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When Does Multipath Improve Imaging Resolution?
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Abstract—In this paper, we characterize resolution limits
for imaging in electromagnetic spectrum where multipath is
commonly encountered, e.g., spectrum often used for wireless
communication. We analyze a passive system configuration with
an aperture of fixed spatial extent sampling fields backscattered
from an imaging scene consisting of both line-of-sight (LOS) and
non-line-of-sight (NLOS) paths. We characterize the resolution
limits using the degrees of freedom (DoF) metric. We make
progress towards answering the question: when does multipath
offer gains in imaging resolution over LOS-only propagation?
Prior theoretical and empirical analysis offer seemingly con-
tradictory answers to this question. On the one hand, prior
theoretical analysis suggests that multipath does not improve
resolution beyond LOS-only propagation. However, numerical
simulations of multipath-exploiting imaging suggest otherwise.
We show that the prior results correspond to two extreme
operational regimes, under which multipath is equivalent to
either LOS-only or NLOS-only propagation. Our DoF analysis
unifies prior results, and establishes that: (i) multipath captures
the best of both LOS-only and NLOS-only propagation, and (ii)
under certain geometric configurations of scatterers, multipath
can offer significant resolution gains over LOS-only propagation.

Index Terms—Degrees of freedom, multipath, multipath ex-
ploitation, resolution analysis, scattering, wireless imaging.

I. INTRODUCTION

UELED by advances in massive MIMqH technology,
F there has been growing interest lately [3]-[10] in perform-
ing imaging using traditional communication infrastructure.
For the electromagnetic spectrum used in wireless communica-
tion, signals suffer from significant multipath due to scattering
in the environment. In this context, a natural question arises:
how does multipath impact the resolution of wireless imaging
systems?

In this paper, we derive fundamental resolution limits for
wireless imaging systems in the presence of multipath. We
analyze the passive system configuration shown in Fig. [T}
with an aperture sampling electromagnetic fields backscattered
from an imaging scene along both line-of-sight (LOS) and
non-LOS (NLOS) paths. The configuration is termed passive
because the illumination onto the scene is assumed to be
arbitrary, and not under the aperture’s control. For the purposes
of this work, we assume that the aperture, scene and scatterers
remain static for the duration of imaging.
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Fig. 1: Analyzed system configuration with an aperture A
sampling fields backscattered from an imaging scene Z in the
presence of multipath due to a set of scatterers S. The dashed
arrow represents passive illumination incident onto the scene,
and solid arrows represent the resulting backscattered fields.

To characterize the resolution limits in the presence of
multipath, we derive the imaging degrees of freedom (DoF)
corresponding to Fig. [l The DoF equals the maximum
number of points that are resolvable, i.e., can be spatially
differentiated, in the image reconstruction of the scene [11]-
[19]. A higher DoF value implies more resolvable points, and
hence smaller (better) resolution. The DoF framework has
been used previously to characterize the resolution limits for
LOS-only [[14], [15], [20]-[23] and NLOS-only [13], [22]]-
[26] propagation, and more recently in our recent work [18],
[19] to quantify resolution-rate trade-offs for dual-function
systems performing both imaging and communication with
shared resources.

Via the imaging DoF analysis, we make progress towards
answering the question: when does multipath offer imaging
resolution gains over LOS-only propagation? Prior theoreti-
cal [27], [28] and empirical analysis [29]-[36] offer seemingly
contradictory answers to this question:

1) On the one hand, prior theoretical analysis [27], [28]
suggests that given infinite-sized apertures, multipath
does not improve resolution beyond LOS-only propa-
gation. NLOS propagation simply shapes the singular
values of the LOS wireless channel between the aperture
and the imaging scene, but does not change the imag-
ing DoF itself. Moreover, in this infinite-sized aperture
regime, multipath achieves the Rayleigh resolution limit
of % for signalling wavelength A, which is also achiev-
able using LOS-only propagation.

2) On the other hand, numerical simulations of multipath-
exploiting imaging systems [29[]-[36]] suggest that mul-
tipath can significantly improve the resolution compared
to LOS-only propagation. Given sufficiently rich scatter-



ing in the environment, it is shown numerically that the
Rayleigh resolution limit of % is achievable with finite-
sized apertures. By contrast, achieving the Rayleigh limit
is impossible with finite-sized apertures for LOS-only
propagation, and requires infinite-sized apertures.

We bridge the gap between these two disparate conclusions
by theoretically deriving the imaging DoF in the presence
of multipath for finite-sized apertures and imaging scenes,
and a fixed geometrical configuration of scatterers. Our main
result shows that the achievable resolution with multipath,
as a fraction of wavelength J, is inversely proportional to
the fotal angular interval subtended by (i) the aperture,
and (ii) scatterers, onto the imaging scene. By contrast, the
resolution with LOS-only (resp. NLOS-only) propagation de-
pends on the angular interval subtended only by the aperture
(resp. scatterers) onto the imaging scene. Thus, multipath is
beneficial for imaging when scattering increases the angular
extent beyond that subtended by the aperture onto the scene.

The two conclusions from prior work [27], 28] and [29]—
[36] correspond to two extreme cases of our main result:

1) In the infinite-sized aperture regime, the aperture sub-
tends all possible angles onto the imaging scene, e.g.,
all angles in [0, 7] for a 1D aperture and scene, which
achieves the Rayleigh limit. Note that scattering cannot
increase the angular extent beyond LOS-only propaga-
tion in this case. Hence, multipath is equivalent to LOS-
only propagation, and both multipath and LOS achieve
the Rayleigh resolution of %

2) In the rich scattering regime, the scatterers subtend all
possible angles onto the imaging scene, e.g., all angles
in [0, 7] for a 1D aperture and scene, which achieves the
Rayleigh limit. Hence, multipath is equivalent to NLOS-
only propagation, and achieves the Rayleigh limit with
finite-sized apertures. By contrast, LOS-only propaga-
tion alone is insufficient to achieve the Rayleigh limit
with finite-apertures.

Thus, both sets of conclusions from [27], [28]] and [29]-
[36] are valid in their respective regimes. Our main result
unifies both sets of prior results by showing that the multipath
resolution depends on the union of the LOS-only and NLOS-
only angular intervals. Thus, multipath effectively captures the
best of both LOS-only and NLOS-only propagation.

Taken together, our results highlight the benefits of harness-
ing multipath in emerging wireless imaging systems. While
the benefits of harnessing multipath are well-recognized for
communication [37]], the same is less true for imaging. Indeed,
current state-of-the-art wireless imaging systems [3[]—[|10]] have
largely remained limited to LOS-only propagation, and hence
have resorted to increasing the aperture size in order to
improve the imaging resolution. We hope that the encouraging
theoretical results presented in this paper will motivate further
research on practical algorithms and system designs that
harness the resolution gains provided by multipath.

