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‘We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space,
where the task is to solve Riemannian optimization problem with only noisy objective function evaluations.
Towards this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from
noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique.
The proposed estimators overcome the difficulty of non-linearity of the manifold constraint and issues that
arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold.
We use the proposed estimators to solve Riemannian optimization problems in the following settings for the
objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings),
(ii) sum of gradient-Lipschitz and non-smooth functions, and (iii) Hessian-Lipschitz. For these settings, we
analyze the oracle complexity of our algorithms to obtain appropriately defined notions of e-stationary
point or e-approximate local minimizer. Notably, our complexities are independent of the dimension of the
ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration.
We demonstrate the applicability of our algorithms by simulation results and real-world applications on
black-box stiffness control for robotics and black-box attacks to neural network
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1. Introduction Consider the following Riemannian optimization problem:
min f(z)+h(z), s.t., z€M, (1)

where M is a Riemannian submanifold embedded in R", f: M — R is a smooth and possibly
nonconvex function, and h: R"™ — R is a convex and nonsmooth function. Here, convexity and
smoothness are interpreted as the function is being considered in the ambient Euclidean space.
Iterative algorithms for solving (1) usually require the gradient and Hessian information of the
objective function. However, in many applications, the analytical form of the function f (or h)
and its gradient are not available, and we can only obtain noisy function evaluations via a zeroth-
order oracle. This setting, termed as stochastic zeroth-order Riemannian optimization, generalizes
stochastic zeroth-order Euclidean optimization (i.e., when M =R" in (1)), a topic which goes back
to the early works of [56, 62, 63] in the 1960’s; see also [24, 3, 45] for recent books and surveys.
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In the Euclidean setting, two popular techniques for estimating the gradient from (noisy) function
queries include the finite-differences method [73] and the Gaussian smoothing techniques [63]. Earlier
works in this setting focused on using the estimated gradient to obtain asymptotic convergence
rates of iterative optimization algorithms. Recently, obtaining non-asymptotic guarantees on the
oracle complexity of stochastic zeroth-order optimization has been of great interest. Towards that,
[64, 66] analyzed the Gaussian smoothing technique for estimating the Euclidean gradient from noisy
function evaluations and proved that for unconstrained convex minimization, one needs O(n?/e?)
noisy function evaluations to obtain an e-optimal solution. This complexity was improved by [31]
to O(n/€?*) when the objective function is further assumed to be gradient-smooth. Note that this
oracle complexity depends linearly on the problem dimension n and it was proved that the linear
dependency on n is unavoidable [37, 28]. Nonconvex and smooth setting was also considered in [31].
In particular, now assuming h =0 and M =R" in (1), it was shown that the number of function
evaluations for obtaining an e-stationary point Z (i.e., E|Vf(Z)| <¢), is O(n/e*).

In the Riemannian manifold setting, however, a main challenge in designing and analyzing
zeroth-order algorithms is the lack of availability of theoretically sound methods to estimate the
Riemannian gradients and Hessians from (noisy) function evaluations. To this end, our main
contribution in this work is to construct estimators of the Riemannian gradient and Hessian from
noisy function evaluations, based on a modified Gaussian smoothing technique from [66] and [4]. The
main difficulty addressed here is that the gradient and Hessian estimator in [66] and [4] respectively,
require computing f(x + vu), for some parameter v > 0 and an n-dimensional standard Gaussian
vector u. However, the point z + vu may not necessarily lie on the manifold M. To resolve this
issue, we propose an estimator based on the smoothing technique and sampling Gaussian random
vectors on the tangent space of the manifold M. We then use the developed methodology to design
stochastic zeroth-order algorithms for solving (1) with oracle complexities that depend only on the
manifold dimension d, and independent of the ambient Euclidean dimension n.

1.1. Related Works As mentioned previously, zeroth-order optimization has a long history;
we refer the reader to [24, 3, 45] for more details. The oracle complexity of methods from the
above works are at least linear in terms of their dependence on dimensionality. Recent works in this
field have been focusing on stochastic zeroth-order optimization in high-dimensions [84, 32, 4, 14].
Assuming a sparse structure (for example, the function being optimized depends only on s of the n
coordinates), the above works have shown that the oracle complexity of zeroth-order optimization
depends only poly-logarithmically on the dimension n, and it has a linear dependency only on the
sparsity parameter s, which is typically small compared to n in several applications. Compared to
these works, we assume a manifold structure on the function being optimized and obtain oracle
complexities that depend only on the manifold dimension and independent of the ambient Euclidean
dimension.

Apart from the above, Bayesian optimization is yet another popular class of methods for
optimizing functions based on noisy function values. This approach aims at finding the global
minimizer by enforcing a Gaussian process prior on the space of function being optimized and
using Bayesian sampling techniques. We refer the reader to [59, 60, 71, 30] for an overview of such
techniques in the Euclidean settings and their applications to a variety of fields including robotics,
recommender systems, preference learning and hyperparameter tuning. A common limitation of the
above algorithms is that they are usually not scalable well to solve high-dimensional problems. Recent
developments on Bayesian optimization for high-dimensional problems include [48, 85, 61, 70, 83]
where people considered zeroth-order optimization with structured functions (for example, sparse
or additive functions), and developed Bayesian optimization algorithms and related analysis. Very
recently, [67, 39, 38] considered heuristic Bayesian optimization algorithms for function defined over
non-Euclidean domains, including Riemannian domains, without any theoretical analysis.



J. Li, K. Balasubramanian and S. Ma: Zeroth-order Riemannian Optimization
Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS 3

Riemannian optimization in the first or second-order setting has drawn a lot of attention recently
due to its applications in various fields, including low-rank matrix completion [11, 81], phase retrieval
[5, 76], dictionary learning [23, 75], dimensionality reduction [35, 79, 58] and manifold regression [51,
50]. For smooth Riemannian optimization, i.e., h=0 in (1), it was shown that Riemannian gradient
descent method require O(1/€?) iterations to converge to an e-stationary point [12]. Stochastic
algorithms were also studied for smooth Riemannian optimization [9, 96, 87, 92, 42, 96, 87]. In
particular, using the SPIDER variance reduction technique, [96] proved that O(1/€*) oracle calls
are required to obtain an e-stationary point in expectation. When the function f takes a finite-sum
structure, the Riemannian SVRG [92] achieves e-stationary solution with O(k?*/3/e?) oracle calls
where k is number of summands. When the nonsmooth function h presents in (1), Riemannian
sub-gradient methods (RSGM) are widely used [10, 49] and they require O(1/€*) iterations. ADMM
for solving (1) has also been studied [43, 44], but they usually lack convergence guarantee, while
the analysis presented in [94] requires some strong assumptions. The recently proposed manifold
proximal gradient method (ManPG) [21] for solving (1) requires O(1/€e?) number of iterations to
find an e-stationary solution. Variants of ManPG such as ManPPA [20], ManPL [86] and stochastic
ManPG [82] have also been studied. Note that none of these works considers the zeroth-order
setting. Recently, there are some attempts on stochastic zeroth-order Riemannian optimization
[17, 29], but they are mostly heuristics and do not have any rigorous convergence guarantees.

1.2. Motivating Applications Our motivation for developing a theoretical framework for
stochastic zeroth-order Riemannian optimization is due to several important emerging applications;
see, e.g., [17, 55, 91, 39, 41]. Below, we discuss two concrete examples, which we will revisit in
Section 4.2, to illustrate the applicability of the methods developed in this work. We also briefly
discuss a third application in topological data analysis, and numerical experiments on this application
will be conducted in a future work, as it is more involved and beyond the scope of this paper.

1.2.1. Black-box Stiffness Control for Robotics Our first motivating application is from
the field of robotics. It has become increasingly common to use zeroth-order optimization techniques
to optimize control parameter and policies in robotics [54, 27, 91]. This is because that the cost
functions being optimized in robotics are not available in a closed form as a function of the
control parameter. Invariably for a given choice of control parameter, the cost function needs to
be evaluated through a real-world experiment on a given robot or through simulation. Recently,
domain knowledge has been used as constraints on the control parameter space, among which a
common choice is the geometry-aware constraint. For example, control parameters like stiffness,
inertia and manipulability lie on the positive semidefinite manifold, orthogonal group and unit
sphere, respectively. Hence, there is a need to develop zeroth-order optimization methods over the
manifolds to optimize the above mentioned control parameters [39].

1.2.2. Zeroth-order Attacks on Deep Neural Networks (DNNs) Our second motivat-
ing application is based on developing black-box attacks to DNNs. Despite the recent success of
DNNs, studies have shown that they are vulnerable to adversarial attacks: even a well-trained DNN
could completely misclassify a slightly perturbed version of the original image (which is undetectable
to the human eyes); see, e.g., [78, 33]. As a result, it is extremely important on the one hand to come
up with methods to train DNNs that are robust to adversarial attacks, and on the other hand to
develop efficient attacks on DNNs with the goal being to make them misclassify. In practice, as the
architecture of the DNN is not known to the attacker, several works, for example, [19, 80, 22], use
zeroth-order optimization algorithms for designing adversarial attacks. However, existing works have
an inherent drawback— the perturbed training example designed to fool the DNN is not in the same
domain as the original training data. For example, despite the fact that natural images typically lie
on a manifold [88], the perturbations are not constrained to lie on the same manifold. This naturally
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motivates us to use zeroth-order Riemannian optimization methods to design adversarial examples
to fool DNNs, which at the same time preserves the manifold structures in the training data.

1.2.3. Black-box Methods for Topological Dimension Reduction The third motivating
example is from the field of dimension reduction, a popular class of techniques for reducing the
dimension of high-dimensional unstructured data for feature extraction and visualization. There
exists a variety of methods for this task; we refer the interested reader to [46, 13] for more details.
However, a majority of the existing techniques are based on geometric motivations. Recently, there
has been a growing literature on using topological information for performing data analysis [18, 57, 68].
One such method is a dimension reduction technique called Persistent Homology-Based Projection
Pursuit [41]. Roughly speaking, given a point-cloud data set with cardinality n and dimension m
(i.e., a matrix X € R™*"), persistence homology refers to developing a multi-scale characterization
of topologically invariant features available in the data. Such information is summarized in terms of
the so-called persistence diagram, D(X), which is a multiset of points in a two-dimensional plane.
The idea in [41] is to obtain a transformation PT € RP*™ with p < m, such that the topological
summaries of the original dataset X and the reduced dimensional dataset P X are close to each
other; that is, the persistence diagram D(X) and D(P"X) are close in the 2-Wasserstein distance.
The problem is then formulated as (informally speaking),

min Wy (D(X),D(PT X)),
{Permxp.PT p=J}
which is an optimization problem over the Stiefel manifold (see Section 2.1 for more details). It
turns out that calculating the gradient of the above objective function is highly non-trivial and
computationally expensive [47]. However, evaluating the objecting function for various value of
the matrix P is relatively less expensive. Hence, this serves as yet another problem in which the
methodology developed in this work could be applied naturally.

