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Abstract: This paper takes the first steps toward enabling wireless networks to perform both
imaging and communication in a distributed manner. We propose Distributed Simultaneous
Imaging and Symbol Detection (DSISD), a provably convergent distributed simultaneous
imaging and communication scheme based on the alternating direction method of multipliers.
We show that DSISD achieves similar imaging and communication performance as centralized
schemes, with order-wise reduction in computational complexity. We evaluate the performance
of DSISD via 2.4 GHz Wi-Fi simulations.
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1. INTRODUCTION

In recent years, there has been growing interest in perform-
ing imaging with wireless networks usually tailored for
communications (Vakalis et al., 2019; Guan et al., 2021).
Wireless networks are ubiquitous and scalable by design,
with powerful backend computing capabilities. This makes
it possible to perform imaging alongside communication on
a network-wide scale.

We study the problem of distributed simultaneous imaging
and communication. We consider the system configuration
shown in Fig. 1, with N ≥ 1 multiple-input multiple-
output (MIMO) base stations receiving transmissions from
an uplink user. The base stations aim to: (i) perform uplink
user symbol detection (communication) and (ii) estimate
the reflective response of scatterers in the environment
(imaging). We assume the base stations can cooperate
over a static, undirected graph G, which models limited
capacity backhaul links between the base stations. Due to
the limited capacity of backhaul links, the base stations
must perform the two operations (communication and
imaging) in a distributed manner with local processing.

We propose Distributed Simultaneous Imaging and Sym-
bol Detection (DSISD), a provably convergent distributed
algorithm for simultaneous imaging and communication.
DSISD is the distributed variant of decode-and-image, a
centralized algorithm previously proposed in (Mehrotra
and Sabharwal, 2022). We show that DSISD achieves sim-
ilar imaging and communication performance as decode-
and-image, with O(N) reduction in computational com-
plexity. We numerically evaluate the performance of
DSISD via 2.4 GHz Wi-Fi simulations.

To the best of our knowledge, we are the first to con-
sider the problem of distributed simultaneous imaging

⋆ This work was partially supported by the NSF Grant CNS-
1956297, and the Sustainable Futures Fund #919027.
© 2022 the authors. This work has been accepted to IFAC for
publication under a Creative Commons Licence CC-BY-NC-ND.

base 
station 

1
K

RX base 
station 

n

KRX

base 
station 

N
KRX

G

uplink 
user

⋯ KTX

imaging 
scene

backhaul links

Fig. 1. System configuration withN base stations receiving
transmissions from an uplink user. Base stations are
connected over static, undirected backhaul network G.
Base stations aim to collaboratively image the scene
and perform uplink user symbol detection.

and communication. Prior work has largely focused on
communication-only (no imaging) and imaging-only (a-
priori known communication data) problems. For instance,
distributed algorithms have been proposed for beamform-
ing, symbol detection, and interference alignment (Kumar
and Rajawat, 2016; Chen and Tao, 2017; Li et al., 2017),
and for radar imaging (Zabolotsky and Mavrychev, 2018;
Hu et al., 2021). In the absence of priors on the scatterers
in the environment and uplink data symbols, imaging-only
and communication-only problems are convex. Neverthe-
less, we show that simultaneous imaging and communica-
tion corresponds to a bi-convex problem. We show that
DSISD converges to the stationary points of the bi-convex
problem with sublinear rate and guarantees asymptotic
consensus across all N base stations.

This paper is organized as follows. In Section 2, we present
the system model and problem formulation for Fig. 1. We
present the proposed algorithm, DSISD, and associated
theoretical results in Section 4. In Section 5, we show



numerical results and simulations. We conclude the paper
in Section 6 with some directions for future work.

2. SYSTEM MODEL

Consider the system shown in Fig. 1 with N ≥ 1 base
stations receiving uplink transmissions. We adopt the sys-
tem model proposed in (Mehrotra and Sabharwal, 2022),
where a similar configuration with a single base station
was analyzed. In the sequel, we shall collectively refer to
the set of scatterers that reflect uplink transmissions to the
base stations as the imaging scene. We make the following
assumptions about the system operation.

