strong convexity,
or sharpness/constants of the \Lojasiewicz inequality; see, e.g., [5, 12, 41, 42]), and as
such has been used to design parameter-free algorithms that are near-optimal in terms
of iteration complexity (i.e., optimal up to poly-logarithmic factors) [29, 40, 51]. The
basic idea in these algorithms is to adaptively restart a method with a gradient norm
guarantee every time the gradient norm is reduced by constant factor, typically equal
to two. The total number of restarts then becomes logarithmic, while the number of
iterations between restarts can be bounded using the strong convexity or sharpness
assumption, without the need for explicit algorithm knowledge of those constants.

As for L-smooth functions the norm of the gradient can be bounded above as a
function of the optimality gap f(\bfitx )  - f(\bfitx \ast ), where \bfitx \ast \in argmin\bfitx f(\bfitx ), using

(1.1)
1

2L
\| \nabla f(\bfitx )\| 2 \leq f(\bfitx )  - f(\bfitx \ast ),

it is not surprising that convergence rates can be established for gradient norm mini-
mization. What is surprising, however, is that those rates can be faster than what is
implied by (1.1) and existing results for convergence in function value/optimality gap.
In particular, methods that are optimal in terms of iteration complexity for minimiz-
ing the optimality gap are not necessarily optimal for gradient norm optimization,
and vice versa. More specifically, the fast gradient method (FGM) of Nesterov [54] is
iteration complexity-optimal for minimizing the optimality gap, but it is suboptimal
for minimizing the gradient norm [15, 31].

More generally, the existing literature has not yet shed light on what is the basic
mechanism that drives algorithms for gradient norm minimization. The only known
iteration complexity-optimal algorithm with respect to (w.r.t.) initial function con-
dition f(\bfitx 0)  - f(\bfitx \ast ) for minimizing the norm of the gradient of a smooth convex
function is due to Kim and Fessler [32].1 This algorithm was obtained by using the
performance estimation (PEP) framework of Drori and Teboulle [22], originally devel-
oped for understanding the worst-case performance of optimization algorithms. The
algorithm [32] itself and its convergence analysis are inferred from numerical solu-
tions to a semidefinite program (SDP). As such, the intuition behind what is driving
the convergence analysis of the algorithm and how the improved convergence rate
is obtained is lacking, which constitutes an impediment to possibly generalizing this
algorithm to other optimization settings.

Even less is known in the setting of smooth convex-concave min-max optimization,
where (near-)optimal convergence results have been established only recently [17, 30,
38, 60, 72] and the problem has been much less studied from the aspect of oracle
lower bounds [17, 25, 56]. In particular, similar to the case of convex optimization,
classical methods for min-max optimization that are optimal for reducing the primal-
dual gap, such as, e.g., the extragradient method [33], mirror-prox [45], and dual
extrapolation [49], are suboptimal in terms of iteration complexity for minimizing the
gradient norm. Interestingly, however, the methods that turn out to be (near-)optimal
were originally studied in the context of fixed point iterations [27, 34, 43].

In this paper, we introduce a novel potential function-based framework to study
the convergence in gradient norm for smooth convex and convex-concave optimization
problems. Our framework is intuitive, as it relies on establishing convergence of stan-
dard methods by interpreting it as a trade-off between reducing the gradient norm and
reducing a notion of an optimality gap. The same view can be adopted in a unifying

1The optimality of the algorithm can be certified using the lower bounds from, e.g., [15, 47, 48].
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1670 JELENA DIAKONIKOLAS AND PUQIAN WANG

manner for methods such as standard gradient descent, Nesterov FGM [54], the opti-
mized method of Kim and Fessler [32], gradient descent-ascent (which is equivalent to
the Krasnosel'ski{\i}--Mann iteration [34, 43]; see section 3.1), and Halpern iteration [27].
We further complement these results with a discussion of optimality of the considered
methods for convex optimization, and with a new lower bound for minimizing the
norm of cocoercive operators (see section 1.2 for a precise definition and relationship
to min-max optimization), which allows us to discuss optimality of gradient descent-
ascent and Halpern iteration as methods for minimizing the gradient norm in smooth
convex-concave min-max optimization.

1.1. Further related work. Understanding the phenomenon of acceleration
and providing a unifying theory of first-order optimization algorithms, often based on
the use of potential functions, has been an important topic in optimization research,
with a flurry of recent research activity in this area [1, 4, 6, 7, 8, 9, 11, 14, 19, 20,
21, 24, 28, 35, 37, 39, 61, 62, 63, 65, 66, 69, 70, 71, 74]. However, the existing liter-
ature has almost exclusively focused on the optimality gap guarantees, with only a
small subset of results seeking to provide guarantees for gradient norm and primarily
addressing FGM-type algorithms with suboptimal rates [6, 19, 44, 62]. An excep-
tion is [36], which appeared subsequent to our work. In particular, [36] provided a
geometric interpretation of acceleration, which allowed the authors to construct po-
tential functions that led to a method that generalizes [32] to the setting of composite
(smooth plus nonsmooth) optimization.

Complementary to the literature discussed above, whose focus has been on de-
riving intuitive convergence analysis frameworks, another line of work has focused on
using the SDP-based performance estimation framework of Drori and Teboulle [22] to
investigate the worst-case performance of optimization algorithms [16, 30, 31, 32, 38,
67, 68]. Most relevant to our work among these results are the following: [31], which
investigated the worst-case performance of FGM-type methods in terms of gradient
norm minimization; [32], which obtained the first (and so far, the only) iteration
complexity-optimal algorithm for minimizing the gradient norm of smooth convex
functions; and [38], which obtained a tight worst-case convergence bound for Halpern
iteration. While the SDP-based approach used in this line of work is useful for un-
derstanding the worst-case performance of existing algorithms (and even obtaining
new algorithms [32]), its downside is that, because the convergence arguments are
computer-assisted (namely, they are inferred from numerical solutions to SDPs), they
are generally not suitable for developing intuition about what is driving the methods
and their analysis.

Finally, from the aspect of lower bounds, gradient norm minimization is well
understood in the setting of convex optimization [15, 47, 48]. For min-max optimiza-
tion, [17] provided near-tight lower bounds in the first-order oracle model, using the
lower bound for optimality gap from [56] and algorithmic reductions between different
problem classes. The lower bounds provided in this paper are tight; however, they
apply to the more restricted complexity model, where the algorithm iterates are re-
quired to lie in the span of previously queried gradients [47, 48]. To obtain these lower
bounds, we build on the techniques developed in [2, 3]. Subsequent to our work, [72]
also provided similar tight lower bounds in the same complexity model by establish-
ing a connection between the lower bounds for solving linear systems of equations
from [47, 48] and biaffine min-max optimization problems. The work [72] has also
discussed how to generalize such lower bounds to the gradient oracle model.
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POTENTIAL FUNCTIONS FOR MINIMIZING GRADIENTS 1671

1.2. Notation and preliminaries. Throughout this paper, we consider the
Euclidean space (Rd, \| \cdot \| ), where \| \cdot \| =

\sqrt{} 
\langle \cdot , \cdot \rangle is the Euclidean norm and \langle \cdot , \cdot \rangle 

denotes any inner product on Rd. We use \{ Ak\} k\geq 0 and \{ Bk\} \geq 0 to denote sequences
of nondecreasing, nonnegative numbers, and define a0 = A0, ak = Ak  - Ak - 1 for
k \geq 1, and, similarly, b0 = B0, bk = Bk  - Bk - 1 for k \geq 1.

We consider two main problem setups: (i) making the gradients small in convex
optimization, and (ii) making the gradients small in min-max optimization.

Convex optimization. In the first setup, we assume we are given first-order oracle
access to a convex continuously differentiable function f : Rd \rightarrow R. The first-order
definition of convexity then applies, and we have

(\forall \bfitx ,\bfity \in Rd) : f(\bfity ) \geq f(\bfitx ) + \langle \nabla f(\bfitx ),\bfity  - \bfitx \rangle .

We further assume that f is L-smooth, i.e., that its gradients are L-Lipschitz contin-
uous:

(\forall \bfitx ,\bfity \in Rd) : \| \nabla f(\bfitx )  - \nabla f(\bfity )\| \leq L\| \bfitx  - \bfity \| .

Recall that smoothness of f implies

(1.2) (\forall \bfitx ,\bfity \in Rd) : f(\bfity ) \leq f(\bfitx ) + \langle \nabla f(\bfitx ),\bfity  - \bfitx \rangle +
L

2
\| \bfity  - \bfitx \| 2.

The goal of the first setup is to, given \epsilon > 0, construct a point \bfitx such that
\| \nabla f(\bfitx )\| \leq \epsilon in as few iterations (oracle queries to the gradient of f) as possible.
A useful fact that turns out to be crucial for the analysis in the convex case is the
following (see, e.g., [73, section 3.5]).

Fact 1.1. A continuously differentiable function f : Rd \rightarrow R is L-smooth and
convex if and only if

(1.3) (\forall \bfitx ,\bfity \in Rd) :
1

2L
\| \nabla f(\bfity )  - \nabla f(\bfitx )\| 2 \leq f(\bfity )  - f(\bfitx )  - \langle \nabla f(\bfitx ),\bfity  - \bfitx \rangle .

Observe that Fact 1.1 fully characterizes the class of smooth convex functions,
and, as such, should be sufficient for analyzing any algorithm that addresses problems
from this class.2 An immediate consequence of Fact 1.1 is that the gradient of a
smooth convex function is cocoercive, i.e.,

(1.4) \langle \nabla f(\bfitx )  - \nabla f(\bfity ),\bfitx  - \bfity \rangle \geq 1

L
\| \nabla f(\bfitx )  - \nabla f(\bfity )\| 2.

Min-max optimization. In the second setup, we are given oracle access to gradi-
ents of a function \phi : Rd1 \times Rd2 \rightarrow R, where d1 + d2 = d. Function \phi (\bfitx ,\bfity ) is assumed
to be convex-concave: convex in the first argument (\bfitx ) when the second argument (\bfity )
is fixed and concave in the second argument (\bfity ) when the first argument (\bfitx ) is fixed,
for any values of \bfitx ,\bfity . Similar to the case of convex optimization, the goal in this case
is, given \epsilon > 0, to find a pair of points (\bfitx ,\bfity ) \in Rd1 \times Rd2 such that \| \nabla \phi (\bfitx ,\bfity )\| \leq \epsilon 
in as few iterations (oracle queries to the gradient of \phi ) as possible.

2This statement can be further formalized to claim that, in fact, the inequality from (1.3) eval-
uated only at the iterates and at the optimum is sufficient for the analysis of almost all standard
algorithms for smooth convex optimization. This is a consequence of the tightness of PEPs from [68].
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1672 JELENA DIAKONIKOLAS AND PUQIAN WANG

We consider the problem of minimizing the norm of the gradient of \phi as the

problem of minimizing the norm of the operator F (\bfitu ) =
\bigl[ \nabla \bfitx \phi (\bfitx ,\bfity )
 - \nabla \bfity \phi (\bfitx ,\bfity )

\bigr] 
, where \bfitu =

\bigl[ 
\bfitx 
\bfity 

\bigr] 
.

When \phi is convex-concave, F is monotone [58], i.e., it holds that

(1.5) (\forall \bfitu ,\bfitv \in Rd) : \langle F (\bfitu )  - F (\bfitv ),\bfitu  - \bfitv \rangle \geq 0.

We will assume throughout that F is 1
L -cocoercive, i.e., that

(1.6) (\forall \bfitu , \bfitv \in Rd) : \langle F (\bfitu )  - F (\bfitv ),\bfitu  - \bfitv \rangle \geq 1

L
\| F (\bfitu )  - F (\bfitv )\| 2.

