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Abstract—The ever-increasing number of layers, millions of pa-
rameters, and large data volume make deep learning workloads
resource-intensive and power-hungry. In this paper, we develop
a convolutional neural network (CNN) acceleration framework,
named MLCNN, which explores algorithm-hardware co-design
to achieve cross-layer cooperative optimization and acceleration.
MLCNN dramatically reduces computation and on-off chip
communication, improving CNN’s performance. To achieve this,
MLCNN reorders the position of nonlinear activation layers and
pooling layers, which we prove results in a negligible accuracy
loss; then the convolutional layer and pooling layer are co-
optimized by means of redundant multiplication elimination, local
addition reuse, and global addition reuse. To the best of our
knowledge, MLCNN is the first of its kind that incorporates
cooperative optimization across convolutional, activation, and
pooling layers. We further customize the MLCNN accelerator
to take full advantage of cross-layer CNN optimization to
reduce both computation and on-off chip communication. Our
analysis shows that MLCNN can significantly reduce (up to 98%)
multiplications and additions. We have implemented a prototype
of MLCNN and evaluated its performance on several widely
used CNN models using both an accelerator-level cycle and
energy model and RTL implementation. Experimental results
show that MLCNN achieves 3.2× speedup and 2.9× energy
efficiency compared with dense CNNs. MLCNN’s optimization
methods are orthogonal to other CNN acceleration techniques,
such as quantization and pruning. Combined with quantization,
our quantized MLCNN gains a 12.8× speedup and 11.3× energy
efficiency compared with DCNN.

Index Terms—Deep learning, Cross-layer optimization, Accel-
erators, Performance evaluation.

I. INTRODUCTION

Convolutional neural network (CNN) has seen dramatic
development recently, leading to increasing interests from
industry, academia, and popular culture. However, the massive
multiplication and accumulation (MAC) operations and fre-
quent on-off chip data communications in CNN significantly
affect its performance and wider adoption [1]. Accelerators,
such as GPU, FPGA, TPU, and ASIC [2]–[4], have been
developed to speed up MAC operations.

However, the on-off chip data communication consumes
a significant amount of energy even with accelerators being
used. As a result, recent research efforts have been focusing
on optimizing both computation and communication, such as
tiling and unrolling-based CNN execution, weight repetition-
based CNN accelerators, and low-precision representations [5].
However, those techniques target the convolutional layer only
without considering the interplay between multiple layers.

In this paper, we present a cross-layer cooperative
algorithm-hardware co-design CNN optimization and accel-
eration framework, named MLCNN. Our design is based on a
key observation that the relative order of activation and pooling
does not affect CNN’s accuracy. By reordering the two layers
and co-optimizing the convolutional layer and pooling layer,
we eliminate a large number of redundant multiplications
and reuse many addition results. Moreover, we design and
implement an MLCNN accelerator that targets the acceleration
of CNN inference to accelerate the optimized CNN models.

The main contributions of this paper are as follows.
• We prove that CNN is insensitive to the relative order of

activation and pooling, which enables cross-layer coop-
erative optimization.

• We design effective methods to identify redundant mul-
tiplications and local and global addition reuses in CNN.
The proposed cross-layer optimization algorithm signifi-
cantly improves the performance of CNN.

• We design and implement a prototype MLCNN at the
register-transfer level (RTL) and evaluate its perfor-
mance using an accelerator-level cycle and energy model.
Experimental results on DenseNet, VGG, GoogLeNet
and LeNet are very promising, i.e., MLCNN achieves
a 3.2× speedup and 2.9× power consumption reduc-
tion compared with the dense CNN models (i.e., the
original CNNs without using MLCNN optimization).
Moreover, MLCNN can significantly improve the perfor-
mance of other CNN acceleration techniques. Combining
MLCNN with quantization achieves a 12.8× speedup
and 11.3× power consumption reduction compared with
dense CNNs.

The rest of the paper is organized as follows. Section II
describes the key components in CNN networks. Section III
proves the feasibility of reordering activation and pooling.
Our cross-layer cooperative CNN optimization framework and
algorithm are detailed and analyzed in Sections IV and V.
Section VI describes our MLCNN accelerator and Section VII
evaluates the performance of MLCNN. The related research
is discussed in Section VIII. Section IX concludes the paper.

II. CONVOLUTIONAL NEURAL NETWORKS

A. CNN Architectures and Key Layers

A CNN model is composed of multiple functional layers,
such as convolutional layers, activation layers, pooling layers,



Fig. 1. The structure of convolutional layer in CNN.

Fig. 2. Comparison of the spatial dimension reduction by convolutional-
pooling CNNs and all convolutional CNNs. White pixels represent padding
areas.

and fully connected layers. Among these layers, convolutional
layers are the most computation-intensive.

The structure of a convolutional layer is depicted in Fig-
ure 1. N input feature maps with dimension (S ×C +K −
1) × (S × R + K − 1) are dynamically juxtaposed against
M N×K×K weight kernels. M three-dimensional C×R
feature maps are generated. S represents the stride size used
by a filter sliding the input feature maps. N and M denote
the number of input and output channels respectively.

An activation function in CNN is non-linear. For example,
ReLU and Sigmoid are two widely used activation functions.
A standard ReLU is expressed by yto,m,n = max (Cto,m,n, 0).
That is ReLU preserves the positive features while suppressing
negative values to zero. Unlike ReLU, Sigmoid rescales a
feature to (0, 1) with yto,m,n = 1

1+e−Cto,m,n
, where yto,m,n

denotes the output of activation and Cto,m,n is the output
from the convolutional layer. Pooling is usually incorporated
to extract new and representative information and discard
useless or disruptive details [6]. Average pooling and max
pooling are commonly used. The former employs an averaging
operation (i.e., favg(x) = 1

n

∑n
i=1 xi) to smooth a feature

map, while the latter applies a maximum operation (i.e.,
fmax(x) = max (x1, x2, . . . , xn)) to retain the maximum
value among inputs while discarding the rest.

