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Abstract. We apply persistent homology, the dominant tool from the field

of topological data analysis, to study electoral redistricting. We begin by
combining geographic and electoral data from a districting plan to produce

a persistence diagram. Then, to see beyond a particular plan and understand

the possibilities afforded by the choices made in redistricting, we build methods
to visualize and analyze large ensembles of alternative plans. Our detailed

case studies use zero-dimensional homology (persistent components) of filtered
graphs constructed from voting data to analyze redistricting in Pennsylvania

and North Carolina. We find that, across large ensembles of partitions, the

features cluster in the persistence diagrams in a way that corresponds strongly
to geographic location, so that we can construct an average diagram for an

ensemble, with each point identified with a geographical region. Using this

localization lets us produce zonings of each state at Congressional, state Senate,
and state House scales, show the regional non-uniformity of election shifts, and

identify attributes of partitions that tend to correspond to partisan advantage.
The methods here are set up to be broadly applicable to the use of TDA

on large ensembles of data. Many studies will benefit from interpretable sum-

maries of large sets of samples or simulations, and the work here on localization

and zoning will readily generalize to other partition problems, which are abun-
dant in scientific applications. For the mathematically and politically rich

problem of redistricting in particular, TDA provides a powerful and elegant
summarization tool whose findings will be useful for practitioners.
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1. Introduction. In this paper, we bring the techniques of topological data anal-
ysis to bear on electoral redistricting. We do this through the novel combination
of several mathematical techniques, applied with in-depth knowledge of the appli-
cation domain to address its unique challenges and important questions. We begin
by introducing the key notions.

1.1. Redistricting. In electoral politics, redistricting is the process of drawing
new boundary lines for electoral regions called districts, in which an election will
be conducted to select one or more people as representatives for a governing body.
For instance, the United States Congress has a House of Representatives that has
had 435 seats for over a hundred years. These seats are apportioned to the states
after every decennial Census—for instance, the 2010 Census left Pennsylvania with
18 seats and North Carolina with 13, in rough proportion to their population—and
then it is left to the various states to partition their territory into geographically-
delimited districts that will elect a single member each. In most cases, it is the state
legislature that controls the process of drawing not only Congressional boundaries,
but also the boundaries for their own legislative districts. In the U.S. system, which
is dominated by two major parties, this opens the door to partisan gerrymandering,
where the lines are carefully arranged to maximize the seats secured by their side,
given the anticipated pattern of voting. For instance, the last few years have seen
successful legal challenges in both Pennsylvania and North Carolina, where enacted
plans produced by Republican-controlled legislatures were found to be Republican-
favoring “gerrymanders”—in other words, to be so favorable to the party in charge
that they impermissibly subordinate neutral criteria to a partisan agenda. There are
many other kinds of gerrymandering, including agendas with racial components, or
to favor or target particular incumbents, but the present paper focuses on developing
mathematical tools to understand the interplay of district lines and party outcomes.
For more background on redistricting, see [29, 43] and the forthcoming book [31].

1.2. Persistent homology. Persistent homology is the most widely recognized
tool used in the burgeoning field of topological data analysis (TDA), where con-
cepts from algebraic topology are used to simplify, summarize and compare com-
plex datasets. Methods from topological data analysis have proven successful in
neuroscience [25, 6], medical diagnostics [53, 23], and machine learning [2, 14, 7, 41],
among many other applications—these references are just a selection of many dozens
of examples in each of these areas. However, applications to demographic or elec-
toral geospatial data seem to be comparatively limited; we only know of a few exam-
ples. In [4], Bajardi et al. use mobile phone data to study patterns of immigration.
In [57], Stoltz et al. use TDA to study Brexit voting patterns, finding for instance
that Switzerland is surrounded by countries with a different voting tendency. In
[5], Banman and Ziegelmeier apply persistent homology to global health and wealth
statistics to uncover subtle developmental disparities between geographically close
countries. Finally, in the example closest to our own approach, Feng and Porter
introduce in [34] a filtration for producing a topological signature from districting
and vote data which is similar to filtration we employ below. (See also the broader
paper [35] for spatial applications.) The applications considered in [34] are quite
different from those considered here: Feng and Porter primarily used topological
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signatures to study the vote patterns at the precinct level for fixed regions, whereas
our goal is to understand the variation among districting plans, so that a single map
does not suffice. We will do that by studying topological features across collections
or “ensembles” containing thousands of alternative plans.

Congressional plan (enacted 2018) State Senate plan (enacted 2011)

Figure 1. This paper studies the aggregation of votes from geo-
graphic units to districts, which is intractable to study by complete
enumeration of possibilities. We develop persistent homology tech-
niques to summarize the districting problem. This figure shows
a precinct map of Pennsylvania with key cities identified. The
precincts are colored by voting results from the 2016 Presidential
election (blue for Democratic, red for Republican). Current dis-
tricts in Pennsylvania are shown with the same coloring. Note
that the Congressional districts are balanced to within one-person
population deviation (by 2010 Census count).

1.3. Studying districting ensembles with persistent homology. Suppose we
want to evaluate a districting plan, either proposed or enacted, to label it as either a
partisan gerrymander or not. Some authors have proposed universal metrics for this
purpose, which do not take the specific state, time period, or level of redistricting
into account: the same score, denominated in the same units, is supposed to flag
gerrymanders for Iowa’s Congressional seats in 2020 or for Mississippi state House
in 1960. Examples which are widely cited include the efficiency gap [56], and the



4 MOON DUCHIN, TOM NEEDHAM AND THOMAS WEIGHILL

mean-median score [48], which belongs to a family of “partisan symmetry” metrics
[37].

On the other hand, there has been growing consensus around the idea that evalu-
ating a map requires comparing it to a range of alternatives that hold the geography,
demography, and redistricting rules constant. In the last several decades, the use of
“demonstration plans” has been rising in court cases: in addition to the map under
consideration, a court also views plans submitted by various advocacy groups and
political actors. While traditionally all of these benchmark plans are drawn “by
hand,” the last ten years has seen the adoption of computer algorithms in court
cases, where large generated ensembles of possible districting plans are used as a
backdrop of comparison for a proposed or enacted plan. The use of algorithmic
ensemble methods has already had a major impact on a number of recent court
cases, notably Pennsylvania and North Carolina, where ensemble methods were
cited by courts in the successful invalidation of the state’s enacted maps as partisan
gerrymanders [47, 54, 30].

Algorithmic ensembles can easily boost the number of alternatives to consider
into the hundreds of thousands, far beyond the point where each map can be care-
fully analyzed with the human eye. For this reason, summary statistics are com-
puted for the maps in the ensemble, then compared to the plan under evaluation.
For example, one might choose one or several recent elections in order to fix a back-
ground pattern of voting, then count the number of districts won by each party as
the district lines vary. If the map under evaluation gives the controlling party the
majority in an outlying number of districts—in other words, if the plan secures more
seats for Party A than the vast majority of alternatives—this could reveal that the
map was made with impermissible partisan intent and/or has unreasonably skewed
effects.

We can therefore say that modern research into redistricting forces us to be able
to understand the essential qualities of large collections of territorial partitions,
preferably in a way which captures both geography and relevant summary statis-
tics, such as those connected to party or race. The method we propose in this paper
is illustrated with respect to partisan statistics, but can be applied more generally.
We combine and summarize the adjacency and vote share information from a dis-
tricting plan into a dual graph (see §2.1), decorated by vote shares under some given
electoral pattern. We can now ask questions like: how many connected components
of support for Party A are there? A more sophisticated version of this question,
which considers multiple thresholds at once, is answered by persistent homology,
the mathematical theory underlying our method.

In this paper we apply methods from TDA to summarize ensembles of districting
plans generated via Markov chain Monte Carlo (MCMC) sampling. To be precise,
we study the ensembles by transforming them into persistence diagrams, which ad-
mit manageable summaries. This is accomplished by computing degree-0 persistent
homology of the filtered dual graphs of the plans and passing to a barycenter con-
struction through the use of Fréchet means. Similar methods could be attempted
for higher-dimensional homology, which is left for future work. There has been
some prior work using TDA to study ensembles of generated data, such as simu-
lated polymer conformations [33] or simulated neuronal spike trains [25, 21]. To our
knowledge, this is the first geospatial application.

It is important to note that the TDA methods defined here are agnostic to the
Markov chain (or other) methods used to generate an ensemble of districting plans.
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We use a method called Recombination [28] for most of the illustrative analysis,
but this can be treated as a black box for the current paper.