Cocoercivity of F implies that it is monotone and L-Lipschitz. The opposite does
not hold, in general, unless F is the gradient of a smooth convex function (as we
saw in the case of convex optimization described earlier). Nevertheless, cocoercivity
is sufficient to capture the main algorithmic ideas of smooth min-max optimization,
and the extensions to general smooth min-max optimization are possible through
the use of approximate resolvent operators (see, e.g., [17]). Further, it suffices to
consider unconstrained problems, as extensions to constrained optimization problems
are possible in a straightforward manner using a notion of operator mapping (see,
e.g., [17], where a similar idea was used).

We assume here that there exists a point \bfitu \ast \in Rd such that F (\bfitu \ast ) = 0. Due to
cocoercivity of F (see (1.6)), this assumption implies that

(1.7) (\forall \bfitu \in Rd) : \langle F (\bfitu ),\bfitu  - \bfitu \ast \rangle \geq 1

L
\| F (\bfitu )\| 2.

It will be useful to think of \langle F (\bfitu ),\bfitu  - \bfitu \ast \rangle as a notion of ``optimality gap"" for min-max
optimization problems, as, using convexity-concavity of \phi , we have

(\forall (\bfitx ,\bfity ) \in Rd1 \times Rd2) : \phi (\bfitx ,\bfity \ast )  - \phi (\bfitx ,\bfity ) + \phi (\bfitx ,\bfity )  - \phi (\bfitx \ast ,\bfity ) \leq \langle F (\bfitu ),\bfitu  - \bfitu \ast \rangle .

2. Small gradients in convex optimization. In this section, we consider
the problem of minimizing the norm of the gradient of a smooth convex function.
We show that all standard methods, including standard gradient descent, the fast
gradient method of Nesterov [54], and the optimized gradient method of Kim and
Fessler [32], can be captured within an intuitive potential function-based framework,
where the progress of a method is established through a trade-off between the norm
of the gradient and the optimality gap. Further, the complete convergence analysis
of each of the methods can be fully carried out using only the cocoercivity inequality
from (1.3), which fully characterizes the class of smooth convex functions.

2.1. Gradient descent. As a warmup, we start by considering L-smooth but
possibly nonconvex objectives f. In this case, all that can be said about f is that its
gradients are L-Lipschitz, which implies (1.2). Further, for any descent-type method,
we cannot hope to bound the norm of the last gradient---all that we can hope for is
the average or the minimum over all seen gradients. The simplest way to see this is
by considering the one dimensional case: if the function is locally concave and the
algorithm moves in the direction that reduces the function value, the absolute value
of the function derivative must increase.

Thus, assuming that the function is bounded below by some f \star >  - \infty , it is
natural to consider methods that in each iteration either reduce the function value or
the norm of the gradient. Such methods ensure that \forall k \geq 0,

ak\| \nabla f(\bfitx k)\| 2 + f(\bfitx k+1)  - f(\bfitx k) \leq 0,
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POTENTIAL FUNCTIONS FOR MINIMIZING GRADIENTS 1673

or, equivalently, that the potential function

(2.1) \scrC k =
k\sum 

i=0

ai\| \nabla f(\bfitx i)\| 2+f(\bfitx k+1)

is nonincreasing, where ai is some sequence of positive numbers. Equivalently, such
methods ensure that ak\| \nabla f(\bfitx k)\| 2 + f(\bfitx k+1)  - f(\bfitx k) \leq 0 \forall k \geq 0.

As the only assumption we are making about f is that it is L-smooth, the most we
can do to bound f(\bfitx k+1) - f(\bfitx k) is use (1.2). The tightest bound on f(\bfitx k+1) - f(\bfitx k)
that can be obtained from (1.2) is attained when \bfitx k+1 = \bfitx k  - 1

L\nabla f(\bfitx k) (i.e., for the
standard gradient descent step) and is given by f(\bfitx k+1) - f(\bfitx k) \leq  - 1

2L\| \nabla f(\bfitx k)\| 2, in
which case the largest ak we can choose is ak = 1

2L .
3 As \scrC k is nonincreasing, it follows

that \scrC k \leq \scrC 0, and we recover the familiar convergence bound of gradient descent:

(2.2)
1

k + 1

k\sum 
i=0

\| \nabla f(\bfitx i)\| 2 \leq 2L(f(\bfitx 0)  - f(\bfitx k+1))

k + 1
\leq 2L(f(\bfitx 0)  - f \star )

k + 1
.

When considering the case of a convex objective function f, the first question to
ask is how would convexity help to improve the bound from (2.2). The first observation
to make is that Fact 1.1 fully characterizes the class of smooth convex functions, and,
thus, (1.3) should be enough to carry out the analysis of any algorithm for smooth
convex functions.

Given that the function is convex, in this case it seems reasonable to hope that we
can obtain a bound on the gradient norm at the last iterate. Thus, we could consider
a potential function of the form

\scrC k = Ak\| \nabla f(\bfitx k)\| 2 + f(\bfitx k)

and try enforcing the condition that \scrC k \leq \scrC k - 1 for Ak that grows as fast as possible
with the iteration count k. This approach precisely gives the bound \| \nabla f(\bfitx k)\| 2 \leq 
2L(f(\bfitx 0) - f(\bfitx \ast ))

2k+1 , which is tight (see, e.g., [32, Lemma 5.2]). While such an upper
bound was already proved in [32, Theorem 5.1] using the PEP framework [22], we
note that the argument we provide here is directly motivated by the trade-off between
minimizing the gradient norm and the optimality gap, which is the main unifying
feature of the potential functions provided in our work.

Lemma 2.1 (convergence of gradient descent). Let f : Rd \rightarrow R be an L-smooth
function that attains its minimum on Rd, and let \bfitx \ast \in argmin\bfitx \in Rd f(\bfitx ). Let \bfitx 0 \in Rd

be an arbitrary initial point and assume that the sequence \{ \bfitx k\} k\geq 0 evolves according
to the standard gradient descent, i.e., \bfitx k+1 = \bfitx k  - 1

L\nabla f(\bfitx k) \forall k \geq 0. Then

\scrC k =
k

L
\| \nabla f(\bfitx k)\| 2 + f(\bfitx k)

is nonincreasing with k, and we can conclude that \forall k \geq 0

\| \nabla f(\bfitx k)\| 2 \leq 2L(f(\bfitx 0)  - f(\bfitx \ast ))

2k + 1
.

3This specific inequality is also known as the ``descent lemma."" Analysis of gradient descent
based on telescoping this inequality appears in standard optimization texts.
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1674 JELENA DIAKONIKOLAS AND PUQIAN WANG

Proof. We start by showing that \scrC k+1 \leq \scrC k \forall k \geq 0. By the definition of \scrC k,

\scrC k+1  - \scrC k \leq k + 1

L
\| \nabla f(\bfitx k+1)\| 2  - k

L
\| \nabla f(\bfitx k)\| 2 + f(\bfitx k+1)  - f(\bfitx k).

Applying Fact 1.1 with \bfitx = \bfitx k+1 = \bfitx k  - 1
L\nabla f(\bfitx k) and \bfity = \bfitx k, it follows that

f(\bfitx k+1)  - f(\bfitx k) \leq  - 1
2L\| \nabla f(\bfitx k+1)\| 2  - 1

2L\| \nabla f(\bfitx k)\| 2, and thus

\scrC k+1  - \scrC k \leq 2k + 1

2L
\| \nabla f(\bfitx k+1)\| 2  - 2k + 1

2L
\| \nabla f(\bfitx k)\| 2.

To complete the proof that \scrC k+1 \leq \scrC k, it remains to argue that \| \nabla f(\bfitx k+1)\| \leq 
\| \nabla f(\bfitx k)\| \forall k \geq 0. This is clearly true if \| \nabla f(\bfitx k+1)\| = 0, so assume \| \nabla f(\bfitx k+1)\| \not = 0.
Applying (1.4) with \bfitx = \bfitx k+1 = \bfitx k  - 1

L\nabla f(\bfitx k), \bfity = \bfitx k, and simplifying, it follows
that

\| \nabla f(\bfitx k+1)\| 2 \leq \langle \nabla f(\bfitx k+1),\nabla f(\bfitx k)\rangle \leq \| \nabla f(\bfitx k+1)\| \| \nabla f(\bfitx k)\| ,

where the last inequality is by Cauchy--Schwarz. To conclude that \| \nabla f(\bfitx k+1)\| \leq 
\| \nabla f(\bfitx k)\| , it remains to divide both sides of the last inequality by \| \nabla f(\bfitx k+1)\| .

From the first part of the proof, it follows that \scrC k \leq \scrC 0, and thus

k

L
\| \nabla f(\bfitx k)\| 2 \leq f(\bfitx 0)  - f(\bfitx k) = f(\bfitx 0)  - f(\bfitx \ast ) + f(\bfitx \ast )  - f(\bfitx k).

It remains to observe that f(\bfitx \ast ) - f(\bfitx k) \leq  - 1
2L\| \nabla f(\bfitx k)\| 2, which follows by applying

Fact 1.1 with \bfitx = \bfitx \ast , \bfity = \bfitx k, and rearranging.

2.2. Methods that are faster than gradient descent. The potential func-
tions we have seen so far (for gradient descent) trade off the gradient norm (squared)
with the function value. Equivalently, we can view them as trading off the gradient
norm with the optimality gap f(\bfitx k) - f(\bfitx \ast ), as f(\bfitx \ast ) would cancel out in the analysis
and the same argument would go through.

It is reasonable to ask whether we can obtain faster algorithms by using a different
trade-off, say, by considering potential functions of the form \scrC k = Ak\| \nabla f(\bfitx k)\| 2 +

Bk(f(\bfitx k) - f(\bfitx \ast )) or \scrC k =
\sum k

i=0 ai\| \nabla f(\bfitx i)\| 2 +Bk(f(\bfitx k) - f(\bfitx \ast )), where Bk is some
positive function of the iteration count k.

Observe that for nonconstant Bk, one way or another, we would need to account
for \bfitx \ast , which is not known to the algorithm. This happens because in \scrC k  - \scrC k - 1 with
nonconstant Bk, f(\bfitx \ast ) does not get cancelled out. However, there are at least two
ways around this issue. The first one is to utilize (1.3) to bound below f(\bfitx \ast ). This
approach does not lead to the optimal iteration complexity, but improves the overall
bound compared to gradient descent and recovers a variant of Nesterov FGM. The
second approach is to replace the optimality gap with a gap to some reference point.
In particular, as we show below, optimized gradient method [32] can be viewed as
using the final point of the algorithm \bfitx N as the reference (or anchor) point.

2.2.1. Fast gradient method. We start by considering a potential function
that offers a different trade-off between the norm of the gradient and the optimality
gap, defined by

(2.3) \scrC k =
k - 1\sum 
i=0

ai\| \nabla f(\bfitx i)\| 2 + Bk(f(\bfitx k)  - f(\bfitx \ast )),
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where ai > 0 \forall i \geq 0 and the sequence of scalars Bk > 0 \forall k \geq 0 is strictly increasing.
We also define bk = Bk  - Bk - 1 > 0. By convention, the summation from i to j where
j < i is taken to be zero. Observe that

(2.4) \scrC 0 = B0(f(\bfitx 0)  - f(\bfitx \ast )).

While, in principle, one could also consider \scrC k = Ak\| \nabla f(\bfitx k)\| 2 + Bk(f(\bfitx k)  - 
f(\bfitx \ast )) hoping to obtain a bound on the last gradient, it is not clear that such a
bound is even possible for nonconstant Bk (see section 2.3).

We first show that there is a natural algorithm that ensures \scrC k+1  - \scrC k \leq Ek

\forall k \geq 0, where Ek contains only telescoping terms. As it turns out, this algorithm is
precisely Nesterov FGM.

