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Abstract—In this paper, we take the first step towards quanti-
fying the fundamental performance trade-offs between imaging
and communication supported simultaneously using the same
network resources. We analyze an uplink system configuration
with a full-duplex base station (BS) illuminating an imaging
scene while receiving data from a communication user. Our
main contributions are two-fold. First, we propose a unified
signal space analysis framework based on the degrees of freedom
metric to characterize the trade-offs between the two operations
in the high signal-to-noise ratio regime. Second, we propose a
dual-function joint processing scheme, decode-and-image, that
allows the BS to simultaneously form an image of the scene
while decoding the uplink user’s data. Our analysis and proposed
scheme highlight the benefits of exploiting the uplink signals for
imaging, at the cost of increased cooperation between the BS and
uplink user. Moreover, our proposed scheme outperforms tradi-
tional schemes that enable dual-function operation via spatial or
temporal isolation of imaging and communication signals.

Index Terms—Degrees of freedom, joint imaging and commu-
nication, multiple-input multiple-output, wireless imaging.

I. INTRODUCTION

HE next generation of wireless networks are expected to

deploy massive multiple-input multiple-output (MIMO)
base stations with hundreds to thousands of antennas and
operate at higher frequencies in the millimeter-wave band
compared to current sub-6 GHz systems. The larger band-
widths in millimeter-wave bands and fine-grained beamsteer-
ing capabilities of massive MIMO arrays open up novel
possibilities for performing sensing, such as radar, orientation
estimation and imaging, simultaneously alongside traditional
communication.

In this paper, we focus on the special case of performing
imaging alongside traditional data communication, a scenario
we term simultaneous imaging and communication. By imag-
ing, we refer to the operation of forming a spatial estimate of
the material properties of the surrounding environment. While
the idea of imaging using wireless signals is not new, e.g., see
prior work on Wi-Fi [2]]-[5]], millimeter-wave [|6]—[9] and radar
imaging [[10]-[13]], the majority of prior work is representative
of imaging-only operation where the communication data is
known a-priori. To the best of our knowledge, performing both
imaging and communication decoding with the same network
resources is a key challenge that has remained open thus far.
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Fig. 1: Simultaneous imaging & uplink communication.

To that end, in this paper we take the first step towards
quantifying the fundamental performance trade-offs between
imaging and communication supported simultaneously using
the same network resources. We analyze the uplink system
configuration shown in Figure [} with a full-duplex base
station (BS) actively illuminating a subset of the environment
(labeled imaging scene) while receiving uplink signals trans-
mitted by a communication user. The system analyzed is the
dual-function equivalent of the multiple access channel [14],
in that the BS aims to image the scene and decode the uplink
user’s data from a common set of received measurements.

Our contributions in this paper are two-fold. First, we
adapt the well-known signal space framework [15]-[19] to
characterize the performance trade-offs between imaging and
communication under a space-time-frequency constraint on
the resources available to the BS. To bridge the dichotomy
between the performance metrics used for imaging- and
communication-only operations, namely the imaging resolu-
tion and communication rate, we propose using the degrees
of freedom (DoF) as a unified dual-function metric. With
every simultaneous imaging and communication scheme, we
associate a DOF pair (dimg, dcomm) if (i) the maximum number
of distinct point scatterers in the scene that can be spatially
differentiated in the image reconstruction equals dimg, and
(i) the achievable rate scales as deomm - logs (SNR). We
characterize the performance trade-offs between imaging and
communication by deriving the DoF region, the set of all DoF
pairs (d;mg,dcomm) that are simultaneously achievable, under
a fixed space-time-frequency constraint on the BS resources.

Second, we propose a dual-function joint processing
scheme, decode-and-image, that allows the BS to simulta-
neously form an image of the scene while decoding the
uplink user’s data. As the name suggests, the BS first decodes
the uplink user’s data, which is subsequently used as side-
information for imaging. Decode-and-image has better dual-
function performance compared to traditional schemes that
enable dual-function operation via spatial or temporal isolation
of imaging and communication signals, e.g., time-sharing.



The system-level implications of our DoF analysis are as
follows. Consider the general scenario shown in Figure [I]
where a portion of the scene (labeled overlap) is illuminated
by both the BS and the uplink user. For this general scenario,
our DoF analysis predicts an imaging resolution benefit to
the additional uplink illumination, since the BS-uplink user
pair effectively serves as a hybrid monostatic-multistatic il-
lumination source. However, the better imaging performance
comes at the cost of requiring the BS and uplink user to
cooperate by means of sending known pilot sequences. As we
show in our DoF analysis, the required cooperation results in
a smaller achievable communication decoding rate compared
to the maximum possible. In our results, we derive the optimal
number of uplink pilots required in the proposed decode-and-
image scheme for the BS to decode and exploit the uplink
data as additional imaging illumination.

Although decode-and-image is not optimal in general, we
show that it is asymptotically optimal, i.e., the gap between the
achievable DoF region with decode-and-image and the dual-
function DoF region is vanishingly small under the limit of
large channel coherence intervals. Moreover, in the special
case where the scene is only illuminated by the uplink signals,
decode-and-image enables opportunistic imaging for a small
reduction in the achievable uplink rate.

A. Comparison with Prior Work

To the best of our knowledge, we are the first to study the
simultaneous imaging and communication problem. Related
work includes joint sensing-communication [20]-[22] and
joint radar-communication [23]]—[28]].

The former papers [20]-[22] characterize the trade-offs
between the sensing estimation error and communication rate
via rate-distortion theory. However, the estimation error is not
an interpretable performance metric for imaging, for which
a more meaningful metric is the resolution - the minimum
distance at which two distinct point scatterers can be spatially
differentiated in the image reconstruction. While resolution
limits for imaging-only systems (where the communication
data is known a-priori) are well-understood via the main
results of [29]]-[32], the trade-offs between the achievable
imaging resolution and communication rate in dual-function
systems have not been characterized previously.