1.3. Main Contributions We now summarize our main contributions.

1. In Section 2, we propose the (stochastic) zeroth-order Riemannian gradient (6) and Hessian (15)
estimators, which addresses the infeasibility issue of the sampling for the case of derivative-free
optimization over manifolds.

2. In Section 3, we demonstrate the applicability of the developed estimators for stochastic zeroth-
order Riemannian optimization, as listed below. A summary of these results is given in Table
1. To the best of our knowledge, our results are the first complexity results for stochastic
zeroth-order Riemannian optimization.

e When h(xz) =0 and the exact function evaluations of f(x) are obtainable, we propose a
zeroth-order Riemannian gradient descent method (Z0O-RGD) and provide its oracle complexity
for obtaining an e-stationary point of (1) (see Theorem 1).

e When h(z) =0 and f(z) =E:[F(x,£)], we propose a zeroth-order Riemannian stochastic
gradient descent method (Z0-RSGD). We analyze its oracle complexity under two different
settings (see Theorems 2 and 5).

e When h(x) is convex and nonsmooth, we propose a zeroth-order stochastic Riemannian
proximal gradient method (Z0-SManPG) and provide its oracle complexity for obtaining an
e-stationary point of (1) (see Theorem 3).

e When h(z) =0 and f(z) =E:[F(z,§)], where F(x,) satisfies certain Lipschitz Riemannian
Hessian property, we propose a zeroth-order Riemannian stochastic cubic regularized New-
ton’s method (ZO-RSCRN) that provably converges to an e-approximate local minimizer (see
Theorem 4).

3. In Section 4, we provide experimental results on simulated data to quantify the performance of
our methods. We then demonstrate the applicability of our methods to the problem of black-box
attacks to deep neural networks and robotics.
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ALGORITHM STRUCTURE ITERATION COMPLEXITY | ORACLE COMPLEXITY
Z0-RGD SMOOTH O(d/e?) O (d/e*)
Z0-RSGD SMOOTH, O(1/e?) O(d/e*)
STOCHASTIC
_ SMOOTH, STOCHASTIC, 9
Z0-RSGD GEO-CONVEX O(1/e) O (d/e?)
Z0-SMANPG NONSMOOTH O (1/€?) O (d/e*)
STOCHASTIC
_ LipscHiTZ HESSIAN 1.5 35 4/ 25
Z0-RSCRN STOCHASTIC O(1/e"®) O(d/e*® +d*/e*®)

TABLE 1. Summary of the convergence results proved in this paper. For all but the ZO-RSCRN algorithm, the reported
complexities correspond to e-stationary solution; for the ZO-RSCRN algorithm the complexities correspond to e-local
minimizers. Here, d is the intrinsic dimension of the manifold M. Furthermore, Iteration complexity refers to the
number of iterations and oracle complexity refers to the number of calls to the (stochastic) zeroth-order oracle.

2. Preliminaries and Methodology We start this section with a brief review of basics of
Riemannian optimization. We then introduce our stochastic zeroth-order Riemannian gradient and
Hessian estimators, and provide bias and moment bounds quantifying the accuracy of the proposed
estimators, which will be useful for the convergence analysis later.

2.1. Basics of Riemannian Optimization Let M CR"” be a differentiable embedded sub-
manifold. We have the following definition for the tangent space.

DEFINITION 1 (TANGENT SPACE). Consider a manifold M embedded in a Euclidean space. For
any x € M, the tangent space T, M at x is a linear subspace that consists of the derivatives of all
differentiable curves on M passing through x:

T.M={7(0):v(0) = z,~v([-6,d]) C M for some ¢ > 0, is differentiable}. (2)

The manifold M is a Riemannian manifold if it is equipped with an inner product on the tangent
space, (-, ), : ToM x T, M — R, that varies smoothly on M. We also introduce the concept of the
dimension of a manifold.

DEFINITION 2 (DIMENSION OF A MANIFOLD [1]). The dimension of the manifold M, denoted
as d, is the dimension of the Euclidean space that the manifold is locally homeomorphic to. In
particular, the dimension of the tangent space is always equal to the dimension of the manifold.
As an example, consider the Stiefel manifold M = St(n,p) :={X e R™?: X" X = [,}. The tangent
space of St(n,p) is given by Tx M ={Y e R"?: XTY +Y "X = 0}. Hence, the dimension of the
Stiefel manifold is np — 1p(p+1). Note that the dimension of the manifold could be significantly
less than the dimension of the ambient Euclidean space. Yet another example is the manifold of
low-rank matrices [81]. We now introduce the concept of a Riemannian gradient.

DEFINITION 3 (RIEMANNIAN GRADIENT). Suppose f is a smooth function on M. The Rieman-

nian gradient gradf(x) is a vector in T, M satisfying W (v,gradf(x)), for any v € T, M,

t=0 -
where (t) is a curve as described in (2).

Recall that in the Euclidean setting, a function f:R™ — R is L-smooth, if it satisfies |f(y) —
fl@) = (Vf(z),y—z)| < L|lz—y|? for all 2,y € R". We now present the Riemannian counterpart
of L-smooth functions. To do so, first we need the definition of retraction for a given z € M.

DEFINITION 4 (RETRACTION). A retraction mapping R, is a smooth mapping from T, M to

M such that: R,(0) =z, where 0 is the zero element of 7, M, and the differential of R, at 0 is an
dRz (tn)

dt
retraction that generates geodesics.

identity mapping, i.e., =1, Vn € T, M. In particular, the exponential mapping Exp, is a
=q
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ASSUMPTION 1 (L-retraction-smoothness). There exists L, > 0 such that the following
inequality holds for function f in (1):

PR (n) — F @) — (grad f () )] < 2l V€ Mom € T M. Q

Assumption 1 is also known as the restricted Lipschitz-type gradient for pullback function
f2(n) := f(Ry(n)) [12]. The condition required in [12] is weaker because it only requires Eq. (3) to
hold for |0 < p., where constant p, > 0. In our convergence analysis, we need this assumption
to be held for all n € T, M, i.e., p, = co. This assumption is satisfied when the manifold M is a
compact submanifold of R™, the retraction R, is globally defined® and function f is L-smooth in the
Euclidean sense; we refer the reader to [12] for more details. We also emphasize that Assumption 1
is weaker than the geodesic smoothness assumption defined in [93]. The geodesic smoothness states
that, Vne M, f(Exp,(n)) < f(x)+ {9z 1) + L,d*(x,Exp,(n))/2, where g, is a subgradient of f,
d(-,-) represents the geodesic distance. Such a condition is stronger than our Assumption 1, in
the sense that, if the retraction is the exponential mapping, then geodesic smoothness implies the
L-retraction-smoothness with the same parameter L, [6].

Throughout this paper, we consider the Riemannian metric on M that is induced from the
Euclidean inner product; i.e. (-,-), = (-,-), Vo € M?. Using this Riemannian metric, the Riemannian
gradient of a function is simply the projection of its Euclidean gradient onto the tangent space:

gradf(z) = Projy, \ (V£ (). (4)

We also present the definition of Riemannian Hessian for embedded submanifolds, which will be
used in Section 3.4 about cubic regularized Newton’s method.

DEFINITION 5 (RIEMANNIAN HESSIAN [95]). Suppose M is an embedded submanifold of R™.
The Riemannian Hessian is defined as

Hess f(x)[n] = Proj;, v (Dgradf(z)n]), Vo € M,ne T, M, (5)

where Dgrad f(x)[n] is the common differential, i.e., Dgrad f(x)[n] = (Jgradf(z))[n], where J is the
Jacobian of the gradient mapping.

2.2. The Zeroth-order Riemannian Gradient Estimator Recall that in the Euclidean
setting, Nesterov and Spokoiny [66] analyzed the Gaussian smoothing based zeroth-order gradient
estimator. However, as that estimator requires function evaluations outside of the manifold to be
well-defined, it is not directly applicable for the Riemannian setting. To address this issue, we
introduce our stochastic zeroth-order Riemannian gradient estimator below.

DEFINITION 6 (ZEROTH-ORDER RIEMANNIAN GRADIENT). Generate u = Pugy € T, M, where
ug ~N(0,I,) in R, and P € R"*" is the orthogonal projection matrix onto T, M. Therefore u
follows the standard normal distribution A(0, PP") on the tangent space in the sense that, all
the eigenvalues of the covariance matrix PP" are either 0 (eigenvectors orthogonal to the tangent
plane) or 1 (eigenvectors embedded in the tangent plane). The zeroth-order Riemannian gradient
estimator is defined as

f(Ro(pu)) — f(z)  f(Re(pPuo)) — f(x)

gu(z) = . u= . Puy. (6)

' If the manifold is compact, then the exponential mapping Exp,, is already globally defined. This is known as the
Hopf-Rinow theorem [15].

2If the manifold is not an embedded submanifold of some Euclidean space, then we cannot have an induced Riemannian
metric. In this case, the convergence result is not affected, though it would cause implementation difficulties.
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Note that the projection P is easy to compute for commonly used manifolds. For example, for
the Stiefel manifold M, the projection is given by Proj, (YY) = (I = XX )Y + X skew(X Y,
where skew(A4):=(A—AT)/2 (see [1]).

REMARK 1. In this work, we assume that the function f is defined on submanifolds embedded
in Euclidean space, so that it is efficient to sample from the associated tangent space, as discussed
above; see also [26]. We remark that the above gradient estimation methodology is more generally
applicable to other manifolds. However, the generality comes at the cost of practical applicability as
it is not an easy task to efficiently sample Gaussian random objects on the tangent space of general
manifolds; see [36] for more details.