Finally, we note that a preliminary version of the results in
this paper appeared in the conference version of this work []1]].
In [1]], DoF results were derived assuming single frequency,
uni-polarized illumination. Moreover, the results heavily relied
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on a functional analytic approximation approach, due to [20],
[21], [23]], to the DoF computation. In this paper, we sig-
nificantly expand upon the results of [1]] by (i) considering a
broadband, arbitrarily polarized system model, and (ii) directly
computing the DoF, without resorting to any approximations,
by using a combination of well-known electromagnetic theo-
retic and linear algebraic results. Furthermore, all system-level
insights and interpretation of the technical DoF results are new
to this paper, and did not appear previously in [1].

The remainder of this paper is organized as follows. In
Section [T, we present the system model for Fig. [T} We define
the imaging DoF and formulate the DoF analysis problem in
Section We then discuss known results from prior work in
Section before presenting our main results in Section
We conclude the paper in Section [VI] with discussions and
directions for future work. Extensions to cases not covered by
our model are briefly discussed in Appendix [A]

A. Notation

We use bold uppercase for matrices (e.g., X), bold low-
ercase for vectors (e.g., x), non-bold lowercase for scalars
(e.g., x) and serif uppercase for operators (e.g., X). We denote
the column and row spaces of an operator X by col (X)
and row (X). Operator composition is denoted by o. Sets are
represented using calligraphic font (e.g., X) or capital Greek
letters (e.g., 2). The Lebesgue measure of a set X" is denoted
by m (X). The set union, intersection, and difference operators
are U, N, and \. The n x n identity matrix is denoted by
I,,. The transpose, conjugate transpose and pseudo-inverse
operators are (-) ', (-)" and (-)' respectively. Vectorization and
diagonalization are denoted by vec(-) and diag(-). The positive
part of a scalar z is [x]". The speed of light is denoted by c.

II. SYSTEM MODEL

Consider the system shown in Fig. [T| with an aperture A C
R3 sampling fields backscattered from an imaging scene Z C
R? in the presence of a collection of scatterers S C R®. We
make the following assumptions on the system operation.

Assumption 1: The aperture A, imaging scene Z and set
of scatterers S remain static for the duration of imaging.

Assumption 2: The imaging scene Z is illuminated by
passive fields not under the aperture’s control.

In addition to Assumptions [I] and 2] we make the following
modeling assumption.

Assumption 3: The aperture .4, imaging scene Z and set
of scatterers S all have non-zero Lebesgue measures.

In other words, Assumption (3| implies that we use continu-
ous, as opposed to discrete (sampled), models for the aperture,
scene and set of scatterers. Moreover, given Assumption [I]
holds, our modeling is deterministic. This is in contrast
to traditional stochastic models for wireless channels, e.g.,
Hlﬂ Rayleigh fading, which are only valid under limiting
assumptions on the sampling (e.g., at half-wavelengths) and
spatial correlation of measurements (e.g., uncorrelated) at the
aperture [16]. Such continuous deterministic models, a.k.a.

Zindependent and identically distributed
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signal space models, have been widely used previously to
characterize the resolution limits of imaging [11]]-[16] and
multiplexing gains of wireless [21]-[23], [38] systems.

To that end, we model the aperture A as an N-dimensional
embedded submanifold of R, where N € {1,2}. Such a
representation encompasses most aperture models commonly
used in practice, such as linear, planar, cylindrical and spher-
ical apertures. In Fig. [2] we illustrate how different values
of N map to different aperture models. We restrict ourselves
to N € {1,2} since we are not aware of any practical
implementations of volumetric apertures that can be modeled
as three-dimensional’| submanifolds of R3.

We are now ready to formalize the system model. Let
r, € R3, r; € R? and r, € R3 respectively denote positions
vectors of points on the aperture A, imaging scene Z and set of
scatterers S. Let 2 C R denote the bandwidtlﬂ of operation. In
our system model, we shall represent all electromagnetic fields
in C3, i.e., in terms of three orthogonal components. Such a
representation is known as the tripole model [16], [22], and
allows modeling fields with arbitrary polarization.

For frequencies w € ), let x (rj;w) € C3 denote the current
density at position vector r; on the scene Z, induced due to
incident illumination wy, (rj;w) € C3. The measured field at
position vector r, on the aperture A is given by [16], [22]

y(ra;m=/H<ra,ri;w>-x(ri;w>dri+n<ra;w>. )
T

In (1), n(ra;w) € C? denotes the additive noise at the
aperture. The current densities x (r;; w) may be decomposed
in terms of the incident illumination w;, (r;;w) as [16], [22]

x (rj;w) = diag (wy (rj;w)) - £ (ri;w) , 2)

corresponding to the element-wise product between the in-
cident illumination w;, (rj;w) and the scene reflectivities
f (r;;w). As the name suggests, the reflectivities model the
reflective response of points in the scene to incident fields. As
we shall formalize shortly in Section [[TI] the goal of imaging
is to recover the reflectivities f (rj;w) from the aperture
measurements y (ry;w).

The term H (r,, ri;w) € C**3 in (1) denotes the frequency-
domain channel response, a.k.a. Green’s function, between
points on the aperture and imaging scene. In free space
with LOS-only propagation, the Green’s function takes the
form [16], [22]

w ) efj%‘lrailb

Huos (rs,misw) = (50) - o (=1 #41) . O
tos (Fer3) = M) e, W00 5

Iy

Ieail

Iy =Ty — I, IA‘ai = (4)

In (@), c denotes the speed of light, 7 denotes the intrinsic
impedance of free space, I,, denotes the n X n identity matrix
and ()" denotes the complex conjugate.

3labeling cylindrical or spherical apertures as 3D is a misnomer since they
are both 2D submanifolds embedded in 3D Euclidean space (R?)

“for notational ease, we shall only consider angular frequency and band-
width, i.e., frequency = w = 2« f and bandwidth = Q = 27 W

(@) (b) (©

Fig. 2: Illustration of different apertures A modeled as N-
dimensional embedded submanifolds of R3. (a) Linear aper-
ture (N = 1). (b) Planar aperture (N = 2). (c) Cylindrical
aperture (N = 2). (d) Spherical aperture (N = 2). The blue
dots represent example locations of antennas on the apertures.

(d)

Since our goal in this paper is to analyze the case shown
in Fig. [T] with both LOS and NLOS propagation, we consider
the following Green’s function in our analysis,

H (r,,ri;w) = Hyos (ra, ri;w) + Hyros (ra, risw),,  (5)

with the NLOS Green’s function Hy os (ra, ri;w) given by

Hyios (ra, ri;w) =
Js Hios (ra, rs;w) - diag (h (rs;w)) - Hios (rs, ri;w) drs. (6)

The three terms inside the integral in (€) correspond to
(1) radiation from the imaging scene to the set of scat-
terers S, modeled via H\os (rs, ri;w), (i) interaction with
the scatterers, modeled in terms of the scatterer reflectivities
h (rg;w) € C3, and (iii) reception at the aperture from the
scatterers, modeled via Hi s (ra, r's;w).