1.4. Broad goals and contributions. Before we proceed, we highlight an im-
portant guiding principle in this paper: namely, we will measure the success of our
topological data analysis techniques by their ability to uncover information which
cannot be easily observed from maps “with one’s eyes.” Consider Figure 1, for ex-
ample, which shows the distribution of votes in the 2016 Presidential election in
Pennsylvania (following the contemporary U.S. color convention of red for Repub-
lican, blue for Democratic). No advanced data analysis techniques are required
to observe that Philadelphia and Pittsburgh are far bluer than the rural north of
the state. What is not clear, however, is where the blue districts will fall in a
typical redistricting plan. This is partly because the blue clusters in the map have
widely different population sizes. A small Democratic-leaning city like State College
(≈50,000 people) will have little impact on a 700,000-person Congressional district,
but may dominate the voting in a smaller 63,000-person state House district if the
boundaries fall just so. To sharpen this point, consider the single precinct on the
north border of Pennsylvania that is blue in a sea of red. In 2018, this precinct had
66 votes for Clinton and 18 votes for Trump, for a Democratic share of over 78%.
This is manifestly irrelevant for redistricting, but would produce a very persistent
feature in a precinct-level analysis. This shows that we need to contend with aggre-
gation to distinguish signal from noise in the districting application. Though this is
phrased in the language of redistricting, a similar challenge of summarizing the vast
possibilities for aggregation and partition occurs in many application domains.1

We develop the following techniques, stated here for the redistricting application
but with an eye to generalization.

• Scale and zoning. We leverage TDA to study nuanced scale effects in
partition problems. In particular, persistence diagrams let us read off a zoning
of a state into redistricting-relevant regions at each districting scale.
• Comparing elections. Fixing a scale of aggregation, we can study the

difference between two filtrations in natural units. Here, that lets us compare
different vote patterns on the same precincts.
• Signals of gerrymandering. Finally, we consider the use of TDA to study

differences between ensemble methods. For elections, we can compare sets of
districting plans gathered by partisan-biased procedures, looking for system-
atic differences at the level of geography.

Using the techniques above, we have several concrete findings in our case study
states of Pennsylvania and North Carolina. Details are found below, but we high-
light the findings here.

• Successful localization and summarization. Figures 8 and 12 show a re-
markable degree of consistency between persistence data and geography with
respect to the presidential contest in 2016, and we observed the same for each
election in our dataset. This is a fundamental finding that enables the rest
of the analysis. Furthermore, the iterative Fréchet mean algorithm succeeds
at producing ensemble summaries on these datasets at a reasonable compu-
tational cost, which is not always the case in data-intensive applications.

1For just one example, minimizing communications latency in the assignment of subtasks and
data to processors in massively parallel high-performance computing would benefit from partition

sampling to provide an overview of clustering.
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• (Non-)uniformity of partisan swing. A longstanding debate in political
science concerns the use of a uniform swing hypothesis for shifts between vot-
ing patterns; that is, if one election has a Republican share that is 5 points
higher than another statewide, can we reasonably assume that preferences
shifted 5 points in every district or even every precinct? Our work produces
detailed findings on the relative swing in regional clusters from one election to
the next. For instance, we find that swing is fairly uniform in the Pittsburgh
cluster of districts across five elections held in 2010 and 2012. However, a fun-
damental shift can be detected between 2012 and 2016, making the Pittsburgh
cluster more persistent. In other words, we observe a marked mid-decade in-
crease in polarization, seen in the difference between Pittsburgh districts and
their surroundings, at all three levels of redistricting (k = 18, 50, 203 districts).
We get similarly granular insights in North Carolina: Charlotte swings fairly
uniformly across the Census cycle; Asheville does not.
• Correlates of partisan tilt. The partisan-biased ensembles admit several

nontrivial observations correlating regional persistence to overall party ad-
vantage. For instance, State Senate plans that have a higher Democratic
share in the Pittsburgh districts are associated with Republican advantage
overall—this is an instance of the well-known phenomenon of “packing” one
kind of voter, which “wastes” their votes. More surprisingly, though the Scran-
ton cluster always stays competitive, surrounding Scranton with redder dis-
tricts (i.e., increased persistence) is correlated with Democratic advantage in
the ultimate Senate outcome; Scranton is the only Pennsylvania zone with
that property. Greensboro, NC exhibits this property in reverse: making the
Greensboro districts more like their periphery (i.e., decreased persistence) is
associated with greater Democratic success overall.

These observations can be corroborated by secondary analysis. Relative to the
precinct-level data from which they were built, these findings pass the “can’t-be-
seen-with-your-eyes” test with flying colors, and we hope that they will generate
interest in the wider TDA community as well as among political scientists and
redistricting practitioners.

1.5. Outline of the paper. In Section 2, we define districting plans in the lan-
guage of graph theory and briefly describe the methods that generate ensembles
of plans. The persistent homology framework for studying districting plans is laid
out in detail; to keep the exposition self-contained, we describe the relevant tools
from TDA with a narrow focus on the application at hand. Section 3 presents the
three principal applications described above. We use the persistent homology for-
malism to compare scales of redistricting, to compare data from different elections
on the same districting plan ensembles, and to determine distinguishing features
from ensembles of partisan-tilted districting plans. In Sections 4-5, we apply our
methods to ensembles of plans in Pennsylvania and North Carolina. Finally, the
stability and robustness of the TDA signatures is explored in Section 6. Drawing on
a standard result from [22] on the stability of persistence diagrams to perturbations
in their input data, we derive a guaranteed upper bound on our districting plan
representations when perturbing electoral and geographical data. These theoretical
results are accompanied by data that raises our confidence in the robustness of our
analysis.



THE (HOMOLOGICAL) PERSISTENCE OF GERRYMANDERING 7

2. Background and mathematical framework. In this section we describe the
details of our topology-based approach to studying districting plans. We begin by
precisely defining the notion of a districting plan and briefly describing our method
for generating ensembles of plans. Next we apply the persistent homology pipeline
to certain filtered graphs associated to the plans. To keep the description accessible,
we opt to restrict our exposition of persistent homology to our specific application
rather than appealing to any general theory. We use [32, 11] as general references
for persistent homology.

2.1. Redistricting as a graph partition problem. A districting plan is a par-
tition of a state into geographical regions meeting certain criteria, which vary by
state. The building blocks are geographic units such as census blocks or election
precincts. A very brief summary of key redistricting rules and principles is needed
to set up the problem. The number of Congressional districts in a state is determin-
istically related to the Census population by a formula that has been in place for
nearly sixty years; the new apportionments will be announced in 2021. The number
of districts in the state legislative houses is typically fixed in state constitutions and
is rarely changed. A criterion for a districting plan which is common to most states
(and essentially active in all) is that each district must be “contiguous,” i.e., the
induced subgraphs on the pieces of the partition should be connected. And it is a
universal requirement that the districts be population-balanced: each district must
have equal population, up to a small tolerance for deviation. For our purposes we
will fix a deviation limit ε, so that each of the districts should be no less than (1−ε)
and at most (1 + ε) times ideal size, which is total Census count divided by k.

After fixing the choice of units, we are able to define a districting plan more
formally as a graph partition, with notation following [29, 1, 28]. Given a tiling of a
state by geographic units that overlap only along boundaries, let G = (V,E) be the
unit dual graph—for instance, we can form a precinct dual graph or a census block
dual graph. This is defined by having each vertex in V correspond to a geographic
unit of the state, then connecting two vertices by an edge if and only if their units
are geographically adjacent (i.e., share a boundary of positive length). We denote
vertices in V by v or w and an edge in E with endpoints v and w is denoted vw. For
a subset V ′ ⊆ V , recall that the induced subgraph on V ′ is the graph G′ = (V ′, E′)
containing all the edges of E that have both endpoints in V ′. We adopt the slight
abuse of notation to refer by G′ to either the induced subgraph or its vertex set V ′,
as needed. We will frequently make use of functions p : V → R, such as a population
count for every unit. We will write p(G′) to refer to the sum

∑
v∈V ′ p(v).

Definition 2.1 (Districting plans as balanced connected partitions). Given a graph
G = (V,E), a number of districts k ≥ 2, a weighting function p : V → R, and a
balance threshold ε, let Pk,ε(G) be the set of partitions P = {P1, . . . , Pk} where
Pi = (Vi, Ei) are induced graphs on a vertex partition V = V1 t · · · t Vk with each
Pi connected and satisfying the balance condition

(1− ε) · p(G)

k
≤ p(Pi) ≤ (1 + ε) · p(G)

k
.

Each P ∈ Pk,ε(G) is called a districting plan, and each Pi is called a district.

As alluded to above, districting plans are typically subjected to other tests of
quality. One prominent example is “compactness,” which requires that the shapes
of districts look reasonable on a map. Other criteria prefer plans that hew to county
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and municipal boundaries, that respect “communities of interest,” and so on. And
finally, but by no means insignificantly, the whole country is subject to the Voting
Rights Act of 1965 (VRA), a rule that requires adequate access to representation
for certain kinds of demographic minorities. Generating a districting plan meeting
all relevant validity criteria is a complicated and delicate process, and in this paper
we will only operationalize population balance, contiguity, and compactness.2

Perhaps the most concise summary of the geographic layout of a redistricting
plan is the data of which districts are next to which. This information is naturally
captured in a graph structure that is formed by aggregation from the dual graph
of the state’s geographic units: each vertex of the graph now corresponds to a
district, and edges connect nodes from adjacent districts (see Figures 3 and 16).
This construction is referred to as a district dual graph for the plan.