Assumption 1:

• Scatterers in the imaging scene remain static for T
symbol durations, i.e., coherence interval.

• The uplink signalling is uni-polarized, with operating
wavelength λ.

• All N base stations are equipped with equal number of
receive antennas, KRX, and operate synchronously over
the same set of time-frequency resources.

Formally, let KTX denote the number of transmit antennas
at the uplink user, and let M denote the number of
scatterers in the imaging scene. We denote the reflective
response of the scatterers by a scene reflectivity vector
f ∈ CM . Furthermore, let XT denote the KTX × T matrix

of transmitted uplink symbols, and N
(n)
T denote the KRX×

T matrix of additive noise at the n-th base station, for all
n ∈ {1, · · · , N}. Then, within a coherence interval of T
symbol durations, the KRX × T matrix of receive symbols
at the n-th base station is given by

Y
(n)
T = P

(n)
RX diag

(︁
f
)︁(︁
PTX

)︁⊤⏞ ⏟⏟ ⏞
H

(n)
comm

XT +N
(n)
T , (1)

where the two matrices PTX and P
(n)
RX have sizes KTX ×M

and KRX ×M respectively The
(︁
k,m

)︁
-th element of each

path delay matrix is a scaled complex exponential that
depends on the signalling wavelength λ, and the locations
of the k-th antenna and m-th scatterer in the scene,

P (k,m) =
exp(−j

(︁
2π
λ

)︁
∥rk − r̃m∥2)

4π ∥rk − r̃m∥2
, ∀P ∈ {PTX, P

(n)
RX },

where rk and r̃m denote the position vectors of the k-th
antenna and m-th scatterer in the imaging scene.

In the next section, we formulate the distributed simulta-
neous imaging and communication problem.

3. PROBLEM FORMULATION

Given the system model in (1), the base stations aim to
collaboratively perform two functions:

(1) Imaging: Estimate the reflectivity vector f , and
(2) Communication: Estimate the uplink symbols XT .

Our goal is to enable both functionalities with only local

processing of the received symbols Y
(n)
T at every base

station n ∈ {1, · · · , N}. Specifically, we make the following
assumption on the prior knowledge at the base stations.

Assumption 2: The n-th base station has local knowl-

edge of received symbols Y
(n)
T , path delay matrices

{PTX, P
(n)
RX } and discrete set XT−T1 from which uplink

data symbols XT−T1 are drawn. Examples of XT are XT =

{±1}KTX×T and XT = {(±1±j)/
√
2}KTX×T for binary and

quadrature phase-shift keying (BPSK and QPSK).

We assume the first T1 symbols in XT =
[︁
XT1 , XT−T1

]︁
to

be pilot symbols known to all N base stations. The base
stations thus aim to collaboratively solve the problem:

min
XT−T1

∈XT−T1
,f

1
2

N∑︁
n=1

⃦⃦⃦
Y

(n)
T −P

(n)
RX diag

(︁
f
)︁(︁
PTX

)︁⊤
XT

⃦⃦⃦2
F
. (P1)

Problem (P1) is an integer constrained bi-convex prob-
lem, since the objective function is non-convex and non-
separable in f and XT−T1 , but convex in each variable
separately. We simplify the problem by relaxing the integer
constraints, i.e., solve the unconstrained problem.

To formulate the distributed version of (P1), we assume
the base stations are connected over a backhaul network,
modeled as a graph G.
Assumption 3: The graph G =

(︁
V, E

)︁
is static and

undirected, and every node knows who its neighbors are.