Lemma 2.2. Given an arbitrary initial point \bfitx 0 \in Rd, assume that for k \geq 1, the
sequence \bfitx k is updated as

(2.5) \bfitx k =
Bk - 1

Bk

\Bigl( 
\bfitx k - 1  - 

1

L
\nabla f(\bfitx k - 1)

\Bigr) 
+

bk
Bk

\bfitv k,

where \bfitv k is defined recursively via \bfitv k = \bfitv k - 1  - bk - 1

L \nabla f(\bfitx k - 1) with \bfitv 0 = \bfitx 0. If

bk
2 \leq Bk and ak - 1 \leq Bk - 1

2L , then \scrC k  - \scrC k - 1 \leq L
2

\bigl( 
\| \bfitx \ast  - \bfitv k\| 2  - \| \bfitx \ast  - \bfitv k+1\| 2

\bigr) 
\forall k \geq 1,

where \scrC k is defined by (2.3).

Proof. Given k \geq 1, by definition of \scrC k, we have

(2.6) \scrC k  - \scrC k - 1 = ak - 1\| \nabla f(\bfitx k - 1)\| 2 + Bkf(\bfitx k)  - Bk - 1f(\bfitx k - 1)  - bkf(\bfitx \ast ).

Since f(\bfitx \ast ) is not known to the algorithm and we are trying to bound \scrC k  - \scrC k - 1

above, it appears natural to use (1.3) to bound f(\bfitx \ast ) below. In particular, we have

(2.7) f(\bfitx \ast ) \geq f(\bfitx k) + \langle \nabla f(\bfitx k),\bfitx \ast  - \bfitx k\rangle +
1

2L
\| \nabla f(\bfitx k)\| 2.

On the other hand, the difference f(\bfitx k) - f(\bfitx k - 1) can be bounded above using, again,
(1.3), as follows:

(2.8)
f(\bfitx k)  - f(\bfitx k - 1) \leq 

\biggl\langle 
\nabla f(\bfitx k),\bfitx k  - \bfitx k - 1 +

1

L
\nabla f(\bfitx k - 1)

\biggr\rangle 
 - 1

2L
\| \nabla f(\bfitx k)\| 2  - 1

2L
\| \nabla f(\bfitx k - 1)\| 2.

Combining (2.7) and (2.8) with (2.6), we have
(2.9)

\scrC k  - \scrC k - 1 \leq  - Bk

2L
\| \nabla f(\bfitx k)\| 2 +

\Bigl( 
ak - 1  - 

Bk - 1

2L

\Bigr) 
\| \nabla f(\bfitx k - 1)\| 2

+ Bk - 1

\biggl\langle 
\nabla f(\bfitx k),\bfitx k  - \bfitx k - 1 +

1

L
\nabla f(\bfitx k - 1)

\biggr\rangle 
+ bk \langle \nabla f(\bfitx k),\bfitx k  - \bfitx \ast \rangle .

Now, if bk were zero (constant Bk), we could simply set \bfitx k = \bfitx k - 1 - 1
L\nabla f(\bfitx k - 1), and

we would be recovering gradient descent and its analysis from the previous subsection.
Of course, the goal here is to get a different trade-off, where Bk is strictly increasing.

To get a useful bound on \scrC k  - \scrC k - 1, we need to be able to bound or otherwise
control the term bk \langle \nabla f(\bfitx k),\bfitx k  - \bfitx \ast \rangle . Fortunately, such a term frequently appears
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in the mirror-descent-type analysis, and it can be bounded using standard arguments
by defining

\bfitv k+1 = argmin
\bfitu \in Rd

\biggl\{ 
bk \langle \nabla f(\bfitx k),\bfitu  - \bfitv k\rangle +

L

2
\| \bfitu  - \bfitv k\| 2

\biggr\} 
= \bfitv k  - bk

L
\nabla f(\bfitx k).

Then, we have

bk \langle \nabla f(\bfitx k),\bfitx k  - \bfitx \ast \rangle = bk \langle \nabla f(\bfitx k),\bfitx k  - \bfitv k+1\rangle + L \langle \bfitv k  - \bfitv k+1,\bfitv k+1  - \bfitx \ast \rangle 

= bk \langle \nabla f(\bfitx k),\bfitx k  - \bfitv k\rangle +
bk

2

L
\| \nabla f(\bfitx k)\| 2

+
L

2
\| \bfitx \ast  - \bfitv k\| 2  - 

L

2
\| \bfitx \ast  - \bfitv k+1\| 2  - 

L

2
\| \bfitv k+1  - \bfitv k\| 2

= bk \langle \nabla f(\bfitx k),\bfitx k  - \bfitv k\rangle +
bk

2

2L
\| \nabla f(\bfitx k)\| 2

+
L

2
\| \bfitx \ast  - \bfitv k\| 2  - 

L

2
\| \bfitx \ast  - \bfitv k+1\| 2,

where we have repeatedly used \bfitv k+1 = \bfitv k  - bk
L \nabla f(\bfitx k). Combining with (2.9), we

have

\scrC k  - \scrC k - 1 \leq bk
2  - Bk

2L
\| \nabla f(\bfitx k)\| 2 +

\Bigl( 
ak - 1  - 

Bk - 1

2L

\Bigr) 
\| \nabla f(\bfitx k - 1)\| 2

+
L

2
\| \bfitx \ast  - \bfitv k\| 2  - 

L

2
\| \bfitx \ast  - \bfitv k+1\| 2

+

\biggl\langle 
\nabla f(\bfitx k), Bk\bfitx k  - Bk - 1

\Bigl( 
\bfitx k - 1  - 

1

L
\nabla f(\bfitx k - 1)

\Bigr) 
 - bk\bfitv k

\biggr\rangle 
.

To obtain \scrC k  - \scrC k - 1 \leq L
2 \| \bfitx 

\ast  - \bfitv k\| 2 - L
2 \| \bfitx 

\ast  - \bfitv k+1\| 2, it remains to choose bk
2 \leq Bk,

ak - 1 \leq Bk - 1

2L , and \bfitx k = Bk - 1

Bk

\bigl( 
\bfitx k - 1  - 1

L\nabla f(\bfitx k - 1)
\bigr) 

+ bk
Bk

\bfitv k.

We can now use Lemma 2.2 to argue about convergence of Nesterov FGM from
(2.5). Interestingly, the result from Lemma 2.2 suffices to argue about both conver-
gence in function value and in norm of the gradient. Although both bounds are known
(see, e.g., [19, 31, 54, 62]), to the best of our knowledge, this is the first analysis that
simultaneously leads to both convergence guarantees.

Theorem 2.3 (convergence of fast gradient method). Suppose that the assump-
tions of Lemma 2.2 hold, where \bfitv 0 = \bfitx 0. Then \forall k \geq 1,

f(\bfitx k)  - f(\bfitx \ast ) \leq 2B0(f(\bfitx 0)  - f(\bfitx \ast )) + L\| \bfitx 0  - \bfitx \ast \| 2

2Bk

and

k\sum 
i=0

ai\| \nabla f(\bfitx i)\| 2 \leq B0(f(\bfitx 0)  - f(\bfitx \ast )) +
L

2
\| \bfitx 0  - \bfitx \ast \| 2.

In particular, if b0 = B0= 1, bk
2 = Bk for k \geq 1, and ak = Bk

2L , then

f(\bfitx k)  - f(\bfitx \ast ) \leq 4L\| \bfitx 0  - \bfitx \ast \| 2

(k + 1)(k + 2)
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and

min
0\leq i\leq k

\| \nabla f(\bfitx i)\| 2 \leq 
\sum k

i=0 Bi\| \nabla f(\bfitx i)\| 2\sum k
i=0 Bi

\leq 18L2\| \bfitx 0  - \bfitx \ast \| 2

(k + 1)(k + 2)(k + 3)
.

Proof. Applying Lemma 2.2 and the definition of \scrC k, we have \forall k \geq 1,

\scrC k \leq \scrC 0 +
L

2
\| \bfitx \ast  - \bfitv 0\| 2  - 

L

2
\| \bfitv k+1  - \bfitx \ast \| 2

\leq B0(f(\bfitx 0)  - f(\bfitx \ast )) +
L

2
\| \bfitx \ast  - \bfitx 0\| 2.

Equivalently,

k - 1\sum 
i=0

ai\| \nabla f(\bfitx i)\| 2 + Bk(f(\bfitx k)  - f(\bfitx \ast )) \leq B0(f(\bfitx 0)  - f(\bfitx \ast )) +
L

2
\| \bfitx \ast  - \bfitx 0\| 2.

The first part of the theorem is now immediate, as
\sum k - 1

i=0 ai\| \nabla f(\bfitx i)\| 2 \geq 0 and

Bk(f(\bfitx k)  - f(\bfitx \ast )) \geq Bk

2L
\| \nabla f(\bfitx k)\| 2 \geq ak\| \nabla f(\bfitx k)\| 2.

For the second part, we need only bound the growth of Bk when bk
2 = (Bk - Bk - 1)2 =

Bk. It is a standard result that this growth is quadratic and at least as fast as the

growth resulting from choosing bk = k+1
2 \forall k. Thus, Bk \geq 

\sum k
i=0

i+1
2 = (k+1)(k+2)

4 and\sum k
i=0 Bi \geq (k+1)(k+2)(k+3)

12 . Using that f(\bfitx 0)  - f(\bfitx \ast ) \leq L
2 \| \bfitx 0  - \bfitx \ast \| 2, it now follows

from the first part of the theorem that

f(\bfitx k)  - f(\bfitx \ast ) \leq 4L\| \bfitx 0  - \bfitx \ast \| 2

(k + 1)(k + 2)

and

min
0\leq i\leq k

\| \nabla f(\bfitx i)\| 2 \leq 
\sum k

i=0 Bi\| \nabla f(\bfitx i)\| 2\sum k
i=0 Bi

\leq 18L2\| \bfitx 0  - \bfitx \ast \| 2

(k + 1)(k + 2)(k + 3)
,

as claimed.

The bounds presented in Theorem 2.3 are tight in the worst-case sense, up to
small multiplicative constants. The tightness of the O(1/k2) convergence bound for
the optimality gap is well known [46, 52], with a recent lower bound of Drori [23] even
providing a tight constant. The tightness of the O(1/k3) bound for the minimum
squared norm of the gradient was demonstrated numerically in [31, Table 3] and [68,
section 4.3].

Remark 2.4. It may not be immediately clear why the bound from Theorem 2.3
improves upon the bound for gradient descent from Lemma 2.1, as in the former the
gradient is bounded as a function of \| \bfitx \ast  - \bfitx 0\| 2, while in the latter it is bounded as a
function of f(\bfitx 0) - f(\bfitx \ast ). Here, one should note that, using the standard convergence

result for the optimality gap of gradient descent f(\bfitx k)  - f(\bfitx \ast ) = O
\bigl( L\| \bfitx 0 - \bfitx \ast \| 2

k

\bigr) 
and combining it with the bound from Lemma 2.1, we also have that \| \nabla f(\bfitx k)\| 2 =

O
\bigl( 
L(

f(\bfitx \lceil k/2\rceil ) - f(\bfitx \ast )

k )
\bigr) 

= O
\bigl( L2\| \bfitx 0 - \bfitx \ast \| 2

k2

\bigr) 
.4 Furthermore, this bound is known to be

4Note that such an upper bound can also be obtained directly, using the potential function-based
argument from [66] or as a special case of the result for GDA presented in section 3.1.
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tight [31, Theorem 2], and it also applies to min0\leq i\leq k \| \nabla f(\bfitx i)\| 2, as gradient descent
monotonically decreases the gradient. We also note that the improved bound for
FGM from Theorem 2.3 can only be established for the minimum gradient norm up
to iteration k; as shown numerically in [31, Table 4] and [68, Table 4], the bound
for the gradient of the last iterate is no better than that of gradient descent, i.e.,

\| \nabla f(\bfitx k)\| 2 = \Omega 
\bigl( L2\| \bfitx 0 - \bfitx \ast \| 2

k2

\bigr) 
.

