
Distributed Generalized Wirtinger Flow for

Interferometric Imaging on Networks ⋆

Sean M. Farrell Ashok Veeraraghavan
Ashutosh Sabharwal César A. Uribe

Department of Electrical and Computer Engineering, Rice University,
Houston, TX 77005, USA

(e-mail: {smf5, vashok, ashu, cauribe}@rice.edu).

Abstract: We study the problem of decentralized interferometric imaging over networks, where
agents have access to a subset of local radar measurements and can compute pair-wise correla-
tions with their neighbors. We propose a primal-dual distributed algorithm named Distributed
Generalized Wirtinger Flow (DGWF). We use the theory of low rank matrix recovery to show
when the interferometric imaging problem satisfies the Regularity Condition, which implies
the Polyak- Lojasiewicz inequality. Moreover, we show that DGWF converges geometrically
for smooth functions. Numerical simulations for single-scattering radar interferometric imaging
demonstrate that DGWF can achieve the same mean-squared error image reconstruction quality
as its centralized counterpart for various network connectivity and size.
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1. INTRODUCTION

The interferometric imaging problem consists of finding
an unknown complex signal from cross-correlation mea-
surements. This nonconvex problem arises in many ap-
plications such as radar and sonar interferometry, pas-
sive electromagnetic imaging, seismic imaging, and radio
astronomy (Yonel and Yazici, 2019; Yonel et al., 2020;
Vakalis et al., 2019; Garnier and Papanicolaou, 2009).
As the scale of these applications increases, solving the
interferometric imaging problem requires distributed or
decentralized optimization algorithms. In practice, solv-
ing the interferometric imaging problem in a distributed
manner may be beneficial when 1) sensing devices have
limited memory, 2) there are data privacy concerns, 3)
communication to a centralized node is unfeasible due to
communication constraints. Figure 1 shows a distributed
radar interferometric imaging scenario, where a single
transmitter illuminates a scene with a static reflectivity
function. The edges (dashed lines) represent the commu-
nication channels between receivers. The ith receiver can
only access its sampling matrix Ai and compute cross-
correlation measurements dij with the jth receiver if a
communication channel exits.

Many algorithms used to solve the centralized interfero-
metric imaging problem take inspiration from phase re-
trieval problems (Candés et al., 2013, 2015; Duchi and
Ruan, 2018). A gradient-descent-based iterative low rank
matrix recovery approach was proposed in Mason et al.
(2015); which lifts the solution set to convexify the prob-
lem, leading to increased complexity. Recently, Yonel and
Yazici (2019) and Yonel et al. (2020) proposed a general-
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Fig. 1. Illustration of multistatic radar interferometric
imaging scene (a). In the distributed network each
agent i can access a subset of the data (i.e. [Ai,dij ]).
Scene reflectivity function used in numerical simula-
tions (b), 12×12 image with a pixel spacing of 2.4 m.

ized Wirtinger flow (GWF) algorithm to solve the inter-
ferometric problem, which operates in the signal domain
resulting in improved computation and memory efficien-
cies. They show that the GWF algorithm can achieve a
linear convergence rate under specific conditions on the
measurements (Yonel and Yazici, 2019). Demanet and
Jugnon (2017) solve the centralized interferometric imag-
ing problem using a lifting approach with a graph to
encode the available interferometric measurements. They
establish a relationship between graph connectivity and
the robustness of recovery.

Recently, distributed optimization techniques have been
proposed to solve the phase retrieval problem. Zhao et al.
(2018) introduced the distributed Wirtinger flow algo-
rithm (DWF) to solve the phase retrieval problem using
a perturbed proximal primal-dual approach. The authors
in Zhao et al. (2018) show that DWF can converge to



an approximate solution at a sublinear rate. Chen et al.
(2020) introduced a distributed subgradient method to
solve weakly convex and non-smooth problems such as the
phase retrieval problem. They report a linear convergence
rate, using the gradient norm as a stopping criterion when
the function is locally sharp near a minimizer.