We now discuss some differences between the zeroth-order gradient estimators in the Euclidean
setting [66] and the Riemannian setting (6). In the Euclidean case, the zeroth-order gradient
estimator can be viewed as estimating the gradient of the Gaussian smoothed function, f,(z)=
L fen f(z+ pw)e 2 1P du, because V(@) =Eu(gu(x)) = £ [zn wue_%”“wdu, where £ is
the normalization constant for Gaussian. This was also observed as an instantiation of Gaussian
Stein’s identity [4]. However, this observation is no longer true in the Riemannian setting, as we
incorporate the retraction operator when evaluating g,, and this forces us to seek for a direct
evaluation of E,(g,(x)), instead of utilizing properties of the smoothed function f,.We also remark
that, g,(x) is a biased estimator of gradf(z). The difference between them can be bounded as in
Proposition 1. Some intermediate results for this purpose are as follows.

LEMMA 1. Suppose X is a d-dimensional subspace of R™, with orthogonal projection matriz
P eR™ ", wy follows a standard norm distribution N'(0, I,,), and u = Puy is the orthogonal projection
of ug onto the subspace X. Then Vx € X, we have

1

1
xz/ (:v,u}ue_%”"f’lﬁduo, and ||:E||2:/ <x,u>26_%”“0“2du0, (7)
K n R Jrn

where k is the constant for normal density function: k= [gn e~ 2l gy = (2m)n/2,

Proof of Lemma 1 By the definition of covariance matrix, we have % f]R" Ul e*%”“o”zduo =1,.
Since (x,u) = (z,ug), Vo € X, we have

1
K / (z, U>U067%”u0”2duo =, (8)

KR

which implies + [zn <a:,u>ue_%”“0”2du0 = Px = z. Similarly, taking inner product with z on both
sides of Eq. (8), we have |z[*==X [, (z,u)2e 20l gy
The following bound for the moments of normal distribution is restated without proof.

LEMMA 2. [66] Suppose u~N(0,1,,) is a standard normal distribution. Then for all integers
p>2, we have M, :=E,(||u|?) < (n+ p)P/2.

COROLLARY 1. For ug ~N(0,1,) and u= Puy, where P € R"*™ is the orthogonal projection
matriz onto a d dimensional subspace X of R", we have E,,(||ul|?) < (d+ p)P/2.

Proof of Corollary 1 Assume the eigen-decomposition of P is P = Q" AQ, where (Q is an unitary
matrix and A is a diagonal matrix with the leading d diagonal entries being 1 and other diagonal
entries being 0. Denote % = Quy ~ N (0,1,,), then At = (1, ..., 74,0,...,0). Since u= Q" A has the
same distribution as A, we have E|ju||P =E||(@y, ..., @4, 0, ...,0)||” < (d + p)?/?, by Lemma 2.

Now we provide the bounds on the error of our gradient estimator g,(x) (6). Recall that d denotes
the dimension of the manifold M.

PROPOSITION 1. Under Assumption 1, we have
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(@) Euy (g, (2)) — gradf(z)|| < ”gﬁ(d;ﬁ%)?’/zf
(b) llgradf (@)* < 2[|Eu (9, () [I* + 5 Ly(d +6)°,
(¢) Euo(l9:(2)I17) < 5 Lg(d +6)° +2(d + 4)||grad f (z)[|*.

Proof of Proposition 1 For part (a), since

Blgp () - grod o) = [ (FEDZIE - forad ) ) we bt

K 1%
we have
\\El(gu(w))—gradf(w)!!
= I / (f(Ra(pr)) — f(x) — (grad f (z), pa)) ue™ 21700 duy |
< 2 Lquuuu lulle= 210l du = ”L / e300 gy < Lo S (d+3)°",

RN

where the first inequality is by due to (3), and the last inequality is from Corollary 1. This completes
the proof of part (a).

To prove part (b), note that

2

lerad @)= | [ (o), upue 4100

2

= H;Fa /Rn([f(Rz(W)) — f(@)] = [f(Ra(p)) — f(x) — (grad f(z), pu)]yue 210l du,

2

<2B N+ | % [ (FRG00) = o) = (o)) e 4 g

<R DI+ 5 [ (F(Ra(r10) = £(2)  {gradd (@)oo

<2|[E(g, ()| + - Ly (d+6)°,

where the last inequality is from the same trick as in part (a). This completes the proof of part (b).
Finally, we prove part (c). Since E(l|gu(2)|2) = LBu, [(f(Ru(uw)) — f(2))*ul?], and

(f(Ro(pu)) = f(2)? = (f(Ro(nu)) — f(z) — plgradf(z),u) + plgrad f(z),u))* < 2(5u2ul?)? +
2u%(grad f(x),u)?, we have

E(llgu ()]l )S% D (IIUII6)+2E(Il<gradf(fv)7U>UIl2)SL;QL_?,(dJrﬁ)?’+2E(||<gradf(w),U>ull2)- (9)

Now we bound the term E(||(gradf(z),u)ul/?) using the same trick as in [66]. Without loss of
generality, assume X is the d-dimensional subspace generated by the first d coordinates, i.e., Vz € X,
the last n — d elements of = are zeros. Also for brevity, denote g = grad f(z). We have that

E(|[{gradf(x), u)ul*) = % / (grad f (), u)? Ju] %= 210" du,

d 2 /4
1
7) /d ( E giwi> ( g x?) e*%Z?ﬁff?dwl . .dxd7
R\ i=1 i=1
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where x; denotes the i-th coordinate of ug, the last n — d dimensions are integrated to be one, and
k(d) is the normalization constant for d-dimensional Gaussian distribution. For simplicity, denote
x=(x1,...,2q), then

1
B(|(gradf (@), u)ul) = o [ (g0 olPe 4T do
1 K(d) Jpa )
T 2 _1—7 z 2 17 ” 2
< [Nl B g ape i a < [ e T o)
2

_ 12112
<g,l’>2€ zll=l dl‘:m”g||27

K(d)T(1 — 7)1t 2e Jpa
where the second inequality is due to the following fact: aPe= 50" < (%)p/ 2 Taking 7= ((1274) gives
the desired result.

2.3. The Zeroth-order Riemannian Hessian Estimator We now extend the above
methodology and propose estimators for the Riemannian Hessian in the stochastic zeroth-order
setting. We restrict our discussion to compact submanifolds embedded in Euclidean space, so that
the definition of Riemannian Hessian (5) is applied. We assume the following assumption of F'(x,&):

ASSUMPTION 2. Given any point x € M and n € T, M, we have
|P; " o HessF(Ry(n),€) o Py — HessF(, &) lop < Lunll, (11)

almost everywhere for &, where P, : T,M — Tg, )M denotes the parallel transport [2], an isometry
from the tangent space of x to the tangent space of R.(n), and o is the function composition. Here
|- lop %s the operator norm in the ambient Euclidean space.

Assumption 2 is the analogue of the Lipschitz Hessian type assumption from the Euclidean
setting, and induces the following equivalent conditions (see, also [2]):

| Py arad P(Ra (), €) — rad £ (x) — HessF(z, )] < 2 o]

FRA0.€) ~ [P0+ (raradF (.9 + 5 Hess (e, )| | < 2,

In the Euclidean setting, P, reduces to the identity mapping. Throughout this section, we also
assume that F(+, &) satisfies Assumption 1 and the following assumption, which is used frequently
in zeroth-order stochastic optimization [31, 4, 96].

ASSUMPTION 3. We have (with E=E¢) that, E[F (z,)] = f(x), ElgradF (z,§)] = grad f(z) and
E[||lgradF (z,&) — gradf(z)|]*] < o2, Vo € M.

We first introduce the following identity which follows immediately from the second-order Stein’s
identity for Gaussian distribution [74].

LEMMA 3. Suppose X is a d-dimensional subspace of R™, with orthogonal projection matriz
PeR™™ P=P>=P" and uo~N(0,1,) is a standard normal distribution and uw= Puy is the
orthogonal projection of ug onto the subspace. Then VH e R™" H" = H, and H = PHP (which
means that the eigenvectors of H lies all in X' ), we have

1 1
PHP= o (u, Hu)(uu" — P)e_%““OHQduO =E §<u, Hu)(uu" — P)|, (13)
R Jrn
where || - || here is the Euclidean norm on R", and k is the constant for normal density function

given by k= [gn e 21U dy = (27)7/2.
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The identity in (13) simply follows by applying the second-order Stein’s identity, E[(zz " —

I,)9(x)] =E[V?g(x)], directly to the function g(x) = 1 (z, Hz) and multiplying the resulting identity
by P on both sides.

LEMMA 4. [4] Suppose X is a d-dimensional subspace of R™, with orthogonal projection matriz
PeRY™" P=P>*=PT7 and uy~N(0,1I,) is a standard normal distribution and u= Puy is the
orthogonal projection of ug onto the subspace. Then

El||uoug — I.||3] <2(n+16)% and E[||luv’ — P|%] <2(d+16)%. (14)

Proof of Lemma 4 See [4] for the proof of the first inequality in Eq. (14). We now show how to
get the right part from the left. Similar to the proof of Corollary 1, we use an eigen-decomposition
of P=Q7TAQ and get (again @ = Qu):

Elluu" — P||% =E||(ty, ..., Ga) " (U1, ..., Ug) — La||3 < 2(d +16)8,

which completes the proof.

We now propose our zeroth-order Riemannian Hessian estimator, motivated by the zeroth-order
Hessian estimator in the Euclidean setting proposed by [4].

DEFINITION 7 (ZEROTH-ORDER RIEMANNIAN HESSIAN). Generate u € T, M following a stan-
dard normal distribution on the tangent space T, M, by projection u = P,uq as described in Section
2.2. Then, the zeroth-order Riemannian Hessian estimator of a function f at the point x is given by

= (" = PR ). €) + F(Ry (=) ) ~2F (w. ). (15)

Note that our Riemannian Hessian estimator is actually the Hessian estimator of the pullback
function F,(n,§) = F(R.(n),§), Yz € M and n € T, M projected onto the tangent space T, M.
We immediately have the following bound on the variance of H,(z).

LEMMA 5.  Under Assumption 1, the Riemannian Hessian estimator given in Eq. (15) satisfies

ML2. (16)

By =||Hy(z) || < 5 p

Proof of Lemma 5 From Assumption 1 and Corollary 1 we have
E|F(R,(pu), &) + F(R.(—pu),&) — 2F (z,6)[*
=E|F(Ro(pu),€) — F(w,8) (gradF(z,€), pu) + F(Ry(—pu), &) — F(z, &) — (grad F(z, §), —pu)
J L wL
<E[==ull® + =l = Elp* Lijlull ] < p'° L3 (d + 16)°,
(17)
Moreover, we have

4

B1T o) =E | s T — PF(R ). €)+ P (o).~ 2F 0,6)

F

<5 (BIF(Ra (). )+ F(Ru(—ju0), &) = 2F (@, &) Eljun” — P)"* (13)
(d+16) 1/2
<o BIF(R().€) + F(R.(~).€) ~ 2P (. €))

where the first inequality is by Hoélder’s inequality and the second one is by Lemma 4. Combining
(17) and (18) yields the desired result (16).
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We will also use the mini-batch multi-sampling technique. For ¢ =1,...,b, denote each Hessian
estimator as

Hyi(x) = 2;2(%@ — P)[F(Ra(pus), &) + F(Ra(—pus), &) — 2F (2, )] (19)

The averaged Hessian estimator is given by
1
= Z (20)

We now have the following bound of H,, ¢(x) and Hessf(z).