2.2.2. Optimized method for the gradients. The only known method that

achieves the optimal convergence bound of the form \| \nabla f(\bfitx k)\| 2 = O
\bigl( L(f(\bfitx 0) - f(\bfitx \ast ))

k2

\bigr) 
is the optimized method for the gradients (OGM-G), due to Kim and Fessler [32].
This method was obtained using the PEP framework of Drori and Teboulle [22],
which relies on numerical solutions to semidefinite programs that model the worst-
case performance of methods on a given class of problems (such as, e.g., unconstrained
problems with smooth convex objective functions considered here). While this is a
very powerful approach that generally produces tight convergence analysis and worst-
case instances as a byproduct, as discussed before the intuition behind the methods
and their analysis obtained using PEP is not always clear.

In this section, we show that OGM-G is a direct consequence arising from a
potential function that fits within the broader framework studied in this paper. In
particular, as mentioned earlier in this section, we can view OGM-G as trading off
the norm of the gradient for a gap w.r.t. an anchor point, which is the last point
constructed by the algorithm. As a consequence of anchoring to the last point, the
algorithm crucially requires fixing the number of iterations in advance to achieve the
optimal convergence bound stated above.

The potential function used for analyzing OGM-G is defined by

(2.10) \scrC k = Ak

\Bigl( 1

2L
\| \nabla f(\bfitx k)\| 2 +

1

2L
\| \nabla f(\bfitx K)\| 2 + f(\bfitx k)  - f(\bfitx K)

\Bigr) 
,

where K is the total number of iterations for which OGM-G is invoked.
Unlike for other algorithms, we will not be able to argue that \scrC k  - \scrC k - 1 \leq Ek for

Ek that is either zero or only contains telescoping terms. Instead, we will settle for
a more modest goal of arguing that, under the appropriate choice of algorithm steps
and growth of the sequence Ak, we have \scrC K \leq \scrC 0. Observe that, by the definition of
\scrC k, if we can prove that AK/A0 = \Omega (K2), this condition immediately leads to the
desired bound

\| \nabla f(\bfitx K)\| 2 = O
\Bigl( L(f(\bfitx 0)  - f(\bfitx K))

K2

\Bigr) 
= O

\Bigl( L(f(\bfitx 0)  - f(\bfitx \ast ))

K2

\Bigr) 
.

As before, we define ak = Ak - Ak - 1 and assume it is strictly positive, \forall k (i.e., Ak

is strictly increasing). To bound \scrC K , we start by bounding the change in the potential
function \scrC k  - \scrC k - 1, for k \geq 1, in the following lemma. Observe that the lemma itself
is algorithm-independent.

Lemma 2.5. Let \scrC k be defined by (2.10) \forall k \in \{ 0, 1, . . . ,K\} . Define \bfity k = \bfitx k  - 
1
L\nabla f(\bfitx k) for k \geq 0, and set \bfity  - 1 = \bfitx 0. Then, \forall 1 \leq k \leq K

\scrC k  - \scrC k - 1 \leq Ak

\bigl\langle 
\nabla f(\bfitx k),\bfitx k  - \bfity k - 1

\bigr\rangle 
 - Ak - 1

\bigl\langle 
\nabla f(\bfitx k - 1),\bfitx k - 1  - \bfity k - 2

\bigr\rangle 
+
\bigl\langle 
\nabla f(\bfitx k - 1), Ak\bfity k - 1  - Ak - 1\bfity k - 2  - ak\bfity K

\bigr\rangle 
.
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Proof. Let \bfitx , \^\bfitx be any two vectors from Rd, and let \bfity = \bfitx  - 1
L\nabla f(\bfitx ). Then, (1.3)

can be equivalently written as

(2.11) f(\^\bfitx )  - f(\bfitx ) \leq \langle \nabla f(\^\bfitx ), \^\bfitx  - \bfity \rangle  - 1

2L
\| \nabla f(\^\bfitx )\| 2  - 1

2L
\| \nabla f(\bfitx )\| 2.

From the definition of \scrC k in (2.10), we have

\scrC k  - \scrC k - 1 =
Ak

2L
\| \nabla f(\bfitx k)\| 2  - Ak - 1

2L
\| \nabla f(\bfitx k - 1)\| 2 +

ak
2L

\| \nabla f(\bfitx K)\| 2

+ Ak(f(\bfitx k)  - f(\bfitx k - 1)) + ak(f(\bfitx k - 1)  - f(\bfitx K)).

Applying (2.11) to f(\bfitx k)  - f(\bfitx k - 1) and f(\bfitx k - 1)  - f(\bfitx K), we further have

\scrC k  - \scrC k - 1 \leq  - Ak

L
\| \nabla f(\bfitx k - 1)\| 2 + Ak

\bigl\langle 
\nabla f(\bfitx k),\bfitx k  - \bfity k - 1

\bigr\rangle 
+ ak \langle \nabla f(\bfitx k - 1),\bfitx k - 1  - \bfity K\rangle 

= Ak

\bigl\langle 
\nabla f(\bfitx k),\bfitx k  - \bfity k - 1

\bigr\rangle 
+ Ak

\bigl\langle 
\nabla f(\bfitx k - 1),\bfity k - 1  - \bfity K

\bigr\rangle 
 - Ak - 1 \langle \nabla f(\bfitx k - 1),\bfitx k - 1  - \bfity K\rangle 

= Ak

\bigl\langle 
\nabla f(\bfitx k),\bfitx k  - \bfity k - 1

\bigr\rangle 
 - Ak - 1

\bigl\langle 
\nabla f(\bfitx k - 1),\bfitx k - 1  - \bfity k - 2

\bigr\rangle 
+
\bigl\langle 
\nabla f(\bfitx k - 1), Ak\bfity k - 1  - Ak - 1\bfity k - 2  - ak\bfity K

\bigr\rangle 
,

as claimed.

The following lemma provides the restrictions on the step sizes of the algorithm
that are needed to ensure that \scrC K \leq \scrC 0. Here, we assume that each point \bfitx k can
be expressed as the sum of the initial point \bfitx 0 and some linear combination of the
gradients evaluated at points \bfitx i for 0 \leq i \leq k  - 1. Note that most of the standard
first-order algorithms can be expressed in this form.

Lemma 2.6. Let \scrC k be defined by (2.10) for k \in \{ 0, . . . ,K\} and assume that

points \bfitx k can be expressed as \bfitx k = \bfitx 0 - 1
L

\sum k - 1
i=0 \beta i,k\nabla f(\bfitx i), where \beta i,k are some real

scalars. Define \beta k,k = 1, so that \bfity k = \bfitx k  - 1
L\nabla f(\bfitx k) = \bfitx 0  - 1

L

\sum k
i=0 \beta i,k\nabla f(\bfitx i) and

set \bfity  - 1 = \bfitx 0. If the following two conditions are satisfied for all 0 \leq j < k \leq K  - 1,

\beta k,K - 1 +
ak+1

AK
\leq Ak+1

ak+1
,(2.12)

Ak+1\beta j,k = Ak\beta j,k - 1 + ak+1

\Bigl( 
\beta j,K - 1 +

aj+1

AK

\Bigr) 
+ aj+1

\Bigl( 
\beta k,K - 1 +

ak+1

AK

\Bigr) 
,(2.13)

and if

(2.14) \bfitx K = \bfity K - 1  - 
1

LAK

K - 1\sum 
k=0

ak+1\nabla f(\bfitx k),

then \scrC K \leq \scrC 0. Further, the largest growth of AK

A0
for which both of these conditions

can be satisfied is O(K2).

Proof. Telescoping the inequality from Lemma 2.5, we have

\scrC K  - \scrC 0 \leq AK

\bigl\langle 
\nabla f(\bfitx K),\bfitx K  - \bfity K - 1

\bigr\rangle 
+

K - 1\sum 
k=0

\bigl\langle 
\nabla f(\bfitx k), Ak+1\bfity k  - Ak\bfity k - 1  - ak+1\bfity K

\bigr\rangle 
.
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Observe that \nabla f(\bfitx K) only appears in the first term and as part of \bfity K = \bfitx K  - 
1
L\nabla f(\bfitx K). Thus, grouping the terms that multiply \nabla f(\bfitx K), we can, equivalently,
write

\scrC K  - \scrC 0 \leq 

\Biggl\langle 
\nabla f(\bfitx K), AK(\bfitx K  - \bfity K - 1) +

1

L

K - 1\sum 
k=0

ak+1\nabla f(\bfitx k)

\Biggr\rangle 

+
K - 1\sum 
k=0

\bigl\langle 
\nabla f(\bfitx k), Ak+1\bfity k  - Ak\bfity k - 1  - ak+1\bfitx K

\bigr\rangle 
.

The choice of \bfitx K from (2.14) ensures that the first term on the right-hand side is
zero (and this is how it was chosen). The rest of the terms can be expressed as a
function of gradients up to the (K  - 1)th one. To simplify the notation, let us define

\bfitg K - 1 = 1
L

\sum K - 1
k=0 ak+1\nabla f(\bfitx k). Then, we have

\scrC K  - \scrC 0 \leq 
K - 1\sum 
k=0

\biggl\langle 
\nabla f(\bfitx k), Ak+1\bfity k  - Ak\bfity k - 1  - ak+1

\Bigl( 
\bfity K - 1  - 

\bfitg K - 1

AK

\Bigr) \biggr\rangle 
.(2.15)

Observe that, as \bfity k = \bfitx 0 - 1
L

\sum k
i=0 \beta i,k\nabla f(\bfitx i) by the lemma assumptions, the expres-

sion on the right-hand side can be written as a linear combination of inner products
between gradients, as follows:

\scrC K  - \scrC 0 \leq 1

L

K - 1\sum 
j=0

K - 1\sum 
k=j

Pj,k \langle \nabla f(\bfitx j),\nabla f(\bfitx k)\rangle ,

where, by (2.15), we have that, \forall 0 \leq j < k \leq K  - 1,

Pk,k =  - Ak+1\beta k,k + ak+1

\Bigl( 
\beta k,K - 1 +

ak+1

AK

\Bigr) 
,

Pj,k =  - Ak+1\beta j,k + Ak\beta j,k - 1 + ak+1

\Bigl( 
\beta j,K - 1 +

aj+1

AK

\Bigr) 
+ aj+1

\Bigl( 
\beta k,K - 1 +

ak+1

AK

\Bigr) 
.

As, by assumption, \beta k,k = 1, conditions in (2.12) and (2.13) are equivalent to Pk,k \leq 0
and Pj,k = 0 \forall 0 \leq j < k \leq K  - 1. By construction, these conditions are sufficient for
guaranteeing \scrC K  - \scrC 0 \leq 0, completing the first part of the proof.

Observe that, given a sequence of positive numbers \{ ak\} k\geq 0 and Ak =
\sum k

j=0 aj ,
all coefficients \beta j,k are uniquely determined by (2.13) (as \beta k,k = 1 by assumption, and
the remaining coefficients can be computed by recursively applying (2.13)). Thus, the
role of the condition from (2.12) is to limit the growth of the sequence \{ Ak\} k\geq 0.
Starting with \beta k,k = 1 \forall k (which holds by assumption), it is possible to argue by
induction that \beta j,k \geq 0 \forall j, k (the proof is omitted for brevity). Thus the condition

from (2.12) implies that ak+1

AK
\leq Ak+1

ak+1
. Equivalently, \forall k \leq K  - 1,

(2.16)
ak+1

2

Ak+1
\leq AK .

For any fixed AK , (2.16) implies that Ak

A0
cannot grow faster than quadratically with

k for k \leq K  - 1. It remains to argue that the sequence does not make a big jump
from AK - 1 to AK . This follows by using again (2.12) for k = K - 1 and recalling that
\beta K - 1,K - 1 = 1. We then have

1 +
aK
AK

\leq AK

aK
.
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Solving for aK

AK
, it follows that aK

AK
\leq  - 1+

\surd 
5

2 < 0.62, and thus, AK

AK - 1
\leq 1

1 - 0.62 < 3,

completing the proof that AK

A0
= O(K2).

That AK

A0
= O(K2) is not surprising---if it were not true, by the discussion from the

beginning of this subsection, we would be able to obtain an algorithm that converges
at rate faster than 1/K2, which is impossible, due to the existing lower bounds [15, 47,
48]. This result was included to highlight the role of the conditions from (2.12) and
(2.13) in Lemma 2.6: the first condition limits the growth of \{ Ak\} k\geq 0, whereas the
second determines the step sizes \beta j,k in the algorithm, given the sequence \{ Ak\} k\geq 0.