The distributed problem is formulated by defining local

variables f (n) and X
(n)
T−T1

, with the constraint that local
solutions of nodes connected by an edge in E are identical,

min
X

(n)

T−T1
,f(n)

1
2

N∑︁
n=1

⃦⃦⃦
Y

(n)
T −P

(n)
RX diag

(︁
f (n)

)︁(︁
PTX

)︁⊤
X

(n)
T

⃦⃦⃦2
F

s.t. X
(i)
T−T1

= X
(j)
T−T1

, f (i) = f (j), ∀
(︁
i, j
)︁
∈ E . (P2)

After solving (P2), nodes perform symbol detection via
zero-forcing (Tse and Viswanath, 2005),

X̂
(n)

T−T1
= ΠXT−T1

(︁
X

(n)
T−T1

)︁
, ∀n ∈ V,

where ΠS
(︁
·
)︁
denotes projection onto set S.

4. MAIN RESULTS

We begin by analyzing first-order optimality conditions
in Section 4.1 to characterize the number of uplink pi-
lots T1 required to solve (P1). We subsequently present
the proposed DSISD algorithm in Section 4.2, and derive
associated convergence guarantees in Section 4.3.

4.1 Optimality Conditions for Problem (P1)

Let the objective function in (P1) be denoted by

L
(︁
f,XT−T1

)︁
=

1

2

N∑︂
n=1

⃦⃦
Y

(n)
T −P

(n)
RX diag

(︁
f
)︁(︁
PTX

)︁⊤
XT

⃦⃦2
F
.

The KKT conditions for (P1) correspond to

∇fL
(︁
f∗, X∗

T−T1

)︁
= 0, ∇XT−T1

L
(︁
f∗, X∗

T−T1

)︁
= 0,

where f∗ and X∗
T−T1

are minimizers of (P1). Hence, the
stationary points of (P1) are given by

f∗ =
(︁
Himg|XT−T1

=X∗
T−T1

)︁†
vec
(︁
YT

)︁
, (2)

X∗
T−T1

=
(︁
Hcomm|f=f∗

)︁†
YT−T1 , (3)

where (·)† denotes the pseudo-inverse and vec(·) denotes
the vectorization operator. The matrix Himg is given by

Himg =
(︁
X⊤

T ⊗ INKRX

)︁(︁
PTX ∗ PRX

)︁
,



Algorithm 1 Distributed Simultaneous Imaging & Symbol
Detection (DSISD)

Input: PTX, P
(n)
RX , Y

(n)
T , XT−T1

, XT1
, K, ρX , ρf

1: for node n = 1 to N in V {in parallel} do

2: Initialize f
(n)
0 = D

(n)
f,0 = 0, X

(n)
T−T1,0

= D
(n)
X,0 = 0

3: for iteration k = 1 to K do
4: Transmit f

(n)
k−1, X

(n)
T−T1,k−1 to

{︁
m : (n,m) ∈ E

}︁
5: Receive

{︁
f
(m)
k−1, X

(m)
T−T1,k−1, ∀m : (n,m) ∈ E

}︁
6: Update reflectivities f

(n)
k by solving

min
f

⎧⎨⎩
ρf

2

⃦⃦∑︁
m

LG(n,m)f
(m)
k−1+LG(n, n)f+D

(n)
f,k−1

⃦⃦2
2

+ 1
2

⃦⃦
Y

(n)
T −P

(n)
RX diag

(︁
f
)︁(︁
PTX

)︁⊤
X

(n)
T,k−1

⃦⃦2
F

⎫⎬⎭
7: Update uplink symbols X

(n)
T−T1,k

by solving

min
X

{︄
ρX

2

⃦⃦∑︁
m

LG(n,m)X
(m)
T−T1,k−1+LG(n, n)X+D

(n)
X,k−1

⃦⃦2
2

+ 1
2

⃦⃦
Y

(n)
T −P

(n)
RX diag

(︁
f
(n)
k

)︁(︁
PTX

)︁⊤
X
⃦⃦2
F

}︄
8: Update dual variables via

D
(n)
f,k = D

(n)
f,k−1+

∑︁
m

LG(n,m)f
(m)
k +LG(n, n)f

(n)
k

D
(n)
X,k = D

(n)
X,k−1+

∑︁
m

LG(n,m)X
(m)
T−T1,k

+LG(n, n)X
(n)
T−T1,k

9: end for
10: end for
11: Output: f̂ = f

(N)
K , X̂T−T1

= ΠXT−T1

(︁
X

(N)
T−T1,K

)︁
where ⊗ and ∗ denote the Kronecker and column-wise
Khatri-Rao products, and In denotes the identity matrix
of size n × n. Matrices PRX, Hcomm and YT are concate-
nations of local path delay, channel and received symbol
matrices across all N base stations.