B. All Convolutional CNN

All convolutional (All-Conv) CNN is a special type of
CNN contains convolutional layers only [7]. In All-Conv,
pooling layers are replaced by increasing the stride of the
preceding convolutional layers. Figure 2 compares the dimen-
sion variation of the conventional CNN and the All-Conv
CNN. A stride-2 convolutional layer achieves a similar spatial
dimension reduction as a convolutional layer followed by a
stride-2 pooling. In comparison, a stride-2 convolutional layer

achieves better performance, as it eliminates some floating-
point multiplications and additions. However, pooling not
only contributes to dimension reduction but also alleviates
the sensitivity of outputs to shifts and distortions [6]. The
exclusion of pooling layers loses these benefits and causes
degradation of accuracy and robustness for CNNs. We present
the accuracy results in Section III.

In this paper, we aim to accelerate CNN’s performance
and maintain the benefits brought from pooling. Moreover, we
explore pooling to further reduce unnecessary multiplications
and additions together with convolutional layers. The detail
of our cross-layer CNN optimization method is described in
Section IV.

III. ACCURACY-PRESERVING CNN LAYERS REORDERING

A. Reordering Activation and Pooling with Sensitivity Analysis
In many CNN networks, convolutional layers are followed

by activation. The non-linear nature of activation makes the
optimization of convolutional layers with other layers difficult.
Meanwhile, pooling compresses and extracts representative
features from the output of activation. It has been proved that
ReLU followed by max-pooling behaves the same as max-
pooling followed by ReLU [8]. In addition to max pooling,
average pooling is widely used. The influence of switching
activation and average pooling, however, has not been studied.

In this section, we analyze the sensitivity of model accuracy
to the placement of average pooling in CNN networks. We
reorder ReLU and average pooling layers in several widely
used CNNs and study the all-conv counterparts. We use
VGG16 [9], VGG19 [10], GoogLeNet [11] and LeNet5 [6]
to illustrate and as case studies. Results on DenseNet [12] are
presented in Section VII. The CNN models are trained using
the CIFAR-10 and CIFAR-100 datasets [13]. Table I lists the
number of convolutional layers and learnable parameters of the
CNN models. The table shows the bigger a network (i.e., from
LeNet5 to GoogLeNet) is, the more convolution operations and
parameters are used.

TABLE I
NUMBER OF CONVOLUTIONAL LAYERS AND LEARNABLE PARAMETERS IN

STUDIED CNN MODELS.

CNN models # of Convolutional Layers # of Learnable Parameters

LeNet5 1+1+1 62K
VGG16 2+2+3+3+3 14728K
VGG19 2+2+4+4+4 20040K

GoogLeNet 1+1+1+6+6+6+6+6+6+6+6+6 6166250K

After reordering the ReLU activation and average pooling
layers (i.e., average pooling followed by ReLU), we measure
the influence on models’ accuracy. Figure 3 presents the top-1
and top-5 accuracy of the reordered CNN models compared
with those of the original ones, and All-Conv [7] which
replaces pooling by the stride-2 convolutional layer. The above
accuracy is measured on the test datasets from CIFAR-10 and
CIFAR-100.

In Figure 3, the reordered, original, and All-Conv CNN
models exhibit similar top-1 and top-5 accuracy on CIFAR-10.



Fig. 3. Influence of reordering activation and pooling layers on CNNs’ accuracy using CIFAR-100 and CIFAR-10 datasets. ReLU+AP: original CNN;
AP+ReLU: reordered CNN; All-Conv: all convolutional CNN.

Fig. 4. Analyzing the influence of different pooling functions on the accuracy
of CNNs using datasets (a) CIFAR-100 and (b) CIFAR-10.

Only LeNet-5 exhibits a little more top-1 accuracy degradation
after reordering. The more complex CNN networks are, the
better error tolerance they possess. Moreover, the figure shows
the importance of average pooling for dealing with complex
tasks on CIFAR-100. We can see the reordered network
is superior to All-Conv, achieving higher top-1 and top-5
accuracy. Compared with the original CNN (ReLU-AP), the
reordered GoogLeNet achieves about 0.5% improvement of
the top-1 accuracy. A similar performance gain is observed
in reordered VGG16 and VGG19. The more complex a CNN
model is, the less sensitive the reordered CNN is in terms of
model accuracy. These results motivate us to explore CNN
acceleration by means of layer reordering. We also find that
some deep CNNs, such as DenseNet and PNASNet [12],
[14], already use a reordered CNN architecture, which further
proves the feasibility of switching average pooling and ReLU.
Overall, a marginal accuracy variation is observed by moving
ReLU after average pooling, and pooling plays a critical role
when handling complex tasks.

B. Average Pooling and Max Pooling

Pooling helps reduce a model’s size and reduce over-fitting
for CNNs. The main advantage of average pooling over max
pooling is that average pooling does not remove information
from input feature maps, while max-pooling keeps only the
most distinct features and ignores the rest. We note some
CNNs use max pooling, such as [15], [16]. We study the
influence of different pooling functions (average and max)
on CNNs’ accuracy. Figure 4 plots the results. We can see
average pooling outperforms max-pooling in most CNNs,
which indicates it is beneficial to replace max-pooling with
average pooling. Our MLCNN exploits average pooling to
preserve useful information from feature maps.