In this work, to the best of our knowledge (Demanet
and Jugnon, 2017; Yonel and Yazici, 2019; Yonel et al.,
2020), we present the first distributed nonconvex primal-
dual optimization algorithm to solve the interferometric
imaging problem. The contributions of this paper are:

• We show that the Polyak- Lojasiewicz (PL) inequality
is satisfied for the interferometric imaging problem
when its lifted forward model meets the restricted
isometry properties of rank-1 positive semi-definite
matrices with a sufficiently small restricted isometry
constant.

• We show that after proper initialization the Dis-
tributed Generalized Wirtinger Flow (DGWF) algo-
rithm converges linearly to a global optimum when
the cost function is smooth and PL inequality is
satisfied.

• We provide numerical evidence that the DGWF algo-
rithm can achieve comparable image reconstruction
quality to centralized methods (Yonel and Yazici,
2019; Yonel et al., 2020) for radar interferometric
imaging applications.

This paper is organized as follows. Section 2 provides the
problem formulation. Section 3 introduces the proposed
DGWF algorithm. Section 4 shows linear convergence
for the DGWF algorithm. Numerical simulations are in
Section 5, and Section 6 concludes this paper.

2. PROBLEM FORMULATION

Suppose the desired signal is denoted by x ∈ C
K , the

interferometric imaging problem can be formulated as:

find x

subject to dsij = ⟨asi , x⟩⟨asj , x⟩,
for i = 1, 2, ..., N ; j ̸= i; s = 1, 2, ..., S

where dsij ∈ C is the sth cross-correlation sample for

the ith and jth sensing processes, asi ∈ C
K is the sth

sampling vector for the ith sensing process, (·) is the
complex conjugate, and ⟨., .⟩ denotes the inner product.

Now, consider a connected network with N agents defined
by the undirected graph G = {V, E} with |V| = N vertices
and |E| = E edges. We assume the graph G does not
contain self-loops and let L denote the graph’s Laplacian
matrix. Agents try to cooperatively solve the following
optimization problem,

min
x∈CK

f(x) :=
1

N

N
∑

i=1

fi(x). (1)

Let X ∗ and f∗ denote the optimal set and the minimum
function value for optimization Problem (1). In practice
the cross-correlation measurements dsij are assumed to be
corrupted with additive i.i.d. noise. To recover x, each
agent i formulates a local least squares error minimization
objective function defined as,

fi(x) =
1

2|Ni|Si

∑

j∈Ni

Si
∑

s=1

|dsij − ⟨asi , x⟩⟨asj , x⟩|2, (2)

which can be thought of as the sensing process as-
sociated with the ith agent of the network (Yonel
and Yazici, 2019). Agent i’s neighbors are defined as

Ni ≜ {i ∈ V|j ∈ V, (i, j) ∈ E}. The term Si denotes the
number of cross-correlation samples agent i measures.
Thus the graph influences the optimization process and
the number of cross-correlation measurements that can be
computed.

Next we state two technical assumptions that will help us
later prove convergence for the DGWF algorithm.

Assumption 1. The undirected graph G is connected.

Assumption 2. The optimal set X ∗ of (1) is nonempty and
f∗ > −∞.

Exploiting the structure of the graph Laplacian L, we
can thus write the distributed interferometric imaging
Problem (1) equivalently as,

min
x∈CNK

f̃(x) (3)

s.t. Lx = 0NK ,

where x = col(x1, ..., xN ), f̃(x) =
∑N

i=1 fi(xi), and L =
L ⊗ IK where L is the graph Laplacian and ⊗ is the
Kronecker product (Uribe et al., 2021).

3. DISTRIBUTED GENERALIZED WIRTINGER
FLOW ALGORITHM

Recently, Yi et al. (2021) presented an algorithm for dis-
tributed nonconvex optimization that converges linearly
if the local and global cost function is smooth and satis-
fies the PL inequality, respectively. We propose a primal-
dual algorithm inspired by Yi et al. (2021) that uses
Wirtinger derivatives (Yonel and Yazici, 2019). We call the
proposed algorithm the Distributed Generalized Wirtinger
Flow (DGWF) algorithm.