Note that the values of (2) and (3) are coupled. In the
following lemma, we characterize conditions under which
stationary points satisfying (2) and (3) are decoupled.

Lemma 1. Let NT = 0. If XT1

(︁
X∗

T1

)︁†
= IKTX

, or
equivalently, T1 ≥ KTX for time-orthogonal pilots, then (2)
and (3) are decoupled.

Proof. In the absence of noise, f∗ from (2) is given by

f∗ =
(︁
PTX ∗ PRX

)︁†(︁(︁
XT

(︁
X∗

T

)︁†)︁⊤ ⊗ INKRX

)︁(︁
PTX ∗ PRX

)︁
f.

The above expression is decoupled with the recovered

uplink symbols X∗
T when XT

(︁
X∗

T

)︁†
= IKTX

. Since data
portion of XT and recovered symbols X∗

T may differ, a

sufficient condition is thus XT1

(︁
X∗

T1

)︁†
= IKTX

. For time-
orthogonal pilot symbols, this condition is equivalent to

rank
(︁
XT1

)︁
= min

{︁
T1,KTX

}︁
≥ KTX =⇒ T1 ≥ KTX.

Following Lemma 1, we assume T1 = KTX in all subsequent
discussion. We now present the proposed DSISD algorithm
for solving (P2).

4.2 Distributed Simultaneous Imaging & Symbol Detection

The bi-convexity of the objective function L
(︁
f,XT−T1

)︁
naturally motivates using an alternating procedure to
solve (P2). The proposed DSISD algorithm (Algorithm 1)
is thus based on consensus ADMM (Boyd et al., 2011).

Let the concatenation of local solutions across all N nodes
be denoted by variablesX

⊤
=
[︁(︁
X

(1)
T−T1

)︁⊤
, · · · ,

(︁
X

(N)
T−T1

)︁⊤]︁
and f

⊤
=
[︁(︁
f (1)

)︁⊤
, · · · ,

(︁
f (N)

)︁⊤]︁
. Moreover, let

g
(︁
X, f

)︁
= 1

2

N∑︁
n=1

⃦⃦
Y

(n)
T −P

(n)
RX diag

(︁
f (n)

)︁(︁
PTX

)︁⊤
X

(n)
T

⃦⃦2
F

denote the objective function in (P2). Finally, LG ∈ RN×N

denotes the Laplacian matrix for G.
With above defined notation, (P2) may be recast as

min
X,f

g
(︁
X, f

)︁
s.t.

(︁
LG ⊗ IKTX

)︁
X = 0,

(︁
LG ⊗ IM

)︁
f = 0. (P3)

At every iteration k ∈ {0, 1, · · · }, DSISD performs the
following ADMM updates:

f
k+1

= argmin
f

A
(︁
X

k
, f ,D

k

X , D
k

f

)︁
, (A1)

X
k+1

= argmin
X

A
(︁
X, f

k+1
, D

k

X , D
k

f

)︁
, (A2)

D
k+1

f = D
k

f+
(︁
LG ⊗ IM

)︁
f
k+1

. (A3)

D
k+1

X = D
k

X+
(︁
LG ⊗ IKTX

)︁
X

k+1
, (A4)

whereA
(︁
X, f,DX , Df

)︁
denotes the augmented Lagrangian,

A
(︁
X, f,DX , Df

)︁
= g
(︁
X, f

)︁
+
ρf
2

⃦⃦(︁
LG ⊗ IM

)︁
f
⃦⃦2
F

+ρX
⟨︁
DX ,

(︁
LG ⊗ IKTX

)︁
X
⟩︁
+ρf

⟨︁
Df ,

(︁
LG ⊗ IM

)︁
f
⟩︁

+
ρX
2

⃦⃦(︁
LG ⊗ IKTX

)︁
X
⃦⃦2
F
.

