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A formidable challenge in scheduling user applications lies in collecting and representing the user’s 
goals and requirements. We introduce a “science goal” as a mechanism for users to define scientific 
objectives and conditions of interest. To provide an abstraction to run applications on an ensemble 
of edge computing nodes, we implement a two-layered scheduler—cloud and edge scheduler. In this 
scheduling model, the users submit their goals to the cloud scheduler. These goals are conveyed to the 
appropriate nodes based on a variety of constraints including geographical area, resource availability, 
node capabilities, and applicability. The edge scheduler, with complete understanding of the current 
conditions, assumes the responsibility for executing the applications on the nodes so that the users’ 
science goals are met. This paper provides a framework for the two-layered scheduling model for goal-
driven edge computing and motivates and informs its architecture through a case study.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sensing and computing capabilities deployed in cities can en-
able an urban-scale measurement capability to support diverse sci-
entific and operational objectives. Expanding on traditional sensor 
networks, remote programmability provides a means for obtaining 
urban measurements for various scientific and policy goals [9,29]
through the introduction of artificial intelligence (AI) and machine 
learning (ML) algorithms that can be fine-tuned at the “edge” (of 
the network). For example, traffic congestion in the streets caus-
ing air pollution and noise, unauthorized drone flights, and street 
flooding can be measured by capturing and analyzing data from 
the same set of deployed sensors, providing a form of software-
defined sensing. Moving the sensed data to a cloud infrastructure 
offers unlimited computational power for processing. However, it 
has the potential shortcomings of requiring high network band-
width, continuous connectivity for real-time processing, and high 
latency to respond to rapid changes in the environment; and it 
may also raise privacy concerns. The ability to compute “at the 
edge” places the computation close to the source of the data and 
allows in situ processing and sending only the necessary informa-
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tion over the network, overcoming these challenges. For example, 
a user application could potentially transfer a count of detected 
cars to the cloud without sending the raw images that might 
show the driver’s face and vehicle identity (color, features, and 
plate). Additionally, in edge computing, user applications are able 
to change their computing behavior in near-real time based on the 
current perceived environmental context. This ability improves the 
quality of service while possibly reducing resource utilization by 
skipping computation under unfavorable or uninteresting circum-
stances and conditions.

Computing at the edge does, however, face some fundamental 
limitations. First, space and power constraints dictate that com-
puting at the edge is always limited in comparison with the po-
tentially limitless resources that can be provisioned in the cloud. 
Second, field-deployed edge devices are typically connected to the 
cloud infrastructure through wired and wireless Internet that vary 
widely in quality and consistency. These challenges necessitate a 
job scheduler to ensure that user applications can share the limited 
computing and network resources and can be consistently sched-
uled and executed in spite of unreliable network connectivity.

Applications are often executed at the edge to serve a scien-
tific goal. In traditional high-performance computing (HPC) and 
cloud computing environments, user applications are bundled into 
a “job” that represents the tasks and actions. These jobs contain 
metainformation on how to run user applications and which HPC 
le under the CC BY-NC-ND license 
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nodes to use, as well as information regarding resource and tem-
poral (e.g., deadline) requirements. Unlike HPC or cloud computing, 
in edge computing input data is often locally sourced from sensors. 
The edge task needs to define sensor instruments as input sources 
along with contextual information about the input. This can be 
expressed as a condition that illustrates a situation in which in-
teresting events have occurred or will occur (e.g., rain gauge ticks 
when raining, traffic congestion in rush hours, sky image during 
daytime). However, the current approaches in mapping contextual 
information into the system components that support the collec-
tion of such information lack sophistication [2,23]. Moreover, un-
derstanding system functionality for describing a job request is a 
nontrivial task for users. To support submission of user jobs in 
edge computing, we define a science goal that captures the job 
description, including objectives, contexts of interest, and system 
and application-specific requirements. The ontology and edge node 
metainformation supported by the system help users detail their 
science goal and define triggers for running user applications.