Following the algorithm formulation presented in Yi et al.
(2021), the augmented Lagrangian function for (3) can be
written as,

A(x,u) = f̃(x) +
λ1

2
x
⊤
Lx + λ2u

⊤
L

1/2
x, (4)

where λ1 > 0 and λ2 > 0 are the regularization param-
eters, u ∈ C

NK is the dual variable, and the constraint

Lx = 0NK is replaced with its equivalent L
1/2

x = 0NK

since its nulls are identical (Uribe et al., 2021). Yi et al.
(2021) proposed the following first order primal-dual gra-
dient method to solve (4),

xt+1 = xt −
η

∥x0∥
(λ1Lxt + λ2L

1/2
ut + ∇f̃(xt)) (5)

ut+1 = ut +
η

∥x0∥
λ2L

1/2
xt, ∀xt ∈ C

NK , (6)

where η > 0 is the step size and ∥x0∥ is the norm of

the initial estimate. If we denote vt = L
1/2

ut, we can
rewrite (5) and (6) as,

xt+1 = xt −
η

∥x0∥
(λ1Lxt + λ2vt + ∇f̃(xt)) (7)



Algorithm 1 Distributed Generalized Wirtinger Flow

Input: parameters λ1 > 0, λ2 > 0, and η > 0
Initialize: xi,0 ∈ C

K with (9) and vi,0 = 0K , ∀i ∈ [N ].
1: for t = 0, 1, ... do
2: for i = 1, ..., N in parallel do
3: Send xi,t to Ni and receive xj,t from j ∈ Ni;

Primal variable update:
4: xi,t+1 = xi,t − η

∥xi,0∥ (λ1

∑

j∈Ni
Lijxj,t + λ2vi,t +

∇fi(xi,t));
Dual variable update:

5: vi,t+1 = vi,t + η
∥xi,0∥λ2

∑

j∈Ni
Lijxj,t;

6: end for
7: end for
8: return xt

vt+1 = vt+
η

∥x0∥
λ2Lxt, ∀xt ∈ C

NK ,
N
∑

j=1

vj,0 = 0K . (8)

For initializing the DGWF algorithm we adopt the spectral
initialization scheme used in Yonel and Yazici (2019);
Yonel et al. (2020). The initial estimate x0 ∈ C

K is the
rank-1, positive semi-definite matrix approximation of the
lifted backprojection estimate X̂ ∈ C

K×K ,

X̂:=
1

N

N
∑

i=1

1

2|Ni|Si

∑

j∈Ni

Si
∑

s=1

dsija
s
i (a

s
j)

H+dsija
s
j(a

s
i )

H , (9)

where x0 =
√
λ0v0 with λ0,v0 being the leading

eigenvalue-eigenvector pair of X̂ and (·)H denotes the
complex conjugate transpose. The lifted formulation of the
ith and jth sensing processes is F s = asj(a

s
i )

H . Let d =

[d1ij , d
2
ij , ..., d

S
ij ] ∈ C

S denote the vector of cross-correlated

measurements. The lifted forward model F : CK×K → C
S

is defined as,

d = F(X̂), (10)

where F is a [S × K2] matrix with F s as its rows

and X̂ concatenated into a vector. This spectral method
initializes the iterates within a bounded set i.e., X =
{x | ∥x∥2 ≤ τ}, where τ is a constant dependent on the
restricted isometry constant over rank-1 matrices (RICδ1)
for the lifted forward model (10) (Yonel and Yazici, 2019,
Theorem 4.6). The initial estimate is distributed to all
agents, i.e., x0 = x1,0 = x2,0 = ... = xi,0.

Remark 3. The spectral initialization (9) computes a
rank-1 approximation to a low rank matrix recovery prob-
lem using all the local cross-correlation measurements
stored at every agent. The lifted backprojection estimate
X̂ is an average over all local lifted backprojection esti-
mates. Thus, one possible way to create a distributed ini-
tialization method would be to run a distributed averaging
algorithm over the local lifted backprojection estimates
(Olshevsky and Tsitsiklis, 2009). Analysis of how dis-
tributed initialization schemes effect the DGWF algorithm
is left for future work.

The DGWF algorithm using spectral initialization (9) and
updates (7), (8) is shown in pseudo-code as Algorithm 1.