The latter papers [23]—[28]] are concerned with the design
of joint radar-communication systems. For a system model
similar to ours, it is shown in [23], [24], [26]-[28] that
exploiting the communication signals bouncing off the scene
is beneficial for radar detection. However, the underlying
requirements in [23[], [24], [26]-[28] are (i) known second-
order statistics of the uplink symbols at the BS, and (ii)
uncorrelated measurements at the BS, both of which may be
invalid in practice. Our analysis removes both requirements
by using a signal space model for Figure [l| that explicitly
takes into account spatial correlation between antennas and
does not require any prior knowledge of the uplink symbols
at the BS. Moreover, the cost of decoding the uplink signals
is not quantified in [23], [24], [26[]-[28[]. As we show in our
main results, the better imaging performance due to additional
uplink illumination comes at the cost of a smaller uplink rate.
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Finally, the authors in [25]] analyze a special case of Figure/l]
with no uplink signals bouncing off the imaging scene. In this
case, a zero-forcing-based successive interference cancellation
scheme is proposed in [25]], along with associated inner bounds
on the dual-function performance. However, the optimality
of zero-forcing is not discussed in [25]. In Section
we show that in this regime (i) the proposed decode-and-
image scheme reduces to zero-forcing, and (ii) the inner bound
for decode-and-image matches the outer bound on the dual-
function DoF region, i.e., both zero-forcing and decode-and-
image are optimal. Moreover, for the general setting shown in
Figure[I] we show that zero-forcing is strictly sub-optimal and
achieves a subset of the inner bound with decode-and-image.

The remainder of this paper is organized as follows. In Sec-
tion [[Il we present the system model for Figure [l We define
the degrees of freedom performance metric and formulate the
main problem we solve in this paper in Section [[Tl] We present
our theoretical results in Section [IV] and provide a system-
level illustration for them in Section[V] We conclude the paper
in Section V]| with discussions and directions for future work.

B. Notation

We use bold uppercase for matrices (e.g., X), bold lower-
case for vectors (e.g., x) and non-bold lowercase for scalars
(e.g., x). Sets are represented using calligraphic font (e.g., X)
or capital Greek letters (e.g., 2). The n x n identity matrix
and nth standard basis vector are I,, and e,, respectively. The
matrix, Kronecker and column-wise Khatri-Rao products are
denoted by -, ® and * respectively. The transpose, Hermitian
and pseudo-inverse operators are (-) ", (-)* and (-) respec-
tively. Vectorization and diagonalization are denoted by vec(-)
and diag(-). The positive part of a scalar z is [z]*. The set
union, intersection, and difference operators are U, N, and \.
The Lebesgue measure of a set X is denoted by | X|.

II. SYSTEM MODEL

Consider the system shown in Figure |1} with a full duplex
base station (BS) illuminating a subset of the environment,
labeled imaging scene, while receiving data from a communi-
cation user. Without loss of generality, we make the following
assumptions on the system operation.

Assumption 1: The scatterers in the environment remain
static for T' slots, which determines the coherence interval.

Assumption 2: The BS and uplink user signalling is uni-
polarized, with operating wavelength .

Assumption 3: There is perfect self-interference cancella-
tion between the BS transmitter and receiver.

We note that Assumption [2| is made only for analytical
simplicity. Extensions of our results to the generic arbitrarily
polarized, broadband setting are straightforward via the results
of [16]], [32], and are omitted due to space constraints.

Given Assumptions E}E] hold, the receive measurements at
the BS correspond to the sum of the uplink user transmissions
and the backscatter from the scene. Without loss of generality,
we assume the imaging scene is discretized into M voxels,
spaced at distances much smaller than the Rayleigh resolution
limit of 2 [19], [30], [31]. Furthermore, let K\%, K%
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and Kpgrx respectively denote the number of antennas at
the BS transmitter, uplink user and BS receiver. Within a
coherence interval of T slots, the K rx x 1" matrix of receive
measurements, Y7, is given by

. i . i T 7
Yr =H X + PR - diag (£) - (P{k) X+ Np. ()

The first term in (I) corresponds to the received uplink
symbols. The matrix Xg,f) in is the KPE;:;( X T matrix of
transmitted uplink symbols, while H(©) is the Krx X Kq(f))(-
sized uplink channel matrix.

The second term in corresponds to the backscatter from
the imaging scene due to BS illumination. In , Xg,f) is
the Kq(f))( x T matrix of transmitted BS illumination symbols.
Furthermore, the M x 1 scene reflectivity vector f models the
material properties of the M voxels in the scene. As the name
suggests, the squared magnitude of a voxel’s reflectivity is the
energy reflected by it upon illumination by a unit energy field.
Such a reflectivity-based formulation is extremely generic
since a zero or non-zero reflectivity respectively indicates the
absence or presence of a scatterer at a given scene voxel.

The K(TZ;( x M and Krx x M-sized path delay matrices
ngg( and P%)X model signal propagation to and from the
scene. The (k,m)th element of each path delay matrix is a
scaled complex exponential that depends on the signalling
wavelength ), and the locations of the kth antenna at the BS
and mth voxel in the scene [15]-[17], [19],

| =3 (%) [ |
P%{/Rx(k@m) = z H -
-

2)

TX/RX < ’
r, — Iy

where r and ¥, with appropriate subscripts and superscripts,
denote the position vectors of the antennas and scene voxels.

Finally, N is the Kpx x T matrix of additive noise in .
In the next section, we formulate the simultaneous imaging
and communication problem we solve in this paper.

III. PROBLEM FORMULATION

In the system in Figure [T} the BS aims to perform the
following two functions using the received measurements Y 7:

1) Imaging: Form a spatial estimate of the material prop-
erties of scatterers present in the imaging scene, i.e.,
estimate the scene reflectivity vector f, and

2) Communication: Decode the uplink user’s data, i.e.,
estimate the uplink symbol matrix Xgﬁ).

Our goal in this paper is to understand the fundamental
performance trade-offs between the two functions supported
simultaneously using the same network resources at the BS.
Specifically, we answer the following question:

Given a constraint in space-time-frequency on
the available resources, what combinations of
the imaging resolution and uplink communi-
cation rates can the BS reliably support?