To support user science goals in edge computing, we propose 
a two-layered goal-driven scheduling model that takes into ac-
count both resource and context. The cloud scheduler, one part 
of the scheduling model, accepts user jobs and generates science 
goals to distribute them to edge computing nodes. In this process, 
the cloud scheduler oversees capabilities and availability of edge 
nodes and performs the macro-level decision on where and when 
user science goals are served. It is also responsible for informing 
users about the status of their science goals. The edge scheduler, 
the other part of the scheduling model, is run on each edge node 
and makes micro-level decisions on what to run at any given time 
in order to accomplish given science goals. The main objective of 
the edge scheduler is to capture circumstances of interest at that 
location (i.e., the context) and allocate resources to applications 
corresponding to the circumstances. It is important to note that 
the authors in [34] state, “Context-aware computing has proven 
to be successful in understanding sensor data.”. Indeed, context-
aware computing has been employed in the Internet of Things (IoT) 
[16,18,23] and sensor networks [1,33] to reason about the current 
context of local environment. The edge scheduler must understand 
the current context and determine what to run. To meet these 
demands, we have developed a goal-driven scheduling model for 
edge computing to be used in smart city applications. The major 
contributions of this work are as follows:

• A context representation in the proposed scheduling model 
that refines the current context using sensors attached to 
edge computing nodes and evaluates event-driven and event-
condition-action rules using new knowledge generated from 
raw sensor data. This supports both “intelligence” and
“architecture”—two of the main characteristics of the context-
aware IoT described in [34].

• A scheduling model that defines the structure of a science 
goal. Science rules that are logically expressed trigger schedul-
ing process whenever they change.

• A case study showing the use of the proposed model for a sci-
ence example. This provides a demonstration of how scientists 
can specify their science goals using our scheduling model.

The rest of the paper is organized as follows. Section 2 de-
scribes relevant literature on edge computing, context awareness, 
and scheduling on edge computing environment. Section 3 illus-
trates the proposed scheduling model in detail. Section 4 describes 
the logic of scheduling process in the proposed model. Section 5
demonstrates a case study conducted to validate how the proposed 
scheduling model works for a scientific study and discusses the fu-
ture research points. Section 6 concludes the work.
98
2. Background and related work

In this section we introduce the existing technologies and soft-
ware platforms that were developed to support edge comput-
ing. We also describe what aspects have been considered when 
scheduling and why and how the concept of context-awareness 
can help schedule applications appropriately at the edge.

2.1. Edge computing environment and platforms

In recent years, the edge computing environment has rapidly 
evolved along with the advancements in both hardware and 
software. Single-board computers (SBCs) equipped with powerful 
CPUs, GPUs, and TPUs1 have created a new class in the compu-
tation spectrum, ranging from HPC-level computation down to 
microprocessor-level computation. Because SBCs were designed to 
be light-weight and low-power, they have been actively deployed 
and used in sensor networks [11], IoT [22], healthcare [32], and 
teaching [47]. Nvidia’s Jetson devices [31] host a powerful GPU 
within the device and are capable of heavy computations such as 
running ML models for inference [28]. However, they still are un-
able to run multiple heavy computations at the same time, mainly 
because the required amount of memory for running those ML 
models can easily exceed the memory capacity of the devices. In 
[24], the authors indirectly showed how much memory ML models 
would require in order to run on SBCs for inference.2 Software ad-
vancements support deploying user applications on this diversity 
of hardware. The technologies of containerization and container 
orchestration tools such as Kubernetes [8] have been dominantly 
used in deployment. Since those technologies allow scaling, man-
aging a massive number of devices in IoT and sensor networks 
becomes easier.

The project Smarter [15], initiated by researchers in ARM, pro-
vides a platform to deploy user applications on edge computing 
nodes that interact with IoT endpoints including sensors and ac-
tuators. An instance of a Kubernetes cluster runs in the cloud and 
governs all Kubelet node agents running on each edge computing 
node. User applications submitted to the cloud’s Kubernetes mas-
ter node are fetched to Kubelet node agents that can run the user 
applications. Because the master node runs in the cloud, discon-
nected Kubelet node agents from their master node do not serve 
any job until they get reconnected.