One might hope that even within a large ensemble of plans, the types of graphs
one obtains are relatively restricted, thereby uncovering a common feature of the
plans in the ensemble. It turns out in practice that there is a huge variety in the
types of graphs in even a modest ensemble of 1000 plans. In a generated ensemble
of 18-district plans for Pennsylvania (details of ensemble generation are provided
in Section 2), 991 distinct graph isomorphism classes are represented among the
1000 dual graphs. Examples of some of these graphs are shown in Figure 2 and
some basic graph statistics of the ensemble are shown in Figure 19. As the number
of districts in the plan increases, so does the variety of graphs: the dual graphs
constructed from our generated ensembles of 1000 50-district plans are typically
all unique up to isomorphism. This suggests that passing from districting plans
to dual graphs is not enough of a reduction in representation complexity to make
direct analysis of the space of a plans a tractable option.

Figure 2. Abstract graph representations of three 18-district
plans for Pennsylvania.

2.2. Markov chains and districting ensembles. In this paper we will generate
plans via a Markov chain algorithm called ReCom (short for Recombination), but
our TDA methods can be used to study any ensemble of districting plans regardless
of how it was generated. We briefly describe the ReCom algorithm; more details
can be found in [28] (see also [27] for an early application of this algorithm to
redistricting in Virginia). The GerryChain package, which implements the ReCom
algorithm, is publicly available at: https://github.com/mggg/GerryChain.

Let G = (V,E) denote a unit dual graph and suppose that P = {P1, . . . , Pk} is a
valid districting plan (meaning that it satisfies all of the geographic and demographic
criteria required by the particular state). ReCom is a Markov chain whose state

2For work that layers in more complicated districting criteria, see for instance [26].

https://github.com/mggg/GerryChain
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space is Pk,ε(G). A step in the chain is taken as follows. First, two distinct adjacent
districts Pi and Pj are chosen uniformly at random. Next, a random spanning tree
of the connected subgraph Pi ∪ Pj ⊂ G is constructed. Deleting an edge from
this spanning tree repartitions Pi ∪ Pj into P ′i ∪ P ′j , which together with the other
districts defines a new partition of G. After a validity check, the chain can move
there as its next state. If no edge is found whose deletion produces a valid partition,
then a new spanning tree is constructed, and the process iterates.

Details of the ReCom algorithm, as well as theoretical and experimental evidence
of its performance, are provided in [28]. The main takeaways are that ReCom runs
quickly enough to generate large ensembles, with convergence heuristics indicating
approximate independence of starting point. The ReCom stationary distribution is
well-approximated by a distribution on Pk,ε(G) that weights a plan P in proportion
to its compactness, given by an appropriate isoperimetric score on the districts [10].

2.3. Filtrations on dual graphs. Let P = {P1, . . . , Pk} ∈ Pk,ε(G) be a district-
ing plan for a state with unit dual graph G. As described in Section 2.1, we form
the district dual graph associated to P , denoted GP = (VP , EP ), as the quotient
graph of G associated to the partition P , with vertices wi corresponding to districts
Pi.

Since the vertices of the dual graph G represent geographic units, numerical
data assigned to the units (such as population, demographic counts, or vote counts)
induce functions f : V → R. The main data of interest for the applications in
this paper will be the number of votes for a Republican candidate r : V → R
and the number of votes for a Democratic candidate d : V → R in a particular
election. Given this data, we can compute the Republican vote share by district
R : Pk,ε(G)× {1, . . . , k} → R as follows:

RP (i) = R(P, i) =
r(Pi)

r(Pi) + d(Pi)
.

Note that this can be thought of as an average of a binary Republican voting
function over the major-party voters of the district.

Although the analysis in this paper will focus on the Republican vote share
function R, we remark that our method can be used to analyze any function of
interest f : V → R. From such a function, one can always induce a function F
summing or averaging f over the units that make up each district. We regard such
an F as a filtration function on the vertices of GP . For the sake of simplicity, we
sometimes make the (mild) assumption that the values of any filtration function
F are distinct over the districts of a plan, and we will also assume that the range
of F is in the interval [0, 1]. Then the output of any filtration function F on
a plan with k districts is k values, which can be organized in increasing order,
0 ≤ t1 < t2 < · · · < tk ≤ 1.

Definition 2.2 (Filtration). Let GP be a district dual graph for a plan with k
districts and a fixed filtration function F , and suppose that the vertices {w1, . . . , wk}
are indexed in increasing order F (w1) < · · · < F (wk). Let ti = F (wi). Then we
define the filtered dual graph associated to (G,P, F ) to be the sequence of graphs

Gt1P ⊂ Gt2P ⊂ · · · ⊂ GtkP ,

where each G
tj
P is the induced graph on the vertices {w1, . . . , wj}.
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Figure 3. The main method: turning a districting plan into a
persistence diagram. The persistence diagram captures both the
adjacency information and the vote shares for the districts in a
plan.

This is illustrated in Figure 3. The definition of E
tj
P simply means that edges

from GP are added to the filtered dual graph as soon as possible (i.e., as soon
as both of their endpoint vertices appear). In the standard language of persistent
homology, the filtered dual graph is a one-dimensional filtered simplicial complex
obtained via a sublevel set filtration [22].

2.4. Persistence diagrams. We would like to track the evolution of the shape of a
filtered dual graph as we run through the values tj . We focus on the evolution of the
simplest topological features of the graphs: their number of connected components.
This evolution is encoded in a persistence diagram, as defined below.
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Definition 2.3. The persistence diagram of a filtered dual graph Gt1P ⊂ · · · ⊂ GtkP
is a set of points

D = {(b1, d1), . . . , (bk, dk)},
thought of as recording “birth” and “death” times of each connected component in
the filtration. For each i, set bi = ti and set di = ti′ , where i′ ≥ i is the minimum
index such that the component of wi in GtiP contains a node whose index is less than
i. (Since no such index exists for i = 1, we put d1 =∞.)

The persistence diagram is a set of points (b, d) with b ∈ R, d ∈ R ∪ {∞} and
0 ≤ b ≤ d, so can be drawn in a unit square above the diagonal, with ∞ represented
at d = 1.1 (say), as in Figure 3. In general, a persistence diagram could be a
multiset, containing repeated points. In our application, we have assumed that the
ti values are distinct, so the points in D have multiplicity one.

Persistence diagrams are a ubiquitous summary statistic used in TDA, with ex-
istence and uniqueness results in more general settings going back to [60]. The
precise, general definition of a persistence diagram relies on a decomposition theo-
rem from representation theory known as Gabriel’s theorem, which was proved in
[36], with the connection to topological data analysis first observed in [12]. When
representing a persistence diagram one typically omits points along the diagonal,
as these represent “trivial” topological features.

Remark 1.

1. The persistence diagram defined here describes the evolution of the zeroth-
homology of the filtered dual graph; this is the so-called degree-0 persistent
homology of the filtered dual graph. Likewise, persistent homology in higher
degrees can be computed, tracking appearances and disappearances of higher-
dimensional topological features such as loops and voids. We hope to explore
first homology in future work.

2. The evolution of connected components in a filtered graph (or in more general
filtered spaces) can be summarized by a richer invariant called a merge tree,
which is closely related to the persistence diagram (see [52, 24]). The standard
metrics on the space of merge trees (Gromov-Hausdorff distance or merge tree
interleaving distance) are not computationally tractable [3], so we conduct
our analysis at the level of persistence diagrams. We remark that in the
standard TDA setting of Vietoris-Rips filtrations of point clouds, merge trees
are equivalent to dendrograms obtained through single linkage hierarchical
clustering [13]. Since our filtration is not Vietoris-Rips, our method can not
be simply rephrased in the SLHC framework.

3. The definition above entails a convention sometimes referred to as the Elder
Rule in the persistent homology literature: when two components merge,
the component with the more recent birth time is annihilated. See [32] for a
discussion of this convention, as well as the more recent theoretical justification
provided in [24].

The entire pipeline described so far is summarized in Figure 3. In the end, this
pipeline reduces a very complex object (a geographical partition of a state together
with a function describing, e.g., election data) to a simple, if somewhat abstract,
summary statistic (a persistence diagram encoding the evolution of connectivity of
districts according to the function). It is the thesis of this paper that this large
reduction in complexity preserves, and in fact illuminates, interesting geographical
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and political properties of the plans. Our study of persistence diagrams for redis-
tricting ensembles will require some quantitative tools described in the following
subsections.

2.5. Wasserstein distances. Let D1 and D2 be a pair of persistence diagrams.
We introduce a standard family of distance metrics used to compare persistence
diagrams.

Definition 2.4 (Wasserstein p-distance). Let p ∈ [1,∞] and let (b, d) be a point in
a persistence diagram. Define the diagonal p-distance ∆p(b, d) to be the `p distance
from (b, d) to the nearest point on the diagonal {(x, x) | x ≥ 0}. A partial bijection
between D1 and D2 is a bijection φ from a subset of D1 onto a subset of D2. We
use the notation φ : D1 9 D2 for a partial bijection, dom(φ) for the domain of φ
and im(φ) for its image. For p <∞, define the p-cost of a partial bijection φ by

(costp(φ))
p

=
∑

(b,d)∈dom(φ)

‖(b, d)− φ(b, d)‖pp

+
∑

(b,d)6∈dom(φ)

∆p(b, d)p +
∑

(b′,d′)6∈im(φ)

∆p(b
′, d′)p.