The variables DX and Df denote scaled dual variables,
whereas ρX and ρf denote penalty parameters.

The updates in (A1) to (A4) can be performed locally
at every base station since g

(︁
X, f

)︁
and A

(︁
X, f,DX , Df

)︁
are separable across pairs of local solutions

(︁
f (n), X

(n)
T

)︁
.

Below, we derive performance guarantees for DSISD.

4.3 Performance Guarantees for DSISD

In Theorem 1 and Corollary 1, we characterize convergence
guarantees and algorithm complexity for DSISD.

Theorem 1. Let Assumptions 1, 2, 3 and the conditions
in Lemma 1 hold. Then, the updates of DSISD satisfy the
following properties:

Asymptotic consensus: All N nodes in G are in con-
sensus asymptotically, i.e.,

lim
k→∞

⃦⃦(︁
LG ⊗ IM

)︁
f
k+1⃦⃦

2
= 0,

lim
k→∞

⃦⃦(︁
LG ⊗ IKTX

)︁
X

k+1⃦⃦
F
= 0.

Convergence to stationary points: Limit points of it-

erates
(︁
X

k
, f

k
, D

k

X , D
k

f

)︁
converge to a KKT point of (P3).



Sublinear convergence rate: Iterates
(︁
X

k
, f

k
, D

k

X , D
k

f

)︁
converge to a KKT point of (P3) with rate O

(︁
1/K

)︁
in

terms of the optimality gap

Q
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁
=
⃦⃦(︁

LG ⊗ IKTX

)︁
X

k+1⃦⃦2
F
+⃦⃦

∇fA
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁⃦⃦2
F
+
⃦⃦(︁

LG ⊗ IM
)︁
f
k+1⃦⃦2

2

+
⃦⃦
∇XA

(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁⃦⃦2
F
.

Proof. Due to space constraints, we only provide a proof
sketch with key steps and ideas for the complete proof.

Result 1: Asymptotic Consensus

We seek to prove

lim
k→∞

⃦⃦
D

k+1

f −D
k

f

⃦⃦
2
= 0, lim

k→∞

⃦⃦
D

k+1

X −D
k

X

⃦⃦
2
= 0.

We show the above result via two intermediate steps.

Step 1: We first derive upper bounds on successive dual

update norms,
⃦⃦
D

k+1

f −D
k

f

⃦⃦
2

and
⃦⃦
D

k+1

X −D
k

X

⃦⃦
2
. Con-

sider the first-order optimality condition for (A2),

∇Xg
(︁
X

k+1
, f

k+1)︁
+ρX

(︁
L⊤
G ⊗ IKTX

)︁
D

k+1

X = 0.

Thus, an upper bound on
⃦⃦
D

k+1

X −D
k

X

⃦⃦2
F
is given by⃦⃦

D
k+1

X −D
k

X

⃦⃦2
F
≤

1/ρ2
X

λmin

(︁
L⊤

G LG

)︁ ⃦⃦∇Xg
(︁
X

k
, f

k)︁−∇Xg
(︁
X

k+1
, f

k+1)︁⃦⃦2
F
,

where we have used the fact that 1
2

⃦⃦(︁
LG ⊗ IKTX

)︁
X
⃦⃦2
F

is

λmin

(︁
L⊤
GLG

)︁
-strongly convex.

On appropriate substitutions, the right hand side can
be upper bounded in terms of successive primal update

norms,
⃦⃦
X

k+1−X
k⃦⃦2

F
,
⃦⃦
f
k+1−f

k⃦⃦2
F
. Thus, we next show

limk→∞
⃦⃦
f
k+1−f

k⃦⃦
2
= 0 and limk→∞

⃦⃦
X

k+1−X
k⃦⃦

F
= 0.