Rainbow [17] is an architecture that allows the deployment 
of smart city applications in an edge computing environment. In 
Rainbow, physical systems such as sensors and actuators are ab-
stracted as a virtual object. Virtual objects are then exposed to the 
computing nodes in an edge network. Since a network can have 
multiple nodes, a given job is taken by any node that has the ca-
pability to do so. Rainbow had no central scheduler because the 
intention was to bring “emergence”—accomplishing local objectives 
by individuals leads to accomplishing a global objective that is un-
known to the individuals.

Foggy [38] provided a platform that orchestrates workloads for 
computing nodes that exist in both the cloud and edge. Jobs that 
specify edge-related requirements such as particular sensors, re-
gions of interest, and limitations on network traffic were scheduled 
to the corresponding edge computing nodes that were available to 
fulfill the requirements. This requirement-aware scheduling greatly 
improved the quality of service while ensuring data privacy. How-
ever, similar to Smarter, edge nodes should be available from the 
master node in the cloud in order for the master node to schedule 
jobs.

1 Tensor processing units for running neural network models.
2 The study showed the required amount of memory for training on SBC devices. 

With a batch size of 1, one can estimate how much memory the model would re-
quire for inference.
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Waggle [6], Array of Things (AoT) [10], and SAGE [7] are 
projects designed to help scientists understand environmental im-
pacts, including those caused by activities in cities [41]. The AoT 
project deployed more than 100 Waggle computing nodes in the 
city of Chicago. Each node was equipped with a sensor pod; and 
many had two cameras, one facing the street and the other pointed 
up to view the sky. Raw sensor readings from the sensor pod and 
cameras were processed inside the AoT nodes, and the processed 
results were sent back to the cloud. The majority of the compu-
tations performed in AoT nodes were designed to be light-weight 
and accommodated by resources that the nodes offered. However, 
this design highlighted the need for the work presented here as 
heavier ML computations are presented.

The job scheduler in most of the existing platforms described 
above exists in the cloud and controls execution flow of jobs from 
the cloud. This mechanism is not reliable if jobs are not sched-
uled on edge nodes just because the nodes may frequently ex-
perience weak network signals and temporally lose the ability to 
talk to the cloud. The proposed model allows the edge scheduler 
to controls execution flow of jobs independently from the cloud 
scheduler, making job execution decoupled from node manage-
ment. Additionally, the existing platforms are node, i.e. resource, 
oriented such that they deliver jobs whenever and wherever the 
platform can. Our scheduling model is job, i.e. goal, oriented and 
delivers jobs whenever the job wants to run. This makes a big 
difference when jobs need to be executed at the right timing to 
capture events of interest.

2.2. Context representation and reasoning

Representing context information plays a special role in en-
abling context-aware computing on edge computing nodes. In [39], 
the authors state: “One significant aspect of this emerging mode 
of computing [which indicates context-aware computing] is the 
constantly changing execution environment.” Such environment 
changes affect the quality of service and validity of data that user 
applications produce. This aspect should be captured and under-
stood in order for the edge scheduler to successfully meet the 
requirements of user applications and achieve their science goals.

As described in [34], context may be represented in many 
ways, including key-value, markup scheme, graphical modeling 
(e.g., UML and object role modeling), object-based modeling, and 
logic-based modeling. Key-value and markup scheme are simple 
ways to store information and designate relationships between en-
tities, but their expressiveness is limited for complex reasoning. 
Object-based models represent relationships between objects and 
attributes of objects, but they lack supporting operations needed 
to generate new information from stored information. Logic-based 
models have been especially highlighted because they support log-
ical operations for complex reasoning. In logic-based models, re-
lating literals with logical operations creates a fact or rule of a 
context, and multiples of these can be used to build up a higher 
level of context. For example, a context of taking an umbrella 
when raining can be expressed as Raining ∧ Has(I, Umbrella) ⇒
Take(I, Umbrella).

In context-aware computing, rules are used to produce different 
run-time behaviors of user applications that depend on context. 
Event condition action (ECA) is one form of rules to enable reactive 
functionality [3]. In [4], an XML-style representation of ECA was 
proposed to support defining rules as well as operations on the 
rules. Performing operations on rules along with perceived events 
helps identify the next action. Rules should be constantly evaluated 
at runtime to reflect real-time changes such as city road routing for 
avoiding traffic congestion [42].