This extends to a p =∞ cost in the usual way, as a supremum:

cost∞(φ) = max

{
max

(b,d)∈dom(φ)
‖(b, d)− φ(b, d)‖∞,

max
(b,d)6∈dom(φ)

∆∞(b, d), max
(b′,d′)6∈im(φ)

∆∞(b′, d′)

}
.

Finally, define the Wasserstein p-distance between D1 and D2 by

dp(D1,D2) = inf
φ:D19D2

costp(φ). (1)

The Wasserstein p-distances are naturally described in the language of matching
features. The goal is to match points in the diagram, which we now recall represent
persistent topological features. A partial bijection φ defines such a matching of
features; those points not in the domain or range of φ are considered to be matched
with a “trivial feature” on the diagonal (i.e., a feature with zero lifespan). The
p-cost costp(φ) of matching φ measures how far points have to be moved in Lp

distance, and the goal is to find a matching which minimizes this cost. For a given
pair of persistence diagrams, we will refer to the partial bijection φ that achieves
the infimum in (1) above as an optimal Lp matching. This will be referenced later
when comparing Fréchet means for different ensembles or vote data.

Traditionally, the p =∞Wasserstein distance, also known as bottleneck distance,
has been the standard choice for comparing persistence diagrams in topological data
analysis. It was one of the first metrics of this type to be introduced [22] and its
matching cost is the simplest to interpret: the cost of matching (b, d) to (b′, d′) is
whichever is larger, the difference in birth times or the difference in death times.
It was moreover shown in that paper that the bottleneck distance enjoys stability
under perturbations of filtrations generating persistence diagrams (this result will
be stated and used in Section 6 below). The use of bottleneck distance was later
justified at a more theoretical level by the famous Isometry Theorem. This theorem,
established in [15] and [42], states that the bottleneck distance between persistence
diagrams coincides with the so-called interleaving distance, a distance which is de-
fined purely in terms of morphisms between persistence modules using the language



THE (HOMOLOGICAL) PERSISTENCE OF GERRYMANDERING 13

of category theory. This category-theoretic interpretation of bottleneck distance was
extended to the other Wasserstein distances in the recent paper [9]. On the compu-
tational side, the optimal partial bijections required by the Wasserstein distances
can be computed using the Hungarian algorithm (see, e.g., [16]), a polynomial-time
algorithm for solving the assignment problem required to find an optimal matching.

2.6. Fréchet means. Let (X, d) denote an arbitrary metric space. For a finite
sample x1, . . . , xn from X, define a discrete probability measure 1

n

∑n
j=1 δxj

, where
δxj the Dirac measure at xj . The associated Fréchet functional F : X → R is
defined by

F (x) =
1

n

n∑
j=1

d(x, xj)
2.

A Fréchet mean of the sample is a minimizer of this Fréchet functional, i.e., a
barycenter for the collection of points. Below, we will make heavy use of barycenters
to summarize ensembles of diagrams.

Metric barycenters are guaranteed to exist uniquely in spaces of nonpositive
curvature. We are not in that setting, but are nonetheless able to leverage nice
metric features to get a well-behaved barycenter construction. With the p = 2
Wasserstein distance, Turner et al. show that the space of all persistence diagrams
is an Alexandrov space of nonnegative curvature: a complete, separable geodesic
space with curvature ≥ 0 in the sense of comparison triangles [58]. Despite the
positive curvature, these metric spaces have helpful structure: they admit a notion
of a tangent space at each point, which can be endowed with an inner product
(see [44] for general theory). Moreover, semiconcave functions have well-defined
gradients. It is shown in [58] that the Fréchet functional is semiconcave, motivating
its optimization via gradient descent.

The [58] authors then propose the following algorithm. For persistence diagrams
{D1, . . . ,Dm}, suppose that D(i) is the current Fréchet mean candidate. An update
is performed as follows:

1. Compute optimal partial bijections φ
(i)
j : D(i) 9 Dj ;

2. Extend φ
(i)
j to a function φ

(i)
j D(i) → Dj ∪ {(x, y) ∈ R2 | x = y} by declaring

φ
(i)
j (b, d) to be the point on the diagonal nearest to (b, d) for each (b, d) 6∈

dom(φ
(i)
j );

3. For each (b, d) ∈ D(i), update to the arithmetic mean of the set of images

φ
(i)
j (b, d);

4. Let the new Fréchet mean candidate D(i+1) be the updated point collection.

This process is shown to converge, at least to a local minimum of the Fréchet func-
tional. As this is an iterative algorithm, the local minimum found depends on the
seed D(1), that is, the initial Fréchet mean candidate. To mitigate this depen-
dence in our analysis, we run the algorithm multiple times, using each persistence
diagram in our collection as a seed, and take the local minimum with the lowest
Fréchet functional value as our final Fréchet mean.

Remark 2. For our analysis, we seeded the iterative Fréchet mean algorithm at
each of the 1000 districting plans in the ensemble; from across these runs, we took
the local minimum with the lowest Fréchet functional value. Computing a Fréchet
mean for each seed took about 10 minutes for the Congressional ensembles, while
the Pennsylvania state House analysis (k = 203) took the longest, at 23 hours (on
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Figure 4. Pairing each plan in a districting ensemble with
PRES16 vote data gives an ensemble of persistence diagrams.
These plots show overlays of the diagram ensembles for k =
18, 50, 203 respectively. In the second row, we add the Fréchet
mean F for each ensemble, shown in red, representing an “aver-
age” persistence diagram for the ensemble.
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Figure 5. Overlaid persistence diagrams with Fréchet mean (in
red) for each of the NC ensembles (with PRES16 vote data).

a single node of a high performance cluster). We regard the use of so many runs
as valuable despite the significant increases in computational cost. Ultimately, a
successful seed will produce a local minimum that is near the global minimum, so
that the mean is as good a fit as possible to the ensemble; importantly, a failed
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run may not only have too high a Fréchet functional value but may have the wrong
number of clusters to enable a good summary. In our experiments, we found that
a good heuristic for choosing a starting point for the Fréchet mean is to choose
a plan with high total persistence (defined as the sum of the persistence over the
features).3

2.7. Computational details. The main code base used for this paper is available
on GitHub 4. The ensembles used in this paper were generated using the open-source
package GerryChain developed by the Metric Geometry and Gerrymandering Group
[59]. GerryChain implements numerous Markov chains on Pk,ε(G) for generating
ensembles of districting plans, including the recombination and flip chains discussed
in this paper. For the main ensembles used in Sections 3.1 and 3.2, we sampled every
50th plan from an ensemble of 50,000 plans generated using a ReCom chain with
ε = .02 as the maximum population deviation. The Congressional and state Senate
ensembles were generated from dual graphs constructed from the precinct shapefiles
available from MGGG [50]. For the state House ensembles, more granularity is
required in order to get satisfactory population balance, so we used census block
dual graphs. In the case of North Carolina, the state releases electoral data at
the block level for redistricting purposes. For Pennsylvania, election results were
disaggregated from the precinct level down to blocks using the geospatial data
package called MAUP [49]. The persistence diagrams were generated using the
library GUDHI (https://gudhi.inria.fr) [45].

3. Methods. We propose three types of analysis enabled by persistent homology
on ensembles of districting plans.

3.1. Scale and zoning. The winner-take-all plurality structure of the American
districting system introduces significant non-linearity to the relationship between
votes and seats, whose patterns we seek to capture. The key question here asks
how the fine-grained vote data by precinct (see Figures 1 and 11) translates into
an outcome at the district level. We would like to isolate the effects of district size
on the geography and partisan properties of redistricting plans. A scale study was
carried out in [55] by a direct comparison of the district size to the range of observed
partisan outcomes in an ensemble, using recent Pennsylvania voting patterns. In
this section, we use topological signatures to probe scale effects further. The main
finding is that at each scale, the state decomposes into zones of partisan support
whose anchor points can be detected by persistent homology techniques.

Before we discuss the application of our method to ensembles of maps, we first
illustrate the information captured on individual plans. Figure 1 shows the currently
enacted Congressional and Senate districts for Pennsylvania, colored by Trump vs.
Clinton share (Pres 2016). Comparing to the choropleth at the top of Figure 1, we
can see that at the Congressional scale, the Democratic voting in Erie and State
College is outweighed by the surrounding Republican votes, while the Senate scale
allows those cities to pull their districts more strongly. Thinking in terms of peaks of
Democratic vote share, Pittsburgh, Harrisburg, and Philadelphia are all pronounced

3Note that for the scale and zoning analyses, the Fréchet mean is used only to cluster features.
As a result, the exact value of the Fréchet mean is not as important as the number and the
geographic signature of clusters. When comparing elections, on the other hand, the value of the
Fréchet mean matters, which puts more of a premium on running the minimizing algorithm from

many seeds.
4https://github.com/mggg/TDA-redistricting

https://gudhi.inria.fr
https://github.com/mggg/TDA-redistricting
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peaks on the precinct level, with the corresponding Congressional districts (18, 10,
and 3, respectively) also showing up as peaks on the district level.