What remains to be shown is that there is a choice of step sizes \beta j,k that guar-
antees AK

A0
= \Theta (K2), and thus leads to an algorithm with the optimal convergence

rate. As we show next, such a choice of \beta j,k can be obtained when the inequality
from (2.12) is satisfied with equality. Further, when (2.12) is satisfied with equality,
(2.13) can be further simplified, and it leads to the algorithm description that does not
necessitate storing all of the gradients, but only a constant number of d-dimensional
vectors. However, similar to the algorithm description in [32], the entire sequence
\{ Ak\} Kk=0 needs to be precomputed and stored, which appears to be unavoidable. The
algorithm and its convergence rate are summarized in the following theorem.

Theorem 2.7 (convergence of optimized gradient method). Let f : Rd \rightarrow R
be an L-smooth function, and let \bfitx 0 \in Rd be an arbitrary initial point. Let K \geq 1.
Consider the following algorithm. Let \bfitv 0 = \bfitx 0  - A1

a1L
\nabla f(\bfitx 0), \bfitg 0 = a1

L \nabla f(x0). For
k = 1 to K  - 1,

(2.17)

\bfity k - 1 = \bfitx k - 1  - 
1

L
\nabla f(\bfitx k - 1),

\bfitx k =
Ak

Ak+1
\bfity k - 1 +

ak+1

Ak+1
\bfitv k - 1  - 

1

ak+1
\bfitg k - 1,

\bfitv k = \bfitv k - 1  - 
1

L

Ak+1

ak+1
\nabla f(\bfitx k), \bfitg k = \bfitg k - 1 +

ak+1

L
\nabla f(\bfitx k),

where the sequence \{ Ak\} Kk=0 is recursively defined by the following:

(2.18)

\Biggl\{ 
Ak = 1 if k = K,

Ak = Ak+1

\bigl[ 
1 + 1

2Ak+1  - 1
2

\sqrt{} 
Ak+1(4 + Ak+1)

\bigr] 
if 0 \leq k \leq K  - 1,

and ak+1 = Ak+1  - Ak for 0 \leq k \leq K  - 1.
If \bfitx K is defined by

\bfitx K = \bfity K - 1  - 
1

AKL
\bfitg K - 1,

then

\| \nabla f(\bfitx K)\| 2 \leq 16L(f(\bfitx 0)  - f(\bfitx \ast ))

(K + 2)2
,

where \bfitx \ast \in argmin\bfitx \in Rd f(\bfitx ).

Proof. The proof strategy is as follows. We first argue that the algorithm from
the theorem statement satisfies \scrC K \leq \scrC 0, where \scrC k is defined by (2.10). This is done
by showing that we can apply Lemma 2.6. Then, by the definition of \scrC k, \scrC K \leq \scrC 0 is
equivalent to

\| \nabla f(\bfitx K)\| 2 \leq 2L
A0

AK

\biggl( 
f(\bfitx 0)  - f(\bfitx K) +

1

2L
\| \nabla f(\bfitx 0)\| 2

\biggr) 
.
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As f(\bfitx K) \geq f(\bfitx \ast ) and 1
2L\| \nabla f(\bfitx 0)\| 2 \leq f(\bfitx 0)  - f(\bfitx \ast ), what then remains to be

argued is that A0

AK
= O( 1

K2 ).
To apply Lemma 2.6, observe first that the definition of \bfitx K from Theorem 2.7

is the same as the definition of \bfitx K in Lemma 2.6. For k \leq K  - 1, let us define
\bfitx k = \bfitx 0 - 1

L

\sum k - 1
j=0 \beta j,k\nabla f(\bfitx j), \beta k,k = 1, and \bfity k = \bfitx k - \beta k,k

L \nabla f(\bfitx k) as in Lemma 2.6
and show that when both conditions from Lemma 2.6 stated in (2.12) and (2.13) are
satisfied with equality, we recover the algorithm from the theorem statement, and thus
the two sequences of points are equivalent, and so we can conclude that \scrC K \leq \scrC 0.

When (2.12) holds with equality, we have that

(2.19) \beta k,K - 1 +
ak+1

AK
=

Ak+1

ak+1
.

Plugging it into (2.13), we have

(2.20) Ak+1\beta j,k = Ak\beta j,k - 1 + ak+1
Aj+1

aj+1
+ aj+1

Ak+1

ak+1
.

Thus, it follows that

Ak+1\bfitx k  - Ak\bfity k - 1 = ak+1\bfitx 0  - 
ak+1

L

k - 1\sum 
j=0

Aj+1

aj+1
\nabla f(\bfitx j)  - 

Ak+1

ak+1L

k - 1\sum 
j=0

aj+1\nabla f(\bfitx j)

= ak+1\bfitv k - 1  - 
Ak+1

ak+1
\bfitg k - 1,

which is the same as the definition of \bfitx k from (2.17).
It remains to show that the conditions from Lemma 2.6 imply the recursive

definition of the sequence \{ Ak\} k\geq 0 and that AK

A0
\geq 4

(K+2)2 . This is established by

Lemma A.1 in the appendix.

Remark 2.8. While OGM-G provides the optimal convergence guarantee for norm
of the gradient, its convergence rate for the optimality gap is not known. Thus, it
does not immediately imply a bound on norm of the gradient in terms of \| \bfitx \ast  - \bfitx 0\| 2.
However, as observed in [53], it is possible to obtain a bound of \| \nabla f(\bfitx K)\| 2 =

O
\bigl( L2\| \bfitx \ast  - \bfitx 0\| 2

K4

\bigr) 
from OGM-G, by running Nesterov FGM for \lfloor K/2\rfloor iterations, fol-

lowed by \lceil K/2\rceil iterations of OGM-G.

2.3. Discussion. Gradient descent is perhaps the simplest method that can be
used for minimizing the gradient norm. We also conjecture that it is, in a certain
sense, optimal.

Conjecture 2.9. For any K > 0 and any method that constructs its iterates as
\bfitx k = \bfitx 0 - 

\sum k - 1
i=0 \beta i,k\nabla f(\bfitx i), where \bfitx 0 \in Rd is the initial point, f is a convex function

accessed via a gradient oracle, and coefficients \beta i,k \in R can depend on L > 0, i, k but
are otherwise chosen independently of K or the input function f, there exist an L-
smooth convex input function f and an absolute constant C > 0 such that

\| \nabla f(\bfitx K)\| 2 \geq C
L(f(\bfitx 0)  - f(\bfitx \ast ))

K
.

The basis for this conjecture is the numerical evidence from [31, 32], which seems
to suggest that fixing the total number of iterations K and choosing the coeffi-
cients \beta i,k as a function K is crucial to obtaining the optimal bound \| \nabla f(\bfitx K)\| 2 =
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O
\bigl( L(f(\bfitx 0) - f(\bfitx \ast ))

K2

\bigr) 
. In particular, using the PEP framework to optimize the coefficients

of generalized OGM (GOGM) methods, which are, roughly, two-step or momentum-
like methods, only led to the O(L2\| \bfitx \ast  - \bfitx 0\| 2/k3) bound on the minimum squared
gradient norm in [31, section 5]. The resulting method, OGM-OG, also has the fol-
lowing guarantee for the optimality gap: f(\bfitx k)  - f(\bfitx \ast ) = O(L\| \bfitx \ast  - \bfitx 0\| 2/k2), and,
thus, it cannot obtain a better guarantee for the squared gradient norm than stated
in Conjecture 2.9. Note also that, since Nesterov FGM belongs to the class of GOGM
methods considered in [31], if there were a hypothetical GOGM with a convergence

bound \| \nabla f(\bfitx k)\| 2 = O(L(f(\bfitx 0) - f(\bfitx \ast ))
k2 ), then it would have been possible to obtain

a GOGM with the \| \nabla f(\bfitx k)\| 2 = O(L2\| \bfitx \ast  - \bfitx 0\| 2

k4 ) guarantee, by simply appending
half the iterations of the hypothetical GOGM to Nesterov FGM. Hence, this bound
appears to be impossible for the class of GOGM methods, which one would expect
to be a natural candidate for solving this problem. On the other hand, fixing the
number of iterations in the OGM-G method from [32] was crucial for obtaining the

\| \nabla f(\bfitx K)\| 2 = O(L(f(\bfitx 0) - f(\bfitx \ast ))
K2 ) bound, and it is unclear whether and how the same

bound could be obtained without this requirement.
We note that the lower bound from Conjecture 2.9 can be proved under a stricter

condition on coefficients \beta i,k that essentially forces them to be constant (independent
of i and k), using the techniques of Arjevani and Shamir [3]. However, such a lower
bound is weak as it not only excludes the optimal algorithm from [32] (which is
desired) but also all variants of Nesterov FGM considered in [31].

3. Small gradients in min-max optimization. In this section, we consider
the problem of making the gradients small in convex-concave min-max optimization,
under the assumption that the operator F corresponding to the gradient of the objec-
tive is cocoercive (see section 1.2). Similarly, as in the case of convex optimization, the
potential functions we consider trade off a notion of an optimality gap with the norm
of F. Further, the inequality corresponding to the cocoercivity assumption suffices
to carry out the analysis of standard methods considered here; namely, the gradient
descent-ascent method and Halpern iteration. We also show (in section 3.3) that these
two methods are the best we can hope for when considering broad classes of methods
that capture most of the standard optimization methods.

3.1. Krasnosel'ski{\i}--Mann/gradient descent-ascent. Perhaps the simplest
potential function that can be considered for min-max optimization is

(3.1) \scrC k = Ak\| F (\bfitu k)\| 2 + Bk \langle F (\bfitu k),\bfitu k  - \bfitu \ast \rangle ,

which can be seen as a counterpart to the potential function used for gradient descent
in the previous section. The method that is suitable for the analysis with this poten-
tial function is also the counterpart of gradient descent for min-max optimization---
gradient descent-ascent (GDA), stated as

\bfitu k+1 = \bfitu k  - \eta kF (\bfitu k),

where \eta k \in (0, 2
L ). This method is also equivalent to the well-known Krasnosel'ski{\i}--

Mann iteration for finding fixed points of nonexpansive (1-Lipschitz) operators. In
particular, given a nonexpansive operator T : Rd \rightarrow Rd, the Krasnosel'ski{\i}--Mann
iteration updates the iterates as

\bfitu k+1 = (1  - \alpha k)\bfitu k + \alpha kT (\bfitu k),
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where \alpha k \in (0, 1). It is a standard fact that F is 1
L -cocoercive if and only if T (\cdot ) =

\cdot  - 2
LF (\cdot ) is nonexpansive (see, e.g., [10, Proposition 4.1]). Thus, if we apply the

Krasnosel'ski{\i}--Mann iteration to T (\cdot ) = \cdot  - 2
LF (\cdot ), we have

\bfitu k+1 = \bfitu k  - 2\alpha k

L
F (\bfitu k),

which is precisely GDA with \eta k = 2\alpha k

L .
For simplicity, in the following we analyze GDA with the step size \eta k = \eta = 1

L ,
which is the optimal step size for this method. The analysis, however, extends to
any step sizes \eta k \in (0, 2

L ) in a straightforward manner. The convergence result is
summarized in the following lemma. We note that, similar to other convergence
results in this paper, this is a well-known result [13, 26, 59], and it is only the potential
function-based argument that is new.

Lemma 3.1 (convergence of GDA ). Let F : Rd \rightarrow Rd be a 1
L -cocoercive operator,

let \bfitu 0 \in Rd be an arbitrary initial point, and let \bfitu k+1 = \bfitu k  - 1
LF (\bfitu k) for k \geq 0.

Then \forall k \geq 1,

\| F (\bfitu k)\| \leq L\| \bfitu 0  - \bfitu \ast \| \surd 
k + 1

,

where \bfitu \ast is such that F (\bfitu \ast ) = 0.