IV. CROSS-LAYER CNN OPTIMIZATION

MLCNN incorporates multi-layer cooperation and cross-
layer optimization to effectively speed up CNNs. Specifically,
we explore redundant multiplication elimination (RME), local
addition reuse (LAR), and global addition reuse (GAR) across
multiple layers to reduce expensive floating-point operations.
To ease our discussion, we use the following symbols: K and
D denote filter’s and input’s spatial dimensions, respectively, S
is the step size, I represents an input feature map, W refers to
the weight filter, P is the pooling output, and N is the number
of elements in a row of a pooling feature map. Subscripts to,
ti, x, and y denote indexes.

Layer-Reordered CNNs. As discussed in Section III, the
relative order of activation and pooling has a marginal effect on
the accuracy of a CNN model. By reordering these two layers,
we generate an equivalent CNN network with convolutional,
pooling, and activation layers. The reordered, equivalent net-
work is used for cross-layer optimization.

Figure 5(a) presents an illustrating example. To facilitate
discussion, we only present calculations of the first output
feature from pooling P00. P denotes average pooling (AP)
which is connected to a 2×2 neighborhood in the correspond-
ing output feature map. The 2×2 neighborhood, i.e., C00 (-
0.11), C01 (-0.12), C10 (-0.15), and C11 (-0.13), is averaged.
Multiplication and accumulation (MAC) (denoted by M and A
in the figure) calculates a convolutional output feature Cx,y .
In this example, a 2 × 2 weight filter slides across a 5 × 5
input feature map from the top left corner with a unit stride.
In the beginning, the 2 × 2 weight filter covers the upper left
area of the input, and after a MAC operation, C00 is produced.
Then, the weight filter moves right by one column and starts
a new MAC operation to calculate C01. Sliding downwards
by one row followed by a MAC operation produces C10.
After calculating C10, the weight filter slides right by one
row followed by a MAC operation to determine C11. The
output from MAC is adjusted by adding a bias. In total, 16
multiplications and additions are performed to process the
input to pooling.

Identifying Redundant Multiplications and RME Opti-
mization. After reordering average pooling to follow a convo-
lutional layer, we examine MAC operations to find out whether
some can be eliminated. As the weights used to calculate
convolutional output features are the same, they can be fac-



Fig. 5. An example illustrating the identification of redundant multiplications. A 5X5 input feature map is processed by a 2X2 filter. (a) Operations in the
original CNN: pooling for generating feature P00. (b) Weight factorization in calculating P00.

tored out. After factorization, the multiplication of input and
weight can be replaced by the accumulation of the inputs first.
This can help eliminate many multiplications from the original
CNN. As shown in Figure 5(b), four multiplications are used
to calculate a pooling output feature after weight factorization,
whereas in the original CNN, 16 multiplications are involved
as shown in Figure 5(a). That is 75% of multiplications can
be eliminated. We find that the number of multiplications
saved in MLCNN is proportional to the pooling’s filter size.
Specifically, K−1

K percent of multiplications can be eliminated,
where K denotes the pooling’s filter size. The value of P00

is the same, and thus the functional correctness of CNN is
preserved.

Identifying Addition Reuses and LAR-GAR Optimiza-
tion. After removing redundant multiplications, the CNN
network still contains many additions. Next, we optimize those
additions across layers to further improve performance and
energy efficiency.

1) Local Addition Reuse (LAR). In the fused convolutional-
pooling layers, we find that the additions for adjacent input
features in the same row or column are performed more than
once and their results can be reused. We refer to the additions
whose results can be shared in calculating a pooling output
feature as local addition reuse. For example, in Figure 6(a),
the additions between two inputs in the same column, i.e.,
I01 + I11, I02 + I12, ..., I44 + I54, can be reused. Row-based
LAR works in a similar way except that it retains the reused
results from two elements in the same row.

To calculate a pooling output feature, K2 small accumu-
lations (denoted by “A” in a square in Figure 6) and one
major accumulation (denoted by “A” in a circle) are performed
with 3 additions for each small accumulation and K2 − 1
additions for the major accumulation (without bias addition).
In the original convolutional layer, there are 4×K2 − 1
additions in total. After applying local addition reuses, only
K× (2×K+ S) +K2 − 1 additions remain. The addition
reduction rate is

P =
K × (K − S)

4×K2 − 1
. (1)

Algorithm 1: Cross-layer cooperative CNN optimiza-
tion algorithm.

Input : I=input feature map; W=weight filter;
Output : O=output feature map;
Parameters : N=# of channels for I; M=# of channels for O; R’=# of

rows for I; C’=# of columns for I; R=# of rows for O;
C=# of columns for O;
K= # of rows/columns for W;

for ti = 0 : N-1 do
for i = 0 : R’-1 do

for j = 0 : C’-1 do
HAti,i,j = Iti,i,j + Iti,i+1,j ; // half addition

end
end

end
for to = 0 : M-1 do

for ti = 0 : N-1 do
for r = 0 : K-2 do

for c = 0 : C’-1 do
FAti,r,c

= HAti,r,c
+ HAti,r,c+1; // full

addition
end

end
for r = 0 : R-1 do

for c = 0: K-2 do
FAti,K+r−1,c =
HAti,K+r−1,c + HAti,K+r−1,c+1;

end
for c = 0 : C-1 do

FAti,K+r−1,K+c−1 =
HAti,K+r−1,K+c−1 + HAti,K+r−1,K+c;

for i = 0 : K-1 do
for j = 0 : K-1 do

Oto,r,c+ = Wto,ti,i,j × FAti,i+r,j+c;
end

end
end

end
end

end

2) Global Addition Reuse (GAR). When calculating different
pooling output features, additions on the same portion of input
features/pixels may be performed multiple times. We refer to
those cases where addition results can be shared in calculating
multiple pooling output features as global addition reuses.
Figure 6(b) shows an example of row-based GAR. The “row”
here refers to a row of the output feature map from pooling
instead of the activation feature map used in the LAR design.
In Figure 6, the addition results from calculating P00, i.e.,



Fig. 6. Local addition reuses (LARs) and global addition reuses (GARs). The cross marks in (a) show LARs and the highlighted blocks in (b) show GARs.