LEMMA 6. Under Assumption 1 and Assumption 2, let H,¢(x) be calculated as in Eq. (20),
then we have that: Vx € M and ¥n € T, M,

(d+16)*  p2L%

Bzl s(w) ~ Hess ()13, < S 2001, + o', (21)
_ d+16
By | e(o) — Hess ()3, < O I oy Log a0 (22)

where || - ||op denotes the operator norm and C'is some absolute constant.

Proof of Lemma 6 Denote E = E;, = as the expectation with respect to all previous random
variables. We first show Eq. (21). Denote X; = H,;, —EH,, ;, then X,’s are iid zero-mean random
matrices. Since || - ||op < || - ||, We have

b 2

1
p ¥

=1

E[|H,¢(x) — EH,¢(z)]5, = <E

1 b
bZ;Xi

2
1 < 1 1
» Z Xl %+ » Z(XmX
=1

bz Z ”X ||F
i#]

1 1
ZEﬁbHXlH%ZEEHHu,l—EHu,lHF—g I Huallf = 1EH, ]
oy,

22 Y

where the third inequality is from the Jensen’s inequality, and the last inequality is due to Eq. (16).
Note that (23) immediately implies

E||H,,¢(x) — Hess f ()2, §2EHPI;L,§£$) —EH, ¢(2)|3, + 2|EH,¢(z) — Hess ()3,

(d+16) -
SWLQ +2||EH, ¢(x) — Hessf(w)Hzp

Now we bound the term |[EH,, ¢(x) — Hessf(z)||2,. Note that
|(n, (BH,;(x) — Hess f(z))[n])]

F

= (23)

1 1
< Byl < 5Bl () <

(24)

|1 (B | s = P (RaG0) + (R ) = 26 0] ~ s 0)) )
[t (& |5 T—P)[f(Rm(W))wa(Rw(—ﬂu))—2f(x)—M2<u7HeSSf(x)[U]>]D[n]>‘
5z |0 (B 1 (Rau) — ) = 5 s o)1)

IR p) = 1 (0) ~ - Hess (] ™ = P)| ) )
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which together with Assumption 2 yields

7, (BH,., () — Hessf ()} < S [l = Py ol

G T 2 pln 5/2||,(2 (25)
(Holder) <7\/EHUH Eluu™ = PlElnl* < = = (d+6)° ],
where the last inequality is by Corollary 1 and Lemma 4. (25) implies
_ L
|EH, &) — Hessf ()]l < £27 (d+6)"72 (26)
Combining (24) and (26) gives Eq. (21).
Now we show Eq. (22). By a similar analysis we have
E||H,,¢(x) — Hessf (2)][5, ,
<E(||H,¢(x) —EH, (HJ)HOp+ |EH, ¢(x) —Hessf(2)llop)
<8 Hye(2) — Ef (o) oy + BIE Hye(2) — Hess ()1, )

) - )
(H3lder) <81 /B[ Hye(v) — By () |2,E] Hue () — EH, ¢(2) 3,
+8||EH,, ¢(z) — Hessf(:v)

lops

where the second inequality is by the following fact: when a,b> 0, (a+b)* < max{(2a)3, (2b)*} <
8a® 4 8b*. Moreover, since || - |lop < || ||, and X; = H,,;, —EH,, ; are iid zero-mean random matrices,
we have

4
E||H,¢(z) — EH, ¢ *EH*ZX 15 < 5 (EHZX lop + (EI|X 5 )1/4)

4

< EHZXHF (GBI 4)* =b—°; ZEHXHF (B, 14)
bf(f B + GBI 3 < o (Vo Euxlwm<bEuX1H%>1/4)4
C (Vo4 V) ||,y ~ EH, < mclauml B, (28)
12‘5 VL = 24 B ) + EH,012)?
SR Hprl+ 20 sl [EH o |+ [EH 03
<;§Z <2||HM,1||%+2||EHN,1||2F>2158§C O 25
<O BNl + B Hall3) < T (44 16)°L

where the first inequality is due to the Rosenthal inequality [69], C' is an absolute constant, the
fourth inequality is due to the fact 1 < v/b < v/b. Plugging Eq. (23), Eq. (26) and Eq. (28) back to
Eq. (27) gives the desired result (22).

3. Stochastic Zeroth-order Riemannian Optimization Algorithms We now demon-
strate the applicability of the developed Riemannian derivative estimation methodology in Section 2,
for various classes of stochastic zeroth-order Riemannian optimization algorithms.
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Algorithm 1 Zeroth-Order Riemannian Gradient Descent (Z0-RGD)
1: Input: Initial point zy € M, smoothing parameter pu, step size 7y, fixed number of iteration N.
2: for k=0to N —1do
3:  Sample a standard Gaussian random vector u; € T,,, M by orthogonal projection in Defini-
tion 6.

4:  Compute the zeroth-order gradient g, (z)) by Eq. (6).
5. Update z411 = Ry, (—1kgu(xr)).
6: end for

3.1. Zeroth-order Smooth Riemannian Optimization In this section, we focus on the
smooth optimization problem with h =0 and f satisfying Assumption 1. We propose Z0-RGD,
the zeroth-order Riemannian gradient descent method and provide its complexity analysis. The
algorithm is formally presented in Algorithm 1.

The following theorem gives the iteration and oracle complexities of Algorithm 1 for obtaining
an e-stationary point of (1) when h =0.

THEOREM 1. Let f satisfy Assumption 1 and suppose {x;} is the sequence generated by Algo-

rithm 1 with the stepsize n, =1 = W Then, we have

N Bl < & (P o), (29

where L{k denotes the set of all Gausszan random vectors we drew for the first k iterations 3, and

p?Lg (d+3)3 2 (d+6)3 | p?Lg (d+6)3
Cp) ==5* aray T 116 @ T e (a2

. In order to have

N

Z Nlgradf(z,)||? < € (30)

k:

we need the smoothing parameter p and number of iteration N (which is also the number of calls to
the zeroth-order oracle) to be set as p=0 (¢/d*?), N=0(d/e?).

Proof of Theorem 1 From Assumption 1 we have

F@) < F@) = i), emad F @) + 202 g, ()2

Taking the expectation w.r.t. u; on both sides, we have

Eu, [f(@e)] < f(@r) — m(Buy, (94 (28)), grad f (1)) + nk;gEuk(ng(ﬂ?k)Hz)

<o)~ Buy (0] e )+ P20 (L2046 + 20+ 0 Jgrad ) ).

where the last inequality is by Proposition 1. Now Take n, =7 = m, we have

Euk [f(xkjrl)]

<)+ L(lerad F) 2 — 20, (g, (@), rad () + £ Lo O

16 (d+4)2

3 The notation of taking the expectation w.r.t. a set, is to take the expectation for each of the elements in the set.
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=f(zn) + §<ugradf<m Euk<gu<zk>>uz—HEukqu)llQH” 3 (diﬁi
<)+ 1 (M Lo 43y ~ Sllarad (@) + 2 v (“6)) 16 Ediiis

=f(wy) — J lgrad f(@)|* + C(n),

where the second inequality is from Proposition 1. Define ¢y := f(x;) — f(z*). Now take the
expectation w.r.t. Uy = {ug,uy,...,ur_1}, we have

O < bu = 3 Euy lgrad (@) + C (1),

Summing the above inequality over k=0,..., N yields (29).

Therefore with = O(e/d*/?) we have C(u) <fe?/4. Taking N > 8(d +4)L,(f(z0) — f(z*))/e?
yields (30). In summary, the number of iterations for obtaining an e-stationary solution is O(d/€?),
and hence the total zeroth-order oracle complexity is also O(d/e?).

REMARK 2. Note that in Algorithm 1, we only sample one Gaussian vector in each iteration of
the algorithm. In practice, one can also sample multiple Gaussian random vectors in each iteration
and obtain an averaged gradient estimator. Suppose we sample m i.i.d. Gaussian random vectors
in each iteration and use the average g,(z) = -+3>"" g,:(x), then the bound for our zeroth-order
estimator becomes

_ 2(d+4
(5, (x) — grad f(@)]*) < w2 L2 +6)" + 2O araa p(a) 2 (31)
Hence, the final result in Theorem 1 can be improved to
f(xo) — f(=7)
N1l ZEuk ||gfadf(35k)||2 <A4L, N—-i—l + M2L§(d+ 6)37 (32)

with 7 =1/L, and C(u) = p*>L,(d+6)? /2. Therefore the number of iterations required is improved to
N = O(1/€%) when we set = O(e/d*?) and m = O(d). However, the zeroth-order oracle complexity
is still O(d/€?). The proof of (31) and (32) is given in the appendix. This multi-sampling technique
will play a key role in our stochastic and non-smooth case analyses.

3.2. Zeroth-Order Stochastic Riemannian Optimization for Nonconvex Problem In
this section, we focus on the following nonconvex smooth problem:

i /(2)i= [ Plz,)dP(), (33)
zeM ¢
where P is a random distribution, F is a function satisfying Assumption 1, in variable x, almost
surely. Note that f automatically satisfies Assumption 1 by the Jensen’s inequality.

In the stochastic case, sampling multiple times in every iteration can improve the convergence
rate. Our zeroth-order Riemannian gradient estimator is given by

F( (MUZ) 51) _F(xvgi)

9, 5 Zgu &\ a where 9u.g; ($) = [ Uy, (34)

and wu; is a standard normal random vector on T, M. We also immediately have that

Eegue, (1) =1 W““;) 1@, g (). (35)

The multi-sampling technique enables us to obtain the following bound on E||g,, ¢ (z) — grad f ()|,
the proof of which is given in the Appendix C.
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LEMMA 7. For the Riemannian gradient estimator in (34), under Assumptions 1 and 3, we
have
E||gy¢(x) — grad f (x)||* < p?L2(d +6)° +

lgradf ()1, (36)

8(d+4 8(d+4
(rd) o B

m
where the expectation E is taken for both Gaussian vectors U ={uy,...,u,,} and &.