We answer (Q) via a signal space analysis [[15]—[19], with
the degrees of freedom (DoF) as the dual-function metric
of choice. At a high-level, the DoF captures the high-SNR
scaling behavior of the achievable communication rate and

Q

the maximum number of distinct point scatterers in the scene
that can be spatially differentiated in the image reconstruction.
We first define the DoF metric in Section [II-Al We then
formulate (Q) in terms of the DoF framework in Section [I1I-B

A. Performance Metric: Degrees of Freedom

We begin by defining the imaging DoF. To that end, we first
define the notion of linear imaging algorithms as follows.

Definition 1: A linear imaging algorithm takes as input
a measurement vector y and a side-information set S, and
outputs a reconstruction f of the true M x 1 reflectivity vector
f that is expressible as a linear function of f,

f=AVS . f 4w,

where w is an M x 1 additive noise vector and A¥>S) is an
M x M square mapping from the scene to itself.

Let us consider a simple example to illustrate Definition [I]

Example 1: Consider the system model in (I) in the
special case with known uplink symbols ng) (e.g., pilots),
channel matrix H(¢), and path delay matrices {ng;(, Pl }
{x{, 1O, P, ;) and
y = vec(Yr). An example of a linear imaging algorithm
corresponds to subtracting out the communication signals
H(©) -XE[C ) from Y and recovering f appropriately,

In this case, we have & =

f= (H@))T - vec (YT _HO. ng>)

vec
N\ T . N\ T
= (H2) B+ (HL) nr,

where nr = vec (N7) is the vectorized version of N, and

i = (x1) et ) - (PR PR,

for Kronecker and column-wise Khatri-Rao products ® and *,
and I,, denoting the identity matrix of size n X n.

Note that the reconstruction f above is linear in f. Since we
do not impose any additional assumptions on the scene besides
Assumption [I} the linearity of the system model in (1) in f
makes it sufficient to consider only linear imaging algorithms
in this paper. We note that this does not limit the generality of
our results since even with additional sparsity assumptions on
the scene, the minimum separation required between scatterers
for compressive sensing-based imaging is similar to traditional
Rayleigh resolution limits for linear imaging algorithms [11]].
Hence, it suffices to quantify the imaging performance for
linear imaging algorithms in the sequel.

To that end, we use the number of resolvable voxels, i.e.,
the number of distinct point scatterers in the scene that can be
spatially differentiated in the image reconstruction [[16], [[19],
as our performance metric. Formally, we quantify the same
via the dimensionality of the space of scene reconstructions f.

The dimensionality of a set is defined as follows.

Definition 2 ([19], [33]]): Consider a subset A of a normed
linear space A" of unit norm signals. The dimensionality of .4
is the dimension of the minimal subspace that can approximate
the elements of A up to arbitrarily small accuracy, i.e.,

dim (A) = min {n : p, (A) = 0},



where p,, (A) is the smallest distance between A and all
possible n-dimensional subspaces &), of X,

n (A) = inf inf —g].
pn (A) A S0 Inf 1f =gl
Given Definition [2] we define the imaging DoF as follows.
Definition 3: Let F(y sy denote the set of all noiseless unit-
normalized outputs f of a linear algorithm with matrix A5,

PN ~112
Fiy.s) = {f f= A f, HfH2 < 1}.

The imaging DoF, dimg, corresponding to A9 is defined
as the dimensionality of the set F(y s),

dimg =dim (.7:(%5)) = min {TL : Pn (,7:(%5)) = 0} .

We note that the unit normalization in Definition [3] is only
for consistency with Definition [Z]and has no effect on the DoF
value. Furthermore, since F(y sy is a subset of the column
space of AWS) Definition s equivalent to [33]

pn (Fiy,$)) = On1 (A<y’s)) :

where o, (A®9)) denotes the kth singular value of A®S).
Therefore, the imaging DoF for a linear algorithm is simply
the rank of the matrix A®-5)_ i.e., the smallest index n beyond
which the singular values of A®+%) decay to 0,

dimg = min {n D Ont1 (A(y’s)) = O}
= rank (A(y’s)) .

Note that for a generic linear system model, y = H® .f4n,
the matrix A®S) may be decomposed as follows,

AYS) = BE) . g,

i.e., in terms of the channel H® and a matrix B(S) that only
depends on the side-information available to the algorithm. For

NN , A
example, B(S) = H\(,?c> and H® = H\(,é)c for Example
Hence, the imaging DoF is upper bounded as

dimg = min {rank (B(®)) ,rank (H")} < rank (H®). (3)

Depending on the conditioning of H(*), the number of resolv-
able voxels may thus be smaller than M if rank (H(i)) < M.

Finally, we note that Definition [3]associates an imaging DoF
value to a particular algorithm, and is in a sense analogous
to defining the rate of a given coding scheme. Furthering the
analogy, we now define the notion of achievability for imaging.

Definition 4: An imaging DoF of dig is achievable if there
exists a linear imaging algorithm with matrix A¥-5) such that

dimg = rank (A(y’s)) .

For instance, the DoF upper bound in (3)) is achievable by
a linear imaging algorithm with B(S) = (H(i))f.

We now consider communication. With standard definitions
for achievable rates, mutual information, etc., e.g., see [[14}
Chapter 7], we define the communication DoF as follows.
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Definition 5: Let a rate R be achievable. The achievable
communication DoF, dcomm, is a high-SNR approximation of
the achievable rate, scaled by the coherence interval T,

) R
< lim 4 .
SNR—co 3 -logy (1 + SNR)

Barring the scaling factor T', we note that the above defini-
tion is identical to the DoF definition commonly used in the
wireless literature, e.g., see [16], [[18], [34], [35]. However, the
conventional definition only corresponds to the spatial DoF,
ak.a. spatial multiplexing gain. We scale the conventional
definition by 7" in order to characterize the space-time DoF.

For a standard MIMO system model, Y7 = H- X7 + Ny,
deomm may be upper bounded as [36, Chapter 7],

deomm < T - rank (H), 4

dcomm =T

i.e., as the product of the coherence interval 1" and the rank of
the channel matrix H. Furthermore, the DoF upper bound is
achievable with appropriate beamforming on the basis of H.