Step 2:We equivalently show
∞∑︁
k=1

⃦⃦
X

k+1−X
k⃦⃦2

F
< ∞ and

∞∑︁
k=1

⃦⃦
f
k+1 − f

k⃦⃦2
2
< ∞ via two sub-results.

(i) First, we show that the augmented Lagrangian is upper
bounded in terms of the primal update norms as

A
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁
−A
(︁
X

k
, f

k
, D

k

X , D
k

f

)︁
≤ −λmin

(︁
L⊤

G LG

)︁
2

(︁
ρX
⃦⃦
X

k+1−X
k⃦⃦2

F
+ρf

⃦⃦
f
k+1−f

k⃦⃦2
2

)︁
.

We show the above by upper bounding the left hand
side and using the first-order optimality conditions corre-
sponding to (A1) and (A2), the convexity of the objective
function g

(︁
X, f

)︁
in X (resp. f) given fixed f (resp. X),

as well as the λmin

(︁
L⊤
GLG

)︁
strong convexity of the terms

1
2

⃦⃦(︁
LG ⊗ IKTX

)︁
X
⃦⃦2
F
and 1

2

⃦⃦(︁
LG ⊗ IKM

)︁
f
⃦⃦2
2
.

(ii) Next, we show that the augmented Lagrangian is lower
bounded at every iteration, i.e.,

K∑︂
k=1

A
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁
> −∞,

K∑︂
k=1

A
(︁
X

k
, f

k
, D

k

X , D
k

f

)︁
> −∞.

To show the above result, we utilize the dual updates
in (A3) and (A4), as well as the equality⟨︁

C,D
⟩︁
=

1

2

(︃⃦⃦
C +D

⃦⃦2
F
−
⃦⃦
C
⃦⃦2
F
−
⃦⃦
D
⃦⃦2
F

)︃
,

for any arbitrary C and D.

On taking the limitK → ∞ in (i) and (ii) above, we obtain
∞∑︁
k=1

⃦⃦
X

k+1−X
k⃦⃦2

F
< ∞ and

∞∑︁
k=1

⃦⃦
f
k+1−f

k⃦⃦2
2
< ∞.

Result 2: Convergence to Stationary Points

The KKT conditions corresponding to (P3) are

∇Xg
(︁
X

∗
, f

∗)︁
+ρX

(︁
L⊤
G ⊗ IKTX

)︁
D

∗
X = 0,

∇fg
(︁
X

∗
, f

∗)︁
+ρX

(︁
L⊤
G ⊗ IM

)︁
D

∗
f = 0,(︁

LG ⊗ IKTX

)︁
X

∗
= 0,

(︁
LG ⊗ IM

)︁
f
∗
= 0.

We aim to show that the limit points corresponding to
Algorithm 1 satisfy the above KKT conditions. To that
end, observe that in the limit k → ∞, the update
steps (A1) and (A2) satisfy

∇XA = 0 =⇒ ∇Xg
(︁
X

∗
, f

∗)︁
+ρX

(︁
L⊤
G ⊗ IKTX

)︁
D

∗
X = 0,

∇fA = 0 =⇒ ∇fg
(︁
X

∗
, f

∗)︁
+ρf

(︁
L⊤
G ⊗ IM

)︁
D

∗
f = 0.

In addition, since limk→∞
⃦⃦(︁

LG ⊗ IM
)︁
f
k+1⃦⃦

2
= 0 and

limk→∞
⃦⃦(︁

LG ⊗ IKTX

)︁
X

k+1⃦⃦
F

= 0 (c.f., Result 1), con-
vergence to stationary points follows.

Result 3: Sublinear Convergence Rate

To derive convergence rates, we bound the optimality gap
defined in the theorem statement. Per Result 1, for large
enough ξ > 0, the optimality gap is upper bounded as

Q
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁
≤ ξ
⃦⃦
X

k+1−X
k⃦⃦2

F
+ξ
⃦⃦
f
k+1−f

k⃦⃦2
F
.