Homological persistence will capture a relative height of these peaks in the fol-
lowing way: Each district which is more Democratic than all its neighbors shows up
as a point (b, d) in the persistence diagram, where b is precisely its Republican vote
share. A value of d on the ‘death’ axis means that any path from that district to
a more Democratic one must pass through a district whose Republican share is at
least d. Thus the persistence p = d− b is a kind of relative intensity of Democratic
voting. For example, District 10 is only 9 percentage points more Democratic than
neighboring District 11, which in turn is adjacent to District 6, a more Democratic
district than District 10. So the persistence of its feature is 9. Contrast this with
District 18: any path from District 18 to a more Democratic district must pass
through either District 13 or 15, each of which is more than 36 points less Demo-
cratic than District 18. This gives Pittsburgh a persistence of 36. It is clear that a
Senate plan, with a larger number of smaller districts, will tend to have more peaks,
such as Erie in the northwest corner; the greater number of features shows up in
the Senate plan’s persistence diagram, together with the solutions to the minimax
problems that describe their relative height.

So far we have discussed the interpretation of persistence for specific plans, but
of course different plans may have different structure. The use of Fréchet means
will allow us to examine how much common structure there is across the plans of a
districting ensemble.
Step 1: Overlay. Start with a state, a number of districts k, and some fixed vote
data such as from a recent election. We generate an ensemble of one thousand plans
(see Section 2.7) and form diagrams D1, . . . ,D1000. As a first step, we can overlay
the thousand diagrams (taking the unions of the sets {(b, d)}) as the top row of
Figure 4 does for Pennsylvania ensembles. To tease apart the structure of these
plots, we compute the Fréchet mean F of the ensemble as in the next row of Figure
4. This gives us one summarized view of the ensemble as an “average” persistence
diagram.
Step 2: Marking. Next, we want to extract a marking of the individual persistence
diagrams. Where k is the number of districts, we can choose ` ≤ k points in F that
are deemed sufficiently far from the diagonal to be significant. Then for every
diagram Di in our ensemble, we match the points in Di to the chosen points in F
using an optimal L2 matching (see Section 2.5), inducing a partial labeling of the
individual persistence diagrams by elements of the Fréchet mean. Returning to the
overlaid diagram, we can now create individual Fréchet point plots corresponding
to each significant feature of F , with the property that each diagram Di contributes
at most one point to this plot.
Step 3: Localization. For a significant feature of F , many of the Di have a
corresponding feature, picking out a district that initiated the connected component
in the filtration of the district dual graph. We can then measure how often in the
ensemble each geographical unit belonged to that district. This gives us a heat map
that shows us where the feature is located in the state. Figure 8 shows Fréchet
point plots and corresponding precinct heat maps for PA Congressional and Senate
districts. (Supplemental Figure 20 uses a census block heat map for the House
ensemble.)
Step 4: Zoning. If the filtration is in terms of one party’s share (here, Republican),
we can then zone the state into clusters of districts won by the other party (here,
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Democratic), as follows. There is a one-to-one correspondence between persistence
features in the northwest quadrant of the diagram D (i.e., b < .5, d > .5) and clusters
of Democratic-won districts. The birth time ensures that the cluster is anchored by a
Democratic-won district and the death time ensures that it is separated from other
clusters by Republican-won districts. For each localized point in F , we consider
northwest-quadrant points marked by it in the Di, representing Democartic clusters
of districts. We can map these clusters and report their average number of districts.

When studying scale effects, we are interested in which areas represent peaks at
each scale (usually cities from the Democratic point of view). Crucially, cities only
show up as individuated peaks in Democratic vote strength when they are separated
from other cities by redder districts—a property that it would be hard to see with
one’s eyes.

Note that there is no a priori reason that the localization step should produce a
geographically specific position for each Fréchet feature. Picking out an identifiable
location at this step is a signal that there is consistency across the ensemble in the
correspondence of geography and aggregated voting. The method has succeeded
in zoning the state at a given scale if the heat maps are geographically coherent.
If localization succeeds, the workflow lets us refer to the Fréchet features by ge-
ographical names and expected number of Democratic-won districts for a given
election: the Philadelphia zone (5.6 Congressional districts), the Pittsburgh zone
(1.2 Congressional disricts), and so on.

3.2. Comparing elections. In the previous section, we studied ensembles of plans
relative to some fixed vote pattern. Our second type of analysis will involve varying
the vote data. We ask several questions. Do the Fréchet means themselves tell us
something interesting about the relationship in voter preferences between elections?
How robust are the patterns learned above to a shift in the chosen electoral baseline?

For a given state and district size, we again use an ensemble of one thousand
districting plans. We then vary the vote data (but not the ensemble of plans) to
produce multiple ensembles of diagrams, with an associated Fréchet mean plot for
each vote pattern. Suppose that F and F ′ are Fréchet means for the same plans
and two different elections. We can pair points from F to F ′ (by either a geographic
pairing or an optimal L2 matching) to provide a summary of electoral difference.

For a pair of features that is matched, the direction of displacement carries
information. Suppose the mean point is (b, d) in F and (b′, d′) in F ′. If b > b′, this
zone was anchored by a district that is more Republican in the first election than
the second. If d > d′, then the area surrounding the peak was more Republican in
the first election than the second. Putting these together can give a summary of
the voting performance of a city relative to its exurban ring at district scale.

If a feature in F is not matched (i.e., is matched to the diagonal) in F ′, this
gives us a different kind of information. This represents a substantial difference in
the basic geography of representation under these vote data, picking out a district
cluster that represents a peak in one election but not the other.

3.3. Signals of gerrymandering. The examination of zoning and electoral shifts
described above is not targeted at identifying gerrymandering, but at understanding
the tendencies of partisan-neutral districting. Since the detection of gerrymandering
is a difficult and high-profile problem, we now turn attention to whether persistent
homology can flag properties of plans that are designed to extract advantage for one
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Figure 6. Overlaid Fréchet means for various elections in PA. In
all three levels of redistricting, the geographic localization is strong
enough to label the Pittsburgh feature (circled).

major party over the other. We are able to use this in our case studies to find several
instances of notable relationships between persistence data and partisan advantage.

Given a state, number of districts k, and vote pattern, our first step is to generate
two ensembles: one creating an unusually large number of Republican-majority
districts and a second favoring Democrats. In order to avoid flagging extremely
competitive plans, we will identify a safe seat for Party A when the party’s vote share
exceeds .53. (Noting, of course, that for practical gerrymandering purposes, there
may be a more complicated calculus for trading off safety with win maximizaiton.)

To generate an ensemble of plans biased towards Party A, we use the ReCom al-
gorithm with a Metropolis-style weighting variant. When a new plan P is proposed
by the algorithm, it is immediately accepted if the number of safe seats does not
decrease. A standard Metropolis weighting with respect to a score σ is to choose a
coefficient β and accept a plan scoring worse with probability e−β·∆σ. We will do
that here: if the safe seat count decreases by ∆s, then we accept P with probabil-
ity e−2∆s.5 The purpose of the Metropolis rule is to avoid getting stuck at local
optima, while favoring better plans long-term. We use this algorithm to generate
two ensembles of one thousand plans each: a Democratic-favoring ensemble and
a Republican-favoring one. To illustrate the effectiveness of the weighted Markov
chains, see Figure 7, showing a difference in expectation of 3-4 seats out of 50.

From the two biased ensembles we then generate Fréchet point plots and as-
sociated heat maps, then compare the Fréchet means with either a geographic or
optimal L2 matching (see Section 2.5 for the definition of an optimal L2 matching).
As before, we have no guarantee that these two matching methods agree, but in
our case studies below we find that they do.

The aim of this analysis is to find and interpret geographical correlates of partisan
advantage—not to classify entire plans as gerrymandered or not. For that, we are
unlikely to do better than simply comparing the number of seats won under various
electoral assumptions to a neutral ensemble.

5We note that for standard recombination moves, this can only occur with ∆s = 1, correspond-
ing to a roughly 13.5% probability of acceptance. The standard protocol is to adjust β until you

have a run with a decent acceptance rate and an ensemble that passes heuristic tests of convergence
and quality.
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Figure 7. Comparison for the weighted ensembles of Senate plans,
with Democratic-favoring in blue and Republican-favoring in red.
The simple weighting adjustment to the Markov chain has success-
fully created a difference of 3-4 seats between the ensemble means.
Despite the significant change in the partisan outcome, we see only
small movement in the Fréchet means.

In our case studies below, we can identify a few Fréchet features which show a
significant difference between the two ensembles, and we can make inferences about
the reasons for these differences. However, on the whole there is surprisingly little
difference between the persistence data for the two ensembles despite their very
different partisan seat shares. This further emphasizes that persistent homology is
not primarily useful for classifying plans, while reinforcing the narrative of robustly
identifying relationships between geography and aggregated vote data.

4. Case study: Pennsylvania. Pennsylvania has 18 Congressional districts, 50
state Senate districts, and 203 state House districts. We have cleaned electoral
data from eight recent statewide elections: two Presidential elections (2012, 2016),
three U.S. Senate elections (2010, 2012, 2016), one Gubernatorial election (2010),
and two Attorney General races (2012, 2016). The statewide party performance in
these elections is shown here in Table 1.

PRES12 PRES16 SEN10 SEN12 SEN16 GOV10 ATG12 ATG16

R % 47.29 50.35 51.05 45.44 50.72 54.52 42.58 48.57

Table 1. Overall Republican vote shares (with respect to two-
party vote) for a range of recent statewide elections in Pennsylva-
nia.