By definition, Hy os (ra, rj; w) in (6) models single-bounce
isotropic scattering. Extensions to multiple bounces (all the
way up to infinite bounces) are quite straightforward, and are
derived in Appendix [A] We also show in Appendix [A] that
the extension of (6) to multiple bounces does not change our
main results. Moreover, as per the main results of [24]], the
DoF results remain unchanged even for specular scattering.
Hence, for the bulk of this paper, we shall restrict ourselves
to the single-bounce NLOS Green’s function in ().

In the next section, we formulate the problem of imaging
in the context of (I)) and define the degrees of freedom metric
we use to analyze the resolution limits for our system model.

III. PROBLEM FORMULATION

Our main goal in this paper is to characterize the resolution
limits for imaging in the presence of multipath. Specifically,
we answer the following question:

Given a constraint on the spatial sizes of the
aperture A and scene Z, and a fixed geomet-
rical configuration of scatterers in S, what is
the achievable imaging resolution for the case
with both LOS and NLOS propagation in (I))?

As outlined in (Q), we will derive the resolution limits
for our model assuming bounded Lebesgue measures of the
aperture A, imaging scene Z and operating bandwidth 2. We
will use the imaging degrees of freedom (DoF), defined shortly
below, as the metric of choice in our analysis.

To that end, we first define some notation below that will
help us in formalizing the notion of imaging.

Q



Notation: Let X denote the space of all current densities
x (rj;w) from supported over the imaging scene (in space)
and bandwidth (in frequency),

X={x(rjw): €z, we}. (7

Analogously, let F denote the space of all scene reflectivi-
ties f (rj;w) from (2 .

F={f(rjjw):reZ, we}. 8)

Similarly, let ) denote the space of aperture measurements,

Y = {y (raiw) i1, € 4, we Q). ©

Finally, for any operator T : ¥V — W, we use col (T) and
row (T) to denote its column and row spaces,

col(M=TWV)CW,
row(T)={veV:T(v)#0} CV.

We now define imaging as the operation of estimating
the reflective response of points in the imaging scene Z,
i.e., recovering the reflectivities f (r;;w), from the aperture
measurements y (ra;w).

Definition 1 (Imaging): Let H : X — ) denote the operator
corresponding to the integral mapping in (I, such that

/ H I‘a,I‘”

Then, imaging corresponds to a compactE] operator A : ) —
JF that maps aperture measurements to reflectivity estimates.
We can now define the space of reconstructions F produced
by A, with outputs of operator H as its inputs,

F=A(H(X))=col(AoH

y (ra;w) = H(x (rj;w X (rj;w) dr;.

) CF,

where o denotes operator composition.

To define imaging resolution and DoF, we shall characterize
the dimensionality of the space F. Before presenting formal
definitions, we illustrate the high-level connections between
dimensionality and resolution via the following example.

Example 1: Consider a 1D setting with the interval [0, 1]
representing the support Z x €. In this setting, reflectivities
f (r;;w) are represented by 1D functions, f (z) : « € [0, 1].

The connection between the resolution and dimensionality
is via Shannon’s sampling theorem. To illustrate, consider the
space F of all reflectivities supported over [0,1]. Without
any additional constraints, the space F is infinite-dimensional
since any arbitrary reflectivity f (x) can be decomposed into
an infinite number of weighted delta functions. In the context
of imaging, the resolution is zero since any two point sources
separated by ¢ € (0, 1] are distinguishable.

On the other hand, consider the space F of reconstructions
f(x) that can be expressed as a convolution of reflectivities
f (x) with a sinc bandlimited to [—A, +A],

f(x)=f(z) = %sinc(A-x).

San operator T is compact if for any bounded sequence of inputs {f},

{T fn} contains a convergent bounded sequence
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Fig. 3: Illustration of Example |1| to describe high-level con-
nections between dimensionality and imaging resolution. (a)
Consider infinite-dimensional space F of 1D functions sup-
ported over [0, 1]. Two point sources separated by £ € (0,1] are
resolvable from their sum for all ¢ € (0, 1], i.e., the resolution
is zero. (b) Consider —-dlmenswnal space F of convolutions
of 1D functions with a sinc bandlimited to [—A, +A]. Two
point sources separated by ¢ € (0, 1] are resolvable from their
sum only when ¢ > %, i.e., the resolution is %.

The space Fis %—dimensional as per Shannon’s well-
known 2WT formula. Moreover two point sources must sepa-
rated by at least £ > X to be distinguishable, i.e., the i 1mag1ng
resolution is <. In other words, the finite- dunenswnahty of F
implies non-zero resolution. We illustrate both cases described
above in Fig. [3]

We now formally define dimensionality, DoF and resolution.

Definition 2 (Set Dimensionality [|16], [39]): Consider a
subset A of a normed linear space X’ with unit norm signals.
The dimensionality of A equals the smallest value of n
such that 4 can be approximated arbitrarily well by any n-
dimensional subspace X, of X,

dim (A) = min{n : p, (A) =0},
where p,, (A) is called the Kolmogorov n-width,

pu(A) = inf_sup inf I —g]|.

XnCX fe A gEXn
In other words, the dimensionality of a set equals the
minimum number of independent basis elements required to
approximate it up to arbitrarily small accuracy.
Definition 3 (Imaging DoF [18], [[19]): The imaging DoF,
dimg, corresponds to the dimensionality of F , normalized to
unit norm for consistency with Definition [2

dimg = dim () =min {n : p, (F) =0}.

We note that Definition [3| associates a DoF value to the im-
age Fofa given imaging operator A, and hence is analogous
to specifying the rate of a particular coding scheme. Similar
to the notion of achievability in information theory, we define
the notion of an achievable imaging DoF below.



DRAFT

Definition 4 (Achievable DoF [|18]], [19)]): An imaging DoF
of dimg is achievable if there exists an imaging operator A s.t.

dimg = dim (A (H (&))) = dim (j:) ’

where H is the operator corresponding to (I)) from Definition|[T}
We now define the notion of imaging resolution.
Definition 5 (Imaging Resolution): Given an imaging DoF
of dimg is achievable for a scene and operating bandwidth with
bounded Lebesgue measures, m (Z) < oo, m () < oo, all 4D
tuples (9, 0y, 9, d,,) that satisfy

(5 (9) (5) (9)-

constitute a set of feasible imaging resolution values in space
(along the x-, y- and z-axes) and frequency. In the equation
above, d € {1,2,3} denotes the dimensionality of Z, and 4
denotes the volume of the d-dimensional unit ball,

m(Z x Q)

dimg

)

d
T2

r(¢+1)’

where T'(+) is the gamma function.

