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Abstract—To manage the power system well, it is important to
keep the balance between the electricity supply and its demand.
For many utilities, consumers need to pay additional money for
the electricity during the peak time on days with the highest
demands - coincident peak pricing. Therefore, if the consumers
are informed the daily load peak a day or hours in advance, such
surcharges may be avoided. The accurate forecasting of load peak
time not only helps to provide a reliable electricity supply, but
also be useful to reduce the cost of electricity for consumers.
In this paper, we study the historical data and then build the
classification models for winter and summer to predict the time
of daily peaks 24 hours ahead. Several classification algorithms,
including Naive Bayes, SVM, Random Forest, AdaBoost, CNN,
LSTM, Stacked Autoencoder, are applied to solve this problem.
Finally, the performance of these methods have been examined
and compared with LSTM having the best overall accuracy,
precision, and recall.

Index Terms—forecasting, load prediction, coincident peak

I. INTRODUCTION

Knowledge of peak demands are critical to ensure proper
management of electric grids. Ensuring sufficient power supply
to meet the peak demands, may require additional infrastruc-
ture, purchase of power, integration of dispatchable power
resources, or customer demand response programs. Many
different local utilities, Independent System Operators (ISOs),
and Regional Transmission Organizations (RTOs) now imple-
ment Coincident Peak Pricing (CPP) programs. These program
add a surcharge for consumers (mainly, for industrial and large
power consumption companies) during the coincident peak
hour, that is, the hour when the power consumption is at its
highest from a utility requesting it from a wholesale supplier
or across an ISO or RTO geography.

The Independent Electricity System Operator (IESO) in
Ontario, Canada, which is a power system corporation, encour-
ages its consumers to reduce the electricity usage during the
peak time by applying a surcharge for power. The consumers
pay higher price for the electricity during the highest five daily
peak hours every fiscal year (5 Coincident Peak - 5CP). Since
only at the end of every fiscal year these five peak hours can
be known, it can be hard for the consumers to avoid such
surcharges. Hence, the forecasting of daily peak time is a
important process for the consumers. Note, IESO itself sends
warnings and supplies information on peak tracking (top 10
peaks in the fiscal year) for their customers because of the
importance of this problem.

In the technique presented by Bon Ryu et al. [1], predicting
five daily peak hour with highest power demands (5CP)
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has been transformed into a classification problem. Using
historical power and weather data, their models, Naive Bayes,
classifies the following three tasks: daily peak - predicting
weather a 5CP occurs on a day, 3-hour peak - for a daily
peak, predict the three hours mostly to have the 5CP, and I-
hour peak - for a daily peak, predict the exact hour when
the SCP occurs. Although the prediction of peak day and 3-
hour peaks have the precision up to 0.71 and recall up to
1.0, the performance for 1-hour peak prediction still need to
be improved. In this study, we also use classification models
to solve the prediction problem. However, we focus on the
forecasting of daily peak hour for each day 24 hours ahead.

We studied a dataset of power demands and weather vari-
ables in Ontario from the fiscal year 2003 to 2008. Two
separate models have been built for two main seasons: summer
and winter. Based on the previous hourly data, these models
can decide if the daily load peak for tomorrow happens at
the same hour or not. The classification methods that we
considered in this study include Naive Bayes, Support Vector
Machine (SVM), Random Forest, AdaBoost, Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM),
and Stacked Autoencoder. Their performance also have been
evaluated with precision, recall, and accuracy. Overall, the pre-
diction for winter is better than it for summer. The technique of
LSTM shows the best performance to address this problem,
but different methods have advantages and disadvantages in
their usage and results. In general, classification models are
effective to locate the load peak hour for next day.

II. RELATED WORK

Extensive approaches have been proposed to predict power
demands. Such solutions often use the methods containing
autoregressive integrated moving average (ARIMA) [2], K-
nearest neighbors (KNN) [3], artificial neural networks (ANN)
[2] [4] [5], autocorrelation with weather data [6], and so on.
However, less work has been published about predicting the
time of daily load peak and coincident peaks. Moreover, peak
prediction is often posed as a classification [7] problem rather
than a regression formulation (although that is not always the
case [8]).

Livik et al. [9] propose a statistical method for predicting an-
nual coincident peak. This problem differs from ours in that the
daily peak is not the target of the prediction. Demand response
operations in computer data centers is another application
where accurate peak prediction is needed [10], [11]. Other
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related work focuses on peak reduction in individual homes
or smart cities; [12] uses reinforcement learning for decision
making on peak reduction in a home energy management
system. [13] proposes a two-stage scheme to predict the hourly
power demand in Polish power system.