Proof. The proof relies on showing that the potential function \scrC k satisfies \scrC k \leq 
\scrC k - 1 +Ek, where Ek only contains terms that telescope for suitably chosen sequences
of positive numbers \{ Ak\} k\geq 0 and \{ Bk\} k\geq 0.

Let us start with bounding \scrC 0. As \bfitu 1 = \bfitu 0  - 1
LF (\bfitu 0), we have

\scrC 0 = A0\| F (\bfitu 0)\| 2 + B0 \langle F (\bfitu 0),\bfitu 0  - \bfitu \ast \rangle 
= A0\| F (\bfitu 0)\| 2 + B0L \langle \bfitu 0  - \bfitu 1,\bfitu 0  - \bfitu \ast \rangle 

= A0\| F (\bfitu 0)\| 2 +
B0L

2

\bigl( 
\| \bfitu 0  - \bfitu \ast \| 2  - \| \bfitu 1  - \bfitu \ast \| 2 + \| \bfitu 0  - \bfitu 1\| 2

\bigr) 
=

\Bigl( 
A0 +

B0

2L

\Bigr) 
\| F (\bfitu 0)\| 2 +

B0L

2

\bigl( 
\| \bfitu 0  - \bfitu \ast \| 2  - \| \bfitu 1  - \bfitu \ast \| 2

\bigr) 
.(3.2)

Now let us consider the change in the potential function \scrC k  - \scrC k - 1. Note first
that, by (1.7), \langle F (\bfitu k - 1),\bfitu k - 1  - \bfitu \ast \rangle \geq 1

L\| F (\bfitu k - 1)\| 2. Thus,

\scrC k  - \scrC k - 1 = Ak\| F (\bfitu k)\| 2  - Ak - 1\| F (\bfitu k - 1)\| 2 + Bk \langle F (\bfitu k),\bfitu k  - \bfitu \ast \rangle 
 - Bk - 1 \langle F (\bfitu k - 1),\bfitu k - 1  - \bfitu \ast \rangle 

\leq Ak\| F (\bfitu k)\| 2  - 
\Bigl( 
Ak - 1 +

Bk - 1

L

\Bigr) 
\| F (\bfitu k - 1)\| 2 + Bk \langle F (\bfitu k),\bfitu k  - \bfitu \ast \rangle .

Using that F (\bfitu k) = L(\bfitu k  - \bfitu k+1), we have that \langle F (\bfitu k),\bfitu k  - \bfitu \ast \rangle = 1
2L\| F (\bfitu k)\| 2 +

L
2 \| \bfitu k  - \bfitu \ast \| 2  - L

2 \| \bfitu k+1  - \bfitu \ast \| 2, which leads to

\scrC k  - \scrC k - 1 \leq 
\Bigl( 
Ak +

Bk

2L

\Bigr) 
\| F (\bfitu k)\| 2  - 

\Bigl( 
Ak - 1 +

Bk - 1

L

\Bigr) 
\| F (\bfitu k - 1)\| 2

+
BkL

2
\| \bfitu k  - \bfitu \ast \| 2  - BkL

2
\| \bfitu k+1  - \bfitu \ast \| 2.

On the other hand, by (1.6) and \bfitu k = \bfitu k - 1  - 1
LF (\bfitu k - 1), we have that \| F (\bfitu k)\| 2 \leq 

\langle F (\bfitu k), F (\bfitu k - 1)\rangle , and consequently, \| F (\bfitu k)\| \leq \| F (\bfitu k - 1)\| . Thus, for \scrC k  - \scrC k - 1 to
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contain only telescoping terms, it suffices that Ak + Bk

2L  - Ak - 1  - Bk - 1

L \leq 0 and that
\{ Bk\} k\geq 0 is nonincreasing. In particular, taking Bk = 1, we have

(3.3) \scrC k  - \scrC k - 1 \leq L

2
\| \bfitu k  - \bfitu \ast \| 2 - L

2
\| \bfitu k+1 - \bfitu \ast \| 2 - 

\Bigl( 
Ak - 1 - Ak +

1

2L

\Bigr) 
\| F (\bfitu k - 1)\| 2.

Telescoping (3.3), combining with (3.2), and choosing A0 = A1 = 0, Ak = Ak - 1 + 1
2L

for k \geq 2, we then get

\scrC k \leq L

2
\| \bfitu 0  - \bfitu \ast \| 2  - L

2
\| \bfitu k+1  - \bfitu \ast \| 2 \leq L

2
\| \bfitu 0  - \bfitu \ast \| 2.

Finally, observing that, by (1.7), \scrC k \geq 
\bigl( 
Ak + Bk

L

\bigr) 
\| F (\bfitu k)\| 2 = k+1

2L \| F (\bfitu k)\| 2 for all
k \geq 1, we finally get

\| F (\bfitu k)\| 2 \leq L2\| \bfitu 0  - \bfitu \ast \| 2

k + 1
.

It remains to take the square-root on both sides of the last inequality.

3.2. Halpern iteration. It seems reasonable now to ask whether it is possible
to obtain faster rates than for GDA by considering a different potential function that
trades off the gradient/operator norm for a notion of an optimality gap w.r.t. an
anchor point, similar to how we obtained faster rates for convex optimization. It
turns out that the answer is ``yes,"" using the initial point \bfitu 0 as the anchor. The
resulting potential function is

(3.4) \scrC k = Ak\| F (\bfitu k)\| 2 + Bk \langle F (\bfitu k),\bfitu k  - \bfitu 0\rangle 

and it corresponds to the well-known Halpern iteration

(3.5) \bfitu k+1 = \lambda k+1\bfitu 0 + (1  - \lambda k+1)T (\bfitu k),

where, similarly as in the case of GDA, T (\cdot ) = \cdot  - 2
LF (\cdot ) is a nonexpansive operator.

We note that a similar potential function was used in [17] to analyze the convergence
of Halpern iteration.

The main convergence result is summarized in the following lemma. While the
same convergence result was proved in [38, Thereom 2.1] using the PEP frame-
work [22], the potential function-based argument provided here directly leads to
Halpern iteration by enforcing the condition that the potential function defined by
(3.4) is nonincreasing.

Lemma 3.2 (convergence of Halpern iteration). Let F : Rd \rightarrow Rd be a 1
L -

cocoercive operator, let \bfitu 0 \in Rd be an arbitrary initial point, and, for k \geq 0, let

\bfitu k+1 =
1

k + 1
\bfitu 0 +

k

k + 1

\Bigl( 
\bfitu k  - 2

L
F (\bfitu k)

\Bigr) 
.

Then, \forall k \geq 1 we have

\| F (\bfitu k)\| \leq L\| \bfitu 0  - \bfitu \ast \| 
k + 1

,

where \bfitu \ast satisfies F (\bfitu \ast ) = 0.

Proof. The claim trivially holds if \| F (\bfitu k)\| = 0, so assume throughout that
\| F (\bfitu k)\| \not = 0.
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1686 JELENA DIAKONIKOLAS AND PUQIAN WANG

Consider bounding \scrC k  - \scrC k - 1 above by zero. To do so, we can only rely on coco-
ercivity of F from (1.6). Applying (1.6) with \bfitu = \bfitu k and \bfitv = \bfitu k - 1 and rearranging
the terms, we have

(3.6)

1

L
\| F (\bfitu k)\| 2 \leq 

\biggl\langle 
F (\bfitu k),\bfitu k  - \bfitu k - 1 +

2

L
F (\bfitu k - 1)

\biggr\rangle 
 - \langle F (\bfitu k - 1),\bfitu k  - \bfitu k - 1\rangle  - 

1

L
\| F (\bfitu k - 1)\| 2.

Combining (3.6) with the definition of \scrC k and grouping appropriate terms, we have

(3.7)

\scrC k  - \scrC k - 1 \leq 
\biggl\langle 
F (\bfitu k), AkL

\Bigl( 
\bfitu k  - \bfitu k - 1 +

2

L
F (\bfitu k - 1)

\Bigr) 
+ Bk(\bfitu k  - \bfitu 0)

\biggr\rangle 
 - \langle F (\bfitu k - 1), AkL(\bfitu k  - \bfitu k - 1) + Bk - 1(\bfitu k - 1  - \bfitu 0)\rangle 
 - (Ak + Ak - 1)\| F (\bfitu k - 1)\| 2.

To make \scrC k  - \scrC k - 1 nonpositive, it suffices to ensure that the inner-product term
from the first line in (3.7) is zero and the sum of remaining terms is nonpositive. The
former is achieved by simply setting

(3.8) AkL
\Bigl( 
\bfitu k  - \bfitu k - 1 +

2

L
F (\bfitu k - 1)

\Bigr) 
+ Bk(\bfitu k  - \bfitu 0) = 0.

For the latter, it suffices that
(3.9)
 - \langle F (\bfitu k - 1), AkL(\bfitu k  - \bfitu k - 1) + Bk - 1(\bfitu k - 1  - \bfitu 0)\rangle  - (Ak + Ak - 1)\| F (\bfitu k - 1)\| 2 \leq 0.

Rearranging (3.8) gives the Halpern algorithm from (3.5) with \lambda k = Bk

AkL+Bk
, i.e.,

(3.10) \bfitu k =
Bk

AkL + Bk
\bfitu 0 +

AkL

AkL + Bk

\Bigl( 
\bfitu k - 1  - 

2

L
F (\bfitu k - 1)

\Bigr) 
.

The other condition (from (3.9)) effectively constrains the growth of Ak compared
to Bk, which is expected, as otherwise we would be able to prove an arbitrarily fast
convergence rate for Halpern iteration, which is impossible, due to existing lower
bounds (see, e.g., [17, Lemma 16(c)]).

On the other hand, (3.9) can be equivalently written as

 - \langle F (\bfitu k - 1), AkL\bfitu k  - Bk - 1\bfitu 0  - (AkL - Bk - 1)\bfitu k - 1\rangle \leq (Ak + Ak - 1)\| F (\bfitu k - 1)\| 2.
Now, to guarantee that the last inequality is satisfied and consistent with (3.10), it
suffices that

(3.11)
Bk - 1

AkL
=

Bk

AkL + Bk
and

2Ak

AkL + Bk
\leq Ak + Ak - 1

AkL
.

In particular, when Bk = k + 1 and Ak = k(k+1)
L , both conditions from (3.11) are

satisfied with equality.

Hence, for Bk = k + 1, Ak = k(k+1)
L , and \lambda k = Bk

AkL+Bk
= 1

k+1 , we have that
\scrC k \leq \scrC 0. By definition, and as A0 = 0, we have that \scrC 0 = 0. Thus, \scrC k \leq 0 \forall k \geq 1,
and it follows that

\| F (\bfitu k)\| 2 \leq Bk

Ak
\langle F (\bfitu k),\bfitu 0  - \bfitu k\rangle 

=
L

k

\bigl( 
\langle F (\bfitu k),\bfitu \ast  - \bfitu k\rangle + \langle F (\bfitu k),\bfitu 0  - \bfitu \ast \rangle 

\bigr) 
\leq L

k

\Bigl( 
 - 1

L
\| F (\bfitu k)\| 2 + \| F (\bfitu k)\| \| \bfitu 0  - \bfitu \ast \| 

\Bigr) 
,
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where the last inequality is by (1.7) and Cauchy--Schwarz. To complete the proof, it
remains to rearrange the last inequality and divide both sides by \| F (\bfitu k)\| .

3.3. Lower bounds for cocoercive operators. In this section, we provide
a lower bound that applies to the class of algorithms that construct their iterates
as the sum of an initial point and a linear combination of the cocoercive operator
F : Rd \rightarrow Rd evaluated at any of the points seen up to the current iteration. In
particular, given a 1

L -cocoercive operator F : Rd \rightarrow Rd, an algorithm's iterate \bfitu k at
iteration k can be expressed as

(3.12) \bfitu k = \bfitu 0  - 
k - 1\sum 
i=0

\beta i,kF (\bfitu i),

where \beta i,k are real coefficients that can depend on L but are otherwise independent
of F . To state the lower bound, we use \scrF L,D to denote the class of problems with
1
L -cocoercive operators F that satisfy \| \bfitu \ast  - \bfitu 0\| \leq D, where \bfitu 0 \in Rd is an arbitrary
initial point and \bfitu \ast is such that F (\bfitu \ast ) = 0. We assume w.l.o.g. that d is even.