In other words, the imaging DoF dimg equals the number
of resolution-limited ellipsoids that can be packed in space-
frequency into the support Z x 2. The principal diameters of
the ellipsoid correspond to the spatial and spectral resolution.
For instance, consider Example [I, where d = 1 and single
frequency illumination such that I xQ=7Z=]0,1]. Thus,
Bq = 2 and § = = Z. On the other hand, consider
imaging a 3D scene With smgle frequency illumination, d = 3
and Z x Q2 = 7. In this case, the spatial resolution satisfy

5 (5)-(3) ()22

dimg
which corresponds to packing the 3D 1ma§1ng scene Z with
dimg number of 3D ellipsoids of radii 7‘*, - and %.
In the next section, we discuss known results from prior
work on the DoF with LOS-only, NLOS-only and multipath
propagation. We present our main results for the system model

in (I) later in Section [V}

Ba =

)

IV. KNOWN RESULTS

We first discuss known results on the LOS-only and NLOS-
only DoF in Theorem [I] and illustrate them for a simple
linear aperture and imaging scene model that brings forth key
system-level insights while remaining analytically tractable.
We then present prior results on multipath in Theorem [2]
which have led to two seemingly contradictory conclusions
in the literature. We resolve the contradiction between the two
results of Theorem [2] via our main results in Section [V}

All results in this section and the next are presented in
terms of the angular domain notation from [22]], [24], which
associates angular intervals with every point on the aperture,
scatterers and imaging scene. To that end, let U, (resp. Us,)
denote the angular interval subtended by the imaging scene 7
(resp. scatterers S) onto the aperture A. The angular intervals
subtended onto the scene Z are defined analogously as U;
and Ug. The notation is illustrated in Fig. f] The Lebesgue

imaging scene

aperture

scatterers
<

Fig. 4: Illustration of angular domain notation for same system
configuration as in Fig. [Tl The variables ¥;,, ¥,;, ¥y, and Uy
respectively denote the angular intervals subtended by imaging
scene onto aperture, aperture onto imaging scene, scatterers
onto aperture and scatterers onto imaging scene.

measures of Ui, ¥,, Uy, and Uy are given by their solid
angles [22],

m (\I/) = /I’smédﬁdqﬁ, MAUAS {\I/iaa \I/aia \Ilsa,\llsi}. (10)

Similarly, we shall use the notion of the effective Lebesgue
measures [22]] of the aperture and scene, mef (), in all results.
The effective Lebesgue measure of the aperture (resp. scene)
is defined as the area of its projection onto a 2D plane parallel
to the scene (resp. aperture). For instance, mes (A) = L for a
linear aperture of length L, megr (A) = L1Ls for a Ly X Lo-
sized planar aperture, meg (LA) = 2rh for a cylindrical aperture
of radius 7, height h, and meg (A) = 7r? for a spherical
aperture of radius r.

A. Prior Results on LOS-only & NLOS-only DoF

The following theorem reviews known results on the LOS-
only and NLOS-only DoF.

Theorem 1 (LOS-only & NLOS-only DoF [|13|]-]15], [20]-
[26]]): Let Hos and HynLos denote the operators as per
Definition [1| for the LOS Green’s function from (3)) and NLOS
Green’s function from (€) respectively. Define transmit and
receive spaces X and ) as in and (9).

1) The operators H, os and Hyios are compact.

2) Define the set Q%) = {wk TwE Q}, and let 7 C R de-
note the time interval over which the aperture measure-
ments are acquired. Then, the LOS and NLOS transmit
and receive spaces, &j and )}, j € {LOS,NLOS}, have

dimensionalities
Q(N+1 ) BJ
@re)N (N+1) )7

Q(NJrl ) A
) ((m)N +1)>’

(
AnLos = Meff (A) m (Vg,)
BniLos = Mesr (Z) m (V)
)

assuming the bandwidth €2 has non-zero measure, m (£2) > 0.

dim () = <

dim()fj):( Jm

ALos = Mesr (A) m (Ti,)
Bros = Mesr (Z) m (V5) ,

m (
(

N
m
m

)



In other words, the transmit and receive space dimension-
alities correspond to the product of the effective aperture or
imaging scene size and the angular interval subtended by the
LOS or NLOS environment. In the special case of single
frequency illumination, Q = {wp},

. N\ QBJ'W[])V
dim (%) = <(27rc)N
. N\ 2Ajwév
dim (Y)) = ((27rc)N

where the multiplicative factor 2 is the fain from polariza-

) , j € {LOS,NLOS},

), j € {LOS,NLOS},

. oH
I, — 1, -1r,;) term

tion [22], and equals the rank of the
in (3.
3) The achievable DoF is ding; = dim(col (H;)), which
equals the minimum of the transmit and receive space
dimensionalities,

dimg = dim (col (H;)) = Nj+ o (d;), j € {LOS,NLOS},
Nj = min {dim (&) ,dim ()})} .

The achievability of dimg = dim (col (H;)) follows from the
compactness of imaging operator A,

dimg = dim (col (A o H;)) < dim (col (H;)), (11)

and the bound is achieved using the pseudo-inverse, A = HJ-T.
4) NLOS DoF is unchanged with multi-bounce scattering.

B. Illustration of Theorem ]|

Before proceeding, we illustrate Theorem [I] for a linear
aperture and scene, which will also be used to illustrate
other upcoming results. The analyzed example captures the
key system-level insights of our analysis while remaining
analytically tractable. Extensions of our analysis to more
complicated aperture models from Fig. 2] are straightforward,
but cumbersome, and are thus not presented for the sake of
clarity.

Example 2: Consider a linear aperture of length L, imaging
a linear scene of length L; at a distance D. The mismatch in
orientation between the aperture and scene is modeled by the
angle 6, € [—%,+7]. The example is illustrated in Figures
and [6] for LOS-only and NLOS-only propagation.

For this example, we have N =1 and

mMefr (A) = L, cos by, (12)
M (Z) = L; cos O, (13)
m (¥;,) = 2sin (tan—l (QLD» % (14)
m (¥,;) = 2sin (tanl (2LD>> %, (15)

where the small-angle approximation holds for L;, L, < %.
Let Q = [—wg — W, —wg + 7W] U [wg — 7W,wg + 7W]
and 7 = [0,T]. Thus, as per Theorem |1} for all W > 0,
2L,L; cos b,
XoD ’
Niwos = 2WT - (252% min {Lym (Vo) , Lim (W)} ), (17)

NLOS ~2WT - ( (16)
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Fig. 5: Illustration of Example [2| which will be used through-
out to illustrate main results. System configuration consists of
a linear aperture of length L, imaging a linear scene of length
L; at a distance D. The mismatch in orientation between the
aperture and scene is modeled by the angle 0, € [—7,+7].
Depicted configuration is LOS-only with angular intervals ¥;,,
U,; subtended by imaging scene onto aperture and vice versa.

where Ao = <7< is the wavelength corresponding to wp.
Moreover, DoFs are given by the terms in parenthesis above in
the special case of W = 0, i.e., single frequency illumination.