Our zeroth-order Riemannian stochastic gradient descent algorithm (Z0-RSGD) for solving (33),
is presented in Algorithm 2.

Algorithm 2 Zeroth-order Riemannian Stochastic Gradient Descent (Z0-RSGD)

1: Input: Initial point x4 € M, smoothing parameter p, multi-sample constant m, step size n,
fixed number of iteration .

2: for k=0to N—1do

3:  Sample the standard Gaussian random vectors uf on T, M by orthogonal projection in
Definition 6, and sample &F, i=1,...,m.

4:  Compute the zeroth-order gradient g, ¢(zx) by Eq. (34).

5: Update Tpy1 = Rajk(—’nkgu,g(&?k)).

6: end for

Now we present convergence analysis for obtaining an e-stationary point of (33).

THEOREM 2. Let F satisfy Assumption 1, w.r.t. variable x almost surely. Suppose {x;} is the
sequence generated by Algorithm 2 with the stepsize m, =1 = L% Under Assumption 3, we have

f(@o) — fla")

), (37)

N
1
N7 O Bz lgrad f() | < 4L,
k=0

where C(u) = 2p*L2(d + 6)° + wga U, denotes the set of all Gaussian random vectors
and Z denotes the set of all random wvariable & in the first k iterations. In order to have
ST Ziv:o Ev, =, |lgrad f(zy)||* < €2, we need the smoothing parameter u, number of sampling m in
each iteration and number of iterations N to be

p=0(e/d?), m=0 (do*/e?), N=0 (1/é). (38)

Hence, the number of calls to the zeroth-order oracle is mN = O(d/€*).
Proof of Theorem 2 From Assumption 1, we have:
2

F@enn) < F) =G (o), grad () + T2 g, (o)

Take . =1 = Lig, we have

2

F@inn) < Fx) = melgs (@), srad (@) + 2 g, (o)
1

= fa) + 3z, (g, () — grad f ()|I* — [lgrad f (=)[|) -
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Take the expectation for the random variables at iteration k& on both sides, we have

B (t1) < f20) + 57 (Bl () — grad (@) - grad f(2)]?)

|
Eq <31>§f(xk)+22@%3(%«3)%%*‘”2 (8(“4) 1>Ilgradf(:v)ll2>-

Summing up over k=0,..., N (assuming that m > 16(d +4)) yields (37). In summary, the total
number of iterations for obtaining an e-stationary solution of (33) is O(1/€?), and the stochastic
zeroth-order oracle complexity is O(d/e*).

In Appendix A, we present the oracle complexity of Algorithm 2 when f is geodesically convex
and M is the Hadamard manifold.

3.3. Zeroth-order Stochastic Riemannian Proximal Gradient Method We now con-
sider the general optimization problem of the form in Eq. (1). For the sake of notation, we denote
p(z):= f(z) + h(z). We assume that M is a compact submanifold, h is convex in the embedded
space R™ and is also Lipschitz continuous with parameter Ly, and f(z):= [, F' ¢ (x,&)dP (&) satisfying
Assumption 3.

The non-differentiability of A prohibits Riemannian gradient methods to be applied directly. In
[21], by assuming that the exact gradient of f is available, a manifold proximal gradient method
(ManPG) is proposed for solving (1). One typical iteration of ManPG is as follows:

1
vy :=argmin (gradf(xy),v) + %HUHZ +h(z, +v), st., veT, M (39)
L1 = ka (nkvk)a

where ¢t > 0 and 7, > 0 are step sizes. In this section, we develop a zeroth-order counterpart of
ManPG (Z0-ManPG), where we assume that only noisy function evaluations of f are available. The
following lemma from [21] provides a notion of stationary point that is useful for our analysis.

LEMMA 8. Let vy, be the minimizer of the v-subproblem in (39). If vy, =0, then xy is a stationary
point of problem (1). We say xy, is an e-stationary point of (1) with t = L%,’ if ||ok]| <e€/L,.

Our Z0-ManPG iterates as:

1
vy, =argmin (g, ¢(zx),v) + 27L||v||2 + h(z), +v), s.t., veT, M, (40)
Tpy1 = le (nkvk)v
where g, ¢(x)) is defined in Eq. (34). Note that the only difference between Z0-ManPG (40) and
ManPG (39) is that in (40) we use g, ¢(z) to replace the Riemannian gradient gradf in (39). A

more complete description of the algorithm is given in Algorithm 3. Now we provide some useful
lemmas for analyzing the iteration complexity of Algorithm 3.

LEMMA 9. (Non-expansiveness) Suppose v :=argmin,er, p(g1,v) + 5 |[v[|> + h(z +v) and w :=
arg min,er, m (g2, w) + 5 |w||* + h(z +w). Then we have

[ —wll <tllgr — ga]- (41)

Proof of Lemma 9 By the first order optimality condition [90], we have 0 € v + g1 +
Proj, p Oh(x +v) and 0 € tw + go + Projy, »  Oh(x +w), i.e. Ip; € Oh(x +v) and p, € Oh(z + w)
such that v = —t(g; + Proj;, (p1)) and w = —t(g> + Projy, »,(p2)). Therefore we have

<v,w—v> :t<gl +Pr0ijM(p1)7U_w> (42)
(w,v —w) =t{go + Projp,_r\(p2),w —v).
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Algorithm 3 Zeroth-Order Riemannian Proximal Gradient Descent (Z0-ManPG)
1: Input: Initial point 2y on M, smoothing parameter p, number of multi-sample m, step size 7y,
fixed number of iteration N.
2: for k=0to N—-1do
3:  Sample m standard Gaussian random vector u; on T, M by by orthogonal projection in
Definition 6, i =1,...,m.
4:  Compute the zeroth-order gradient the random oracle g, (zx) by Eq. (34).
5. Solve vy from Eq. (40).
6:  Update zy11 = Ry, (Mevr)-
7: end for

Now since v, w € T, M, and using the convxity of h, we have
(Projp, pm(p1), v —w) = (pr,v —w) = (p1, (v+z) — (w+2)) 2 h(v+2) —h(w+z).  (43)
Substituting Eq. (42) and into (43) yields,

(v,w—wv) >t{g1,v—w)+h(v+z)—h(w+x)

(w,v—w) 2 (g2, w —v) + h(w+z) —h(v+ ).
Summing these two inequalities gives (v —w,v — w) < t(gs — g1,v — w), and Eq. (41) follows by
applying the Cauchy-Schwarz inequality.

COROLLARY 2. Suppose vy, is given by (40), and vy, is solution of the v-subproblem in Eq. (39),
then we have

8(d+4) , , 8(d+4)
m m

Euhaknvk——vku%~s;fz<M2L§<dk6>34 ngradf<xk>n2).

Proof of Corollary 2 By Lemma 9, we have
Evy 2 llvx — Onll < t°Eug 21| e (20) — grad f (z) | 7-
From Lemma 7,
By = |Gu.e(21) — grad f (zx) |7

8(d+4 8(d+4

lgrad f ().
The desired result hence follows by combining these two inequalities.
The following lemma shows the sufficient decrease property for one iteration of Z0-ManPG.

LEMMA 10. For any t >0, there exists a constant 7 >0 such that for any 0 <mn, <min{l,7},
the (x,vi) generated by Algorithm 3 satisfies

parn) —p(e) <= (36 = C) llewl, (44)

where C = p*L2(d+6)° + S(i:l) o+ 8(‘:4) G? and G is the upper bound of the Riemannian gradient
gradf(z) (existence by the compactness of M).

Proof of Lemma 10 Notice that

f(@rq) = fow) < (gradf(zp), Ray (Mhvr) — Tx) + %HR% (ko) — 2z

L
= (grad f(zr) — Gu.e(x), Ry (Mvr) — T) + (Gue (), Rey (Mivr) — 1) + 79 IR, (o) — x|,
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where the inequality follows from Assumption 1. Moreover, by Lemma 7 and the Fact 3.6 of [21],
we have

(grad f(zx) — Gue(x), Rey (Mior) — 1) < l|lgrad f(zr) — Gue(@)||| Ray (evr) — 24|
d+4) I

8(d+4 8
<tz |2nfa+ 0 + X o4 MO poraa )2 .

The rest of the proof of bounding (g,.¢(x), R, (nxvx) — xx) + %HR% (mevr) — 2 ||* follows from
exactly the same process as in ([21], Lemma 5.2). We omit the details for brevity.

THEOREM 3. Under Assumption 3 and Assumption 1, the sequence generated by Algorithm 3,
with ny =71 <min{l,7} and t =1/L,, satisfies:

N-—-1

1 4t — * ANt? - 8t -

N D Buyz, )0l < (pA(xO) _p(’)) + 0 0, (45)
— (n—8C)tN 7 —8C't 7 — 8Ct

where C = p*L2(d+6)° + S(Kf:l) %+ S(dnf@ G? and G is the upper bound of the Riemannian gradient
gradf(z) over the manifold M. To guarantee

i By s o < /L2,

the parameters need to be set as: p=0O (e/d*?), m =0 (dG*/€*), N =0 (1/€*). Hence, the number
of calls to the stochastic zeroth-order oracle is O(d/e*).

Proof of Theorem 8 Summing up (44) over k=0,..., N — 1 and using Corollary 2, we have:

N-1 A .
77 A ',7 -
p(zo) — By, =, p(z1) > Z[?; — C)Ey, [|vk||7 > [@ —2C] Z 2Ey, =, [|oal2
k=0 et

. N-1

i 20 v 5, 8(d+4)
= [@ B 20] Z |:Euk’5k Hvk”%‘ - t2 <N2L§(d+ 6)3 + T0'2

8(d+4),
O oy )|

~ N-1

- Nt 8(d+4 8(d+4
2[Q—2C]ZEuk,aky|mll2F——”4 <M2L§(d+6)3+(; ) 2 4 BT )G2>
k=0

4t m
8(d+4 8(d+4) ,\°
+ 2t <u2L§(d+6)3+( ) 2 8dTd) )G2> ,
: m m

which immediately implies the desired result (45).

REMARK 3. The subproblem Eq. (40) is the main computational effort in Algorithm 3. Fortu-
nately, this subproblem can be efficiently solved by a regularized semi-smooth Newton’s method
when M takes certain forms. We refer the reader to [89, 21] for more details.