To derive the lower bound, we use the framework developed in [2, 3]. To make use
of this framework, which relies on the use of Chebyshev polynomials, it is necessary
to construct hard instances corresponding to linear operators F (\bfitu ) = \bfitA \bfitu + \bfitb , where
\bfitA \in Rd\times d and \bfitb \in Rd. We note that such an approach was also used in [25] for the
class of monotone Lipschitz operators. However, here we aim to provide a lower bound
for the more restricted class of cocoercive operators, which necessitates a separate
construction. In particular, the monotone operator from the lower bound instance
used in [25] is not cocoercive as it corresponds to a bilinear function; in fact, it
satisfies \langle F (\bfitu )  - F (\bfitv ),\bfitu  - \bfitv \rangle = 0 \forall \bfitu ,\bfitv \in Rd.

Before delving into the technical details of our lower bound, we first provide
definitions and supporting claims from [2] that are needed for stating and proving it.
A useful definition is that of 1-SCLI algorithms, which allows abstracting algorithms
of the form from (3.12) through the lens of Chebyshev polynomials. Here, we adopt
the terminology from [25], which somewhat blurs the lines between various definitions
(of stationary, oblivious, p-SCLI) algorithm types from [2, 3], but provides perhaps
the simplest way of stating the results.

Definition 3.3 (1-SCLI Algorithms). An optimization algorithm \scrA acting on
the class of linear operators F : Rd \rightarrow Rd of the form F (\bfitu ) = \bfitA \bfitu +\bfitb , where \bfitA \in Rd\times d,
\bfitb \in Rd, is said to be 1-stationary canonical linear iterative (1-SCLI) over Rd if, given
an initial point \bfitu 0 \in Rd, there exist mappings C0(A), N(A) : Rd\times d \rightarrow Rd\times d such that
for all k \geq 1 the iterates of \scrA can be expressed as

\bfitu k = C0(\bfitA )\bfitu k - 1 + N(\bfitA )\bfitb .

Observe here that Definition 3.3 imposes no restrictions on what kind of mappings
C0 and N can be. In particular, they can be polynomials of an arbitrary degree. This
is important because choosing polynomials of degree K would allow us to emulate
arbitrary algorithms of the form from (3.12) run over K iterations, as F is assumed
to be linear (this observation is typically used in the analysis of the classical conjugate
gradient method; see, e.g., [55, Chapter 5]). On the other hand, restricting the degree
of the polynomials would restrict the adaptivity of coefficients \beta i,k, as C0, N remain
fixed for all k. In this context, both GDA and Halpern iteration (when restricted to
be run over a fixed number K of iterations) can be viewed as 1-SCLI algorithms, with
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1688 JELENA DIAKONIKOLAS AND PUQIAN WANG

the following crucial difference. For GDA with a fixed step size \eta , we have

\bfitu k = (\bfitI  - \eta \bfitA )\bfitu k - 1 + \eta \bfitb ,

i.e., C0 is of degree one and N is of degree zero. On the other hand, for Halpern
iteration,

\bfitu k = \lambda k\bfitu 0 + (1  - \lambda k)
\Bigl( 
\bfitI  - 2

L
\bfitA 
\Bigr) 
\bfitu k - 1 + (1  - \lambda k)\bfitb .(3.13)

By recursively applying (3.13) and rolling it down to zero, we get that \bfitu k can be
expressed as \bfitu k = C0(\bfitA )\bfitu 0 + N(\bfitA )\bfitb using C0 that is a polynomial of degree k and
N that is a polynomial of degree k  - 1. In other words, we can view k iterations of
Halpern's algorithm as one iteration of a 1-SCLI algorithm, using polynomial maps C0

and N of suitably large degrees. This is crucial for understanding the statement of the
lower bound, which will effectively tell us that GDA is iteration complexity-optimal
among all algorithms of the form from (3.12) that choose step sizes \beta i,k independently
of k, while Halpern iteration is iteration complexity-optimal over all algorithms that
are allowed to adapt \beta i,k's to k.

In the following, we further restrict our attention to operators F corresponding
to full-rank matrices \bfitA . This is convenient because the optimal solution \bfitu \ast for which
F (\bfitu \ast ) = 0 can be expressed in closed form as \bfitu \ast =  - \bfitA  - 1\bfitb . This allows us to relate
the polynomials C0 and N under a minimal (and standard [2, 3, 25]) assumption that
the 1-SCLI algorithms we consider are consistent (or convergent). We note here that
the consistency condition is not necessary; it is rather the case that the proof relies
on the relationship between C0 and N from (3.14), for which the natural consistency
condition suffices.

Definition 3.4 (consistency). A 1-SCLI algorithm \scrA is said to be consistent
w.r.t. a full-rank matrix \bfitA if for any \bfitb \in Rd we have that \bfitu k converges to \bfitu \ast =
 - \bfitA  - 1\bfitb . A 1-SCLI algorithm is said to be consistent if it is consistent w.r.t. any
full-rank matrix \bfitA .

The relationship between C0 and N for consistent algorithms is characterized by
the following lemma.

Lemma 3.5 (consistency of 1-SCLI algorithms [2]). If a 1-SCLI algorithm is
consistent w.r.t. \bfitA , then

(3.14) C0(\bfitA ) = \bfitI + N(\bfitA )\bfitA .

Finally, the following auxiliary lemma will be useful when proving our lower
bound.

Lemma 3.6 (see [25, Lemma 13]). Let L > 0, let p and k be arbitrary but fixed
nonnegative integers, and let r(y) be a polynomial with real-valued coefficients of degree
at most p, such that r(0) = 1. Then,

(3.15) sup
y\in (0,L]

y| r(y)| k \geq sup
y\in [L/(20p2k),L]

y| r(y)| k >
L

40p2k
.

We are now ready to state and prove our lower bound.
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Theorem 3.7. Let p,K be any two positive integer numbers, and let L,D > 0.
Then, for any consistent 1-SCLI algorithm \scrA acting on instances from \scrF L,D, ini-
tialized at \bfitu 0 = 0 5 and for which N(\bfitA ) is a matrix polynomial of degree at most
p - 1,

sup
F\in \scrF L,D

\| F (\bfitu K)\| \geq LD

4p
\surd 

5K
.

Proof. Similar to [25], we start by showing that

(3.16) \bfitu k = (C0(\bfitA )k  - \bfitI )\bfitA  - 1\bfitb 

\forall k \geq 0. This claim follows by induction on k. The base case k = 0 is immediate.
For the inductive step, suppose that (3.16) holds for some k  - 1 \geq 0. Then by the
definition of 1-SCLI algorithms and the consistency of \scrA (Definitions 3.3, 3.4) and
Lemma 3.5,

\bfitu k = C0(\bfitA )\bfitu k - 1 + N(\bfitA )\bfitb 

= C0(\bfitA )(C0(\bfitA )k - 1  - \bfitI )\bfitA  - 1\bfitb + (C0(\bfitA )  - \bfitI )\bfitA  - 1\bfitb 

= (C0(\bfitA )k  - \bfitI )\bfitA  - 1\bfitb .

Therefore, F (\bfitu k) can be expressed as

(3.17) F (\bfitu k) = \bfitA \bfitu k + \bfitb = C0(\bfitA )k\bfitb .

Let us now specify the ``hard instance."" Consider F (\bfitu ) = \bfitA \bfitu + \bfitb , where \bfitA can
be expressed as \bfitA =

\bigl[ 
\eta \bfitI \alpha \bfitI 

 - \alpha \bfitI \eta \bfitI 

\bigr] 
for some \eta , \alpha \in R+. (Observe that such an F can be

obtained from the convex-concave objective \phi (\bfitx ,\bfity ) = 1
2\eta \bfitx 

T\bfitx  - 1
2\eta \bfity 

T\bfity + \alpha \bfitx T\bfity +

\bfitb T1 \bfitx  - \bfitb T2 \bfity , where \bfitx ,\bfity , \bfitb 1, \bfitb 2 \in Rd/2, \bfitb = [\bfitb 1
T \bfitb 2

T ]T .)
Let us now argue that for suitably chosen \eta , \alpha , we have that F is 1

L -cocoercive.
Let \bfitu = [\bfitx T \bfity T ]T , \=\bfitu = [\=\bfitx T \=\bfity T ]T be an arbitrary pair of vectors from Rd, where
\bfitx ,\bfity , \=\bfitx , \=\bfity \in Rd/2. Then,

\langle F (\bfitu )  - F (\=\bfitu ),\bfitu  - \=\bfitu \rangle = \eta \| \bfitu  - \=\bfitu \| 2

and

\| F (\bfitu )  - F (\=\bfitu )\| 2 = (\eta 2 + \alpha 2)\| \bfitu  - \=\bfitu \| 2.

Hence, for \eta 2 + \alpha 2 \leq L\eta , we have \langle F (\bfitu )  - F (\=\bfitu ),\bfitu  - \=\bfitu \rangle \geq 1
L\| F (\bfitu )  - F (\=\bfitu )\| 2, i.e., F

is 1
L -cocoercive.

To complete the proof, it remains to show that

sup
F\in \scrF L,D

\| F (\bfitu K)\| \geq LD

p
\surd 

80K
.

To do so, observe that by (3.17), \bfitu 0 = 0, and \bfitu \ast =  - \bfitA  - 1\bfitb , we have

sup
F\in \scrF L,D

\| F (\bfitu K)\| 2

\| \bfitu \ast  - \bfitu 0\| 2
\geq sup

\eta \in [0,L],

\alpha \in [0,
\surd 

L\eta  - \eta 2]

\| C0(\bfitA )K\bfitb \| 2

\| \bfitA  - 1\bfitb \| 2
,

5By definition, instances from \scrF L,D are initialized arbitrarily. However, we can always translate
\bfitu to \bfitu \prime = \bfitu  - \bfitu 0 to make the problem initialized at \bfitu \prime 

0 = 0.
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where \bfitA =
\bigl[ 

\eta \bfitI \alpha \bfitI 
 - \alpha \bfitI \eta \bfitI 

\bigr] 
. Observe that the characteristic polynomial of \bfitA =

\bigl[ 
\eta \bfitI \alpha \bfitI 

 - \alpha \bfitI \eta \bfitI 

\bigr] 
is

det(\lambda \bfitI  - A) = ((\lambda  - \eta )2 + \alpha 2)d/2.

Hence, \bfitA has the eigenvalues \lambda 1 = \eta + \alpha i, \lambda 2 = \eta  - \alpha i. These conjugate eigenvalues
have the same magnitude:

\sqrt{} 
\eta 2 + \alpha 2. Accordingly, A - 1 has the eigenvalues \lambda \prime 

1 =
1
\lambda 1
, \lambda \prime 

2 = 1
\lambda 2

, which are also conjugate and equal in magnitude. On the other hand,
since C0(\bfitA ) = \bfitI + N(\bfitA )\bfitA , and, by assumption, N(\bfitA ) is a matrix polynomial of
degree at most p  - 1 for some p \in N with real coefficients, C0(\bfitA ) is a polynomial of
\bfitA with C0(0d\times d) = \bfitI . Therefore, it can be expressed as

C0(\bfitA ) = \bfitI + r1\bfitA + r2A
2 + \cdot \cdot \cdot + rp\bfitA 

p

for some real-valued r1, r2, r3, . . . , rp. We denote the polynomial on complex field with
the same real-valued coefficients as c0(y) = 1 + r1y + r2y

2 + \cdot \cdot \cdot + rpy
p. Then, by the

spectral mapping theorem, the eigenvalues of C0(\bfitA ) are c0(\lambda 1) and c0(\lambda 2), which are
again conjugate and have equal norms. Therefore, we have

sup
\eta \in [0,L]

\alpha \in [0,
\surd 

L\eta  - \eta 2]

\bigm\| \bigm\| C0(A)K\bfitb 
\bigm\| \bigm\| 2

\| A - 1\bfitb \| 2
= sup

\eta \in [0,L]

\alpha \in [0,
\surd 

L\eta  - \eta 2]

| c0(\lambda 1)| 2K \| \bfitb \| 2
1

| \lambda 1| 2 \| \bfitb \| 
2

= sup
\eta \in [0,L]

\alpha \in [0,
\surd 

L\eta  - \eta 2]

(\eta 2 + \alpha 2)| c0(\eta + \alpha i)| 2K .