4.1. Scale and zoning in PA. We begin with partisan-neutral ensembles of maps
for each choice of k = 18, 50, 203. We carry out the four steps of the scale analysis
for each: overlay, marking, localization, and zoning. We find four zones of relative
Democratic strength at the Congressional level (Figure 8, top), corresponding to
Philadelphia, Pittsburgh, Scranton, and Harrisburg, in that order. Philadelphia
and Pittsburgh are highly persistent while other two zones are weaker; only those
two correspond to Democratic district clusters, comprising 5.6 and 1.2 districts,
respectively (Supplemental Figure 24).

In the state Senate ensemble (Figure 8, bottom), we find seven zones: Philadel-
phia, Pittsburgh, Erie, Harrisburg, State College, Lancaster, and Scranton, in se-
quence. It is quite valuable to note that the order as well as the membership is
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Figure 8. Geographical localization of Fréchet features in Penn-
sylvania Congressional and Senate plans (k = 18, k = 50) with
respect to PRES16 voting. The Senate features fairly clearly cap-
ture the medium-sized cities of Pennsylvania.

different between Congressional and Senate zoning. Erie, Harrisburg, and Scranton
anchor zones that will be competitive overall, while the State College zone favors
Republicans and the Lancaster zone favors Democrats. The zoning analysis indi-
cates 14.7 Senate districts in the Philadelphia zone and 3.4 in Pittsburgh; even at
this scale, the others each contribute less than one district on average.
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For the state House ensemble (Supplemental Figure 20), the degree of geographic
coherence (localization) is weaker, but we can read off up to eleven zones in persis-
tence order as follows: Philadelphia, Pittsburgh, Harrisburg, State College, Read-
ing, Lancaster, Erie, Allentown, Scranton, York, Hermitage. And now all but Her-
mitage should expect to anchor clusters of Democratic-won districts (not just Demo-
cratic relative to their neighbors). We find 55.8 House districts in the Philadelphia
zone—a massive bloc of the 203 seats.

4.2. Comparing elections in PA. The Fréchet means for the eight elections
under consideration were plotted for each scale of redistricting in Figure 6. For
the Congressional ensemble, every election has two highly persistent features in its
Fréchet mean F (corresponding to Philadelphia and Pittsburgh). Five out of eight
elections (SEN12, PRES12, SEN10, and most prominently ATG12) have a third
feature away from the diagonal. By looking at the geographic data (not shown), we
can tag all of these third features as belonging to a Scranton zone. The presence
of a Scranton feature means that Scranton is separated from Philadelphia by a
district redder than itself. Since the Scranton mean points always lie below d = .5,
the intervening districts between Scranton and Philaldelphia are still Democratic-
favoring.

18 districts

∞

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

PRES16
PRES12

50 districts

∞

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

PRES16
PRES12

203 districts

∞

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

PRES16
PRES12

Figure 9. We isolate the Fréchet means for two successive Pres-
idential elections in PA. The mean for PRES12 has a third off-
diagonal feature at Scranton, while PRES16 does not. A uniform
partisan swing would show each red point displaced by (.03, .03)
relative to its paired green point, so the diagram summarizes the
non-uniformity of the electoral shift.

We isolate two elections of interest, PRES12 and PRES16, for a head-to-head
comparison in Figure 9. We draw lines to indicate the geographic pairing between
the top eleven most persistent features (this pairing differs from the optimal L2

matching between the Fréchet means). Recall that the Republican statewide share
is .4729 in PRES12 versus .5035 in PRES16, a difference of about 3 percentage
points. If the elections were related by a uniform partisan swing (in which each
geographic unit has its vote share additively perturbed by the same amount), then
each bi and each di would increase by the same amount, shifting the whole diagram
to the northeast with a (.03, .03) translation. This is not at all what we observe. We
note that the Pittsburgh feature actually shifts in a Democratic direction at all three
scales, most notably at the smallest (House) scale. The difference is in the middle of
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the state, which separates Pittsburgh from Philadelphia. There, the Trump election
has a significantly higher d value, indicating the reddening of the mid-state districts
at all three scales. The State College feature is especially interesting, and is marked
in the state Senate and state House plots. In the state Senate ensemble, the State
College feature more or less adheres to the uniform partisan swing direction: b
and d are both lower for PRES16 than PRES12. However, for the state House
election, the trend reverses. This is because state House districts are small enough
to separate the city of State College (which was more Democratic in 2016 than 2012)
from the surrounding area (which was less Democratic in 2016 than 2012). Indeed,
this effect can be seen in the geographic heat maps for this feature in Figures 8 and
20—the State College feature is much more diffuse in the state Senate ensemble
than in the state House ensemble. In the Congressional ensemble, the Scranton
feature is present in PRES12, but not PRES16, telling us that the level of Trump
preference in the Scranton district is not significantly distinct from its surroundings
(in contrast with Romney support).

4.3. Signals of gerrymandering in PA. We now turn to the party-biased en-
sembles. We focus on the state Senate and the PRES16 vote for an illustrative
discussion.

The matching between the two biased ensembles is shown with line segments in
Figure 7, helping organize the overlaid plots in Figure 21. All the off-diagonal points
were successfully paired, and the geographic pairing and optimal L2 matchings
were identical, indicating that the persistence structure of the two ensembles was
very similar despite the significant difference in the overall number of Republican
districts.

It is instructive to compare the Pittsburgh and the Harrisburg features in the two
ensembles, which show opposite effects. The Harrisburg district is quite competi-
tive, and the Republican ensemble shows the effect you would expect: the district
is several percentage points more Republican than in the Democratic ensemble—
enough to secure a Republican win in most cases. On the other hand, an overall
Republican advantage is correlated with a more Democratic Pittsburgh district; this
is the well-known phenomenon called “packing,” where wastefully high vote totals
in some districts lead to overall disadvantage. In interesting contrast to Harris-
burg, the Erie cluster was very rarely anchored by a “safe” district for either party,
despite the weighting of the algorithm towards safe seats. Finally, the Republican-
favoring ensemble clearly “cracks” Democratic support near Scranton (6th feature),
while the Democratic-favoring plot resembles the neutral ensemble, indicating that
in 1000 largely independent attempts, careful line-drawing near Scranton was not
a frequent property of maps selected for local improvements in Democratic seats
overall.

5. Case study: North Carolina. We turn to North Carolina, which has 13
Congressional districts, 50 state Senate districts, and 120 state House districts. We
have cleaned data for seven statewide elections in North Carolina: Presidential
elections from 2012 and 2016, the US Senate elections from 2010, 2014 and 2016,
and the Gubernatorial elections from 2012 and 2016. The statewide two-way vote
shares for these elections can be found in Table 2.

5.1. Scale and zoning in NC. The Fréchet point plots and accompanying heat
maps using vote data from the 2016 Presidential election are shown in Figure 12 and
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Figure 10. Comparison of point plots for the successive Fréchet
features in the PA Senate ensembles that are biased for Democratic
and Republican safe seats, respectively. Note the contrast between
the rigidity of the Erie feature (similar placement for both ensem-
bles) and the manipulability of the Harrisburg feature, though both
anchor competitive districts.

PRES12 PRES16 SEN10 SEN14 SEN16 GOV12 GOV16
R % 51.08 51.98 56.02 49.17 53.02 55.87 49.95

Table 2. Overall Republican vote shares (with respect to two-
party vote) for a range of recent statewide elections in North Car-
olina.

Supplemental Figure 22. Geographic localization shows clear success in all three
cases.

At the Congressional level, North Carolina admits three clear zones for this vote
data: Durham, Charlotte, and Asheville—interestingly, Congressional districts are
large enough that the Asheville district contains everything in the western tip of the
state. A fourth zone anchored in Winston-Salem is sometimes present, and there
are indications of a possible fifth zone stretching south from Fayetteville. These
geographically more diffuse zones are often quite a bit more persistent than the
corresponding zones in Pennsylvania.

In the state Senate ensemble, as with the Congressional ensemble, two highly
persistent features appear near Durham and Charlotte. In contrast with the Con-
gressional ensemble, the Asheville zone is now more geographically localized and is
anchored by a Democratic-won district (b < .5) in all maps. It is notable that the
fourth feature is localized near the fourth from the Congressional ensemble, but a
close inspection shows that it has shifted from Winston-Salem to the nearby city
of Greensboro, which is bluer but smaller. For the first time, a rural area appears
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Figure 11. Maps of North Carolina. Top: results from the 2016
Presidential election (blue for Democratic, red for Republican).
Bottom: North Carolina has a significant rural Black population,
unlike Pennsylvania. Greenville and Wilson are the largest towns
in the Northeast, but they are not the hubs of Black population.

as a feature: the heavily African-American northeast of the state anchors the sixth
Fréchet feature, and not the medium-sized cities of Rocky Mount, Greenville, and
Wilson that are nearby.

Raleigh is represented as a seventh Senate zone: a feature with b < .5 by a
substantial amount, but low persistence. This represents a cluster anchored by very
Democratic Senate districts, but that quickly merges with the Durham cluster. Its
low persistence is an indicator that it is is not a completely independent zone from
Durham.