3.4. Escaping saddle points: Zeroth-order stochastic cubic regularized Newton’s
method over Riemannian manifolds In this section, we consider the problem of escaping
saddle-points and converging to local minimizers in a stochastic zeroth-order Riemannian setting.
Towards that, we leverage the Hessian estimator methodology developed in Section 2.3 and analyze
a zeroth-order Riemannian stochastic cubic regularized Newton’s method (ZO-RSCRN) for solving
(33), which provably escapes the saddle points. Our approach is motivated by [95], where the
authors proposed the minimization of function m, ,(n) = f(z) + (grad f(x),n) + 5 (P, o Hessf(x) o
P,[n],n) + %&[In||® at each iteration. The zeroth-order counterpart replaces the Riemannian gradient
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Algorithm 4 Zeroth-Order Riemannian Stochastic Cubic Regularized Newton’s Method
(ZO-RSCRN)

1: Input: Initial point o on M, smoothing parameter p, multi-sample parameter m and b, cubic
regularization parameter «, number of iteration N.
for k=0to N—1do

Compute g, ¢(z;) and H, ¢(x;,) based on (34) and (20) respectively.

Solve 7, = argmin, M, (1), where 1, (1) is defined in (46).

Update xj11 = Ry, (Py(1x))-
end for

and Hessian with the corresponding zeroth-order estimators. The proposed ZO-RSCRN algorithm is
described in Algorithm 4. In ZO-RSCRN, the function in the cubic regularized subproblem is

[

Me.a(1) = £(@) + (Gue(@),m) + 5 (Hue (@) ], m) + %HUHS- (46)

O |

Note that if /) = argmin, 1, (), then the projection P,(7) is also a minimizer, because g, ¢(x) and
H, ¢(z) only take effect on the component that is in T, M.

THEOREM 4. For manifold M and function f: M — R under Assumptions 1, 2 and 3, define
Emin := argmin, By, =, ||nx||, then the update in Algorithm 4 with o> Ly satisfies:

El| g1l < O(e), and B[Auin(Hess fi,,+1)] = —O(Ve), (47)

given that the parameters satisfy:

N=0(1/e?), u—O(min{d;Q,\/;}>, m=0(d/e?), b=0(d*/e), (48)

where Apin denotes the smallest eigenvalue. Hence, the zeroth-order oracle complexity is (’)(d/67/2 +
d*/e’?).

Proof of Theorem 4 Denote fi, = f(x1), gr =gradf(x)) and E =1y, =, for ease of notation. We
first provide the global optimality conditions of subproblem Eq. (46) following [65]:

[7 * — * « I'7 *
(Hye(@) + XN I)n+ gue(x) =0, A :EHUHv H, ¢(z)+ A1 =0. (49)
Since the parallel transport P, is an isometry, we have

||9k+1|| 1Py, g |

=|(P,, 9k+1 9k —_Hessfk[nk])+(gk—§u,§($k2)
(HeSka[le] Hy e (z)[me]) + (Gue(@r) + Hpe (i) [m]) |

<||1P; g1 — g — Hess fr[me] | 4 1|9k — Gue () |
+||HeSka[77k] Hy e (@) e[|+ 1G.e () 4 Hye () 4]

Ly
Eq. (12) <7||77k|!2+ Hgk—gu e(zn)l i
Zr [[Hess fi 1] — Hp e () [e] | + 1Gue (21) + H,
Eq. (49) =" lnell* + gk — Gu.e (@) | + [[Hess fiulne] = H,,
) H,
)

(
Eq. (49) < nell® + | ge = G () | + HHeSka[nk]
(

(@) [ne]
) ]+ A" 1|

e
(ffk)llop\lnkll + *Ilnkll2

< Il + gk = e (2 ||+*||HeSka— H, ()5, §||77k||2 §H77k||2
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Taking expectation on both sides of the above inequality gives (by Eq. (36) and Eq. (21))

Ellgesall = v/dg = 0u < LH+0<+1+2L2H9k\|)EH77k||2 (50)

where 6, = 2L?(d 6)? + 3 (G2 4 52, G is the upper bound of ||gradf|| over M, and &5 =

m

(dHG L,+*% LH (d+6)°. Since P, ! is an isometry, we have:

Amin (Hess fr11) = Amin (P77_kl oHessf10P,,)
> Amin ( 17;1 o Hessfkﬂ oP,, Hessfk)
+ )\mm(HeSka - ;L §($k)) + )‘mln( My E(:Ek:))
Eq. (11) >— LHan”—'_)‘mm(HeSka u&(xk))+>\m1n( ﬂg(ﬂfk))
=Amin (Hess fr — Hyue(24)) + Amin(Hy e (2) — L[| ]|T)

- a+2L
Eq. (49) > Amin (Hess fi, — Hy, (1)) — THIIWII-
Taking expectation, we obtain (by Eq. (21))
a+2L
B0l 2 ~ (V0 + B (Hess fii)- (51)

Now we will upper bound E||n||. From Assumption 2, we have
o 00) < £ o) + 9T e 50 Hm =2 P
- (f<xk>+gu<xk> nt ol A, <mk>m+LgIanug) 52)
+ (00 o) T+ gl (i Fu o) ).

Using Eq. (49) we have

£ + g me gl B+ 22
= ()~ gl B wm, +<%’ -l
% T/ «Q LH 3 (53)
=f(zx) — 5k (Hp (i) + 5”%”1)% - (Z - 7)H77k||
<)~ (&= EIy < )~ Sl

where the last inequality is due to a > L. Moreover, by Cauchy-Schwarz inequality and Young’s
inequality, we have

E {(91 — 5(e0) "m0l (H— Hu ()

1 _
22 - H, (1) [lon 17511 (54)

_ o
EHgk_gu(xk)H?)/Q_" EIIHk— (évk)lliﬁﬂEanH?’-

<Ellgr — gu (el I7x] +
_32

Plugging (53) and (54) to Eq. (52), we have

52 —0/ EaH, (55)

E < fp— — 54
Jer1 < f H"?k” 3L, Ly
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DIMENSION € STEPSIZE | NO. ITER. Z0-RGD | AVER. NoO. ITER. RGD
15 x5 10—3 102 460 £ 137 442
25 x 15 1073 1072 892+ 99 852
50 x 20 1072 | 5x 1073 255 4+ 26 236

TABLE 2. Comparison of ZO-RGD and RGD on the Procrustes problem.

where 65 = C’%L;E‘ + 5= p* L3 (d+6)75. Taking the sum for (55) over k=0,...,N — 1, we have

N
1 2% (fo—f* 32 12 -
— Elnl? < — il A )
w2 Ems 2 (Bl g 1),

which together with (48) yields

E|[ oo I” < O(€2), and Elp,,,, I < O(e). (56)

min

Combining Eq. (56), Eq. (50) and Eq. (51) yields (47).

REMARK 4. To solve the subproblem, we implement the same Krylov subspace method as in
[2], where the Riemannian Hessian and vector multiplication is approximated by Lanczos iterations.
Note also that in our setting, we only require vector-vector multiplications due to the structure of
our Hessian estimator in Eq. (15). For the purpose of brevity, we refer to [16, 2] for a comprehensive
study of this method.

4. Numerical Experiments and Applications We now explore the performance of the
proposed algorithms on various simulation experiments. Finally, we demonstrate the applicability
of stochastic zeroth-order Riemannian optimization for the problems of zeroth-order attacks on
deep neural networks and controlling stiffness matrix in robotics. We conducted our experiments on
a desktop with Intel Core 9600K CPU and NVIDIA GeForce RTX 2070 GPU.

4.1. Simulation Experiments For all the simulation experiments listed below, we plot the
average result over 100 runs.

Experiment 1: Procrustes problem [1]. This is a matrix linear regression problem on a
given manifold: minxe |AX — B||%, where X € R™? A € R™*" and B € R”?. The manifold we
use is the Stiefel manifold M = St(n,p). In our experiment, we pick up different dimension n x p
and record the time cost to achieve prescribed precision e. The entries of matrix A are generated
by standard Gaussian distribution. We compare our Z0-RGD (Algorithm 1) with the first-order
Riemannian gradient method (RGD) on this problem. The results are shown in Table 2. For each
run, we sample m =n X p Gaussian samples for each iteration. The multi-sample version of Z0O-RGD
closely resembles the convergence rate of RGD, as shown in Fig. 1. These results indicate our
zeroth-order method Z0-RGD is comparable with its first-order counterpart RGD, though the former
one only uses zeroth-order information.

Experiment 2: k-PCA [92, 79, 96]. k-PCA on Grassmann manifold is a Rayleigh quotient
minimization problem. Given a symmetric positive definite matrix H € R™*", we need to solve
Minyecr(n,p) — 3 Tr(X THX). The Grassmann manifold Gr(n, p) is the set of p-dimensional subspaces
in R™. We refer the reader to [1] for more details about the Grassmann quotient manifold. This
problem can be written as a finite sum problem: minxeci(np) >1q —3 10(X "h;h X), where h; €
R™ and H =)  h;h]. We compare our Z0-RSGD algorithm (Algorithm 2) and its first-order
counterpart RSGD on this problem. The results are shown in Fig. 2 (a) and (d). In our experiment,
we set n =100, p =50, and the matrix H is generated by H = AA", where A € R"*? is a normalized
randomly generated data matrix. From Fig. 2 (a) and (d), we see that the performance of ZO-RSGD
is similar to its first-order counterpart RSGD.



J. Li, K. Balasubramanian and S. Ma: Zeroth-order Riemannian Optimization

22 Mathematics of Operations Research 00(0), pp. 000-000, © 0000 INFORMS
102 Norm of current gradient 104 Norm of current gradient 10t Norm of current gradient
—#*—Z0-RGD —#—Z0-RGD —*— ZO-RGD
—o—RGD —6—RGD —o—RGD
10° 10°
10?
102 10°
10°
10 10?2
10?2
10 10
4
108 10% 10
10710 10 10°

100 200 300 400 500

(a) (n,p) = (15,5)

100 200 300 400 500

(b) (n,p) = (25,15)

50 100 150 200 250 300

(¢) (n,p) = (50,20)

FIGURE 1. The convergence curve of ZO-RGD v.s. RGD. x-axis is the number of iterations and y-axis is the norm of
Riemannian gradient at corresponding points. Note that our zeroth-order algorithm does not use gradient information
in updates, while the graph still shows the norm of gradient to show the effectiveness of our method. The horizontal
lines are the prescribed precisions.