To gain some intuition for @ and , let us consider the
LOS and NLOS DoFs separately.

1) LOS DoF: We shall analyze the effects of: (i) bandwidth
W, (ii) polarization, (iii) misorientation angle 6, (iv) sampling
at the aperture and its size L,, on the LOS DoF.

(1) Ignoring the o( ternﬂ the DoF equals the product of the
temporal DoF, given by Shannon’s well-known 2WT formula,
and the spatial DoF, given by the term in parenthesis in (I6).
Thus, the spatial resolution is independent of the bandwidth
W, and only depends on the center frequency wy. Similarly,
the spectral resolution depends only on 7. This can be shown
via Definition [3]

27c
w

0\ (bu) _0-6. _ m(TxQ)
(2) . (%) - |
o <2> (2 ) 2 Nios ' (18)
m(Z) XD
o= M) - L,cosf,’ (19)
oD
m(Q) 27
—_ 7 — 2
b = S = T (20)

where d = 1 and 34 = 2 since the imaging scene Z is 1D.

(i1) The DoF gain due to polarization is the factor 2 in the
parenthesis in (I6) [22]}, [40]. However, this gain does not
affect the spatio-spectral resolution in and since it
gets effectively canceled out by the factor 2 in the denominator
of the left hand side in (I8). This is so since the resolution in
Definition [§] is only defined in space-frequency. Polarization,
being an orthogonal resource in addition to space-frequency,
has no effect on the spatio-spectral resolution.

(iii) The - factor in (19) captures the effect of misorien-
tation. Spec1ﬁcally, the best-case corresponds to 6, = 0, with
0= ’\g whereas ¢, = £7 is the worst-case, with § =

@iv) V1a (19), larger aperture sizes L, lead to smaller resolu-
tion §. Thus, ¢ is lower bounded by the resolution correspond-

Sthe term can be safely ignored in the limit of large SNR and large aperture
and imaging scene sizes [[16]], [22], [24]
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¥, O O w,
6, Q
L Li
a
aperture imaging scene
A I
D

Fig. 6: Illustration of Example [2| with NLOS-only propagation
and scattering angular intervals Wg, and U subtended onto
aperture and imaging scene respectively.

ing to infinite aperture size, L, — oo. In the limit L, — oo,
the term LDa is replaced by limy, o 2sin (tarf1 (2 ))

The lower bound on ¢ is thus

Mo Ao
o> > — 21
~ 2cosf, — 2’ D

where the Rayleigh resolution, % corresponds to 6, = 0.

Analogously, the optimal aperture sampling, defined as

m (A)

L,Licos b, ’
AOD
can be lower bounded by the infinite scene size case, L; — oo,

)\oD > )\0 > 20 )\0
Licosb, — 2cosb, 2

For finite scene sizes and non-zero misorientation angle 6,
we see that the optimal aperture sampling is larger than the
oft-used half-wavelength aperture spacing of % Thus, while
half-wavelength spacing is sufficient to capture all the DoF in
the system, it is redundant in most practical use-cases. Similar
results hold even with multipath, as we shall see shortly.

2) NLOS DoF: The effects of bandwidth W, polarization
and misorientation angle 6, on the DoF in (I7) remain
unchanged compared to the LOS-only case in (I6). Thus, the
interesting effects to analyze here are: (i) scattering angular
intervals W, and Uy, and (ii) aperture and imaging scene
sizes, L, and L;.

(i) Consider the special case of rich scattering with ¥g, =
Uy = [0,7], i.e., m(Ps) = m(Pg) = 2. In this case, the
spatial resolution, §, and optimal aperture sampling, J,, defined
similar to and (22), equal

0a = (22)

0a R~

(23)

Ao L Ao
= 24
2cosf, min {La,L} 2cosb,’ 24
Ao L, Ao
= 2
2cosf, min {La,L} 2cos 6, (25)

In contrast to the LOS-only case, the lower bounds in @])
and (23) are achieved with finite aperture and scene sizes,
when the aperture and imaging scene sizes are equal, L, = L.
The difference between the aperture size L, required to

——LOS-only
—NLOS-only

8

X
0

" ()

Normalized resolution

Aperture size, Ly (m)

Fig. 7: Normalized resolution ) vs aperture size L,

i
for LOS-only and NLOS-only propglggaotlon in a rich scattering
indoor environment. System corresponds to Fig. [6| with param-
eters: imaging scene size L; = 1 m, distance D = 5 m, and
scattering angular interval measures, m (¥g,) = m (¥g) = 2.
Required aperture size L, for achieving Rayleigh limit up to
10% error with LOS-only propagation is L, = % = 21.8218
m, which is > 20x larger compared to L, = Lj = 1 m
required with NLOS-only propagation. Therefore, NLOS-only

> LOS-only propagation in this regime.

achieve the Rayleigh limit with LOS-only and NLOS-only

propagation is thus huge. For instance, consider imaging a

L; = 1 m wide imaging scene at a distance of D = 5 m,

which are typical parameters for an indoor environment, e.g.,

a conference room. In Fig. |7} we plot the normalized resolution

(%50) vs aperture size L,, for LOS-only and NLOS-only
Zcos O

propagation in this case. As the plot illustrates, the required
aperture size for achieving the Rayleigh limit up to 10% error
with LOS-only propagation is > 20x larger compared to that
for NLOS-only propagation. Thus, sufficiently rich scattering
can drastically improve the resolution with practical finite-
sized apertures compared to LOS-only propagation.

(ii) Consider the infinite-sized aperture case, L, — 0o, with
limited scattering in the environment, m (Us,) < 2, m (¥q) <
2. In this case, the spatial resolution § satisfies,

Ao S Ao
m (Ug) cosy — 2cosb,’

Compare (26) to for LOS-only propagation. With
NLOS-only propagation, infinite aperture size is insufficient
to achieve the lower bound of 2COS0 . By contrast, infinite
aperture size achieves 5 - o0, resolution in the LOS-only case.