I02 + I12 + I03 + I13, I03 + I13 + I04 + I14, I04 + I14 + I05 +
I15, ..., I44 + I54 + I45 + I55, can be reused to calculate P01.
We use a row in the output matrix from pooling as the unit to
illustrate GAR and calculate the addition reduction rate. There
are also column-based GARs, which refer to the additions that
are shared in calculating the output features from pooling in
the same column. More computations can be eliminated by
combining the row-based and column-based GARs.

Recall that 3×K2 +K2 − 1 additions are used to calcu-
late an output feature from pooling. N× (3×K2 +K2 − 1)
additions are performed to produce a row of output features.
GAR becomes more beneficial when small accumulations
than major accumulations are used. The reusable small ac-
cumulations get results directly from the previous additions.
Consequently, only K× (D− S) small accumulations are
left. Since there are 3 additions in each small accumulation,
the number of additions can be reduced to K× (D− S)× 3.
Taking the major accumulations into account, there are
K× (D− S)× 3+N× (K2 − 1) additions in total. The
addition reduction rate attributed to GARs is

P =
3×N ×K2 − 3×K × (D − S)

N × (3×K2 +K2 − 1)
. (2)

Cross-Layer Cooperative CNN Optimization Algorithm.
We design a cross-layer cooperative optimization algorithm
to explore redundant multiplication elimination (RME), local
addition reuse (LAR), and global addition reuse (GAR) to
speed up deep learning computation. Algorithm 1 presents the
pseudo-code. The convolutional-pooling layers run in three
major steps: half addition, full addition, and MAC. A half
addition adds two adjacent elements in the same column. A
full addition exploits LAR to calculate the accumulation result,
i.e., I Acc in Equation (3). GAR is used by MAC to produce
the final output.

Pto,x,y = Relu

(∑K−1
i=0

∑K−1
j=0

∑N−1
ti=0 wto,ti,i,j × I Acc

4.0
+ Bto

)
. (3)

V. PERFORMANCE ANALYSIS OF MLCNN

As discussed in Section IV, redundant multiplication elimi-
nation (RME) can reduce K−1

K (percentage) of multiplications
in convolutional-pooling layers, where K denotes the filter
size in pooling layers. The performance benefit from addition

reuses (i.e., LAR and GAR) is influenced by several factors,
including filter size, step size, and input dimension. In this
section, we analyze the performance gain brought by LAR
and GAR. The following symbols are used in our discussion:
K (the spatial dimension of a filter), S (step size), D (the
dimension of an input feature map), and N (the number of
elements in a row of a pooling feature map).

TABLE II
IMPACT OF FILTER SIZE ON LOCAL ADDITION REUSES (LAR) IN

CALCULATING POOLING OUTPUT FEATURES. A UNIT STRIDE IS USED.

Filter
size

#of additions w/o
LAR

#of additions w/
LAR

Addition reduction
rate (%)

11 × 11 483 373 22.8
9 × 9 323 251 22.3
7 × 7 195 153 21.5
5 × 5 99 79 20.2
3 × 3 35 29 17.1
2 × 2 15 13 13.3

Local addition reuses: The influence of filter size and step
size on the effectiveness of addition reuses is presented in
Tables II and III, respectively. In Table II, we can see the
number of additions reduced by LAR closely depending on
the filter size. The lowest reduction rate occurs when a 2 × 2
filter is used. A larger filter leads to more additions reused.

Does a larger filter always result in more addition reuses? To
answer this question, we formally analyze the relation between
filter size and addition reuses. The addition reduction rate P
under a unit stride can be determined as follows.

P =
K × (K − 1)

4×K2 − 1
. (4)

Equation (4) shows a positive linear relation between P and
the filter size at the beginning. The rate flats as the filter size
increase further with P approaching 25%.

Then, we fix the filter size (e.g., 11 × 11) and vary the
step size. We choose 11× 11 as it is commonly used in CNN
models (e.g., AlexNet [17]) and it leads to the highest addition
reduction rate (shown in Table II). The influence of step size
on addition reuses is presented in Table III. From the table,
we find the addition reduction rate decreases almost linearly
as the step size increases. The greatest addition reduction is
achieved when a unit step size is used, and the performance



TABLE III
IMPACT OF STEP SIZE ON LOCAL ADDITION REUSES (LAR) IN

CALCULATING POOLING OUTPUT FEATURES.

Step size #of additions w/o
LAR

#of additions w/
LAR

Addition reduction
rate (%)

1 483 373 22.8
2 483 384 20.5
3 483 395 18.2
4 483 406 15.9
5 483 417 13.7
6 483 428 11.4
... ... ... ...
11 483 483 0

gain drops when the step size becomes greater than the filter
size.

Global addition reuses: We also analyze the effectiveness
of GAR. A unit stride and a 28 × 28 input feature map are
studied. Table IV shows our analytical results. We observe
the addition reduction rate increases and approaches the apex
where a 15 × 15 filter is used. Then the effectiveness of
addition reuses drops as the filter size goes up further.

TABLE IV
IMPACT OF FILTER SIZE ON GLOBAL ADDITION REUSES (GAR) IN

CALCULATING A ROW OF POOLING OUTPUT. THE RESULTS ARE BASED ON
A 28× 28 INPUT FEATURE MAP AND A UNIT STRIDE.

Filter
size

#of additions w/o
GAR

#of additions w/
GAR

Addition reduction
rate (%)

3 × 3 455 347 23.7
5 × 5 1188 693 41.7

13 × 13 5400 2397 55.6
15 × 15 6293 2783 55.8
17 × 17 6930 3105 55.2

The effectiveness of GAR is also affected by the step size.
In Table V, we find the smallest step size leads to the highest
global addition reuse rate (i.e., 55.6%). The effectiveness of
GAR drops dramatically as the step size increases.