Moreover, for some large enough ν > 0, Result 1 implies

A
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁
−A
(︁
X

k
, f

k
, D

k

X , D
k

f

)︁
≤ −ν

⃦⃦
X

k+1−X
k⃦⃦2

F
−ν
⃦⃦
f
k+1−f

k⃦⃦2
F
.

On averaging over indices k = 1, · · · ,K, we obtain

1

K

K∑︂
k=1

Q
(︁
X

k+1
, f

k+1
, D

k

X , D
k

f

)︁
≤

ξ

Kν

(︁
A
(︁
X

1
, f

1
, D

1

X , D
1

f

)︁
−A
(︁
X

K+1
, f

K+1
, D

1

X , D
1

f

)︁)︁
.

In other words, the convergence in terms of the optimality
gap is sublinear with rate O

(︁
1/K

)︁
.

Remark 1. To the best of our knowledge, we are not
aware of any existing convergence analysis for ADMM that
is directly applicable to our problem, which is distributed,
integer constrained, bi-convex, and non-separable. On the
one hand, in (Xu and Yin, 2013), the authors consider
the centralized bi-convex and non-separable function class
and show sublinear convergence assuming the objective
function satisfies the Kurdyka–Lojasiewicz (KL) inequal-
ity. On the other hand, in (Hong et al., 2016), the authors
consider the distributed non-convex but separable function
class and show convergence to stationary points. Neither



analysis applies to our problem. However, in the absence
of integer constraints, our problem is closely related to
matrix factorization (MF). Hence, we have adapted prior
convergence analysis for MF (Hajinezhad et al., 2016;
Hajinezhad and Shi, 2018; Hong et al., 2017) to our prob-
lem. Since our problem is not identical to MF, our results
have certain minor differences. Specifically, convergence to
stationary points for MF only holds under certain regimes
on the ADMM penalty parameters (e.g., ρ > 1). No such
conditions are required in our results.
Remark 2. We remark that the applicability of ADMM to
bi-convex problems is well-known from (Boyd et al., 2011).
Since strong duality does not hold in bi-convex problems,
we can only demonstrate approximate convergence to KKT
points. To do so, we have used the optimality gap function
from (Hajinezhad et al., 2016; Hajinezhad and Shi, 2018;
Hong et al., 2017) since it quantifies both first-order opti-
mality conditions and the consensus error.

We now characterize the algorithm complexity for DSISD.

Corollary 1. Let the same assumptions as in Theorem 1
hold, and let ϵ > 0 be a desired accuracy. Then, the algo-
rithm complexity for DSISD is O

(︁
2|E|

(︁
M+KTX(T−T1) +(︁

M+KRXT
)︁(︁
MNKRXT

)︁)︁
/ϵ
)︁
.

Proof. The communication complexity is given by

O
(︁
2|E|

(︁
M+KTX(T−T1)

)︁
/ϵ
)︁
,

which corresponds to the total number of real entries trans-
ferred across the network G over K = O

(︁
1/ϵ
)︁
iterations as

per the convergence rate in Theorem 1.

The computational complexity corresponds to the total
cost of least-squares updates in every iteration and equals

O
(︁
N
(︁
M
(︁
KRXT

)︁2
+M2KRXT+KRXK

2
TX+KTXK

2
RX

)︁
/ϵ
)︁
.

Assuming the number of scatterers in the scene largely
dominates the number of transmitting or receiving anten-
nas, i.e., M ≫ KTX, KRX, the algorithm complexity is
given by the statement in the corollary.

For comparison, consider decode-and-image. The commu-
nication complexity corresponds to every node transferring

its KRX×T matrix of received symbols Y
(n)
T to the central

server, and thus equals O(NKRXT ). The computational
complexity corresponds to least-squares updates over N×
larger matrices, and equals O(KRXNTM(M +KRXNT )).
Hence, DSISD has O(N) smaller computational complex-
ity compared to decode-and-image.

In the next section, we numerically evaluate the perfor-
mance of DSISD and compare it with decode-and-image.