B. Problem Formulation: Signal Space DoF Analysis

We are now ready to pose (Q) in terms of the DoF
framework. To that end, let us rewrite @ as a linear equation
with the scene reflectivities and uplink symbols as the input,

: f
yr= B HE- L@] +nr, )
T
i % T i %
= (X0) el ) (PAPR). ©
H{ =1r @ HY, (M

where ® and * denote the Kronecker and column-wise Khatri-
Rao products respectively, and I,, denotes the identity matrix
of size n X n. Answering (Q) requires first characterizing the
total resources available at the BS in space-time-frequency.
To that end, recall from and (@) that the imaging and
communication DoFs for (5) may be upper bounded as

{dimg < rank (Hgfgc) - deomm < rank (Hggg)}.

The rank interpretation of both DoF definitions above naturally
prompts defining the total BS resource as the rank of the
combined channel H\(,?C H\(,gz in (5).

Definition 6: For the system model m (3)), the total resource
in space-time-frequency available to the BS receiver is

dgs = rank ([H\(,é) H\(,gg}) .

Given the above definition, we answer (Q) by deriving the
dual-function DoF region.

Definition 7: The DoF region, D, is the convex closure of
all DoF pairs, (dimg, dcomm), that are simultaneously achiev-
able with dgs total space-time-frequency BS resource, where
achievability and dgs are as defined in Definitions [4] [5] and [6]

To obtain physically interpretable results, we use a signal
space framework [15]-[19] to derive the DoF region for our
system. In the signal space framework, the BS resources are
characterized in terms of (i) the spatial size of the aperture,
(i) the spatial geometry of scatterers in the environment, and
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(iii) the coherence interval 7. The signal space framework
directly takes into account practical wireless effects, such
as correlated fading across antennas [15]-[19], and removes
limiting assumptions made in prior work [23]], [24], [ 26[—[28]]
on the spatially uncorrelated nature of BS measurements Y.

The signal space representation of Figure [I| is shown in
Figure 2| As shown, we equip the BS and uplink user with
continuous apertures, modeled as spheres of radii brx, brx
and crx. Furthermore, we characterize the spatial geometry
of scatterers jn the environment in the angular domain, with
Q(T7)X and Q%)X denoting the set of angles over which the BS
illuminates the imaging scene and receives the backscattered
signals. Similarly, ng;( and Q%;( denote the set of angles over
which the uplink signals emanate from the uplink user and
impinge onto the BS receiver. Note that all angular intervals
are shown to be angularly contiguous purely for the sake of
illustration in Figure 2} Via the main results of [15]-[18], all
our subsequent results hold as-is even when Q(TC;(, Q%{, Q%(
and Q%)X are the union of multiple smaller angular intervals.

For the signal space model in Figure[2] the total BS resource
dgs corresponds to the product of the coherence interval T,
the wavelength-normalized aperture size, and the total angular
interval over which the imaging and communication signals
impinge onto the BS receiver [15]-[19],

2T i c
dBSZT'bRX"Q%)XUQ%) . (8)

Moreover, the signal space framework places a deterministic
limit on the ranks of the channel and path delay matrices in (TJ).
Lemma 1 ([|15|]—{19]): For the system model in (E])

lim

K;’))(%oo rank (H(C)) = % - min {CTX . ‘Q’(I?;( 7bRX . ‘QSQC;(

Krx—00

. 2a
Klgréo rank (P) = S |,
M —o00

where for P € {P?;(,P%)X}, we have K € {Ké,f;(,KRX},

a € {bTX,bRX} and () € {ng)X’Qg)X
In the following section, we present main results character-
izing the DoF region D for the signal space model in Figure [2]

} respectively.

IV. MAIN RESULTS

We follow the conventional converse-achievability infor-
mation theoretic approach to characterize the DoF region
D. In Section we derive an outer bound D, such
that D C Dgyt, that holds regardless of the post-processing
performed at the BS. We then present a new scheme called
decode-and-image in Section[[V-B| and derive a corresponding
an achievable inner bound such that D;, C D, in Section[[V-C
We characterize the gap between the inner and outer bounds
in Section We provide a system-level illustration of our
results later in Section [V]

All our results are derived under the following assumptions.

Assumption 4: Consider the uplink channel matrix H(®)
in (). Given a non-empty overlap between the receive imaging
and communication angular intervals, Q%)X N Qg}( £ 0, H)
may be decomposed into the sum of an a-priori known channel

Fig. 2: Signal space representation of Figure|l|with continuous
apertures at all nodes and angular domain modeling of the
environment. Variables corresponding to BS illumination and
uplink user transmission are in blue and red color respectively.
matrix HI((f\)own and an a-priori unknown matrix corresponding
to backscatter from the scene due to uplink user illumination,

) N T
HE =H + P . diag (f) - (P(TCQ)) X

In the equation above, ng;z) and ng;z) are path delay
matrices corresponding to signal propagation from the up-
link user to the scene and the overlapping angular interval
Q%)X N Qgg( to the BS. Equivalently, Lemma (1| holds for P €

{PERY PR with K € { K{%, Knx |, a € {erx, bux}

and © e {000 oW ol c ol

corresponds to the uplink user-illuminated portion of scene.

Assumption 5: All path delay matrices Pg)x, P%)X, ng;l)
and P%;’) are known to the BS and uplink user.

Assumptions [4] and [3] are simplifying assumptions that are
the dual-function equivalents of having channel state infor-
mation at all nodes in a multiple access channel. Hence,
our resulting DoF bounds quantify the best achievable dual-
function performance. We note that knowledge of path delay
matrices may be obtained via an imaging calibration phase
prior to the system operation. Examples include scanning a
point target with known reflectivity across every voxel in the
imaging scene [37] or the uplink user sharing the location
coordinates of its aperture with the BS. Extensions to scenarios
with no such prior knowledge are left for future work.

We are now ready to present our main results, beginning
with an outer bound on the DoF region.

where Qgﬁgi)

A. Outer Bound Doy on DoF Region

The following theorem characterizes the outer bound Dgt.
Theorem 1: An outer bound D+ on the DoF region D is
the convex closure of all DoF pairs (dimg, dcomm) that satisfy

2 i i
dimg < b\ ~min{bRX . ‘Qﬁ{)xl X, brx ‘Q%(’

+crx - ‘ng;z)‘ +brx - ‘Q%?X‘}v

(4)
lim rank X(j;) ,
Kéf;( —00 XT

KTLX—>0<>
2T , .
dcomm < 7 . Inin{CTX : ’Q’(TC;(‘ 5bRX : ’Qggg(

X:

}

2T i c
dimg + dcomm < 7 : bRX . ‘QSQ)X U ng;( .