TABLE V
IMPACT OF STEP SIZE ON THE PERFORMANCE GAIN FROM GAR IN

CALCULATING A ROW OF THE POOLING OUTPUT. THE RESULTS ARE
BASED ON A 13× 13 FILTER AND A 28× 28 INPUT FEATURE MAP.

step size #of additions w/o
GAR

#of additions w/
GAR

Addition reduction
rate (%)

1 5400 2397 55.6
3 2025 1479 27.0
5 1350 1233 8.7

Furthermore, we investigate the relationship between input
dimension and the effectiveness of addition reuse. A 13× 13
filter and a unit stride are used. Table VI lists the results. We
observe a positive correlation between the input dimension and
the addition reduction rate. We further formulate the relation
between them. To calculate a row of the pooling output without
GAR, (4×K2−1)×(D−K+1

2 ) additions are performed. When
K = 13, the number of additions is 337.5×D− 4050. When
GAR is applied, the number drops to (4 ×K2 − 1) + ((6 ×

K +K2 − 1)× (D−K+1
2 − 1)). It is 123×D − 1047, when

K = 13. Therefore, the addition reduction rate P equals

P =
214.5×D − 3003

337.5×D − 4050
. (5)

As D increases, P approaches 63.6%.

lim
D→∞

214.5×D − 3003

337.5×D − 4050
= 0.636. (6)

TABLE VI
IMPACT OF INPUT DIMENSION ON THE PERFORMANCE GAIN FROM GAR

IN CALCULATING A ROW OF THE POOLING OUTPUT.

input
dim

#of additions w/o
GAR

#of additions w/
GAR

Addition reduction
rate (%)

28X28 5400 2397 55.6
32X32 6750 2889 57.2

224X224 71550 26505 63.0

When both GAR and LAR are applied, the additions in
small accumulations can be reused, which causes the number
of additions to drop from (4×K2 − 1) to (K2 − 1).

lim
K→∞

3×K2

4×K2 − 1
= 0.75. (7)

That is up to 75% of additions can be saved.

VI. MLCNN ACCELERATOR

We qualitatively demonstrate the effectiveness of MLCNN
for CNN optimization. However, its potential cannot be fully
exploited without an efficient computing platform that pro-
vides high-throughput data communication and computation.
As such, we develop a domain-specific accelerator architecture
to support MLCNN.

A. Architectural Design of MLCNN Accelerator

Deep learning applications need to process large columns
of data. To achieve high-throughput dataflow, we design an
addition reuse (AR) unit and exploit shift registers in MAC
slices to perform LAR and GAR optimization. Addition reuses
also help prevent unnecessary data movement. To reduce on-
off chip data communications, our MLCNN accelerator adds
two adjacent features in the same column and transfers the
results (instead of the original data) to DRAM. We also de-
velop reconfigurable AR units, MAC slices, and preprocessing
functions to execute the fused convolutional-pooling layers
and those convolutional layers which are not followed by
pooling. In this section, we present the architecture and design
of the MLCNN accelerator and then describe the dataflow
design, followed by explaining how to leverage LAR and
GAR, preprocessing, and reconfigurability of the accelerator
to speed up CNN execution.

Architecture of the MLCNN Accelerator. The MLCNN
accelerator is tailored to accelerate CNNs. Figure 7 shows
its architecture and major components. The execution of the
MLCNN accelerator is managed by a controller. Processing
elements (PEs) are designed to perform 32-bit floating-point or
8-bit fixed-point multiplications. Accordingly, the addition unit



Fig. 7. MLCNN acceleration. (a) Overall architecture. (b) Block diagrams of the addition reuse (AR) unit and multiplication and accumulation (MAC) slices.

Fig. 8. Dataflow design for MLCNN ac-
celerator.

Fig. 9. Preprocessing.

adds two 32-bit floating-point or 8-bit fixed-point operands.
LAR and GAR are performed by AR units and MAC slices.
The input data and weights are stored in a multi-bank input-
weight buffer which aims to hide the latency in the on-off chip
data communication. The output buffer, on the other hand, is
responsible for data accumulation in addition to storing results.
For fused convolutional-pooling layers, two adjacent outputs
in the same column are added in preprocessing before the
result is sent to the off-chip DRAM.

Dataflow Design. A weight-input reuse dataflow is designed
to take advantage of the extensive reuse of weight operands
and the AR unit for input reuses. Weights are fetched from
PE’s registers and reused for different inputs. Weight is not
replaced from a register until it has been multiplied by all
inputs.

Moreover, we explore loop tiling to place a chunk of
data in the buffer and leverage temporal locality to improve
performance with a limited buffer space. Four major param-
eters are used in loop tiling for a convolutional layer, i.e.,
< Tm, Tn, Tr, Tc > [18]. For an input feature map with M
channels and an output feature map with N channels, the input
and output feature maps are partitioned into M

Tm
and N

Tn
tiles,

respectively. Accordingly, R rows and C columns in the output
feature map are tiled into R

Tr
and C

Tc
chunks.

Figure 8 illustrates the dataflow with loop tiling. Tm, Tn, Tr

and Tc are halves of the values of M , N , R, and C,
respectively. Two tiles in different channels are processed con-
secutively in order to reduce the number of outputs temporarily
buffered, e.g., I1 → I2, I3 → I4 shown in the figure. In the
beginning, a weight chunk w1 is loaded into PE’s registers,
and data from the input chunk I1 is added in the AR unit and
sent to the PE. w1 can be replaced in the register after it is
multiplied with all the inputs in I1. This process repeats for

Fig. 10. (a) Leveraging LAR on the MLCNN accelerator. (b) Part of the
preprocessing.