A context reasoner is an inference engine that estimates the 
current context by extracting contextual information using rules 
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and facts. As the authors in [35] note, context reasoning should 
happen at the edge because response time upon environmental 
changes is slower in the cloud. This inference engine first takes 
sensor inputs from the local environment and maps them into 
user-defined variables used in rules, in order to construct a logical 
representation of the perception. Such mapping is domain-specific 
and defined by users. When defining the mapping, however, it is 
beneficial to follow an ontology such that the mapping is reusable 
for other domains [44]. After mapping is done, the reasoner begins 
responding to various types of queries: why, why not, and even 
what if [26]. For those queries that ask why and why not, an im-
plicit estimation of the current situation is logically entailed from 
rules and facts.

2.3. Scheduling in edge computing

Scheduling is a process of making decisions about which job to 
execute on which computing node. Jobs submitted to a scheduler 
are queued based on characteristics of the job—required amount 
and type of resource, their execution time, priority, and so on. 
Among many scheduling strategies, one of the traditional ap-
proaches is to schedule jobs as they come, namely, first come, 
first served. A resource manager then takes queued jobs from the 
scheduler and allocates resources to the jobs. While jobs are being 
executed, the resource manager is constantly monitoring them to 
know when to reclaim the allocated resource and move on to the 
next queued job.

Many aspects are considered when scheduling jobs in an edge 
computing environment. Since computing nodes are physically dis-
tributed and connected over the wireless network, data transmis-
sion between nodes is expensive and can be a bottleneck when 
bandwidth is limited. In order to reduce the network burden, 
latency-sensitive jobs (e.g., real-time video processing) are sched-
uled to the closest computing node that is capable of running the 
job [40,46]. In mobile IoT, the computation power of edge nodes 
is limited. Scheduling in that area takes job priority into account: 
higher-priority jobs are immediately processed by the node clos-
est to the input, and lower-priority jobs are offloaded to other 
edge computing nodes [14]. Context awareness also helps find the 
best edge node to offload jobs. As mobile edge nodes freely enter 
and leave regions, node status as well as network latency and fail-
ure rate is considered for choosing the best node to offload jobs 
[12,19].

Energy consumption is another factor to consider when sched-
uling jobs in mobile IoT and edge computing. Edge computing 
nodes utilizing modern CPUs and microprocessors are able to ad-
just their computation performance using dynamic voltage fre-
quency scaling [21,45] and task offloading to optimize energy con-
sumption for the job [36] or for the device [30]. For some edge 
nodes that are powered by renewable energy sources, saving en-
ergy is more important than satisfying quality of service [43].

Future edge computing platforms will need more intelligence 
and autonomy at the edge to support data-driven and domain-
aware applications. At the same time, such edge platform should 
provide a way of conceptualizing data and domain-specific re-
quirements for running these applications on edge nodes. To sup-
port context-aware scheduling in edge computing, we propose a 
method that will run a context reasoner that constantly reasons 
about the environment and evaluates those requirements for run-
ning applications.

3. Goal-driven scheduling model

In this section we describe our goal-driven scheduling model. 
We call user applications a “plugin.” We envision a scenario where 
multiple edge computing nodes are deployed in a city and make 
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Fig. 1. Overview of the scheduling model. The grayed boxes are the main components of the proposed scheduling model. The numbered steps represent the process of 
scheduling. The graphics in the figure are from Freepik.com.
a wireless connection to the cloud. The deployed nodes are ca-
pable of running computations as well as interacting with sensor 
instruments, which measure the local environment in the city. 
Users (e.g., scientists) seek to run plugins on the nodes to produce 
meaningful information that helps answer their science questions. 
Fig. 1 illustrates an overview of the components utilized in the 
proposed scheduling model. The model offers two distinct sched-
ulers to support isolation and autonomy within edge computing 
nodes: a cloud scheduler and an edge scheduler. Because the pro-
posed model is goal-oriented, the main focus of the scheduling is 
to deliver jobs, that is, goals, by scheduling plugins. The following 
subsections describe the numbered steps shown in Fig. 1, along 
with the components associated with each step.