Moving from the Senate to the House scale, we get new (low-persistence) zones in
the 9th and 10th positions corresponding to Wilmington and Boone. This stands in
contrast to the PA case, where the House added four medium-persistence features
compared to the Senate. In particular, none of the small towns in the Northeast of
North Carolina such as Greenville or Wilson are picked out in these plots. Rather,
they are embedded in the large Northeast zone. This is not solely attributable to
size: each of Greenville, NC and Reading, PA has the population of 1–1.5 House
districts in its respective state. Rather, it reflects a difference in the degree of urban
concentration in the Democratic vote.

Since TDA is comparing vote totals aggregated to districts, it is not automatic
that it would detect this rural Democratic strength in North Carolina, but its
signature is unmistakable at the Senate and House scale, and already visible in
Congressional ensembles.

5.2. Comparing elections in NC. This time, we will compare a larger set of
elections: all seven statewide elections in our dataset, ranging from 2010 to 2016.
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Figure 12. Geographical localization of Fréchet features in North
Carolina Congressional and Senate plans (k = 13, k = 50) with
respect to PRES16 voting.

Since the association of regions with Fréchet mean points was successful in the last
section, we can again use the plots to summarize whether peaks of Democratic
support swing in sync with their periphery between elections.

For the most persistent feature (the Durham zone, at d =∞), the spacing shows
you the difference in Democratic support between elections. If voting preferences
swung linearly and uniformly around the state, the displacement of the colored
dots would be diagonal, with both coordinates displacing by the same amount as
the first feature. So we learn something nontrivial from this summary diagram: vote
patterns in Charlotte and surroundings swing much more linearly than in Asheville.
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In particular, Donald Trump overperformed both in heavily Democratic Asheville
and (even more) in its Republican periphery, relative to a uniform swing prediction.
More generally, Asheville’s partisan preference is unpredictably related to the rest
of Western North Carolina.
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Figure 13. Overlaid Fréchet means for various elections in NC. In
all three levels of redistricting, the geographic localization is strong
enough to label the second and third features, shown circled, as
Charlotte (left) and Asheville (right).

5.3. Signals of gerrymandering in NC. We begin by evaluating the two enacted
Congressional maps for North Carolina (2012 , 2016) against the PRES16 vote
pattern (Figure 14). Since both plans were identified by courts as Republican
gerrymanders, we treat that as a reliable label. We overlay the persistence diagrams
for the two enacted plans with the Fréchet means for the partisan-neutral ensemble
of Congressional plans.
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∞ 2016
2012
mean

(a) 2012 boundaries (b) 2012 vote shares

(c) 2016 boundaries (d) 2016 vote shares

Figure 14. Comparing two enacted Congressional plans for North
Carolina with the ensemble mean, against the PRES16 vote pattern
in all three cases.

The features for the enacted plans have significantly lower b values than the
ensemble, indicating especially Democratic districts anchoring two distinct clusters.
The enacted plans each have only these two features, while the mean—and over
80% of the maps in the neutral ensemble—includes a third feature corresponding
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to Asheville. This is because both enacted plans slice a large part of Asheville into
a district that avoids the moderate partisan areas nearby; this district touches the
Charlotte district and so becomes part of the Charlotte zone. Note the suggestively
carved boundaries in Figure 14A,C. This finding squares with public perception:
Asheville has been at the center of gerrymandering protests and activism for some
time.

As in Pennsylvania, we close by examining the party-biased ensembles with re-
spect to state Senate districts and PRES16 voting. Figure 7D shows the matching
between the Fréchet means used to organize the Fréchet point plots in Figure 23
(again the geographic and optimal L2 matchings agreed).
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Figure 15. Comparison of point plots for the successive Fréchet
features in the NC Senate ensembles that are biased for Democratic
and Republican safe seats, respectively.

6. Stability. We now address the question of stability of our persistent homology
signatures of vote and districting data. In order to do so, we appeal to a stability
result of [22] which is well known in the field. In order to keep our exposition self-
contained, we state the result in a special case which is relevant to our application.

Theorem 6.1 ([22]). Let G = (V,E) be a graph with f and g real-valued functions
on V and corresponding persistence diagrams Df and Dg. Then

d∞(Df ,Dg) ≤ ‖f − g‖∞ ,

where ‖ · ‖∞ is the `∞ norm on functions V → R.

We then immediately obtain a stability result in our application, for the district
dual graphs and Republican share filtration used above.

Corollary 6.2 (Stability under perturbations in vote data). The bottleneck distance
between persistence diagrams associated to two elections and the same districting
plan is bounded above by the largest change in Republican vote share at any district.
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6.1. Theoretical stability under geographic perturbations. For a fixed plan,
we have a strong and easily interpretable stability result for bottleneck distance as
elections shift. One could similarly ask if the persistence diagram summaries are
robust under small changes in the plan itself. A truly general result in this direction
is not possible, as is illustrated by the example in Figure 16.
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Figure 16. A small change to districts can cause a large change in
persistence. In this example (closely modeled on the enacted NC
Congressional plan from 2012) we have changed the assignment
of only one geographic unit (a precinct of 3,300 people), and it
removes a highly persistent off-diagonal feature.

In light of this fragility, some care must be taken to formulate a correct result on
stability of bottleneck distance under changes in districting plan. We formulate such
a result in this subsection, and relate it to experimental analysis in the following
section using random perturbations.

Fix a state’s unit dual graph G = (V,E) and a districting plan P = {P1, . . . , Pk} ∈
Pk,ε(G). Let p be the population function and T = p(V )/k be the ideal district
size.

Definition 6.3. For districting plans P, P ′ ∈ Pk,ε(G), P ′ is called a (one-way)
perturbation of P if, after reindexing the districts as necessary, the plans agree in
all but two districts Pi ∪ Pj = P ′i ∪ P ′j , and they differ only by the move of vertices
Vij = {v1, . . . , v`}, so that V ′j = Vj ∪ Vij and V ′i = Vi \ Vij . A general perturbation
has vertices Vij moved in one direction and Vji in the other direction between the
two altered districts.

A perturbation P, P ′ is called graph preserving if the labeled correspondence of
districts induces an isomorphism of the district dual graphs.

For instance, the two North Carolina plans in Figure 16 are perturbations of
each other by a single unit, which means that |Vij | = 1. However, it is not a
graph-preserving perturbation; the dual graphs GP and GP ′ are not even abstractly
isomorphic.

A ReCom step (as in our districting ensembles) can potentially produce a one-
way perturbation of a plan, but this is extremely unlikely because population is
swapped in both directions with very high probability. Moreover, ReCom steps
are not always graph-preserving: in re-splitting the combined population of two
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districts in an arbitrary connected fashion, they can alter district adjacency with
the surrounding nodes.6 A simpler Markov chain method for generating ensembles
of plans by single-unit flips is studied here.

A flip move on a plan P is performed by reassigning a single vertex from one dis-
trict to another in a manner that preserves connectedness for all districts. It there-
fore necessarily induces a one-way perturbation, and frequently a graph-preserving
perturbation. A Markov chain can be defined by randomly selecting a vertex to re-
assign at each step. Taking sequences of flip steps (obtained by rejection sampling
flip step proposals) defines a simple and commonly used Markov chain on the space
of districting plans [39, 20].

Recall that for a function f : V → R and a subset W ⊆ V we write f(W )
for the sum

∑
v∈W f(v), and that p is a weight function thought of as population

on the nodes. We use the following notation below. Let a, b : V → R be functions
satisfying 0 ≤ a(v) ≤ b(v) ≤ p(v) for all v ∈ V , and for simplicity assume b > 0. Let
f be given by f = a/b, and we will abuse notation by using the same notation for
a function on V or on the district nodes VP . This induces district-level persistence
diagrams DP and DP ′ . Fix α = αP,P ′ > 0 to be a lower bound on b(W )/p(W ) for
W = Vi, V

′
i , Vj , V

′
j .

We will apply this to a = r, the Republican vote totals per node, letting b =
r + d be the total major-party votes per node, so that f = R, the Republican
voting share, and α is a lower bound on the voting turnout in districts affected
by the perturbation. The more general notation is introduced here because there
are several other functions a, b that could induce interesting filtration functions on
the dual graphs, for instance to take third-party voting or other demographics into
account.

We now state the stability result. Its proof is a straightforward application of
Theorem 6.1, but we are able to formulate the estimate in terms of quantities which
are directly interpretable in districting terms.

Theorem 6.4 (Stability under geographic perturbations). For a graph-preserving
one-way perturbation P, P ′ where vertices Vij are flipped from Pi to Pj,

d∞ (DP ,DP ′) ≤ 2ε

α(1− ε) max (|f(Vij)− f(Pi)| , |f(Vij)− f(Pj)|) .

This gives us a bound on bottleneck distance for a perturbation in terms of how
much the party vote share in the flipped units compares to the districts that they
flip between. The proportionality constant depends on the population tolerance ε
and the voter turnout constant α, and is small under the realistic assumption that
ε � α. (For instance, with population deviation tolerance of 2% and an election
with district-level turnouts of at least 25%, we obtain a coefficient of roughly .163.)