Fig. 11. Design of MAC slices for performing GAR.

the weight chunk w2 and input chunk I2. I3 is processed after
I2 (instead of I4) is multiplied by w2. The preceding steps
repeat until the output is produced.

AR Unit. An AR block consists of two addition units,
four registers, two demultiplexers, several multiplexers, and
FIFOs. Two small FIFOs, i.e., the leftmost ones shown in
Figure 7(b), are used for LAR optimization. Two operands
are sent to the AR unit every clock cycle at runtime. The
operand that has an odd column index is stored in the small
FIFO, that is the top one in the figure. The other operand is
stored in the bottom FIFO, and then moved from the bottom
register to the top one. One operand is shared by the two
addition units, which corresponds to the column-based LAR.
Figure 10 illustrates how LAR is conducted on the MLCNN
accelerator, where L denotes the input addition result which
comes from preprocessing. In the figure, we can see data
sharing between registers and data reuses are achieved from
using shift registers.

MAC Slices. The outputs of the two addition units in LAR
are cached in the rightmost FIFOs before being fed to the



Fig. 12. Accuracy comparison between MLCNN and quantized MLCNN on
CIFAR-100 (C100) and CIFAR-10 (C10) datasets.

MAC slices for GAR optimization. With two FIFOs in an
MAC slice, the number of FIFOs is twice the number of MAC
slices. When they are full, the top FIFOs will not accept data
from the addition units until the computation for the next row
in the output feature map is initiated. In the MAC slice, two
shift register sets are used for GAR.

Figure 11 presents the data and control flow in a MAC
slice. G denotes the accumulation result from the inputs, i.e.,
G00 = I00 + I01 + I10 + I11. Weights and accumulation
results are processed/computed in PE. To multiply 32-bit
operands, we develop a PE with a three-stage pipeline [19].
We use a Wallace Tree multiplier to perform 8-bit fixed-point
multiplications [20]. An adder tree is employed to produce the
final output.

Preprocessing. Before being transferred to the off-chip
DRAM, data is pre-processed as shown in Figure 9. We use
a selector S1 to control the execution mode of a layer. When
S1 = 0, a fused convolutional-pooling layer is executed, while
S1 = 1 leads to the regular mode (i.e., original convolutional
and pooling layers). When S1 = 0, I0 is selected, otherwise I1
is used. I0 is divided by four by shifting right to generate the
pooling result, as shown in Figure 9. It is adjusted by adding a
bias, followed by passing through an activation function. The
selector S2 is governed by the incoming layer. For a fused
layer, O1 is selected and S2 = 1, whereas a regular layer has
S2 = 0 (i.e., O0 dominates).

Reconfigurability. In Figure 7(b), the dashed lines show the
execution of the traditional convolutional layer. This execution
path is similar to those in state-of-the-art CNN accelerators.
Input features are sent to PE without addition, followed by a
weight-input multiplication. FIFOs are used to take advantage
of CNN’s input reuse opportunities. The solid lines show the
execution of fused convolutional-pooling layers. Additional
components (including registers, FIFOs, AR units, and MAC
slices) are provided in our design to speed up RME, LAR and
GAR optimizations. Preprocessing supports both the fused and
regular execution modes. The selectors S1 and S2 determine
which execution mode MLCNN is currently in.

VII. PERFORMANCE EVALUATION OF MLCNN

We evaluate the performance of MLCNN in a PyTorch [21]
environment using four representative CNNs, i.e., DenseNet,
VGG16, GoogLeNet, and LeNet5 on CIFAR-100 [13]. Twelve
layers in GoogLeNet and three layers in the transition blocks

TABLE VII
CONFIGURATIONS OF ACCELERATORS IN EXPERIMENTS.

DCNN
FP32

MLCNN
FP32

MLCNN
FP16

MLCNN
INT8

#MAC Slices 32 32 64 128
Bitwidth 32 32 16 8

area (mm2) 1.52 1.52 1.52 1.52
On-chip memory (kB) 134 134 134 134

in DenseNet can benefit from MLCNN’s optimization. VGG-
16 has five convolutional layers that can be optimized with
pooling layers. In LeNet-5, two convolutional layers benefit
from MLCNN’s optimization while others are not affected
since LeNet-5 has two pooling layers.

We have implemented an MLCNN accelerator and synthe-
sized it at the register-transfer level (RTL) written in Verilog.
We use Design Compiler with the 45-nm TSMC library to
analyze the area of MAC Slices under different designs.
We use CACTI [22] to measure the power consumption
and Xilinx Vivado [34] to measure the performance of our
MLCNN accelerator. Table VII lists the configuration of our
MLCNN accelerator employed in the experiments. MLCNN
and baseline DCNN have the same amount of on-chip memory
which caches the input and weights for reducing the off-
chip memory access latency. For fair comparisons, we use
the same number of MAC Slices and the same area budget
(1.52mm2) for MLCNN and the baseline DCNN. We evaluate
the performance of MLCNN in terms of execution time,
floating-point operation reduction, and energy efficiency.

A. Accuracy of MLCNN

In the first set of experiments, we aim to understand to
what extent the design of MLCNN influences the accuracy of
object classification compared to the original DCNN. As the
optimization methods in MLCNN are complementary to the
existing CNN acceleration techniques, we combine MLCNN
with quantization (a widely used CNN acceleration approach)
in addition to the standalone MLCNN.

We perform input/activation and weight quantization
adapted from DoReFa-Net [23]. Both weight and input are
quantized based on an extensive straight-through estimator
(STE) method [24], expressed as

ro = quantizek(ri) =
1

2k − 1
round((2k − 1)ri), (8)

where a real number ri in [0, 1] is quantized to k-bit output
ro in [0, 1].