Function value

Function value

10°

—<—Z0-RSGD
—6—RSGD
2Z0-RGD

* ManPG
20-ManPG
—©— Riemannian Subgradient

RSGD
Z0-RSGD

10° 10! 102 10°
(a) Experiment 2: m =20

Norm of gradient

(b) Experiment 3

Norm of the solution of subproblem

50 100 150 ;00 ) 2;0 300
(c¢) Experiment 4

Norm of gradient

F
* ManPG
20-ManPG

10° 10 10% 10°

(d) Experiment 2: m =40

0 20 40 60 80 100

(e) Experiment 3

50 100 150 200 250 300

(f) Experiment 4

FIGURE 2. The convergence of three numerical experiments. The z-axis always denotes the number of iterations.
Figures (a) and (d) are results for k-PCA (Experiment 2). Here three algorithms are compared: Z0-RSGD (Algorithm 2),
RSGD, and Z0-RGD (Algorithm 1). Figures (b) and (e) are results for sparse PCA (Experiment 3) in which the y-axis
of Figure (e) denotes the norm of vy in (39) (for ManPG) and (40) (for Z0-ManPG), which actually measures the
optimality of the problem. Here three algorithms are compared: Z0-ManPG (Algorithm 3), ManPG and Riemannian
subgradient method. Figures (c) and (f) are results for Karcher mean of PSD matrices problem (Experiment 4). Here
three algorithms are compared: RSGD, Z0-RSGD (Algorithm 2), and RGD.

Experiment 3: Sparse PCA [40, 97, 98]. The sparse PCA problem, arising in statis-
tics, is a Riemannian optimization problem over the Stiefel manifold with nonsmooth objective:
Minyese(np) —3 (X TATAX)+ || X||,. Here, A € R™*" is the normalized data matrix. We compare
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our Z0-ManPG (Algorithm 3) with ManPG [21] and Riemannian subgradient method [49]. In our
numerical experiments, we chose (m,n,p) = (50,100, 10), and entries of A are drawn from Gaussian
distribution and rows of A are then normalized. The comparison results are shown in Fig. 2 (b)
and (e). These results show that our Z0-ManPG is comparable to its first-order counterpart ManPG
and they are both much better than the Riemannian subgradient method.

Experiment 4: Karcher mean of given PSD matrices [7, 93, 42]. Given a set of positive
semidefinite (PSD) matrices {A;}7, where A; € R%*¢ and A, = 0, we want to calculate their Karcher
mean: miny s = > (dist (X, A;))?, where dist (X,Y) = || logm(X ~/2Y X ~1/2)||» (logm stands
for matrix logarithm) represents the distance along the corresponding geodesic between the two
points X,Y € Si +- This experiment serves as an example of optimizing geodesically convex functions
over Hadamard manifolds, with Z0-RSGD (Algorithm 2). In our numerical experiment, we take
d=3 and n =500. We compare our Z0-RSGD algorithm with its first-order counterpart RSGD and
RGD. The results are shown in Fig. 2 (c¢) and (f), and from these results we see that ZO-RSGD is
comparable to its first-order counterpart RSGD in terms of function value, though it is inferior to
RSGD and RGD in terms of the size of the gradient.

Experiment 5: Procrustes problem with Z0O-RSCRN. Here, we consider the Procrustes
problem in Experiment 1 and use the Z0O-RSCRN with both estimated gradients and Hessians. Fol-
lowing [2], we use the gradient norm as a performance measure (although the algorithm converges
to local-minimzers). We use the Lanczos method (specifically Algorithm 2 from [2]) for solving the
sub-problem in Step 4. Furthermore, as we are estimating the second order information, we set
n=06 and p=4 and consider e =107>. In Figure 3, (a), we plot the gradient norm versus iterations
for Riemannian Stochastic Cubic-Regularized Newton method in the zeroth order and second-order
setting. We notice that the zeroth-order method compares favourably to the second-order coun-
terpart in terms of iteration complexity. Admittedly, scaling up the ZO-RSCRN method to work in
higher-dimensions, based on variance reduction techniques, is an interesting problem that we plan
to tackle as future work.

4.2. Real world applications Black-box stiffness control for robotics. We now study
the first motivating example discussed in Section 1.2.1 on the control of robotics with the policy
parameter being the stiffness matrix K” e S, see [39] for more engineering details. Mathematically,
given the current position of robot p and current speed p, the task is to minimize

FIKT) =wpp —p|* +wadet(K”) + w. cond(K") (57)

with p being the new position, and cond is the condition number. With a constant external force f¢
applied to the system, we have the following identity which solves p by K”: f*= K" (p—p)— K"p,
where the damping matrix K* = K7 for critical damped case. As the stiffness matrix is a positive
definite matrix, the above optimization problem is a Riemannian optimization problem over the
positive definite manifold (where the manifold structure is the same as the Karcher mean problem).
The function f is not known analytically and following [39], we use a simulated setting for a robot
(7-DOF Franka Emika Panda robot) to evaluate the function f for a given value of K”, with the
same parameters as in [39]. We compare our Z0-RGD method with Euclidean Zeroth-order gradient
descent (ZO-GD) method [4]. We test the cases when d =2 and d =3 for minimizing function f
w.r.t K7, and the results are shown in Figure 3, (b) and (c). In our experiments, the stepsize
of ZO-GD is 3 x 10~* and Z0-RGD is 10~2. Note that for ZO-GD method, one has to project the
matrix back to the positive definite set, whereas the Z0-RGD method intrinsically guarantees that
the iterates are positive definite, thus is much more stable. Also, due to the fact that Z0O-RGD is
more stable, the stepsize of Z0-RGD can be larger than ZO-GD, which results in faster convergence.
Zeroth-order black-box attack on Deep Neural Networks (DNNs). We now return to the
motivating example described in Section 1.2.2 and propose our black-box attack algorithm, as
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FI1GURE 3. Figure (a) corresponds to Experiment 5. Figures (b) and (c) correspond to the experiments on the robotic
minimization function in (57). The z-axis in all figures correspond to iteration number.

stated in Algorithm 6 (in Appendix D). For the sake of comparison, we also assume the architecture
of the DNN is known and use “white-box” attacks based on first-order Riemannian optimization
methods (Algorithm 5) and compare against the PGD attack [53], which does not explicitly enforce
any constraints on the perturbed training data. For simplicity, we assume the manifold is a sphere.
That is, we assume that the perturbation set S is given by S(R) ={d: ||d||» = R}, where R is the
radius of the sphere. This is consistent with the optimal ¢;-norm attack studied in the literature
[52]. Furthermore, the sphere constraint guarantees that the perturbed image is always in a certain
distance from the original image. We start our zeroth-order attack from a perturbation and maximize
the loss function on the sphere. For the black-box method, to accelerate the convergence, we use
Euclidean zeroth-order optimization to find an appropriate initial perturbation (Algorithm 7). It is
worth noting that the zeroth-order attack in [19, 80] has a non-smooth objective function, which
has O(n?/€*) complexity to guarantee convergence [66], whereas the complexity needed for our
method is O(d/e?).

We first tested our method on the giant panda picture in the Imagenet data set [25], with the
network structure the Inception v3 network structure [77]. The attack radius in our algorithm
is proportional to the ¢, norm of the original image. Both white-box and black-box Riemannian
attacks are successful, which means that they both converge to images that lie in a different image
class (i.e. with a different label), see Figure 4. We also tested Algorithms 5 and 6 on the CIFAR10
dataset, and the network structure we used is the VGG net [72]. The corresponding results are
provided in Appendix D.

5. Conclusions In this paper, we proposed zeroth-order algorithms for solving Riemannian
optimization over submanifolds embedded in Euclidean space in which only noisy function evaluations
are available for the objective. These algorithms adopt new estimators of the Riemannian gradient
and Hessian from noisy objective function evaluations, based on a Riemannian version of the
Gaussian smoothing technique. The proposed estimators overcome the difficulty of the non-linearity
of the manifold constraint and the issues that arise in using Euclidean Gaussian smoothing techniques
when the function is defined only over the manifold. The iteration complexity and oracle complexity
of the proposed algorithms are analyzed for obtaining an appropriately defined e-stationary point
or e-approximate local minimum. The established complexities are independent of the dimension of
the ambient Euclidean space and only depend on the intrinsic dimension of the manifold. Numerical
experiments demonstrated that the proposed zeroth-order algorithms are comparable to their
first-order counterparts.
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(a) Original image (b) PGD attack (c) First-order attack on the (d) Zeroth-order attack on
sphere the sphere

FIGURE 4. The attack on giant panda picture [25]. (a): the original image; (b): the PGD attack with a small diameter;
(c¢) Riemannian attack (Algorithm 5) on the sphere with the same diameter; (d): Riemannian zeroth-order attack
(Algorithm 6). ’Indri’ refers to the class to which the original image is misclassified to.

Appendix A: Geodesically Convex Problem In this section we consider the smooth
problem (33) where f is geodesically convex. The definition of geodesic convexity is given below
(see, e.g., [93]).

DEFINITION 8. A function f: M — R is geodesically convex if for all x,y € M, there exists a

geodesic 7y such that v(0) =z, y(1) =y and Vt € [0, 1] we have f(y(t)) < (1—t)f(z)+tf(y).
It can be shown that this definition is equivalent to, f(Exp,(n)) > f(x) + {9z, n)s, Vn € T, M, where
g is a subgradient of f at z, Exp is the exponential mapping, and (-, ), is the inner product in 7,, M
induced by Riemannian metric d(-,-). When f is smooth, we have g, = gradf(x), the Riemannian
gradient at x. It is known that geodesically convex function is a constant on compact manifolds.
Therefore, in this subsection, we assume that M is an Hadamard manifold [8, 34], and X is a
bounded and geodesically convex subset of M.

ASSUMPTION 4. The subset X of Hadamard manifold M is bounded by diameter D, and the
sectional curvature is lower bounded by o. The function F(x,§) is geodesically convex w.r.t. © € M,
almost everywhere for & (and hence f is geodesically convex).

The following lemma from [93] is useful for our subsequent analysis. Here Py denotes the
projection onto X, i.e., Py(z):={y € X :d(x,y) =inf,cx d(z,2)}.

LeMMA 11 ([93]). For any Riemannian manifold M where the sectional curvature is lower
bounded by o and any points x, x, € M, the update
1= P (Exp, (—1:9:))
satisfies: (—gs,x —xs) < i(dQ(xs,x) —d*(z4p1,x)) + MH%HQ} where d(-,-) is the Rieman-
nian metric defined globally on M, and ((p,c) := c+/|o|/tanh(cq/|0])-

In this subsection, we consider the following algorithm, which is a special case of Algorithm 2.