3.1. Plugin registration

A plugin is a packaged code block that takes inputs and pro-
duces results from the inputs. Because plugins are usually de-
ployed in remote nodes, any human interface or visualization is 
not required from the plugins. Many plugins implement AI and 
pretrained ML models to process inputs. As discussed earlier, edge 
computing nodes may not be able to run multiples of such plugins 
at the same time because of memory limitations. In some cases, 
plugins can achieve variable levels of quality (e.g. accuracy, confi-
dence) in their results based on the resources used. The ability to 
adjust the plugin based on availability of resources (e.g., memory, 
flops) enables plugins to run on many different computing plat-
forms. To control the quality levels, plugins accept configurations 
consisting of one or more parameters that determine target perfor-
mance. For example, a plugin may take a configuration specifying 
that it should take high-resolution images and process 10 images 
per second. In programming, the configuration can be expressed 
as “resolution=high and framerate=10.” If the plugin is assigned the 
specified resources, it will produce an outcome at the desired qual-
ity.

Plugins that are run on our edge computing nodes need to be 
built and registered in our edge code repository (ECR), shown in 
Fig. 1. This allows the system operator to securely manage plu-
gins and prevent any plugins that attempt to compromise the 
system. All plugins to be registered are first containerized by 
tools such as Docker [27]. Then, containerized plugins run on 
ECR-managed computing nodes to profile their performance. Let 
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�c =< c1, c2, ..., ch > a vector of configured parameters of a plu-
gin, �r =< r1, r2, ..., ri > a vector of required resources for a �c, 
and �m =<m1, m2, ..., mj > a vector of performance metrics corre-
sponding to a combination of �c and �r. A �m can then be expressed 
as a function of �c and �r.
�m = f (�c,�r) (1)

An interpretation of the expression is that a plugin needs to be 
configured as �c and assigned the resources �r in order to perform 
at �m. A process of profiling is then measuring �rs and �ms for a given 
set of �cs—all possible combinations of configurable parameters of 
the plugin. At the end of the process, it generates a knob table K
that encodes the profiling results as follows,

K = {k1,k2, ...,k j}
k j = { �mj,�ch,�ri},

(2)

where the size of K equals the number of �m. Table 1 shows a per-
formance table with arbitrary values as an example. Each row in 
the table represents a k j . This table of premeasured performance 
will help the edge scheduler be informed, prior to scheduling, 
about the amount of resources required to run the plugin for per-
forming at the desired quality of service.

3.2. Submitting jobs and generating science goals via a cloud scheduler

Scientists studying cities want to observe, capture, and analyze 
a variety of phenomena from the environment. To support these 
science activities, the proposed model allows them to submit job 
requests to the system. Fig. 2 shows the components of the cloud 
scheduler and their data flow. Because users do not have direct 
control of edge computing nodes for running their plugins, they 
need to specify a complete description of the job upon submission 
to the cloud scheduler. A job request specifies the following:

• Plugins: plugins that the user wants to run
• Nodes: target edge nodes on which the plugins run
• Plugin Configurations: sets of mc = { �m, �c} selected from given 

K p for plugin p that satisfy the user requirement
• Science Rules: rules expressed in first-order logic that state 

start and stop conditions of the plugins and that help evaluate 
the conditions

https://Freepik.com
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Table 1
Example of a performance table.
Performance metric �m Configuration �c Resource �r
Framerate m1 Quality m2 Resolution c1 Process rate c2 CPU r1 Memory r2

10 25 high 10 100 1000
5 25 high 5 80 1000
10 13 low 10 70 500
5 13 low 5 40 500

Table 2
List of checks for validation of a job request. All checks must be passed in order for the job request to be accepted 
by the cloud scheduler.
Check Description Evaluation

Plugin Plugins exist in ECR ∀p ∈ P job : p ∈ P ECR

Plugin Performance Plugins run at mc ∀p ∈ P job : kmc ∈ K p

Node Nodes support the plugins ∀n ∈ N job,∀p ∈ P job : narch ∈ parch
Node Performance Nodes run plugins at mc ∀n ∈ N job,∀p ∈ P job : kpmc ≤ kntotal
Science Rules Rules are valid in their syntax ∀s ∈ S job : syntax(s)
Terms Terms in Science rules follow the ontology ∀t ∈ T job : t ∈ Ontology
Hardware Nodes support hardware requirement ∀n ∈ N job,∀p ∈ P job : phw ∈ nhw