The two cases (i) and (i) above illustrate the two key
regimes in which NLOS-only and LOS-only propagation are
respectively more useful than the other. On the one hand,
rich scattering can enable huge resolution gains with finite-
sized apertures compared to the LOS-only case. On the other
hand, with limited scattering in the environment, even infinite-
sized apertures are insufficient to achieve the Rayleigh limit
with NLOS-only propagation, unlike the LOS-only case. The
drastic difference between the outcomes in both regimes is
precisely the reason for the dichotomous conclusions drawn
in prior work on multipath, which we survey below.

6:

(26)



C. Prior Results on Multipath DoF

Theorem 2 (Multipath DoF [27]-[36|]): Let Hyuti = HLos+
Hnios denote the operator as per Definition [I] for the multipath
Green’s function in . The sets Q*) and 7 are as defined
in Theorem [

1) The operator Hy,yii is compact.
2) In the limit of infinite-sized apertures, meg (A) — oo,
the achievable DoF diy,g is

dimg =dim (C0| (Hmulti>) = Nmuki +0 (Nmulti) s

Nt = (m (T)m (Q(NH))> ( Mesr (Z) 20V 1 )

™ @2re)N (N +1)

assuming the bandwidth  has non-zero measure, m () > 0.
In the special case of single frequency illumination, 2 = {wg},

N o 2Mefr (I) 271’N_1w(])v
multi (QWC)N .

3) However, numerical evidence suggests that DoF Ny
above is achievable even using finite-sized apertures.

To illustrate the dichotomy between the two conclusions
in 2) and 3) in Theorem [2] let us consider Example 2] With
mesr (Z) defined as in (13), Q = [~wo — 7W, —wo + 7W] U
[wo — W, wo +7W] and T = [0,T], for W > 0, we have

27

4L
N — 2WT - (ws@) ,

Ao

where \g = 2Z%¢ is the wavelength corresponding to wy.

Moreover, the DoF is given by the term in parenthesis above in
the special case of W = 0, i.e., single frequency illumination.
Therefore, via Definition [5] the spatial resolution § is

"~ 2cosb,’

(28)

which corresponds to the Rayleigh limit when 6, = 0.

In other words, conclusion 2) in Theorem [2| suggests that
given infinite-sized apertures, multipath propagation over-
comes the downsides of NLOS-only propagation and achieves
the Rayleigh limit, similar to the LOS-only case. This result
has led the authors in [16], [27], [28] to conclude that
multipath offers no benefits over LOS-only propagation and
effectively only shapes the singular values of the Green’s
function operator.

However, the above drawn conclusion is seemingly at odds
with conclusion 3), which states that the Rayleigh limit is
achievable even with finite-sized apertures, as per numerical
analysis in [29]—[36].

In the next section, we show that conclusions 2) and 3)
in fact correspond to two different operating regimes, and
remain valid in their respective regimes. We establish this
result by deriving the DoF with multipath for practical finite-
sized apertures.
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V. MAIN RESULTS

We first present the main result of this paper in Theo-
rem |3 We then use the linear aperture and scene example
(Example [2) to demonstrate that Theorem [3] unifies the two
seemingly disparate conclusions from Theorem [2] Finally, we
derive precise conditions under which multipath improves the
resolution compared to LOS-only propagation.

A. Main Result

The following theorem characterizes the DoF with multipath
in the more general setting with finite-sized apertures.

Theorem 3: With H, ;i and Q) defined as in Theorem
the DoF with multipath is upper and lower bounded as

Ne+o (N€> < dimg =dim (COI (Hmulti)) <N, + O(Nu)a

where N, and N, are lower and upper bounds on dimg, which
are defined in terms of the LOS and NLOS DoFs, NV, os and
NnLos, from Theorem [T}
N¢=2A — Nios — NnLos,
N, = A,

A <m(7)m(Q<N+1>)>( min {C, D} )
™ @re)N (N+1) )

C=meg (A)m (V;a UTg), D=mex (Z)m (¥, UTy),

assuming the bandwidth 2 has non-zero measure, m (2) > 0.
In the special case of single frequency illumination, 2 = {wg},

A <2min{C,D}wéV>
2re)™ .

Proof: To prove the theorem, we apply the following
result from [41] for the sum of two operators, T = T + To,
Dy + Dy — D3 < dim(col (T)) < max {D;, D2},

Dy =dim(col (T1) + col (T2)),
Dy = dim (row (T1) + row (T2)),
D3 = dim (col (T1)) 4 dim (col (T3)) .

In the
H multi =

context of our problem, we have
Hios + HniLos, with dim (CO| (HLOS)) and
dim (col (HnLos)) given via Theorem Therefore, it
only remains to characterize dim (col (HLos) + col (HnLos))
and dim (row (Hios) + row (HniLos)) for our model.

To that end, note that with multipath, the transmit and
receive spaces X’ and ) from (7) and () have dimensionalities

dim (%) — <m (T)m (Q(N+1))> (mefF (T) m (W, U \psi)> |
0 (2me)” (N +1)
. [ m(T)m (QA+1) met (A) m (T, U T,)
dim (V) = ( p ) ( 2re)N (N +1) )

assuming the bandwidth €2 has non-zero measure, m (€2) > 0.
The dimensionalities for the single frequency illumination case
are defined analogously as in Theorem [T} In other words, with
multipath, the transmit space X corresponds to the product of
the effective scene size, mesr (Z), and the total angular spread
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at the scene, m (U, U Uy). The receive space ) is defined
analogously from the aperture’s perspective.

Therefore, the combined column and row spaces,
col (HLOS) + col (HNLOS) and row (HLOS) + row (HNLOS)’ are
subspaces of dimension

A = min {dim (X) ,dim (V)},

corresponding to the minimum of the transmit and receive
space dimensionalities, similar to Theorem E} The desired
result follows immediately. ]

Theorem [3] generalizes conclusion 2) of Theorem [2] from
infinite-sized apertures to finite-sized apertures. Moreover,
Theorem [3] remains consistent with conclusion 2) of Theo-
rem [2| in the infinite-sized aperture case. To see how, let us
substitute meg (A) — oo in Theorem

C = meg (-A) m (‘Ijia U \Ijsa) = o0,

the upper bound N, equals Ny, from Theorem E], similar
to (28), the spatial resolution d,, equals the Rayleigh limit,
Y 2cos6,
On the other hand, consider the lower bound N, given
by (30). In this case, the spatial resolution d, equals
Ao 1
m(Py)’
2

(32)

o= 2cosl, 1— (33)
which is close to the Rayleigh limit for small m (Ug;).
Compare (32)) and (33) to (26) for NLOS-only propagation.
Both §; and 4,, are close to the Rayleigh limit, especially when
m (Pg) is small, i.e., scattering is limited in the environment.
By contrast, the opposite holds for NLOS-only propagation,
where the Rayleigh limit is never achievable with limited scat-
tering. Thus, multipath overcomes the downsides of NLOS-

D = me (Z) m (U, U W) = mege (Z) m (V1) = mege (Z) 271.N—1(7)nly propagation and is effectively equivalent to LOS-only

where the latter equality for D follows from the fact that the
angular interval subtended by aperture onto imaging scene is
W, = [0, 7] for infinite aperture size, for which m (¥,;) =
27V =1 as per the solid angle measure definition in .
Substituting the values of C' and D, we thus have

Nu =A= Nmulth (29)

which matches the result from Theorem 2} Moreover, note that
since m (V) = 27V~1, we also have Nios = A = Npuii-
Therefore, the lower bound N, is given by

N¢ = A — NnLos = Nmuiti — NaLos. (30)

The gap between the upper and lower bounds is thus
(N, — N¢) = NnLos, which is small for small values of the
scene size-NLOS angular interval product, megs (Z) m (Uyg).