To derive the stated lower bound by applying Lemma 3.6, we need to convert the
above expression into a similar form: supy\in (0,L] y| r(y)| k. Here, we can observe the
difference between the problem we are considering and the problem discussed in [25].
In [25], the eigenvalues are purely imaginary: \nu i and  - \nu i. As a result, the above
expression can be written as sup\nu \in (0,L] \nu 

2| c0(\nu i)| 2K . By taking the real part of this

term, we get a smaller value sup\nu \in (0,L] \nu 
2| 1  - r2\nu 

2 + r4\nu 
4  - \cdot \cdot \cdot + ( - 1)p

\prime 
r2p\prime \nu 2p

\prime | 2K ,

where p\prime = \lfloor p/2\rfloor . Thus, substituting \nu 2 with y, we get the equation that fits the
inequality from Lemma 3.6. However, the same strategy cannot be applied here since
the real part of (\eta 2 + \alpha 2)| c0(\eta + \alpha i)| 2K is tangled up with \alpha and \eta , hence making it
impossible to get an equation of the form y| r(y)| k by simply taking its real part.

Nevertheless, since we have the extra freedom of choosing \alpha , we can select \alpha 
carefully to make the real part and imaginary part of | c0(\eta + \alpha i)| 2K separable, while
keeping the constant \eta 2 + \alpha 2 large enough. In particular, this can be achieved for

\alpha 2 = L\eta  - \eta 2.

Observe that as long as \eta \leq L, we have \alpha \in [0,
\sqrt{} 
L\eta  - \eta 2], as required in the bound

above. It follows that

sup
\eta \in [0,L]

\alpha \in [0,
\surd 

L\eta  - \eta 2]

(\eta 2 + \alpha 2)| c0(\eta + \alpha i)| 2K

\geq sup
\eta \in [0,L]

L\eta | c0(\eta + \alpha i)| 2K

= sup
\eta \in [0,L]

L\eta | 1 + r1(\eta + \alpha i) + \cdot \cdot \cdot + rp(\eta + \alpha i)p| 2K .
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Observe that the factor \alpha in the real terms of (\eta +\alpha i)j has only even order. Therefore,
Re(c0(\eta + \alpha i)) is a polynomial of \eta and \alpha 2. Since \alpha 2 = L\eta  - \eta 2, it is actually a
polynomial of \eta exclusively with real-valued coefficients of degree at most p, which we
denote as c\prime 0(\eta ) = 1 + r\prime 1\eta + r\prime 2\eta 

2 + \cdot \cdot \cdot + r\prime p\eta 
p. Therefore, we get

sup
\eta \in [0,L]

L\eta | c0(\eta + \alpha i)| 2K \geq sup
\eta \in (0,L]

L\eta | Re(c0(\eta + \alpha i))| 2K

= sup
\eta \in (0,L]

L\eta | c\prime 0(\eta )| 2K .

By Lemma 3.6 and \| \bfitA  - 1\bfitb \| = D, we now have

sup
F\in \scrF L,D

\| F (\bfitu K)\| 2

\| \bfitu \ast  - \bfitu 0\| 2
= sup

F\in \scrF L,D

\| F (\bfitu K)\| 2

D2
\geq sup

\eta \in (0,L]

L\eta | c\prime 0(\eta )| 2K \geq L2

80p2K
,

and the claimed lower bound follows after rearranging the last inequality.

The implications of Theorem 3.7 are as follows. Among all algorithms that up-
date their iterates as in (3.12) and use constant (independent of the iteration count)
step sizes \beta i,k (i.e., algorithms with constant p and K = \Theta (k)), GDA is iteration
complexity-optimal for minimizing the norm of a cocoercive operator. This means
that other standard methods such as the extragradient/mirror-prox [33, 45] method,
dual extrapolation [49], or the method of Popov [57], which fall into the same category,
cannot attain a convergence rate for minimizing \| F (\cdot )\| that is faster than 1/

\surd 
k. Thus,

choosing step sizes \beta i,k that depend on the iteration count is essential for achieving
the faster 1/k rate of Halpern's algorithm (which, as discussed before, corresponds to
choosing K = \Theta (1) and p = \Theta (k)). Furthermore, this rate is unimprovable for any of
the typical iterative methods that take the form from (3.12).

4. Conclusion and future work. We presented a general and unifying poten-
tial function-based framework for analyzing the convergence of first-order algorithms
under the gradient norm criterion in the settings of convex and min-max optimiza-
tion. The framework is intuitive in that it provides an interpretation of the mechanism
driving the convergence as a trade-off between reducing the norm of the gradient and
reducing some notion of an optimality gap.

Many interesting questions for future work remain. In particular, our framework is
primarily applicable to Euclidean setups. Thus, it is an intriguing question whether it
is possible to generalize it to other normed spaces. We note that beyond the Euclidean
setups, the only results with near-optimal convergence for \ell p-normed spaces in the
setting of convex optimization are those for \ell \infty (where an \ell \infty variant of gradient
descent is optimal) and the very recent results for p \in [1, 2] that are based on a
regularization trick [18]. In a different direction, as conjectured in section 2, it appears
that fixing either the number of iterations or the accuracy of the problem in advance
is crucial for achieving near optimal rates in the case of convex objectives, even in
Euclidean setups. Proving such a lower bound would be very interesting, as it would
likely require completely new mathematical techniques. Finally, very little is known
about the convergence in gradient norm in convex-concave min-max optimization
setups, both from the aspect of algorithms and the lower bounds. In particular, we
are not aware of any lower bounds outside of the Euclidean setup considered here,
while, similar to the case of convex optimization, the only near-optimal algorithm is
based on a regularization trick and applies only to p \in [1, 2] [64].

Appendix A. Sequence growth for the optimized gradient method. This
section provides a technical lemma used in the proof of Theorem 2.7.
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Lemma A.1. Let \{ \beta i,k\} i\leq k, \{ ak\} k\geq 0, \{ Ak\} k\geq 0 be the sequences of real numbers

that for k \in \{ 0, . . . ,K\} satisfy \beta k,k = 1, Ak =
\sum k

i=0 ai, and for 0 \leq j < k \leq K  - 1,

\beta k,K - 1 +
ak+1

AK
=

Ak+1

ak+1
,(A.1)

Ak+1\beta j,k = Ak\beta j,k - 1 + ak+1

\Bigl( 
\beta j,K - 1 +

aj+1

AK

\Bigr) 
+ aj+1

\Bigl( 
\beta k,K - 1 +

ak+1

AK

\Bigr) 
.(A.2)

Then the sequence \{ Ak\} k\geq 0 can be chosen as

(A.3)

\Biggl\{ 
Ak = 1 if k = K,

Ak = Ak+1

\bigl[ 
1 + 1

2Ak+1  - 1
2

\sqrt{} 
Ak+1(4 + Ak+1)

\bigr] 
if 0 \leq k \leq K  - 1

and AK

A0
\geq (K+2)2

4 .

Proof. First, we show that the sequence \{ Ak\} Kk=0 with AK = 1 that satisfies (A.1)
and (A.2) has the following recursive relationship between two successive terms:

(A.4)
1

Ak - 1
=

1

Ak
+

Ak

ak
,

which is equivalent to

(A.5)
Ak - 1Ak

ak
=

ak
Ak

.

Solving for Ak - 1, this relationship leads to (A.3). We prove the recursive relationship
by induction on k. First, for the base case k = K, setting k = K  - 1 in (2.19), we
have \beta K - 1,K - 1 = AK

aK
 - aK

AK
. Since we have set AK = 1 and \beta K - 1,K - 1 = 1, it follows

that
aK
AK

=
AK  - aK

aK
=

AK - 1

aK
=

AKAK - 1

aK
,

which coincides with (A.5).
Now assume that (A.4) (equivalently, (A.5)) holds for k = K,K  - 1, . . . , n + 1,

and consider k = n. Setting k = n, j = n - 1 in (2.20), we have

An+1\beta n - 1,n = An\beta n - 1,n - 1 + an+1
An

an
+ an

An+1

an+1
.

Hence

(A.6) An+1\beta n - 1,n = An + an+1
An

an
+ an

An+1

an+1
.

It turns out that we can express An+1\beta n - 1,n using Ak for k ranging from n+ 1 to K.
Let k = \ell , \ell = n + 1, n + 2, . . . ,K  - 1 and j = n - 1 in (2.20); then, we get

A\ell \beta n - 1,l - 1 = A\ell +1\beta n - 1,\ell  - a\ell +1
An

an
 - an

A\ell +1

a\ell +1
.

This is a recursive relation between A\ell \beta n - 1,\ell  - 1 and A\ell +1\beta n - 1,\ell . Applying this relation
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recursively from \ell = n + 1 to \ell = K  - 1, we get

An+1\beta n - 1,n = AK\beta n - 1,K - 1  - 
An

an
(an+2 + \cdot \cdot \cdot + aK)  - an

\Bigl( An+2

an+2
+ \cdot \cdot \cdot +

AK

aK

\Bigr) 
= AK

\Bigl( An

an
 - an

AK

\Bigr) 
 - An

an

K - 1\sum 
\ell =n+1

(A\ell +1  - A\ell )  - an

K - 1\sum 
\ell =n+1

\Bigl( 1

A\ell 
 - 1

A\ell +1

\Bigr) 
= AK

\Bigl( An

an
 - an

AK

\Bigr) 
 - An

an
(AK  - An+1)  - an

\Bigl( 1

An+1
 - 1

AK

\Bigr) 
=

AnAn+1

an
 - an

An+1
.

The second equation is valid due to our inductive hypothesis for k = n+2, n+3, . . . ,K.
To derive the last equation, we use that AK = 1 by the lemma assumption. Plugging
the above equation into (A.6), we get

AnAn+1

an
= An

an + an+1

an
+ an

\Bigl( An+1

an+1
+

1

An+1

\Bigr) 
.

Using the assumption that 1
An

= 1
An+1

+ An+1

an+1
, we obtain (A.5) for k = n, completing

the inductive argument.
The recursive relationship between Ak and Ak+1 from (2.18) be equivalently writ-

ten as

1

Ak
=

1

4

\biggl( 
2 +

4

Ak+1
+ 2

\sqrt{} 
1 +

4

Ak+1

\biggr) 
.

Denote Dn = 1
AK - n

for n \in \{ 0, . . . ,K\} . Then

(A.7) Dn =
1

2
+ Dn - 1 +

\sqrt{} 
Dn - 1 +

1

4
.

We prove by induction that

(A.8) Dn \geq (n + 2)2

4
.

As D0 = 1
AK

= 1, D0 = (0+2)2

4 holds by definition. Now suppose also for some n = j,
0 \leq j \leq K  - 1. Then,

Dj+1 =
1

2
+ Dj +

\sqrt{} 
Dj +

1

4

\geq 1

2
+

1

4
(j + 2 + 1  - 1)2 +

1

2

\sqrt{} 
(j + 2)2

=
1

2
+

1

4
(j + 3)2  - 1

2
(j + 3) +

1

4
+

1

2
(j + 2)

>
1

4
(j + 3)2.

Thus, DK = 1
A0

= AK

A0
\geq (K+2)2

4 , as claimed.
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