Tpy1 = P (Bxpy, (=kgpe(21)))- (58)
We now present our result for obtaining an e-optimal solution of (33).

THEOREM 5. Let the manifold M and the function f: M — R satisfy Assumptions 1, 3, and
4. Suppose Algorithm 2 is run with the update in Eq. (58) and with ny = 1/L,. Denote Aj =
Ev, =z, (f(xr) — f*). To have mini<y<; Ay <€, we need the smoothing parameter p, number of
sampling at each iteration m and the number of iteration t to be respectively of order:

p=0e/d?), m=0(d]e), t=0(1]e). (59)
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Hence, the zeroth-order oracle complezity is N =mt = O(d/€e*).

Proof of Theorem 5 From Assumption 1 we have that:

f(@rq1) = fon) < —melgrad f(zr), Gue(Tr)) + %UEH%,&(%)HQ-

Taking ny = —, we have

Fzen) = @) < 57— (—2(grad f (@), Gue(@a) + 1 Gue (@) 1?)

= 57 (19ue(zr) — grad f(z)|* — llgrad f (zi)[?) -

Taking expectation with respect to u; on both sides of the inequality above and taking m > 16(d+4),
we have (by Eq. (36))

Fund Gpie1) = 1) 8(d+4 8(d+4
( L2+ 6 + @au (M 1) grads e

_2L a m (60)
L,(d+6)* 4(d+4) > 9
d .
e R Ty L C]
Now considering the geodesic convexity and Lemma 11, we have
* - — L * * Q? D _l, € g 2
Flaian) ~ £ < (~Bocn) Bxps () < 20 (@ (27) = (g ,a)) + 2PN g

2L,

From Lemma 7 we have

El|gpe(@i)lI* < 2E| gy (21) — grad f(zp)||” + 2E||grad f (z,) [|* (62)
16(d+4 16(d+4
<UPL%(d+6)° + (m)a2 + ((m) + 2) lgrad f(zx)|]>.

Now take the expectation w.r.t. u; for both sides of (61), and combine with (62), we have

Ly . ,D 16(d + 4
Bus < 2 Plan) = o)) + SE2) (menia o + XD gpgraas ) ).
g
(63)
Multiplying (63) with 64(9 oy’ and sum up with Eq. (60), we have
1 L, . 16(d+4
<1 + 6C> Apyr— A< 12C(d2(xk,w ) — d*(zpy1,2%)) + p*Ly(d+6)° + 3(ng)02.
Summing it over k=0,...,t —1 we have
L 16(d + 4)
A A A g 32 2L 3 o\ v ) 2 .
0+6<Z ¢ < e @0 @) + (P Ly(d+6)" + ST, o)t
Equivalently, we have
1 L 16(d +4) 6C
- A < Jd2 * 2L d 3 SO\ P )2 A
tkz_; k> 2[4; (xo’x )+6C(/’L g( +6) + 3ng U) 05

which together with (59) yields min;<,<; Ay <e.
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Appendix B: Proof of Remark 2
Proof of the improved bound Eq. (31) Since g.(z) = £33 g.i(x), we have (denote U =
{1y .yt }):

By||g, () — grad f (z)]|*
SQEL{H%( —Eygu(2)|” + 2| Eyg, (=) — grad f (z)]|?

x)
Z gu i Eugu,i(‘r)]

m 2

% Z [Evgp,i(x) — grad f(z)]

i=1

m 2

:%EU Z Gp.i(z) — Eugu,i(l')w + % HZ [Ev/g,..i(w) — grad f(z)]

i=1
2
—Eou, [0 (%) = Buagpu1 (@) + 2| Eu, gy (2) — grad f () |
2 2, KL
<= Eulgua @+ 52

M2 2 3
SHLQ(CH—G) +

IN

(d+3)*

4(d+4 °L2 :
DL Jarad (@) + 2 (01 8

4(d+4
<23 +6) + D graa s,

where the second equality is from the fact that u; and u; are independent when i # j.
Proof of (32) Following the L -retraction-smooth, we have: f(xy1) < f(zx) = (9. (z), grad f(zx)) +

2
"ile |5 (2)]2. Taking ny =7 = 1/L,, we have

F(inn) < F(or) = el 2), gradf (@) + 2 g, (o)
= Fw) + 5 (18,(0) — S @) = s 0)]).

Now take the expectation for the random variables at the iteration k on both sides, we have
1
B f (@) < F(0) + 57 (Eulu () —grad (2| ~ ligrad /0]

Eq. (36) < f(z) + % (gt o+ (M5 1) femad @)1

By choosing m > 8(d +4), summing the above inequality over k=0,..., N gives (32).

Appendix C: Proof of Lemma 7
For the sake of notation, here we denote E=E,,. From (34) we have

E([lgye(2)]2) = :E [(F (R, (. €)) — F(z,€))* Jul]2]. (64)
From Assumption 1 we have

(F(Ro(pu, €)) — F(x,6))?
=(F(Ro(pu,€)) — F(,€) — plgrad F(z,€),u) + p(grad F(z, €), u))*
+

L 2
<2 (Sl ) -+ 2(gradF o).
Combining (64) and (65) yields

B ([lgu.e(@)]*) <
(Corollary 1) <

(65)

LQE(HUII ) + 2B (|[(grad F'(x, £), uyul®)

(d+ 6)° + 2E(||(grad F (z, €), u)u|*).
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—~
=
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Denote our d-dimensional tangent space as X. Without loss of generality, suppose X is the subspace
generated by projecting onto the first d coordinates, i.e., Vax € X, the last (n — d) elements of = are
zeros. Also for brevity, denote g = gradF'(z,§). Use x; to denote the i-th coordinate of ug, and x(d)
denote the normalization constant for d-dimensional Gaussian distribution. For simplicity, denote
x=(x1,....,24). We have

1E<H<gradfxaas>,u>uu2>—-i;/£n<gradzfcx,s>7u>2uun2e%'wﬂQduo

d 2 /4
1 / 2 —isd g2
— Ja— i T; x; |e 2 22i=1% g "'d$d,
o [ (S) (5] !
== /<97$>2H3¢Hz€%|$|2d“”:1/ ][~ E el (g, wy2e= T el gy (67)
R k(d) Jpa

k(d)
R4

2 ,— =)
k(d)Te (g,2)%€ dr

<

K(d)T(1—7)td4/2¢ /Rd
d+4)|gl*,

2
-_— <
7_(1_7_)14,(1/26”9” —(

where the last n —d diQmensions of uy are integrated to be one, the first inequality is due to the
following fact: aPe 2% < (%)”/ 2. and the second inequality follows by setting 7 = From
Assumption 3, we have

_2
(d+4)"

E¢l|lgradF(z, §)||* < 2BE¢ | grad F(w, &) — grad f (2)||* + 2|lgrad f (2)]|* < 20° + 2||grad f (z)]|*.  (68)

Combining (66), (67) and (68) yields

Ee [Eu, (1l9.¢(2)[*)] < Ee | 5-L2(d+6)" +2(d +4) |[grad P (=, ) | ()
< “22L§(d+ 6)° +4(d+4)(0® + |[grad f (z)|?).

Finally, we have
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2712
2 p-Ly

IN
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2 2
4 4

lgrad f (x)]I*,

where the second inequality is from Proposition 1 and the fourth inequality is from (69).

Appendix D: Implementation Details of Black-Box Attacks Here we provide our white
and black-box Riemannian attack algorithm in Algorithms 5 and 6, respectively. For the black-box
attack, to accelerate convergence, we introduce a pre-attack step to search for a sufficiently large loss
value on the prescribed sphere, still in a black-box manner (only use the function value). For further
acceleration of the black-box attack, the hierarchical attack [19] and the auto-encoder technique [80]
might be applicable. The attack results on CIFAR-10 images are shown in Figure 6. We also provide
the loss function curve in Figure 5. Again the network structure we used is the VGG net [72]. It
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FIGURE 5. Loss function versus the iteration numbers. We observe that the loss function increases while performing
our attacks. The three figures correspond to the last three rows in Figure 6. For the failed the PGD attack, we
notice that the function value stuck in the middle and then decreased, while white and black-box Riemannian attack
increased loss value successfully.

can be seen from Figure 6 that our black-box attack yields similar attack result as the PGD attack,
however PGD failed in one of the five images, and the loss function curve in Figure 5 indicates that
the loss function curve of PGD attack stagnated. This may be due to an inappropriate choice of
parameters for the PGD attack. Nevertheless this experiment shows the ability of our Riemannian
attack method. We also mention here that the Riemannian attack is in general slower than the
PGD attack due to the multi-sampling technique discussed in Remark 2.

Algorithm 5 White-box attack via Riemannian optimization

1: Input: Original image Z, original label y,, radius of the attack region R, step size 7, some
convergence criterion.
Randomly sample ¢ s.t. ||0]] = R.
Set the initial point xo =2+ 9, k=0.
repeat
Update x11 = R, (nigrad, L(0,z,y)), k=k+ 1.
until Convergence criterion is met.

Algorithm 6 Black-box attack via Riemannian zeroth-order optimization
1: Input: Original image &, original label y,, radius of the attack region R, step size 7, smoothing
parameter p, number of multi-sample m, some convergence criterion.
Obtain § (initial perturbation) by pre-training steps (Algorithm 7).
Set the initial point xg =246, k=0.
repeat
Sample m standard Gaussian random matrix u; on T, M.
Set the random oracle g, (zx) by (34).
Update zx11 = Ry, (Mgu(xr)), E=k+1.
until Convergence criterion is met.
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Algorithm 7 Pre-training step for black-box attack

1:

Input: Original image Z, original label y,, radius of the attack region R, step size 7, smoothing
parameter p, number of multi-sample m.

2: xg= T.
3: repeat
4:  Sample m standard Gaussian random matrix u,.
5 Set the random oracle g,(xx) by (34), with g,, ()= WM
6:  Update xpi1 =z +0pgu(xy).
7. Update d=xp,1 — 2, k=k+1.
8: until ||§]| > R
L 5= 0
9: 0= TIRA:
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FIGURE 6. The attack on CIFAR10 picture. From left to right columns: the original image; the PGD attack with a
small diameter; white box Riemannian attack on the sphere with the same diameter; black box Riemannian attack
on the sphere with the same diameter. Notice that for the figure in the fourth row, the PGD attack failed while the
Riemannian attacks succeeded. The diameter is set to be 0.01 times the norm of the original images.
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