Proof: See Appendix [A] [ |
We now describe the proposed decode-and-image scheme.

B. Decode-and-Image: Joint Processing at BS

The proposed decode-and-image scheme operates in two
phases consisting of uplink pilot and data transmission.

1) Phase 1: Phase 1 spans the first 77 < T slots. In
Phase 1, the uplink user transmits time-orthogonal pilot sym-
bols ngl ) that the BS uses to form an initial estimate of the

scene. To that end, since the channel Hﬁﬁlwn and pilots X(TC1 )

are known, the BS subtracts out H(c) . Xgpcl) to obtain

known

y'.(131) = vec (YTI - H(ki?awn ) X:(Zfl)) = HU) -f + nr,

vec
-
RIkpx |- ( ) .

Note that the matrix H\(,?c is known to the BS receiver as

per Assumption [5] Thus, the BS recovers f via

P« Pl

} x ()
ne | |Xr ¢+ P
lx(f? P « Pl

) N
fa) = (H\(/Q:) Y1),

where the subscript (-)(;) denotes Phase 1.

2) Phase 2: Phase 2 spans the remaining (7' — 73) slots.
The goal of the BS in this phase is to (i) decode the uplink data,
with the reflectivity estimate f (1) as side-information, and (ii)
image the scene, with the decoded data as side-information.
To that end, the BS and uplink user perform beamforming on
the basis of the available prior knowledge:

1) One possibility is to decode the uplink symbols by

(e)

beamforming according to the SVD of H =

i known
Ul Shomun* (Vin) - alone,
H H
(o) _ w(o) () (c)
(Uknown) 'Y(T7T1) - Eknown : (anown) 'X(T—Tl)v

where the noise term has been suppressed for clarity.
2) The second possibility is to decode the uplink symbols

by beamforming according to the SVD of H(®) = U(©).

(@) . (V(“))H, estimated using f(l) from Phase 1,

H H
c _ c c ()
(U( >) Y gy =5 <V< >) X s

where the noise term has been suppressed for clarity.
The BS subsequently recovers f via

« N\ T
f= (H\(IQ:) " vec (YT - HI(:rz\)own : X’(]?)) ’

where H\(,ze)C is defined similar to Phase 1, except over all T’
slots instead of the first 77.
We now present an inner bound on the DoF region.
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C. Inner Bound D;, on DoF Region

To derive an inner bound D;, C D on the DoF region, we
characterize the set of achievable imaging and communication
DoF pairs, defined as per Definition [7 for different decode-
and-image parameter values, i.e., Phase 1 duration Ti, illu-
mination symbols X(Tz), and choice of beamforming matrices.
The following theorem characterizes the inner bound D;,.

Theorem 2: An inner bound D, on the DoF region D is the
convex closure of the set comprising the following DoF pairs,

P6 = (dimga decomm) = (0,0),

le = (dimg7dcomm) = (Aimg70)7
P = (dimg, deomm) = (Aimgs Alomm) »
Pé = (dimg; deomm) = (Ai/mg7 Acomm) )

PZL = (dimg, dcomm) = (07 Acomm)7

where Aimg is the maximum imaging DoF as per Theorem E],
2 . i i
Aimg = X . mln{bRX . ‘QSQ?X‘ . XabTX . ‘ng‘)x‘
+erx - ’Q%y)’ +brx - ’Q%)X },

and A/

img i smaller than Aing, and equals
2 . i i\c
A-/ —X~mln{bRX"QS%?X"X,Z)T)(-‘Q%})

img —
+brx - ’Q%)X‘}’

+crx - ‘ng;i)
where ng}f) is the angular interval corresponding to the
portion of the imaging scene illuminated by the BS alone and

(4)
x = lim rank X(q;) .
()

c
Ky —00

The maximum possible communication DoF, Acomm, is

§'max{(TfT1)~a,Toﬁ},

‘Q%)X n Q%‘ erx - ‘ng;”

Acomm =

T =

brx - ’ngﬁ)x

}

PR

o= min{cTX . ’Q%(‘ ;bRX ! ‘Qg;g(

8 = min {CTX . ‘ng;( \ Q(Tc;i)

The term A/, is identical to Aomm, €xcept with
crX - ‘ng;i) +brx - ‘ng)xﬂ
hi= |1+ )
bRX . ‘QR)(‘
Proof: See Appendix [ |

We next evaluate the gap between the inner and outer
bounds, and show that it is vanishingly small in the regime
T — oo. Thus, decode-and-image is asymptotically optimal.
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D. Asymptotic Optimality of Decode-and-Image

Consider the limit of large channel coherence intervals,
T — oo. In this regime, we show that decode-and-image is
asymptotically optimal, i.e., the gap between the inner bound
Din from Theorem [2] and the DoF region D is vanishingly
small compared to the measure of D.

Theorem 3: Decode-and-image is asymptotically optimal
under the limit of large channel coherence intervals, i.e.,

D_Din
tim 2= Dal _

0,
T—o0 ‘D|

where |.A| denotes the Lebesgue measure of a set A,
Proof: See Appendix [C] [ ]
In the next section, we provide a system-level illustration
of our main results for the signal space model in Figure [2]

V. SYSTEM-LEVEL ILLUSTRATION OF MAIN RESULTS

To illustrate our main results from Section [[V] we consider
two simple cases. In the first case in Section [V-A] we char-
acterize the impact of the spatial overlap between the scene
and uplink channel clusters on the DoF region. We show that
increasing the spatial overlap between the scene and uplink
channel clusters results in better imaging performance at the
cost of a smaller decoding rate. Furthermore, in the special
case with zero spatial overlap between the scene and uplink
channel clusters, we show that both decode-and-image and
zero-forcing are optimal, i.e., achieve the outer bound Dy.