For weight quantization, as weights may be positive or
negative, we use the following method.

ro = 2quantizek(
tanh(ri)

2max(|tanh(ri)|)
+

1

2
)− 1, (9)

where tanh rescales the range of weights to [-1, 1] before being
quantized to k-bit, and tanh(ri)

2max(|tanh(ri)|) assures the value is in
[0, 1] (the maximum operation is performed on all the weights



Fig. 13. Speedup of MLCNN (FP32, FP16 and INT8) compared with DCNNS: DenseNet, VGG16, GoogLeNet, and LeNet5. “C” denotes a convolutional
layer.

Fig. 14. Percentage of FLOPs reduced by MLCNN.“C” denotes a convolu-
tional layer in a CNN model.

of that layer). Function quantizek() quantizes its input to a k-
bit fixed-point value in [0, 1]. An affine transform then scales
the k-bit weight back to [-1, 1].

For input quantization, the extensive STE method, i.e.,
Equation (8), is used on input layers after ReLU, and the
extended method, i.e., Equation (9), is used on the inputs
without ReLU before them.

Figure 12 plots the measured accuracy of DCNN and ML-
CNN on four CNN models (DenseNet, VGG16, GoogLeNet,
and LeNet5). A static quantization scheme, DoReFa-Net [23],
is also used with MLCNN. As can be seen, although LeNet5
gives a 1.5% accuracy degradation, the MLCNN optimization
on GoogLeNet results in around 0.5% accuracy elevation
compared with DCNN. It is rational as complex CNNs
will have more error tolerance. MLCNN and DCNN reach
similar accuracy on CIFAR-10 and CIFAR-100 for FP32,
FP16, and INT8. In comparison with MLCNN, the most
accuracy degradation of quantized MLCNN (8-bit) comes with
GoogLeNet on CIFAR-100, which is less than 0.8%. VGG16,
however, has about a 0.5% accuracy elevation on CIFAR-100.
Overall, MLCNN, DCNN, and quantized MLCNN (8-bit) are
equivalent in terms of accuracy.

B. CNN Acceleration Performance by MLCNN

To quantify the performance improvement brought by ML-
CNN, we measure the execution time of CNNs. For fair
comparisons, the same area budget (1.52mm2) and on-chip
memory is applied to the quantized MLCNN and the quantized
DoReFaNet on 8-bit operands. Figure 13 presents the perfor-
mance of MLCNN (FP32 and FP16) and quantized MLCNN
(INT8) compared with the baseline DCNNs. The results show
MLCNN achieves about 3.2× performance improvement on
average for 32-bit floating-point operations. MLCNN FP16
achieves a 6.2× speedup compared with DCNNs. Moreover,
the quantized MLCNN (INT8) has a 12.8× performance
gain. Given the same area budget, more MAC slices are

implemented under a lower precision as shown in Table VII.
The forward propagation convolutional layer (C9) has the
highest performance gain in GoogLeNet (9.63×, 19.2× and
42.3× for FP32 MLCNN, FP16 MLCNN and quantized
MLCNN, respectively). Overall, GoogLeNet benefits the most
performance improvement than other CNN models explored
in this work. As mentioned in section IV, the percentage of
multiplications saved is proportional to the pooling filter size.
Therefore, it is rational that GoogLeNet achieves the most
performance gain with the highest pooling filer size (8 × 8).
The significant reduction of the execution time comes from the
elimination and reuse of redundant floating-point operations
including multiplications and additions.

C. Acceleration of Floating-Point Computations

Floating-point multiplications and additions are compute-
intensive and power-hungry. We measure the number of
floating-point operations saved by MLCNN in DenseNet,
VGG-16, GoogLeNet, and LeNet-5. Figure 14 shows the
results. There are two average pooling layers after the first
two convolutional layers in LeNet-5. MLCNN optimizes the
first and second convolutional layers. For VGG-16, five lay-
ers can be fused and cross-optimized, i.e., Layers 1 to 5
which are convolutional layers. Twelve convolutional layers
in GoogLeNet and three in DenseNet benefit from MLCNN’s
optimization. From the figure, we can see RME contributes
to up to 98% multiplication reduction. The percentage of
multiplication eliminated is K−1

K , where K denotes the filter
size in pooling. Furthermore, different layers exhibit varying
addition reduction rates. Convolutional layer 2 in LeNet-5
shows the greatest addition reduction, 51.52%. A 1 × 1 filter
together with a 1 × 1 output feature map disables addition
reuse in the design of MLCNN. As a result, no addition is
eliminated in such layers.

Overall, DenseNet, VGG16, and LeNet-5 save 75% of mul-
tiplications. For GoogLeNet, up to 98% of multiplications can
be eliminated. LeNet5 exhibits the highest addition reduction
rate, i.e., 51.52%, whereas no addition is reused in DenseNet.
A small dimension filter used in DenseNet, VGG16, and
GoogLeNet (i.e., 3 × 3 or 1 × 1) results in a relatively less
addition reductions compared to LeNet5 (5 × 5 filter).

The performance benefit from addition reuses is influenced
by the filter size, step size, and input dimension (See Sec-
tion V). Figure 14 shows the average-case results using several



Fig. 15. Breakdown of energy consumption by MLCNN (FP32, FP16 and INT8) compared with DCNNS: DenseNet, VGG16, GoogLeNet, and LeNet5.“C”
denotes a convolutional layer.

real-world CNN models. In the best case, 75% of additions
can be reduced by leveraging local addition reuses (LARs) and
global addition reuses (GARs) when the filter dimension (K)
approaches infinity in Equation (7). In a real implementation,
on the other hand, K is usually a small number. As a result, the
CNN models that we evaluate on CIFAR-100 achieve 51.5%
or less addition reduction.