5. NUMERICAL EVALUATION

We simulate the 2D planar configuration shown in
Fig. 2(a) with N = 3 base stations receiving data trans-
missions from an uplink user in the 2.4 GHz Wi-Fi band
(λ = 0.125 m). We assume uncoded BPSK uplink trans-

missions, i.e., XT = {±1}KTX×T
, with coherence interval

T = 100 symbols. The uplink user is equipped with a
uniform linear array (ULA) with KTX = 4 antennas. The
base stations are each equipped with a ULA with KRX = 8
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Fig. 2. (a) Simulated configuration. (b) DSISD converges
sublinearly in terms of optimality gap Q for high
receive signal-to-noise ratio (SNR) values.

antennas, and are oriented at angles 0◦, −30◦ and 45◦ with
respect to the uplink user’s array.

For simplicity, we consider a star topology G, where the
base stations are all connected to a fusion node (not
illustrated in Fig. 2(a)). The fusion node only processes

the consensus information, i.e., local solutions f
(n)
k and

X
(n)
T−T1,k

, exchanged by base stations, and does not process

the received symbols Y
(n)
T directly. The updates at the

fusion node correspond to

f̃k =

−
∑︁
m

LG(N + 1,m)f
(m)
k−1+D

(N+1)
f,k−1

LG(N + 1, N + 1)
,

X̃T−T1,k = ΠXT−T1

(︄−
∑︁
m

LG(N+1,m)X
(m)

T−T1,k−1
+D

(N+1)

X,k−1

LG(N+1,N+1)

)︄
,

where the index (N + 1) denotes the fusion node. All
remaining steps are identical to Algorithm 1, with f and
X corresponding to the concatenation of local solutions
over all (N + 1) nodes in the network.

First, we numerically evaluate the validity of our con-
vergence analysis from Theorem 1. Fig. 2(b) shows the
optimality gap for DSISD at various receive signal-to-noise
ratio (SNR) values. We observe that the sublinear O(1/K)
convergence predicted by Theorem 1 holds in the high SNR
regime. In future work, we shall refine our convergence
analysis to incorporate the effect of SNR.

In Figs. 3(a), (b) and (c), we show that DSISD achieves
similar communication and imaging performance as decode-
and-image, with O(N) smaller computational complexity.
In Fig. 3(a), we show that DSISD achieves communication
bit error rate (BER) within 2 dB of decode-and-image. In
Fig. 3(b), we show that the imaging point spread functions
(PSFs) for DSISD are similar to those for decode-and-
image, with 3 dB main lobe widths of λ and 0.4λ in
range (x) and cross-range (y). Moreover, compared to
local imaging performed at every base station, DSISD
achieves resolution gains equivalent to jointly processing
measurements across all N = 3 base stations. Finally,
Fig. 3(c) shows that the computational complexity (in
total number of floating operations) for DSISD is O(N)
smaller compared to that of decode-and-image.
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Fig. 3. (a) DSISD achieves communication bit error rate (BER) within 2 dB of centralized performance across a wide
range of receive signal-to-noise ratio (SNR) values. (b) DSISD has similar imaging point spread functions (PSFs) as
decode-and-image, with 3 dB main lobe widths of λ and 0.4λ in range (x) and cross-range (y). Moreover, compared
to local imaging performed at every base station, DSISD achieves resolution gains equivalent to jointly processing
measurements across all N = 3 base stations. (c) DSISD has O(N) smaller computational complexity (in total
number of floating operations) compared to decode-and-image. All plots correspond to K = 30 iterations.

6. CONCLUDING REMARKS

We proposed DSISD, a provably convergent distributed
algorithm based on consensus ADMM for simultaneous
imaging and communication. We showed that DSISD
achieves similar imaging and communication performance
as centralized schemes with an order-wise reduction in
computational complexity. We shall extend our conver-
gence analysis to include the effects of integer constraints
and SNR in future work. Moreover, we shall explore accel-
erated variants of DSISD with faster convergence rates.
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