Fig. 2. Illustration of the cloud scheduler.
• Success Criteria: statements indicating when the job is con-
sidered as accomplished

The cloud scheduler assists users with all the information 
needed to complete job requests. ECR lists user plugins along 
with their performance table. The node database shown in Fig. 2
is managed by the system operator and stores metainformation 
about edge nodes deployed in the field. Such metainformation in-
cludes the node’s geographical location, a list of equipped sensor 
instruments, and hardware specification of computing devices in 
the node. This helps users identify their target nodes. The node 
database is updated whenever any change in node metainforma-
tion is reported to the database (e.g., changes made within edge 
nodes are updated when the node becomes online). Keeping the 
database up to date is important for scheduling because some 
computing devices of edge nodes support dynamic voltage and 
frequency scaling to reduce energy consumption, which affects 
performance of the device. Nvidia’s single-board computers also 
support different power modes that adjust the number of cores, 
frequency, and clock speed of CPU and GPU. The cloud scheduler 
also provides users a way to formulate user-specified science rules 
and success criteria using the system-provided ontology. These ex-
pressions will be constantly verified by the edge scheduler at run-
time. The ontology consists of terms that are understandable by 
edge nodes and supports logical and numerical operations. Users 
also can define and use terms that are derived from user plug-
ins as long as the terms support such operations and are logically 
sound.

Once users submit a job request, the cloud scheduler validates 
the job request to ensure that the job is executable by target nodes. 
This validation performs a list of checks, shown in Table 2, on 
101
the job request. Selected plugins are checked to see whether their 
container can run on the target nodes and whether hardware re-
quirements of the plugins are satisfied by the nodes. The plugins 
are also checked to see whether the required resources to run the 
plugins at mc are supported. Let kntotal be a knob element speci-
fying the total amount of resource for node n with both �m and 
�c set to �0. We then examine kpmc ≤ kntotal for each plugin p in or-
der to verify that the plugin is configurable to �c ∈ mc in terms 
of resources. Additionally, science rules described in the job re-
quest are checked: its syntax and terms used in the science rules 
are validated if they follow the ontology. Any job request that fails 
to pass those checks will not be accepted by the cloud scheduler. 
Once passed, information about the job request is combined with 
metadata of the target nodes and plugin information to generate 
a science goal. A science goal is a structured plain text that de-
scribes how and when plugins begin or stop running on devices 
of the target nodes. Note that for each plugin in a science goal 
the performance metrics that the plugin offers are pruned to get 
only the performance metrics supported by the devices of the tar-
get nodes. As a last step of the process, the generated science goal 
is staged into the goal manager in the cloud and later distributed 
to edge schedulers of the target nodes.

3.3. Running science goals through the edge scheduler

Edge schedulers running on each edge node are notified by 
the cloud scheduler of any update in the goal manager, such as 
creation, modification, and completion of science goals. The edge 
schedulers pull updated science goals from the cloud scheduler 
into a local pool to manage them. Fig. 3 illustrates the schedul-
ing components as well as the service components utilized by the 
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Fig. 3. Illustration of the edge scheduler.
edge scheduler. The pulled science goals are then activated: sci-
ence rules from the science goals are registered in the knowledge 
base (KB), and their logic is constantly evaluated by using mea-
surements from the environment. Additionally, the resource man-
ager communicates with ECR to download plugins—program in a 
container—described in the science goal. When a state change in 
the science rules is triggered by local measures, the edge scheduler 
determines whether or not the corresponding plugin is scheduled 
via the plugin launcher. The plugin launcher is a simple interfacing 
component for talking to the resource manager. The resource man-
ager then launches the container within a locally managed cluster. 
Launched plugins get resources allocated by the resource manager 
and start producing information meaningful to their science dur-
ing the run. Produced information is reported to a data repository 
located in the cloud. Because the data pipeline is common across 
the system components, such information is often locally used as a 
measure to help the knowledge base infer more complex logic on 
science rules.