Several papers address the peak prediction problem using
the IESO data. As mentioned previously, [1] address the peak
prediction problem with a classification model based on Naive
Bayes, which predicts the five peak hours with highest power
demands in a fiscal year. In addition, they did the forecasting of
3-hour peak and peak day. The hourly data over 21 years have
been used for testing. One of advantages for their approach is
it does not rely on any heuristic thresholds. However, they use
simple Naive Bayes models and do not include historic data
or features in their predictions.

Jiang et al. [14] proposed a new algorithm to predict if
tomorrow is the day with one of top five daily load peaks on
IESO data. Their models included 14-day ahead forecasts of
load demand from IESO. We do not explore inclusion of the
forecast data because this information is not now available for
the historical records. In their method, probability theory has
been used to calculate the possible of being one of five highest
daily load peaks for the predicted load peak in next day. If this
probability is greater than the threshold, the next day will be
labeled as peak day. A data-driven approach is applied to set
the threshold.

Xu and Cercone [15] also use a Naive Bayes model for pre-
dicting the 5CPs. The authors identify 6 informative features
from the historical data to inform their peak prediction, e.g.,
the forecast temperature is greater than 32 degrees Celsius, if
the hour is within historical peak hour zones, etc.

Instead of focusing on top five daily load peaks in a fiscal
year, our study works on the prediction of daily peak hour
in Ontario. We also use classification models to solve the
problem. But more attributes are taken into consideration,
such as the hour of sunrise and sunset, relative humidity.
Additionally, our models are based on the previous data to
decide the daily peak hour 24 hours ahead. The classification
techniques that applied in this study contains not only classical
methods such as Naive Bayes, SVMs and Random Forests,
but also deep learning techniques including CNN, Stacked
Autoencoder, and LSTM.

III. DATASET

The data of total power demand for Ontario, from May
Ist, 2003 to April 30th, 2008, is provided by the IESO
[16]. We obtained the corresponding hourly weather data
from Canadian government climate website [17] for Toronto
Buttonville Airport. Both the power demand and weather data
have the sampling rate of 1 hour. The information about
sunrise and sunset at Toronto is from the website of Time and
Date [18]. The function of isHoliday in R package of timeDate
has been used to check if a day is a holiday in Toronto.

For the weather data, we considered four attributes, which
are temperature, humidex, windchill and relative humidity.
According to the formulas given by Canadian government

climate website [17], we calculated the values of humidex and
windchill, by using the hourly data of dew point temperature,
air temperature and wind speed from the website. Moreover,
linear interpolation has been used to replace the missing values
in the weather data. Because windchill does not exist when
temperature is above zero Celsius or wind speed is equal to
zero, we assigned such empty values of windchill as 1.

For the dataset of sunrise and sunset, a binary number has
been used to indicate if corresponding hour has the sunrise
or sunset. Since the time data of sunrise or sunset has the
precision of a minute, and if it is more than 45 minutes past
the hour, then we counted the sunrise or sunset to the next
hour.

IV. METHODOLOGY
A. Summer and Winter

In this study, a year has been separated into two parts,
summer and winter. The time from April 1st to September 30th
is set as summer, while the time from October 1st to March
31st belongs to winter. Figure 1 and Figure 2 demonstrate
why to consider two models for the different seasons; the two
figures are based on the real-time hourly power demands from
the fiscal year 2003 to 2008.
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Fig. 1. Canadian fiscal year 2003-2008 average daily power
demands on winter and summer

Figure 1 displays averages of daily load for summer and
winter. Although the general trend of electricity consumption
for summer has similarities to the trend for winter, the changes
in the period of 12 p.m. to 6 p.m. are different, for example,
from 4 p.m. to 6 p.m., the averages of electricity consumption
increased in the winter, but it decreased in the summer. Also,
such changes for summer are not so dramatic like those for
winter.

Figure 2 shows an estimate of the probability density
function of daily peak hour for summer and winter. It is easy
to find that during the winter, the daily load peak is very likely
to happen from 3 p.m. to 8 p.m.. However, during the summer,
the daily peak hour has larger range, from 5 a.m. to 12 a.m..
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Fig. 2: Canadian fiscal year 2003-2008 daily peak time distri-
bution for winter v.s. summer

Figure 1 and Figure 2 also indicate that the daily peak hour
during the summer should be harder to predict than those
during the winter, because of the range of peak hour and the
changes of electricity demands.