D. Energy Efficiency
Machine learning workloads are compute-intensive and

power-hungry. We measure energy saving by using MLCNN.
Figure 15 plots the energy consumption by MLCNN compared
with DCNNs on FPGA measured by CACTI [22]. In the
figure, we can see MLCNN consumes a less amount of energy
under all precision modes (FP32 MLCNN, FP16 MLCNN and
INT8 quantized MLCNN). On average, MLCNN achieves a
2.9× energy efficiency on FP32 operations compared with
DCNN. For FP16 MLCNN, a 5.9× energy efficiency is
obtained. Moreover, the quantized MLCNN (INT8) is 11.3×
energy-efficient than DCNNs. In particular, the Convolutional
Layer #9 in GoogLeNet achieves the greatest energy effi-
ciency, i.e., over 9.0× by FP32 MLCNN, 17.5× by FP16
MLCNN and 33.6× by INT8 quantized MLCNN compared
with DCNN, among all the layers.

To gain a deeper understanding of MLCNN’s energy effi-
ciency, we further study the energy consumption by the three
major components, that is DRAM, Buffer (input, weight, and
output buffer), and processing cores (MAC). As shown in
Figure 15, all these components (i.e., DRAM, Buffer, and
MAC) contribute to the energy reduction on FP32 MLCNN,
FP16 MLCNN, and quantized (INT8) MLCNN. Specifically,
DRAM, Buffer, and MAC contribute to reducing the execution
time which dominates the static energy use. The dynamic
energy is mainly saved by the Buffer and MAC. Data reuse
by MLCNN eliminates redundant data accesses to the Buffer.
Moreover, the number of multiplications and additions in
MAC is significantly reduced by MLCNN.

VIII. RELATED WORK

CNNs are incorporating more layers to extract features and
build accurate models, which slows down both model training

and inference. To speed up CNNs, researchers have proposed
optimization techniques and accelerators.

GPU, ASIC, and FPGA are the major CNN accelerators.
GPU excels in parallel computing. However, the prohibitive
power consumption makes GPU less preferable in terms of
performance per watt. Custom ASICs, such as Tensor Pro-
cessing Unit (TPU) [3], were developed. TPU is 15×-30×
faster than GPU and CPU when running CNNs. In addition,
NVIDIA developed tensor cores [25] that feature efficient
multi-precision matrix multiplications for CNNs. FPGA-based
accelerators attract new attention. For example, a tiling and
unrolling-based CNN execution framework on FPGA was
proposed, which balances on-chip computational resource and
memory bandwidth [26]. Moreover, Alwani et al. presented
a fused-layer CNN that fully utilizes the memory space to
mitigate data transfer overhead [27]. They focused on data
reuses between layers to reduce DRAM accesses, which did
not speed up multiplication and addition operations in convolu-
tional layers. Our MLCNN targets multiplication and addition
optimization in convolutional layers. The experimental results
show MLCNN (achieving a 3.2X speedup) is more effective
than fused layers (i.e., 1.5X for the first 2 convolutional layers
in AlexNet).

Among the software solutions, sparsity has been extensively
studied [28]. Synapses pruning can result in 10× data re-
duction, speeding up training and inference [29]. Dataflow
optimization has been explored to accelerate CNN applica-
tions. For example, Eyeriss [30] provides a dataflow taxonomy
and row-stationary dataflow. In [31], a heterogeneous dataflow
accelerator is proposed for convolutional layers. Moreover,
the error tolerance property of CNNs enables low-precision
calculations. Han et al. [32] achieved a 35× weight size
reduction for AlexNet. Hegde et al. [33] proposed a weight
repetition framework that explores the low-precision repre-
sentations of weights for acceleration. MLCNN optimizes
expensive multiplications and additions across multiple layers
in CNNs, which is complementary to the preceding techniques.

Daultani et al. [8] reordered max pooling and ReLU, which
could reduce some binary max operations. Specifically, they
targeted the max(a, b) function. It worked as follows. In a tra-



ditional CNN with convolution-ReLU-pooling layers, assume
the dimension of a feature map output from the convolutional
layer is 3×3. Then, ReLU carries out 9 binary max operations.
With a 2×2 pooling filter, there are 12 binary max operations
in the max-pooling layer. In total, 21 binary max operations are
performed. After reordering max-pooling and ReLU, ReLU
conducts 4 binary max operations and max-pooling still needs
12 binary max. The overall number of binary max operations
is reduced from 21 to 16 (i.e., a 23.8% reduction). However,
as binary max is a light-weight operation, which accounts
for only 4% of execution time compared with over 90%
of the time by run convolutional layers [35], its overall
speedup was limited, that is around 1.03× [8]. Floating-point
multiplications and additions in convolutional layers involve
heavy computation. However, they were untouched in [8].

In contrast, our MLCNN targets directly the compute-
intensive convolutional layers by co-optimizing the convo-
lutional layer and pooling layer. Specifically, we identify
redundant multiplications and local and global addition reuses.
Up to 75% of floating-point multiplications and additions are
reduced and our performance improvement is significant, i.e.,
a 3.2× speedup.

IX. CONCLUSIONS

In this paper, we present MLCNN which speeds up deep
learning applications and develop an efficient CNN accelerator.
We design a cross-layer cooperative optimization method to
achieve redundant multiplication elimination, local addition
reuse, and global addition reuse. Both statistical analysis and
experimental results show MLCNN can significantly improve
the performance and reduces power consumption for deep
learning, which makes MLCNN a promising solution for high-
performance and low-power deep learning applications and
systems. We present the results on DenseNet which includes
bypass connections between non-adjacent convolutional lay-
ers. MLCNN can also be applied to ResNet. The convolutional
layers with pooling in ResNet-18 can benefit from MLCNN
with layer reordering and cross-layer optimization.

In our future research, we plan to integrate MLCNN with
the latest CNN networks and leverage our optimization method
to speed up other deep learning technologies, such as graph
neural networks and recurrent neural networks.
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