The gradient ∇fi(xi,t) is explicitly found by computing
the Wirtinger derivative using the local information agent
i can access (Yonel and Yazici, 2019). For the cross-

correlation between agent i and agent j with (i, j) ∈ E
the gradient is

∇fi(xi,t)=∇





1

2|Ni|Si

∑

j∈Ni

Si
∑

s=1

|dsij−⟨asi , xi,t⟩⟨asj , xi,t⟩|2




=
1

2|Ni|Si

∑

j∈Ni

Si
∑

s=1

esij
(

asj(a
s
i )

Hxi,t

)

+esij
(

asi (a
s
j)

Hxi,t

)

(11)

where esij =
(

(asi )
Hxi,t(xi,t)

Hasj − dsij
)

.

In the next section, we show that when the cost function
is smooth and satisfies the PL inequality, the DGWF
algorithm converges linearly to a minimum.

4. CONVERGENCE ANALYSIS

We follow Yonel and Yazici (2019) geometric analysis
of the interferometric imaging problem to show when
the lifted forward model’s restricted isometry properties
over rank-1 positive semi-definite matrices satisfy the
Regularity Condition (RC). Then we extend our analysis
to show that the RC implies the PL inequality. Finally,
convergence of the DGWF algorithm is established.

The RC bounds the local smoothness and curvature of a
function, meaning that the function’s gradients are well
behaved.

Definition 4. (Regularity Condition): A function f satis-
fies the RC(α,β) with α, β > 0 if,

⟨∇f(z), z − x∗⟩ ≥ 1

α
||∇f(z)||2 +

1

β
||z − x∗||2, (12)

for all z ∈ R
2K and x∗ being a minimizer of f .

Next, the PL inequality is defined. The PL inequality does
not require convexity but implies that every stationary
point is a global minimizer.

Definition 5. (Polyak- Lojasiewicz Inequality): The func-
tion f satisfies the PL inequality if, for some µ > 0,

1

2
||∇f(z)||2 ≥ µ(f(z) − f∗), ∀z ∈ R

2K , (13)

where f : R2K → R is continuously differentiable and f∗ =
minz∈R2K f(z). When this condition holds the function is
µ-PL.

We begin by establishing the relationship between the
lifted forward model and the RC using the restricted isom-
etry property (RIP). The RIP arose from the compressed
sensing field as a way to measure how close a matrix
is to an orthonormal system given a certain degree of
sparsity (Candes and Tao, 2005).

Definition 6. (Restricted isometry property): Let A :
C

M×K → C
S denote a linear operator. Without loss

of generality assume M ≤ K. For every 1 ≤ r ≤ M ,
the r-restricted isometry constant (RIC) is defined as the
smallest δr < 1 such that

(1 − δr)∥X∥2F ≤ ∥A(X)∥2 ≤ (1 + δr)∥X∥2F (14)

holds for all matrices X of rank at most r, where
∥X∥F =

√

Tr(XHX) denotes the Forbenius norm.

From (Yonel and Yazici, 2019, Theorem 4.6), when the
lifted forward model F satisfies the RIP condition over



rank-1 positive semi-definite matrices with a RICδ1 <
0.214 then Definition (4) surely holds with any α, β satis-
fying,

1

α∥x∗∥2 +
c2(δ1)∥x∗∥2

β
≤ h(δ1) := (1 − δ2)(1 − ϵ)(2 − ϵ),

(15)

where ϵ2 = (2+δ1)(1−
√

1 − δ1
1+δ1

)+
δ21
8 , δ2 =

√
2(2+ϵ)δ1√
(1−ϵ)(2−ϵ)

,

and c(δ1) = (2 + ϵ)(1 + ϵ)(1 + δ1).

4.1 RC & PL Inequality

In this subsection we restate (Yazdani and Hale, 2021,
Lemma 1) in Lemma 7 which shows that the RC implies
the PL inequality.

Lemma 7. (Yazdani and Hale (2021), Lemma 1). Let f
have a Lipschitz continuous gradient with Lipschitz con-
stant Lf and the set X ∗ = {x∗ ∈ R

2K |∇f(x∗) =
0} is nonempty and finite. If f is RC(α,β), then f is
1/(β2Lf )-PL.