B. Attributes

Many works [19], [20], [21] illustrate the great influence
from weather on electricity consumption. The features, like
temperature, relative humidity, windchill and humidex, are
often used in models for load forecasting.

A strong correlation between load usage and temperature
have been disclosed [19] [20]. To examine the relationship
between temperature and load demands in Ontario, Figure 3
displays hourly electricity demands with corresponding value
of temperature from the fiscal year of 2003 to 2008. In
this figure, when the temperature lower than approximately
13 Celsius, the power consumption tends to increase with
the decreasing of the temperature. But when the temperature
higher than that value, the power demand is likely to grow with
the increasing of the temperature. Since the values of humidex,
windchill and relative humidity change with temperature, and
they are important weather indicators, we also took them into
account to predict the load peak time.

Table I and Table II present the attributes that are used for
modelling. Table I lists all the continuous variables that have
been used, while Table II outlines the categorical variables.
In additional to the original hourly data we obtained, we also
added power demands in the same hour over previous 2 weeks
and the averages of load and weather data over 3-hour intervals
(each 3 hours in the past 24) as attributes to train and test the
model.

C. Training and Testing

To predict the time of daily peaks of power demand 24
hours ahead, we applied several classification techniques to
classify the cases as peak or non-peak. The methods that have
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Fig. 3: Canadian fiscal year 2003-2008 power demand with
temperature

TABLE I: Continuous attributes for forecasting models

Continuous Attributes

[ Description or Formula ]

Hourly power demand
Hourly temperature Ty

Hourly humidex Hy,
Hourly windchill Wh,
Hourly relative humidity | RHp,

Load in the same hour
over previous 2 weeks
Ave. of power demands
over 3-hour intervals
Ave. of temperature over
3-hour intervals

Ave. of humidex over 3-
hour intervals

Ave. of relative humidity
over 3-hour intervals

Lp_ix24,2=1,...,14

mean{Lpy2—i, Lny1—is Lh—i}
i=3,6,9,12,15,18,21,24
mean{Thy2_i, Thy1—isTh—i}
i=3,6,9,12,15,18,21,24
mean{Hni2_i, Hny1—i, Hn—i}
i=3,6,9,12,15,18, 21,24
mean{RHp 12, RHp11—i, RHp i},
1 =3,6,9,12,15,18,21,24

been used in our study include Naive Bayes, SVM, Random
Forest, AdaBoost, CNN, LSTM, and Stacked Autoencoder.

When training the model, the categorical variables have
been converted into binary code through the technique of one-
hot encoding. According to the date, the attributes and targets
have been divided into two datasets for summer and winter.
Two separate models were built on corresponding datasets. The
training dataset consists of 5-year data which is from fiscal
year 2003 to 2007, while the data for fiscal year 2008 has
been used for the testing. The testing dataset for both summer
and winter contains 183 days with 4392 samples.

As classical supervised learning techniques, Naive Bayes,
Random Forest, AdaBoost and SVM are very popular to
be used to solve classification problem. Naive Bayes uses
Bayesian theorem to estimate possibilities and then decide
the class for each sample [22]. Random Forest, an ensemble
method, consists of a great number of decision trees, and its
output is the mode of categories decided by each tree [23].
AdaBoost constructs a strong classifier using an iteratively
generated set of weak classifiers [24]. SVM classifier searches
separating hyperplanes to find the max-margin hyperplane to
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TABLE II: Discrete attributes for forecasting models

Discrete Attributes | Description or Formula |

Weekday Working Monday, working Tuesday,
working Wednesday, working Thursday,
working Friday, holiday or weekend

Sunrise 1: sunrise happened;

0: sunrise did not happen

Sunset 1: sunset happened;

0: sunset did not happen
Morning: 7 a.m. to 12 p.m.;
Afternoon: 1 p.m. to 6 p.m.;
Evening: 7 p.m. to 12 am.;
Night: 1 a.m. to 6 a.m.

Hour of the day

separate and label the samples [25]. This study works on SVM
with Radial Basis Function (RBF) kernel.

CNNs are a powerful method for classification [26].
Through convolution layers and pooling layers, it learns the
hidden features to classify the data. In this study, we choose
the CNN that has 3 hidden layers with 64, 64, 128 filters
respectively. The sequences of attributes have been transferred
into matrices as the inputs. Since the hourly data used in
this study can also be treated as time series, LSTM has been
applied to solve the prediction problem [27]. LSTM is a special
type of recurrent neural network that generally works very
well on time series data, as LSTM learns from the previous
long-term information to make the decision. The LSTM model
here has 6 hidden layers with 24 neurons each. We set its
lookback length as 24 cases, which is for one day. As a kind
of neural network, Stacked Autoencoder (SAE) is very useful
for extracting representations for datasets [28]. It can transform
the data with high dimension to the data with low dimension.
The Stacked Autoencoder we built for this study has 15 hidden
layers with 128 units each hidden layers.