Launched plugins are initially configured to perform at their 
best—max(kpmc). With the nature of multitenancy, however, the sys-
tem may not provide enough resources to support such a configu-
ration. The resource manager has the role of allocating resources 
to plugins; however, it does not start a plugin if the requested 
resource in kpmc for the plugin p is greater than the currently avail-
able resource amount. The performance controller shown in Fig. 3
allows finer control on this resource allocation in order to maxi-
mize both the number of active plugins and the resource utiliza-
tion. The performance table for each plugin encoded in its science 
goal provides a list of “knobs,” in other words, configurations, to 
adjust the current configuration of the plugin.

All decisions made by the edge scheduler and corresponding 
events are monitored and logged. Logs are sent back to the cloud 
periodically for users and operators to understand how the node 
behaves. Because such events and decisions are logically explain-
able, analyzing logs gives the ability to backtrack why certain de-
cisions were made and recognize any unwanted decisions made 
by the edge scheduler. This allows users later to update the sci-
ence rules for their plugin to avoid any undesired decisions. On 
the other hand, the cloud scheduler is also constantly monitoring 
the logs to check whether any success criteria of a science goal 
are met. When a science goal is accomplished by the edge nodes, 
the cloud scheduler updates the science goal as accomplished such 
that the edge schedulers that have been serving the goal can drop 
it.

4. Context-aware goal-driven edge scheduling

This section details the logic of the edge scheduler that (de)se-
lects plugins for scheduling by evaluating science rules at runtime. 
This allows the timely scheduling of plugins in response to events 
of interest.
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4.1. Context-aware triggering from science rules

The proposed context-aware reasoning begins by sensing the 
environment. Sensor measures are a key-value pair that represents 
the state of something. For example, {‘env.temperature.outside’ :
37} expressed in JSON format represents 37 degrees of the current 
temperature outside, the place understood and agreed by the user. 
Units of the values are generally defined in the ontology shared be-
tween users and the system components; for this example the unit 
is understood to be Celsius. One also can extend the format to ac-
commodate a timestamp indicating when the value was measured. 
Sensor measures are generated from both sensor instruments (via 
sensor plugins) and user plugins.

Science rules in a science goal are an IF-THEN statement where 
the IF part is a (propositional) statement with (symbolic) vari-
ables and the THEN part is a propositional variable that be-
comes valid if the IF part is logically true. Those rules are derived 
from combining scientific facts and desires toward accomplishing 
their science goal. One aspect of running plugins is to help ful-
fill missing information to unblock the process of reasoning on 
the logic. Arithmetic science rules are the science rules directly 
associated with sensor measures. For example, an arithmetic sci-
ence rule “env.temperature.outside > 35.6 ⇒ Hot(Outside)” uses 
the outside temperature to infer Hot(Outside). Note that the sym-
bol ⇒ indicates an implication. Logical science rules, the other 
type of science rules, follow the same structure without us-
ing sensor measures in their expression (e.g., Hot(Outside) ⇒
Run(Airconditioner)). In particular, this Run symbol becomes a 
trigger for the edge scheduler to run the plugin referred in the 
symbol. The work in this paper utilized forward-chaining algo-
rithm [37] to infer any propositional variable, that is, a plugin, with 
particular triggering symbols—Run and Stop. The forward-chaining 
algorithm supports multilevel logical science rules as it explores 
through logical chains between science rules.

Algorithm 1 shows the process of inference on science rules 
upon receiving a sensor measure. The first for-loop in the algo-
rithm determines which science goal is affected by the received 
sensor measure; that is, if the sensor measure makes any arith-
metic science rule of a goal valid, then the goal is affected by the 
measure. With this arithmetic science rule as an example, a mea-
sure “env.temperature.outside” should exceed 35.6 to affect the 
science goal. The second double for-loop runs the forward-chaining 
algorithm on science rules of each affected science goal. If any plu-
gin in those science goals is transitioned between Run to Stop, 
indicating that status of the plugin has changed, then the plugin 
name and its new state are outputted. The KB in the edge sched-
uler runs this algorithm to output a list of plugins subject to be 
rescheduled. The algorithm can be as complex as O (n2) in Big-O
notation. In practice, however, n is small—we do not assume hun-
dreds of science goals with hundreds of science rules running on 
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Fig. 4. Life cycle of a plugin. Solid boxes represent a state, and dashed boxes are an action that makes a transition between states. The states shown in a blue box indicate 
that they are being considered by the edge scheduler.
Algorithm 1: Evaluation of science rules upon receiving a 
sensor measure.
Input: A sensor measure s
Output: List of plugins P triggered and changed by the measure s
sgtriggered ← ∅ ; // a list of triggered science goals
forall sr ← arithmetic science rules in KB do