4.2 DGWF Algorithm Convergence Analysis

Problem (2) is not complex differentiable due to the
mapping from C

K to R (Kreutz-Delgado, 2009). In the
DGWF algorithm Wirtinger derivatives are used because
they provide an elegant way to compute partial derivatives
that are differentiable in the complex domain. However,
for the convergence analysis it is more convenient to
work in the real-valued domain. Thus we equivalently
reformulate (2) to the real-valued domain where it is
differentiable (Kreutz-Delgado, 2009). Without loss of
generality, we use (2) for the ith and jth sensing processes

and define x̃ ≜ [Re(x); Im(x)] ∈ R
2K , dsR = Re(dsij) ∈ R,

dsI = Im(dsij) ∈ R, and

Ãs
R ≜

[

Ãs
1 Ãs

2

−Ãs
2 Ãs

1

]

∈ R
2K×2K , Ãs

I ≜

[

Ãs
2 −Ãs

1

Ãs
1 Ãs

2

]

∈ R
2K×2K ,

with Ãs
1 = Re(asi )

⊤Re(asj) + Im(asi )
⊤Im(asj), and Ãs

2 =

−Re(asi )
⊤Im(asj) + Im(asi )

⊤Re(asj), for s = 1, 2, ..., S. We
can equivalently rewrite (2) in terms of x̃ as

f(x̃) ≜
1

2S

S
∑

s=1

((

dsR−x̃⊤Ãs
Rx̃

)2
+
(

dsI−x̃⊤Ãs
I x̃

)2)
. (16)

Lemma 8. Function f(x̃) has Lipschitz gradient on the set

X̃ ≜ {x̃ | ∥x̃∥2 ≤ τ} with Lipschitz constant given by

Lf ≜
1

S

S
∑

s=1

(

dsRσmax(Ãs
R) + dsIσmax(Ãs

I)

+3τ
(

σ2
max(Ãs

R) + σ2
max(Ãs

I)
))

. (17)

Proof. Using the definition of the Lipschitz continuity, for
∀u, v ∈ X̃ we have

∥∇f(u) −∇f(v)∥

≤ 1

S

∥

∥

∥

∥

∥

S
∑

s=1

(

(dsR − u⊤Ãs
Ru)Ãs

Ru− (dsR − v⊤Ãs
Rv)Ãs

Rv

+(dsI − u⊤Ãs
Iu)Ãs

Iu− (dsI − v⊤Ãs
Iv)Ãs

Iv
)

∥

∥

∥

∥

∥

≤ 1

S

S
∑

s=1

(

dsRσmax(Ãs
R) + ∥u∥2σ2

max(Ãs
R)

)

∥u− v∥

+
1

S

S
∑

s=1

∥

∥

∥
u⊤Ãs

RuÃ
s
Rv − u⊤Ãs

RvÃ
s
Rv

∥

∥

∥

+
1

S

S
∑

s=1

∥

∥

∥
u⊤Ãs

RvÃ
s
Rv − v⊤Ãs

RvÃ
s
Rv

∥

∥

∥

+
1

S

S
∑

s=1

(

dsIσmax(Ãs
I) + ∥u∥2σ2

max(Ãs
I)
)

∥u− v∥

+
1

S

S
∑

s=1

∥

∥

∥
u⊤Ãs

IuÃ
s
Iv − u⊤Ãs

IvÃ
s
Iv
∥

∥

∥

+
1

S

S
∑

s=1

∥

∥

∥
u⊤Ãs

IvÃ
s
Iv − v⊤Ãs

IvÃ
s
Iv
∥

∥

∥

≤ 1

S

S
∑

s=1

(

dsRσmax(Ãs
R) + dsIσmax(Ãs

I)

+3τ
(

σ2
max(Ãs

R) + σ2
max(Ãs

I)
))

∥u− v∥.
Proposition 9. Let the lifted forward model (10) satisfy
the RIP condition over rank-1 positive semi-definite ma-
trices with a RICδ1 ≤ 0.214 (Yonel and Yazici, 2019, The-
orem 4.6) and Assumptions 1-2 hold. Moreover, let {x̃k}
be the sequence generated by Algorithm 1 with λ1 > 0,
λ2 > 0, η > 0 applied to (16). Then, there exists a c1 > 0,
and κ ∈ (0, 1) such that,

∥x̃t − ¯̃xt∥2 +N(f(¯̃xt)− f∗) ≤ (1−κ)tc1, ∀t ∈ N0. (18)

where ¯̃xt = 1
N (1⊤

N ⊗ IK)x̃t and ¯̃xt = 1N ⊗ ¯̃xt.