Because the rate of number of peaks to the number of non-
peaks is 1:23, the model is likely to classify the daily peak hour
into non-daily-peak hour, which can cause the probability of
being peak hour be very low. To address it while keep the same
order and range of the probabilities, we used the equation:

Prhew =0.1 x VP x 100 (1)

to re-calculate the possibilities, where P represent the proba-
bility from the classifiers. Currently, we set 0.5 as the threshold
of possibilities here, but some heuristic methods can be used
to determine it. Then, if the value of probability is larger than
0.5, the load peak will be at the same hour next day. Otherwise,
the load peak hour for tomorrow should be another time.

V. RESULTS

The performance of each model was evaluated by precision,
recall and accuracy, which are based on the number of true
positives (TP), the number of false positives (FP), number
of false negatives (FN), and number of true negatives (TN).
Precision is computed on TP and FP, which also be named as
positive predictive value,

TP

Precision = —————. 2
recision TP+ FP )

Recall, also referred to as sensitivity, is

TP
Recall = TPLFN 3)
In the context of this paper, the sum of TP and FN should equal
to the number of actual daily peaks. Therefore, for the testing
dataset, TP + FFN = 183. Accuracy is also a measure that
used to evaluate the classification methods and is calculated

as TP+ TN

TP+TN+FP+FN’ @
The sum of TP, TN, FP and FN is the number of total samples;
thus, for the testing dataset, T P+TN+FP+FN = 4392. For
each model we report the TP, FP, precision, recall, accuracy
in Table III and Table IV.

TABLE III: Classification results for winter

Accuracy =

[ Methods [ # TP | # FP | Precision | Recall [ Accuracy |

Naive Bayes 164 707 0.19 0.90 0.83
SVM 146 104 0.58 0.80 0.97
Random Forest 133 84 0.61 0.73 0.97
AdaBoost 177 786 0.18 0.97 0.82
CNN 148 100 0.60 0.81 0.97
LSTM 160 76 0.68 0.87 0.98
SAE 127 65 0.66 0.69 0.97

TABLE IV: Classification results for summer

[ Methods [ # TP | # FP | Precision | Recall [ Accuracy |

Naive Bayes 145 1434 0.09 0.79 0.66
SVM 43 87 0.33 0.23 0.95
Random Forest 53 120 0.31 0.29 0.94
AdaBoost 177 1641 0.01 0.97 0.63
CNN 92 240 0.28 0.50 0.92
LSTM 81 111 0.42 0.44 0.95

SAE 73 142 0.34 0.40 0.94

From Table III, the precision ranges from 0.18 to 0.68, the
recall has the range of 0.69 to 0.97, while accuracy is from
0.82 to 0.98. The method of AdaBoost has the highest recall
with the value of 0.97, but its precision is the lowest with
the value of 0.18, which means the number of FP is very
high. It has five methods, SVM, Random Forest, CNN, LSTM
and Stacked Autoencoder, whose accuracy is larger than 0.90.
Comparing three indicators, precision, recall and accuracy, the
performance of LSTM is better than other methods.

From Table IV, as expected, the values of three indicators
are significantly less than those for the winter, which means
the result for winter is much better than the result for summer.
The highest precision is 0.42, the value of recall can up to
0.97, while accuracy has the largest value of 0.95. Similarly,
the highest recall is from AdaBoost, but it has low values of
precision and accuracy.

Each method has different advantages or disadvantages.
For example, Naive Bayes has the best performance in terms
of time complexity, while the number of TP for Adaboost
is larger than others. LSTM has a longer training time, but
boast top overall performance. In general, using classification
models to solve the prediction of daily load peak hour is
effective.
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VI. CONCLUSIONS

In this study, we explored the use of classification methods
to solve the problem of daily load peak hour prediction in
Ontario, Canada. Separate models have been built for summer
and winter, due to different distributions of attributes. A
five-year data has been used to train the models, while the
testing was on one-year data. The experiments exhibit the
promising results that the time of daily load peak can be
located effectively.

In the future, we will use more historical data and attributes
for model training and testing. We are going to study how
to decrease the number of false positives and then how to
improve the overall performance of models, especially for the
summer models. Finally, we intend to extend these methods
to examine the problem of identifying the days and hours of
the five coincident peaks in each fiscal year.
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