B. Theorem [3| Unifies Conclusions 2) & 3) of Theorem 2]

We now use Example [2] to illustrate that Theorem [3] unifies
the two seemingly contradictory conclusions of Theorem [2]

To that end, with megr (A), mesr (Z), m (Vi) and m (V)
defined as in (12)-(13), Q = [~wo — 7W, —wo + 7W] U [wo —
7W,wo +7W] and T = [0, 7], for W > 0, we have

A=2WT- (% min {Lam (U, U By,) , Lim (¥, U xpsi)}) , (3D

where \g = 2%¢ is the wavelength corresponding to wy.

Moreover, the DoF is given by the term in parenthesis above in
the special case of W = 0, i.e., single frequency illumination.

As before, the effects of bandwidth W, polarization and
misorientation angle 6, on the DoF in (31 remain unchanged
compared to the LOS and NLOS cases from and (7).
To show that Theorem [3] unifies the results of Theorem [2]
let us consider the two regimes used to illustrate all results
thus far: (i) infinite-sized apertures, L, — oo, with limited
scattering, m (¥s,) < 2, m (Pg) < 2, and (ii) rich scattering
with m (Ug,) = m (¥g) = 2.

(i) Consider the infinite-sized aperture regime, L, —
oo, with limited scattering in the environment, m (¥g,) <
2, m(¥g) < 2. Since we have already shown in that

propagation with limited scattering, consistent with conclusion
2) of Theorem [2}

(ii) Consider the rich scattering regime with m (¥g,) =
m (Ug) = 2. In this case, we had shown earlier that with
NLOS-only propagation, the Rayleigh limit is achievable using
finite aperture sizes, L, = L;. By contrast, achieving the
Rayleigh limit requires infinite-sized apertures in LOS case.

For multipath, the value of A matches NyLos from (17),

4 cos b,

A= Nu = NNLOS =2WT- ( min{La,L;}> . (34)

0
Thus, the resolution §,, corresponding to the upper bound
N, matches the resolution § from for the NLOS case.
Hence, the Rayleigh limit is achieved using finite aperture
sizes, L, = L;, in this case as well.
Furthermore, the lower bound N, in Theorem [3| equals

Ny =2A — Nios — Nnros = A — Nios. (35)
Thus, the resolution J; corresponding to Ny is
Ao L
8y = . . (36
¢~ 9cos 0o min{L,, Li} — L;sin (tan_1 (QLE))) (36)

The resolution §, is minimized when the denominator

min {L,, L;} — L; sin (taun_1 (QLB)) is maximum, i.e., at L, =

L;. For L, = L;, the minimum achievable resolution equals
Ao 1
6 = . P} 37
‘T 2eost, T sin (e (5) O

which is close to the Rayleigh limit for small values of L;.
In other words, given rich scattering, the resolution cor-
responding to both multipath DoF bounds in Theorem [3] is
minimized, and is close to the Rayleigh limit, at finite aperture
sizes, L, = L;, similar to the NLOS-only case. We illustrate
this result in Fig. [8] where we plot the normalized resolution,
i ) and ( so—, for the same example from Fig. E

2 cos O

nd

(eotes
Hence, multipath propagation is effectively equivalent to, a

captures the gains of, NLOS-only propagation in the rich
scattering regime. Furthermore, rich scattering enables drastic
resolution gains over LOS-only propagation, as predicted by
conclusion 3) of Theorem 2}
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multipath propagation in a rich scattering indoor environment.

System parameters are as in Fig. [7] Resolution is minimized

at L, = L; = 1 m, similar to NLOS-only case from Fig.
in(tan—1( Li

and is within M = 11.05% error of Rayleigh

. 1 i
1—sin (tan 5D

limit. .. multipath = NLOS-only propagation in this regime.

From the discussion in cases (i) and (ii) above, we see
that both sets of conclusions in Theorem [2] are valid in their
respective regimes. Our main result thus unifies both conclu-
sions of Theorem Moreover, cases (i) and (ii) illustrate
that multipath effectively captures the best of both worlds and
compensates for the weaknesses of both LOS-only and NLOS-
only propagation in respective regimes.

Having established that Theorem [3] unifies both sets of
conclusions from Theorem [2] we now derive conditions under
which multipath improves the resolution compared to LOS-
only propagation.

C. When Does Multipath Improve Resolution Beyond LOS?

We begin by comparing the upper and lower DoF bounds
from Theorem [3] with the LOS DoF from Theorem [Il

Observation 1: The upper bound N,, = A from Theorem [3]
always exceeds LOS DoF Nios from Theorem [I] since the

angular intervals always satisfy the property
m (\I’ia U \IJsa) >m (\I/ia) , M (\I]ai ) \Ijsi) >m (\Ijai) .

Observation 2: The lower bound Ny = 2A — N os — NnLos

from Theorem [3] exceeds LOS DoF N| os from Theorem [1] if
2(A = Nios) = 2(Ny — Nros) > Nnos, (33)

which is also a sufficient condition for Nyuii = Nios.

To gain some intuition for (38}, let us consider Example [2]
With Nios, Nnios and A as given in (16), and (3I)), we
may express (38) as

2min {Lam (U, \ Uia), Lim (U \ Uo)} > min {L,m (Vg,), Lim (g}, (39)
or, on using the identity m (A\ B) = m(A) —m (AN B), as

Lym (Ug,) — 2L,m (Ug, N W3, + [Lam (Ug,) — Lim (Ug)]T >0, (40)
Lim (Ug) — 2Lim (U N Wy) + [Lim (Ug) — Lam ()] >0, (41)

where [-]* denotes the positive part.
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To better understand @0) and @T)), let us consider the two
regimes used to illustrate all results thus far: (i) rich scattering
with m (Ug,) = m (Ug) = 2, and (ii) infinite-sized apertures,
L, — oo, with limited scattering, m (¥g,) < 2, m (¥g) < 2.