In the second case in Section we study the impact
of the aperture sizes at the BS and uplink user on the DoF
region. In the special case where the scene is only illuminated
by the uplink signals, we show that decode-and-image enables
opportunistic imaging for a small reduction in the uplink rate.

In both cases, we also show that decode-and-image outper-
forms schemes that do not jointly process the imaging and
communication signals. To that end, we compare the inner
bound from Theorem [2] with the achievable DoF region for
time division multiple access (TDMA) and the zero-forcing
successive interference cancellation (SIC) scheme from [25]].
TDMA corresponds to time-sharing between BS illumination
and uplink communication, whereas the zero-forcing scheme
from [25]] corresponds to spatially isolating the imaging and
communication signals. Unlike decode-and-image, neither of
the considered schemes utilize the uplink signals for imaging.

A. Case 1: Effect of Spatial Overlap

Consider a symmetric version of Figure [2| with identical
volumes of radii b at all nodes, i.e., byx = brx = crx = b.
By constraining all nodes to be symmetric, we aim to isolate
the impact of the channel angular intervals from our results
from Section [Vl To reduce the number of variables in the
DoF expressions, we further constrain all transmit and receive
angular intervals to have equal measure,

0684 ] = [0 = ]

(c)
2

= )Q%;( = |Qcomm| .

Hence, we shall quantify the effect of the angular domain
overlap, |Qimg N Qeomm |, between the scene and uplink chan-
nel clusters on the DoF region. Without loss of generality, for
the purpose of this example we shall assume |Qimg| < |Qcomm|-

We focus our attention on the regime where the space-time
DoF at the BS for imaging exceeds the number of parallel
channels for imaging. As per Theorem [T} the same requires

(4)
lim rank Xg;)

c
K x—o0

2 g + b [img ) Lo
- b- |Qimg| ’

or equivalently, coherence intervals of length 7" > 3, assuming
the matrices Xg) and ng ) are time-orthogonal.
In this regime, the outer bound in Theorem [] simplifies to

2
dimg < X . (2b . |Qimg| +b- |Qimg N Qcomm|)a
2T
dcomm S — b Qcomm )
b Qe
2T
dimg + dcomm S 7 b |Qimg U Qcomm‘ .
Moreover, the terms in the inner bound from Theorem [2] are
2b
Aimg = X : (2 . ‘Qimg| + |Qimg N Qcomm|)a
2b
Ai/mg; = X ’ (2 ’ ‘Qinga
2b
Acomm = 7 : max{(T - 2) : |Qcomm| , T |Qcomm \Qimg|} )
2b
Aomm = N max {(7'— 3) - [Qcomml s T [Qcomm \ Qimg]} -

To interpret the above bounds, we consider three represen-
tative overlap regimes:

1) the zero overlap regime with disjoint imaging and com-
munication angular spreads, i.e., Qimg N Qecomm = 0,

2) the partial overlap regime with non-disjoint angular

spreads, i.e., ; \ Q; C Q;, Vi # j € {img,comm},

3) the full overlap regime with fully overlapping angular

spreads, i.e., Qimg \ Qcomm = 0.

We plot the outer bound in the three regimes in Figure [3]fa)).

1) Zero Overlap Regime: In the zero overlap regime, no
uplink communication signals bounce off the imaging scene.
Thus, simple zero-forcing suffices to spatially isolate the
imaging and communication signals for scene reconstruction
and decoding respectively, and the outer bound is rectangular.

Moreover, since Qimg N Qecomm = @, both the inner and
outer bounds match in the zero overlap regime, i.e., Acomm =
Alomm and Aimg = Aj . Thus, decode-and-image is optimal
in this regime. Furthermore, zero overlap is sufficient for a
rectangular DoF region D for all coherence intervals T' > 2.

Remark 1: The DoF region D is rectangular if 7' > 2 and
|Qimg N Qcomm‘ =0.

However, since Qimg N Qcomm = (), the maximum imaging
DoF only corresponds to BS illumination and reception, i.e.,
Aimg = Afy = 3 (2 |Qimg|). Thus, while zero overlap
results in a rectangular DoF region, there is no imaging benefit
of uplink illumination in this case.
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Fig. 3: Illustration of bounds for Case 1 from Section (a) Outer bound D, in three overlap regimes. The imaging DoF
increases and uplink rate decreases with increasing overlap |Q;mg N Qeomm|. (b) Inner bounds (shaded) for decode-and-image,
TDMA and zero-forcing SIC, and outer bound (non-shaded) in partial overlap regime. Decode-and-image outperforms both

TDMA and zero-forcing SIC.

2) Partial Overlap Regime: When the imaging and com-
munication angular spreads are not disjoint, both the inner
and outer bounds exhibit an imaging DoF gain proportional to
the overlap |Qimg N Qcomm| compared to BS-only illumination.
However, the non-zero overlap also results in a smaller com-
munication DoF compared to the maximum possible. Thus,
the imaging benefit of uplink illumination comes at the cost
of a smaller uplink rate.

3) Full Overlap Regime: In the full overlap regime, the
maximum imaging DoF and reduction in uplink rate are
both largest since all uplink signals bounce off the scene.
Furthermore, the inner bound matches exactly with the outer
bound for all DoF pairs satisfying deomm < Acomm, 1-€.,
Din = Dout N {dcomm < Acomm}~

4) Comparison with Isolation-based Schemes: Finally, we
compare our inner bound with TDMA and zero-forcing SIC.
TDMA corresponds to time-sharing between the BS transmit-
ter and uplink user. Let v € [0, 1] denote the fraction of the
coherence interval allocated to the imaging flow. Via similar
analysis as Theorem [2] the inner bound for TDMA is

'Qimg|}a
-T

) -b- |Qcomm\Qimg|7

whereas the equivalent region for zero-forcing SIC is

2 (i)
. < . .
dimg < 3 rn1n{|ﬂ.mg K(l}ri rank (XwT)
2(1

dcomm S

dlmg

2(1 - )T
dcomm —
)

2 gl

-b- |Qcomm \Qimg| .