Proof. It follows from Lemma 8 that (16) is smooth with
Lipschitz constant (17). Moreover, if the lifted forward
model (10) satisfy the RIP condition over rank-1 positive
semi-definite matrices with a RICδ1 ≤ 0.214 (Yonel and
Yazici, 2019, Theorem 4.6) it holds that (16) is RC, and
thus the PL inequality holds from Lemma 7. Finally, the
desired result follows from (Yi et al., 2021, Theorem 2).

Remark 10. Due to space limitations the constants λ1, λ2,
η, c1 and κ are not explicitly stated. However they can be
directly derived from (Yi et al., 2021, Theorem 1).

5. NUMERICAL SIMULATIONS

We consider the system model in Fig. 1, where N in-
dependent receivers encircle a region of interest to be
imaged with prxi ∈ R

3 being the spatial position of the
ith receiver. A single transmitter of opportunity at a
known spatial position ptx ∈ R

3 illuminates the imaging
scene. The imaging scene domain D can be discretized
into K voxels at positions x ∈ R

K×3. The reflectivity
function ρ(x) ∈ C

K for the imaging scene is assumed to be
nonfluctuating. Assuming the Born approximation (single
bounce) and free-space propagation the frequency domain
Green’s function solution to the Helmholtz equation for
receiver i can be written as (Yonel and Yazici, 2019),



hi(ωs) := J(ωs)

∫

D

e−iωs
φi(x)

c0 αi(x, p
tx)ρ(x)dx, (19)

where ωs is the sth discretized temporal frequency of
the transmitted signal, J(ωs) is the transmitted signal
power, c0 is the wave velocity, αi(x, p

tx) models the
propagation attenuation and hardware gains, ρ(x) is the
scene reflectivity at position x ∈ D. The ϕi(x) = |x−prxi |+
|x−ptx| is the bi-static delay term due to propagation. The
radar interferometric imaging model for the sth temporal
frequency sample of the ith and jth receivers in the
multistatic radar setup can be formulated as,

dij(ωs) =
K
∑

k=1

αi(xk, p
tx)e−iωs(|xk−prx

i |+|xk−ptx|)/c0ρk×

J(ωs)J(ωs)
K
∑

k′=1

αj(xk′ , ptx)eiωs(|xk′−prx
j |+|xk′−ptx|)/c0ρk′ .

(20)

From (20) the linear sampling vectors asi and asj can be
formulated as,

asi =
[

J(ωs)αi(xk, p
tx)e−iωs(|xk−prx

i |+|xk−ptx|)/c0
]K

k=1

(21)

asj =
[

J(ωs)αj(xk, p
tx)e−iωs(|xk−prx

j |+|xk−ptx|)/c0
]K

k=1
.

(22)

Combing (20) - (22) the radar interferometric imaging
model can be vectorized as,

dij(ωs) = ⟨asi , ρ⟩⟨asj , ρ⟩, s = 1, ..., S; i = 1, ..., N, j ̸= i

(23)

The simulated true scene reflectivity function and mul-
tistatic radar setup is shown in Fig. 1. Unless otherwise
stated the following assumptions and parameters are as-
sumed: Born approximation, S = 64 frequency samples,
N = 35 receivers, tmax = 4000 for GWF, DGWF max
iterations, stepsize ηt = min(1 − exp(−t/τ0), 0.01) where
τ0 = 3300, center frequency 12 GHz, bandwidth 60 MHz,
image is 12 × 12 (K = 144) with spacing ∆ = 2.4 m since
Fourier resolution limit ∆res = 2.5 m, graph G is small-
world with a 0.1 probability of connection, λ1 and λ2 = 1,
signal-to-noise ratio is 50 dB, and transmitter and receiver
gains are 100 dB.