(1) In the rich scattering regime, we have W, N ¥, = U,
and ¥ N W, = U,;. Thus, and (1)) are equivalent to

2L, — 2L,m (U3,) +2[L, — Li]t >0, (42)
oL — 2Lim (V) + 2 [Li — L] >0, (43)

both of which are satisfied by default, since the left hand sides
are always greater than zero. Moreover, both left hand sides
are simultaneously maximized when L; = L,, consistent with
our previous analysis and Fig. [§] Thus, multipath outperforms
LOS-only propagation in the rich scattering regime with
practical finite-sized apertures.

(i) In the limited scattering regime with infinite-sized
apertures, we have Uy N W, = V. Moreover, we only need
to consider (@I)) since L, — oo invalidates (@0). To that end,
note that the left hand side of @I)) equals

—Lim (Ug) + [Lim (Ug) — L,m (U,)] ",

which is always less than zero, with equality only when
m(¥g) = 0, i.e., LOS-only propagation. Hence, multipath
performs similar to LOS-only propagation in the limited
scattering regime, consistent with our earlier analysis.

To summarize, multipath can indeed improve the resolution
beyond LOS-only propagation when the condition in (38) is
satisfied. Since is satisfied for finite apertures in the rich
scattering regime, consistent with conclusion 3) of Theorem [2]
we observe that multipath significantly outperforms LOS in
this regime. In fact, as demonstrated earlier, multipath achieves
the Rayleigh limit when the aperture and scene extents are
equal, L; = L,. By contrast, LOS-only propagation is insuffi-
cient to achieve the Rayleigh limit with finite-sized apertures.

On the other hand, @ is not satisfied for infinite-sized
apertures. Hence, multipath is at best equivalent to LOS-only
propagation in this regime, consistent with conclusion 2) of
Theorem 21

Overall, our results highlight the benefits of harnessing mul-
tipath for imaging. As we have shown, multipath is especially
beneficial in the rich scattering regime with practical finite-
sized apertures. Although all the results in this section were
derived for single-bounce scattering modeled via (6), we show
in Appendix [A] that the extension to multiple bounces (all the
way up to infinite bounces) does not change our main results.

VI. CONCLUDING REMARKS

In this paper, we characterized the resolution limits for
wireless imaging systems in the presence of multipath via the
DoF framework. Via the DoF analysis, we bridged the gap
between two sets of prior results, that respectively claimed that
multipath does and does not improve resolution beyond LOS-
only propagation. We showed that the two sets of prior results
correspond to two extreme operational regimes, and that both
results are valid in respective regimes. We also showed that
multipath can indeed improve the resolution beyond LOS-
only propagation under certain geometrical configurations of
scatterers in the environment.



DRAFT

Taken together, our results highlight the benefits of har-
nessing multipath in emerging wireless imaging systems. We
hope that the encouraging theoretical results presented in this
paper will motivate further research on practical algorithms
and system designs that harness the resolution gains provided
by multipath.

As all our results were limited to passive illumination with
no mobility, extensions to the active illumination setting with
mobility would be useful. Extending our deterministic results
to the mobility setting is non-trivial since mobility induces an
element of randomness in the propagation characteristics. In
this context, it would be useful to consider recently proposed
hybrid representations [25]], [42]], [43|] that capture the best
of both statistical and deterministic channel models. To our
knowledge, DoF and resolution limits using such hybrid rep-
resentations have remained limited to LOS-only propagation
thus far, with the exception of [44].

APPENDIX A
EXTENSION OF (I)) TO MULTI-BOUNCE SCATTERING

We start by extending the NLOS Green'’s function in (6) to
model double-bounce scattering before presenting the exten-
sion to infinite bounces. Throughout, we use the superscript
(-)(”) to denote the nth bounce term, Vn > 2, and (~)(1:k) to
denote the sum of first k& bounces, Vk > 2.

The second-bounce term is given by

H(NQL)OS (ra,Ti;w) = / / H\0s (ra, rl;w)-diag (h (rl;w)) -
sJs

H,os (rl,rs;w) - diag (h (rs;w)) - Hios (rs, ri; w) drsdrl,  (44)

which may be decomposed in two ways:
1) H,(\ﬁ_)os (ra,Ti;w) = fs H, 05 (ra,rs; w)-diag (h (rs;w))-
HI(_QO)S (rs,rj;w)drs,  where HI(_20)S (rs,1i5W) =
Js Huos (rs, rl;w)-diag (h (rf;w))-Hios (rf, ri; w) drf,
2) Hilos (ra.xiiw) = [ H{G (1, 13: ) diag (h (r5:))-
H, os (rs,ri;w) drs, where HE2O)S (ra,rs;w) =
Js Hios (ra, 143 w)-diag (h (r(;w))-Hios (rg, rs; w) drg.
The first decomposition above corresponds to modeling
double-bounce in the radiation from the imaging scene to the
set of scatterers. On the other hand, the second decomposition
corresponds to modeling double-bounce in the reception at the
aperture from the scatterers.
Let the operators H; and H, denote the transformations from
H, os (rs,ri;w) to HI(_ZO)S (rs,ri;w) and from Hjos (ra, rs;w)
to H@S (ra, rs;w) respectively,

s (5 0) = Hi (Flos (i)

H{2s (ra, r5;w) = Hy (Hios (ra,Ts;w)) -

(45)
(46)

Then, the infinite-bounce extensions of H, os (s, rj; w) and
H, s (ra, rs;w) are given by the Neumann series,

H{S (re,riw) = | S HF | (Hios (roriw)),  (47)
k=0

HG (ra,rsiw) = [ Y HE | (Hios (12, rs5w)) . (48)
k=0

where T# = TF=1 o T denotes the kth repeated application of
an operator T. Moreover, the Neumann series converge to the
invertible operator y_ -, H? = (- Hj)_1 , Vj € {i,a}, for
identity operator |, when operators H; and H, have norm < 1.
This convergence always holds physically due to conservation
of energy and the impossibility of infinite-energy fields.

We are now ready to show that the infinite-bounce ex-
tensions in (47) and do not change our main result

from Theorem [3| Let HNL:(?S)’] and H,(\Ill_:gos)@ be the infinite-

bounce analogues of the NLOS operator HyLos, defined as
in Definition [I] corresponding to and (#8). Note that by
definition, (#7) only affects the row space of Hyios while
only affects the column space of Hyos.

However, since the Neumann series converge to invertible
operators in and (@8], we must have

row (H(Nll_:gcs)ﬂ) = row (HnLos) , (49)

col (H(Nll_zé’)os)ﬂ) = col (HnLos) - (50)

Thus, since the row and column spaces of Hyos, and hence
their dimensionalities, remain unchanged with infinite-bounce
scattering, our main result from Theorem [3] does not change.
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