Both regions above are subsets of the rectangular region
{d,mg < 4b | Qimg } which in turn is a subset of D;, since
Alpg = 2L |Qimg| in Theorem Hence, decode-and-image al-
ways outperforms TDMA and zero-forcing SIC for all overlap
values, D, toma C Dinsic C Din.

In Figure , we compare Di, TomA» Din,sic, Din, and Doy

in the partial overlap regime. Clearly, joint processing results

in significant performance gains that are not achievable using
schemes that perform imaging and communication in isolation.

B. Case 2: Effect of Aperture Sizes

Consider the full overlap regime from Section [V-A] where
(a) the imaging and communication signals impinge onto the
BS over the same angles, Q( = Qyy, and (b) all uplink
signals illuminate the entire scene, ic., Q07 = Q% and
ng}f = (. To reduce the number of varlables in the DoF
expressions, we further constrain all angular spreads to have
equal measure, Q?X = ‘Q%)X’ = ‘Qg&’ = ‘Qg;( = Q.
These angular spread constraints allow us to isolate the impact
of the aperture sizes, brx, brx and crx on the DoF region.

As before, we consider the regime where the space-time
DoF at the BS for imaging exceeds the number of parallel
channels for imaging. As per Theorem [I] the same requires

(1) b b
lim rank X(Z;) > X +Orx + CTX,
K —o00 X brx

(c)
Ky y—o0

i.e., coherence intervals of length T° > [W%—‘,
assuming the matrices X( D and ng ) are time-orthogonal.

In this regime, the outer bound in Theorem [I] simplifies to

dim (brx +brx +crx) - 9],

=3
<=

dcomm > - min {CTX7 bRX} ' |Q‘ )

2T
dimg + dcomm S 7 . bRX : |Q| .

It is easy to see that the bound is rectangular under the
following condition.
Remark 2: The outer bound Dy, is rectangular iff

S brx +brx + crx

)

lbrx — crx]”
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Fig. 4: Comparison of inner (shaded) and outer (non-shaded)
bounds in partial overlap regime for Case 2 from Section
when bpx = 0. The inner bound is rectangular in this case.

where [2]" denotes the positive part of .

Note that the bound above diverges to co when the uplink
user has a larger spherical volume compared to the BS, i.e.,
crx > brx. Hence, Remarkis an impossibility result; when
crx > brx, the outer bound D,,; can never be rectangular.

We now consider the inner bound from Theorem ] The
terms in the inner bound are

2
Aimg = Y (brx +brx +crx) - 9],

2
Ai/mg =3 (brx +crx) -9,

2 .
Acomm = 3 (T —2) -min{crx,brx} - |9,
2
Aomm = X (T'—T1) - min {erx, brx } - 9,
b b
T = [ TX + RXJFCTX—‘ > 9.
brx

Note that when c¢rx = bryx, the two bounds match the
bounds for Case 1 in the full overlap regime. Furthermore, we
have the following condition on the inner bound.

Remark 3: The inner bound D, is rectangular iff by x = 0.

The brx = 0 case above is practically interesting since
it corresponds to no BS illumination, i.e., the scene is only
illuminated by the uplink signals. Imaging in this case is
opportunistic, in the sense that the BS aims to passively
image the scene being illuminated by the a-priori unknown
uplink signals. As per Remark [3] decode-and-image achieves a
rectangular subset of the outer bound, i.e., allows for imaging
and communication to co-exist with no trade-off, for only a
small reduction in the communication DoF (2 slots) compared
to the outer bound. We illustrate the outer and inner bounds
for the brx = 0 case in Figure

Finally, we compare our inner bound against TDMA and
zero-forcing SIC. Unlike Section [V-A] in this example neither
scheme can achieve a communication DoF greater than zero
since the set of interference-free angles is empty, Qg;g( \
Q&?X = (). Hence, decode-and-image trivially outperforms
both TDMA and zero-forcing SIC in this case.

VI. CONCLUDING REMARKS

In this paper, we quantified the fundamental performance
trade-offs between imaging and uplink communication sup-
ported simultaneously by a dual-function base station. To that
end, we proposed a unified signal space analysis framework
based on the degrees of freedom metric and a dual-function
joint processing scheme, decode-and-image. Our analysis and
proposed scheme highlighted the benefits of exploiting the
uplink signals for imaging, at the cost of increased cooperation
between the base station and uplink user. Moreover, our
proposed scheme was shown to outperform traditional schemes
that enable dual-function operation via spatial or temporal
isolation of imaging and communication signals.

A limitation of our present analysis and proposed scheme is
the requirement of prior knowledge about the communication
channel and path delay matrices at the base station. In future
work, we aim to extend our results to the “blind" setting with
no such prior knowledge. Similar to prior results on non-
coherent multi-user communication [35]], we expect a smaller
DoF region in this regime. Furthermore, we shall extend our
analysis to the downlink system configuration as well as hybrid
configurations with both uplink and downlink users.

APPENDIX A
PROOF OF THEOREMI]

Throughout this proof, we use the signal space notation
introduced in Section [ and illustrated in Figure

We begin by deriving the maximum imaging DoF. We
assume genie-aided knowledge of the uplink symbols Xgﬁ ) at
the BS. Hence, the BS performs imaging by subtracting out the
known communication signals Hkilwn ~X£ﬁ ) from the receive
measurements. The resulting measurements are H\(,fe)C -f+nr,

N7 T
. X(’)
H(z) — [ T ® IKRX . ( ) .

X(C)
Via n we have ding < 1m0y rank (H\(,?C),
TX? TX

T
(Krx ,M)—oc0
(0 Xy
rank (Hvec) =min { Krx - rank X(TC) ,rank .
T

On applying Lemma[T] well-known properties of the Khatri-
Rao product and the main results of [38]], we obtain

Prx’ *Ppx

vec

i) i)
Piy Pl
Prx «Prx

2% . (1)
dimg < lim min RX ’Q%)X‘ - rank Xg;) )
(K53 K% ) o A X7
(KRx,M)—>OO
2brx i 2crx eni 2brx §
i TR0 T el

which yields the desired imaging DoF upper bound. Compared
to BS-only illumination, genie-aided knowledge of uplink
symbols at the BS results in an imaging DoF gain proportional
to ’Q(Tc;z) due to additional uplink user illumination.