The mean square error (MSE): MSE ≜ 1
K

∑K
k=1(ρi,k−ρ∗k)2

is used to quantitatively determine the accuracy of the
reconstructed image ρi to the true image ρ∗. For the pro-

posed DGWF algorithm the consensus error ≜
∑N

i=1 ||ρi−
1
N

∑N
i=1 ρi||2. For each simulation the DGWF algorithm is

compared to the centralized GWF algorithm (Yonel and
Yazici, 2019; Yonel et al., 2020) using the same cross-
correlation measurements as defined by the graph.

5.1 Effect of Graph Connectivity

We examine the effects graph connectivity has on the
DGWF algorithm’s reconstruction performance. Since the
graph specifies how agents communicate and form cross-
correlation measurements, we expect the speed of con-
vergence and image reconstruction quality to increase as

(a)

(b) (c)

Fig. 2. Comparison between the number of iterations t
to reach an MSE ε = 10−5 and the connectivity
probability of a small-world graph with 35 agents (a).
GWFcg is GWF using a complete graph. MSE (b) and
consensus error (c) per iteration.

graph connectivity increases. To test the relationship be-
tween graph connectivity and reconstruction performance,
we vary the probability of connection for small-world
graphs (Watts and Strogatz, 1998) consisting of 35 agents
and record the number of iterations it takes DGWF and
GWF to each achieve an MSE of 10−5. For an addi-
tional benchmark, we compare DGWF and GWF against
GWFcg, which is the GWF algorithm using a complete
graph. Figure 2a shows that decreased graph connectivity
results in longer convergence times for GWF and DGWF.
However, after the small-world network’s connectivity pa-
rameter is greater than 0.4 there is a negligible change
in the number of iterations required to reach the desired
reconstruction accuracy.

Additionally, we run the DGWF and GWF algorithms
for 105 iterations. Figure 2b shows that DGWF takes
longer to converge compared to GWF because DGWF
needs to distribute local information between neighboring
agents. The DGWF algorithm reaches a competitive MSE
relative to the GWF algorithm without centralized data
processing. Figure 2c shows that the proposed DGWF
algorithm reaches consensus.

5.2 Effect of Number of Receivers

Next, we analyze the effect the number of receivers has on
the convergence behavior for the DGWF and GWF algo-
rithms. We vary the number of agents between 5 and 40
and record the MSE for the DGWF and GWF algorithms
after 4000 iterations. Since the number of receivers directly
influences the number of cross-correlation measurements
each algorithm can compute, we expect that as the number
of receivers decreases, the MSE will increase. In Fig. 3a the
MSE curves for both the DGWF and GWF algorithms
show that decreasing the number of receivers increases



(a)

(b) 15 receivers. (c) 40 receivers.

Fig. 3. Comparison of reconstruction MSE vs. the number
of receivers (a). DGWF reconstructions after 4000
iterations for 15 (b) and 40 (c) receivers.

the reconstruction MSE. Furthermore, Fig. 3a suggests
that after approximately 30 receivers, the addition of more
receivers does not significantly decrease the reconstruction
error. Example image reconstructions for the DGWF algo-
rithm for 15 and 40 receivers are presented in Fig. 3b-3c. It
can be observed that when the number of receivers is below
30, the DGWF algorithm reconstructs noticeably degraded
images. However, when the number of receivers exceeds
30, the DGWF algorithm achieves significantly accurate
image reconstructions.

6. CONCLUSION

We studied the distributed interferometric imaging prob-
lem over networks. We combine GWF theory (Yonel and
Yazici, 2019) and distributed optimization methods to
create the first distributed interferometric imaging algo-
rithm named the Distributed Generalized Wirtinger Flow
(DGWF) algorithm. The DGWF algorithm converges lin-
early to a global optimum with proper initialization and
when the cost function is smooth and satisfies the PL
inequality. We demonstrate the capabilities of DGWF
through numerical radar interferometric imaging simula-
tions. Future work will study convergence analysis for
accelerated methods, time-varying directed graphs, and
distributed initialization methods.
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