Proof. Relabel if necessary so that the affected districts of P are P1, P2, and P ′

replaces those by P ′1, P
′
2, with districts 3, . . . , k unchanged. Since the district dual

graphs agree by assumption, the filtration function by f is defined on that graph.
Theorem 6.1 says that

d∞ (DP ,DP ′) ≤ ‖fP − fP ′‖∞ = max (|f(P1)− f(P ′1)|, |f(P2)− f(P ′2)|) .
Recall that f(P1) = a(P1)/b(P1), which in our case is Republican vote share,

and likewise for the other districts. To simplify the exposition, we write ai = a(Pi)

6Several trials show that a ReCom step (for Pennsylvania, k = 18) preserves the district dual
graph with probability roughly .65. See Supplement for more discussion.
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for i = 1, 2 and similarly define a′i, bi, b
′
i; we also write ā = a(V12) and similarly for

b̄. Note that a′1 = a1 − ā and b1 = b′ − b̄. It follows that

f(P1)− f(P ′1) =
a1

b1
− a′1
b′1

=
a1

b1
− a1 − ā
b1 − b̄

=
b1 ·ā− a1 ·b̄
b1(b1 − b̄)

=
b̄

b′1
·(f(V12)− f(P1)) .

This works exactly similarly for P2.7

Since P and P ′ are districting plans, the population balance condition implies
that p(P1) and p(P ′1) both lie in the interval [(1− ε)T, (1 + ε)T ]. Since the vertices
of V12 were moved without violating the balance condition, we have p(V12) ≤ 2εT .

Since b(W ) ≤ p(W ) for any vertex set W , we have

α(1− ε)b̄ ≤ 2εα(1− ε)T ≤ 2εα·p(V1) ≤ 2ε·b(V ′1) = 2εb′1.

To complete the proof, we rearrange to obtain b̄
b′1
≤ 2ε

α(1−ε) .

6.2. Experimental stability under geographic perturbations. While The-
orem 6.4 gives a theoretical stability guarantee for geographic perturbations, its
applicability is somewhat limited in scope, since the graph-preserving property is
not automatic. In this section we present experimental evidence of stability.

We begin with Congressional and Senate ensembles for Pennsylvania. ReCom
steps make large changes to a map, and the ensembles here were sub-sampled so
that each successive plan collected in a ReCom ensemble is essentially independent
of the last. So to illustrate stability we first turn to the much smaller perturbations
made by flipping the assignment of a single unit at a time. Flip steps make small
changes to the appearance of a plan—though most every pairwise district boundary
has been changed after 1000 flip steps, the configuration of districts is clearly recog-
nizable. In the examples shown in Figure 17, 1000 flip steps moves the persistence
diagram by d∞ = .009 and d∞ = .006 for Congress and Senate, respectively. To
contextualize distance magnitudes, note that maps in our ReCom ensembles (ap-
proximately independent maps) often have pairwise bottleneck distances between
.05 and .1 (see Supplemental Figure 30).

We repeat the 1000-flip experiment on a larger set of initial maps to conclude
the investigation of stability. We take one hundred Congressional and one hundred
state Senate maps from the ReCom ensembles and make a sequence of 1000 flip
steps starting from each of them. After each flip step, we compute the bottleneck
distance between the initial plan and the current one. The results are shown in
Figure 18. Looking at these bottleneck distance trace plots, we see that for the
majority of maps, randomly flipping 1000 geographic units had a modest effect on
the persistence diagram, typically in the order of 0.01 in bottleneck distance. This
raises our confidence that the methods outlined here are reasonably robust to small
geographic perturbation.

7. Conclusion. We have examined three approaches to the use of persistent ho-
mology in analyzing the complicated geography of voting at different scales of ag-
gregation: zoning, election comparison, and signatures of gerrymandering. In all
three cases, our methods use persistence diagrams to summarize a large ensemble

7Note that the proof carries through almost unchanged for a two-way perturbation, where ā
and b̄ now represent net change in a and b. It produces a bound that is not very constraining for
recombination moves, where population change b̄ is very small but vote shifts ā can be substantial.

Nonetheless, we examine typical bottleneck displacement in recombination runs in Supplemental
Figure 31.
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Figure 17. Maps of enacted plans before and after perturbation
by 1000 flip steps; district adjacencies changed in both cases (e.g.,
blue/lavender for Congress, and purple/purple for state Senate dis-
tricts in the Southeast). Nonetheless we see only a small change in
persistence, which is typical for repetitions of this experiment.

of alternative districting plans. While the space of all valid redistricting plans for
a state is intractably vast by almost any definition, tools like these allow us to
cut through that complexity to uncover key information about the relationship of
district lines to representation.

Vote-filtered dual graphs have been shown to lend themselves to interpretable
(and nontrivial) observations about redistricting, opening up several directions for
future research.

Classifying salient geoclusters. A long-standing debate in the political science
literature centers on the question of whether racial gerrymandering protections like
the Voting Rights Act actually produce counterintuitive partisan effects by disal-
lowing the splitting of communities of color. The ideas introduced here can reframe
the question in a far more sophisticated and general way, locating areas in a state
that are split differently in party-biased ensembles or whose splitting correlates with
party advantage.

Metrics on the space of plans. Converting districting plans to persistence dia-
grams allows us to compute a bottleneck distance between districting plans given
some fixed vote data. It will be interesting to compare the bottleneck distance to
other notions of distance between districting plans, such as the optimal transport-
based distance studied in [1] and the information-theoretic distance in [38].
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Perturbing PA Congressional districts (k = 18)
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Perturbing PA Senate districts (k = 50)
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Figure 18. Effect of iterating small geographic perturbations
(single-unit flip steps) on persistence. The red line indicates the
average bottleneck distance over the

(
100
2

)
plans in a ReCom en-

semble E = {P (1), . . . , P (100)}, shown as a baseline for the distance
between approximately independent plans. For each i = 1, . . . , 100,
we run 1000 flip steps from P (i) and track the bottleneck distance
to P (i). For k = 18, the persistence diagrams are seen to be stable.
The same is true for most 50-district plans, but not all.

Embeddings. There are several methods in the literature for vectorizing persis-
tence diagrams, such as persistence landscapes [8] and persistence images [2]—that
is, each such method provides an embedding of a set of persistence diagrams into a
Hilbert space as a set of vectors. We can use these methods to embed (ensembles
of) plans in Euclidean space either for visualization or for clustering.

Distributions. Finally, the use of summary diagrams enables an approach to the
comparison of different sampling techniques, such as by the use of different Markov
chains. We can fit distributions to ensembles of persistence diagrams, allowing a
summarized comparison of sampling distributions, which is a long-standing goal
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in this research area. There is a large literature on distributions on the space of
diagrams, obtained either by first vectorizing them and fitting classical distributions,
or by applying more recent techniques directly to persistence diagrams themselves—
see, e.g., [8, 17, 18, 19, 40, 51, 46].
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Figure 20. Geographical localization of eleven Fréchet features
in Pennsylvania House plans (k = 203) with respect to PRES16
voting. These now pinpoint small cities, all the way down to Her-
mitage (population 16,220).
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Figure 21. Expanding on Figure 10. Point plots and heat maps
for the successive Fréchet features in the PA Senate ensembles that
are biased for Democratic and Republican safe seats, respectively.
Note the contrast between the rigidity of the Erie feature (similar
placement for both ensembles) and the manipulability of the Har-
risburg feature, though both anchor competitive districts.
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Figure 22. Geographical localization of ten Fréchet features in
North Carolina Senate plans (k = 50) with respect to PRES16
voting.
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Figure 23. Comparison of point plots and heat maps for the suc-
cessive Fréchet features in the NC Senate ensembles that are biased
for Democratic and Republican safe seats, respectively.
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Figure 24. Location and average number of districts in connected
components of Democratic-won districts for Pennsylvania Congres-
sional plans (k = 18) with respect to PRES16 voting.

Figure 25. Location and average number of districts in connected
components of Democratic-won districts for Pennsylvania state
Senate plans (k = 50) with respect to PRES16 voting.

Figure 26. Location and average number of districts in connected
components of Democratic-won districts for Pennsylvania state
House plans (k = 203) with respect to PRES16 voting.
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Figure 27. Location and average number of districts in connected
components of Democratic-won districts for North Carolina Con-
gressional plans (k = 13) with respect to PRES16 voting.

Figure 28. Location and average number of districts in connected
components of Democratic-won districts for North Carolina state
Senate plans (k = 50) with respect to PRES16 voting.

Figure 29. Location and average number of districts in connected
components of Democratic-won districts for North Carolina state
House plans (k = 120) with respect to PRES16 voting.
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Figure 30. Distribution of pairwise bottleneck distances in the
Pennsylvania ReCom ensembles. The distances help contextualize
the size of the displacement by Flip steps.
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ReCom steps on PA Congressional districts (k = 18).

ReCom steps on PA state Senate districts (k = 50).

Figure 31. Effect of iterating ReCom steps (merging and resplit-
ting pairs of adjacent districts) on bottleneck distance. We choose
100 starting plans P (i) from our Pennsylvania ensembles. For each
of i = 1, . . . , 100, we run 1000 ReCom steps (with no subsampling)
from P (i) and track the bottleneck distance to P (i) on the y-axis.
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