Next, let us consider communication. We assume genie-
aided knowledge of the reflectivities f at the BS receiver.
Hence, the BS simply decodes the communication message




using its knowledge of the channel H(®), which achieves the
communication DoF bound from Lemma [Il

Finally, the sum of the imaging and communication DoFs
is bounded by the total BS resource dgs from Definition @
The outer bound D, is given by the convex closure of DoF
pairs (dimg, dcomm) that satisfy the three DoF inequalities.

APPENDIX B
PROOF OF THEOREM [2]

We shall only show achievability of the corner points P} to
P/, since all other points in D;, are achievable either trivially
(point Py) or via time-sharing (interior of Dj,).

Point P} corresponds to imaging-only. Thus, we choose
Ty = T, i.e., the uplink user transmits pilots for the whole
coherence interval. The achievable communication DoF is
zero. Applying the imaging algorithm from Phase 1 over the
entire coherence interval yields dimg = Aimg, Where Ajmg is as
defined in the theorem statement. Hence, point P/ is achieved.

Point P corresponds to communication-only. Thus, we
choose ng) = 0, i.e., the BS transmitter remains silent for
the whole coherence interval. There are two possibilities here:

1) Use the first beamformer in Phase 2 with T = 0,
2) Use the second beamformer for an appropriate 77 > 0.

For the first choice, the achievable communication DoF is

decomm = % - min {CTX : ‘Q%( \Q(jf)r;l) ybrx - ’QEQC;( \QS-'Z{,)X‘} )

on applying Lemma [I] to the corresponding measurements.
For the second choice, we first find the optimal value of T}

to maximize the imaging DoF corresponding to the Phase 1

estimate f (1) To that end, since X(T) = 0, we have H\(,e)c =

((X(Tcl)) ®IKRX> : (P(Cm) P(Cm)) Hence, to achieve
the imaging DoF upper bound from , X(C) must satisfy
‘Q(cﬁz)

‘QRXHQRX‘ crx -
(i + (%)
‘QRX’ brx - ’QRX

Since the pilots X(TC1 ) are time-orthogonal, we choose

lim rank (X(C )

K,E”)(—wo

. ’Qg}WWQﬁﬁ' CTX"Qggn
e 00 brs - Q0
RX RX RX

as the smallest value required to satisfy the above condition.

Via Lemma the communication DoF is thus deomm =
@ min<erx - ‘QTX’,bRX ‘Q%;(’} Point P corre-
sponds to the maximum among the two DoF values.

We now consider points P, and P%, both of which cor-
respond to joint processing at the BS. To achieve P4, the
BS transmitter only beamforms along ng}g) the angular
interval corresponding to the portion of the imaging scene
illuminated by the BS alone. Thus, the imaging and com-
munication signals are spatially isolated, and the exact same
decoding scheme from the achievability of point P} can be
used. The achievable communication DoF is Acomm. Once
the uplink message is decoded, the imaging DoF dimg =

DRAFT

hm(K%)K(C)) rank( \(,e)c) = Allmg is subsequently

(KR)(J\/[)—)OO

achievable, where A’ is as defined in the theorem statement,

for H\(,e)C defined approprlately considering the BS transmitter
only beamforms along QT X) Note that A/ ¢ is smaller than
the maximum possible DoF Ajy,g due to the smaller angular
interval illuminated by the BS.

Finally, to achieve P}, we again consider the two choices
from the achievability of point P} for decoding the uplink
message. For the first choice, the communication DoF remains
unchanged. For the second choice, 77 must satisfy

crx - ‘Q(Tc;z) . ‘Qg)x

bRX"ng

Ty = |1+

Note that the above 73 value is larger than that for point
P/. Thus, the maximum of the resulting DoFs, Al .., is
smaller than the maximum possible DoF A ymm. Finally, the
subsequent imaging algorithm achieves the maximum possible
DOF Ajmg, similar to point P}. Hence, point P is achieved.

The inner bound D;, is given by the convex closure of the
points P, through P/.

APPENDIX C
PROOF OF THEOREM 3]

We begin by deriving the measures of the inner and outer
bounds from Theorems (1| and Via basic geometry, the
measure of the inner bound is given by

comm * Aimg - (Acomm Aéome) : (Aimg Afmg) 5

|Din| = A

where all symbols are defined as in Theorem@ Note that Ajmg
and (Ajmg — A,mg) are constants. Furthermore, under the limit
T — o0, the term (Acomm — AL,mm) i also a constant,

1

— (T =T o=

b\ (7Y 1)

where T) and 7] are the values of 7; from Theorem
corresponding to Acomm and AL ..., respectively. The term
« is as defined in Theorem [2] Hence, the measure of the inner

bound scales as |D;,| = O (T') due to the term Acomm.
Via a similar calculation, the outer bound has measure

+3a] ")’

Note that |Dout| above may be upper and lower bounded as

lim (Acomm — AL

comm) -
T—o0

o),

( [Aimgf 2L bpx- ‘ Q@ vl
c - Ajmg — 5

|Dout| —

2
2; - A|mg (Alrzng) S |Dout‘ S ? s Q.

Since the bounds on |Dq,| scale proportional to T, we have
|Dout| = O (T') as well. Since the DoF region D is sandwiched
between the inner and outer bounds, D;, € D C Dy, We must
thus have |D| = O (T).

Now, consider the gap between the inner and outer bounds,

2T

|Dout - Din‘ = (

b\ o — Acomm) 'Aimg +O(1),
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where all constants have been absorbed into the O (1) term.
Via the definition of Acomm from Theorem [2] we obtain

2T 2
<)\ ~aAcomm> = X~min{T1~a,T~(ozfﬁ)}.

Under the limit 7" — oo, the right hand side is constant,

2T}
lim S — Acomm> =2t
T— o0 )\

ca=0(1).

2T
A

Hence, the gap between the two bounds is also a constant,

ie.,

[Dout — Din] = O (1). Since D — Dy, C Doyt — Din, We

must thus have |D — D;,| = O (1), which vanishes compared
to the measure of D as T" — oo. Hence, decode-and-image is
asymptotically optimal.
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