if s ∈ srLH S then // srLH S is IF part
if srLH S (s) ⇒ srRHS then // srRHS is THEN part

if sgsr /∈ sgtriggered then // sgsr is the science goal 
of sr

sgtriggered .insert(sgsr );
end

end
end

end
forall sg ← sgtriggered do

forall p ← F C(sgrules) on Run and Stop do // F C is the 
forward-chaning algorithm

if pstate �= psg
state then // psg

state is the current state of p
in sg

P .insert(p, pstate ); // pstate indicates either Run or 
Stop triggered by s

end
end

end

an edge node at any given time. The forward-chaining algorithm 
itself has linear complexity in the number of science rules.

With the context-aware logic embedded inside the edge sched-
uler users can design their science rules to capture events of their 
interest and run their plugins accordingly. An arithmetic science 
rule that has a term “sys.true” in its left-hand side can be used 
to trigger running a plugin without needing to obtain any sen-
sor measure since the term is always valid. This is useful to spin 
up the first set of plugins for a science goal. Then, the next-tier 
plugins can be triggered by sensor measures that the first set of 
plugins produce. Users can also define an event of their inter-
est by combining science rules with appropriate sensor measures. 
For example, an arithmetic science rule “env.tick.raingauge.avg >

3 ⇒ Raining(Now)” defines when it is considered raining. Note 
that the constant 3 in the rule can be defined differently by 
users as their event of interest can be defined differently (e.g., 
one may consider 5 averaged ticks in a minute to indicate the 
event of raining). Logical science rules behave as a logic of how 
users want the system to schedule their plugins. Continuing the 
rain gauge example, a logical science rule “Raining(Now) ⇒
Run(F loodDetector)” takes the result “Raining(Now)” from the 
arithmetic rule and implements the step on what the user wants 
to run in case of raining. The inference on this logic may go 
even further by having another science rule “Raining(Now) ∧
Daytime(Now) ⇒ Run(T raf f icF lowEstimator)”; the propositional 
variable Daytime(Now) may come from an arithmetic science rule 
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expressed as “env.time.sunrise ≤ env.time.now ≤ env.time.sunset
⇒ Daytime(Now).” Because science rules are described in first-
order predicate logic, it is intuitive enough for a human to define 
them.

4.2. Scheduling plugins

Fig. 4 shows how plugins are downloaded, triggered, and acti-
vated. Because plugins registered in ECR can range from megabytes 
to gigabytes in size, the edge scheduler needs to download them 
prior to scheduling. Once the edge scheduler registers science 
goals, plugins associated with the science goals are set to the state 
“inactive.” The context-awareness logic makes the plugins trig-
gered by science rules transition to “runnable” state. The plugins 
with this state move into the computing cluster that the resource 
manager governs. They then become “active” when the resource 
manager allocates resources to them. Plugins in the cluster remain 
in the “runnable” state if no resource has been allocated to them. 
Plugins with the “active” state, currently running in the cluster, 
transition to “inactive” state when their Stop rule becomes valid in 
the context-awareness logic. For example, the flood detector plugin 
is dropped from the computing cluster if it is not currently raining, 
in other words, NotRaining(Now) ⇒ Stop(F loodDetector). Note 
that using a negation ¬ is prohibited for an implication in forward 
chaining; the sentence must be either a definite or Horn clause 
[37]. Once a science goal is deregistered upon accomplishment by 
the cloud scheduler, all plugins associated with the science goal 
transition back to “downloaded” state, and all science rules of the 
science goal are dropped from the KB.

The transition from “runnable” to “active” state as shown in 
Fig. 4 is driven from different resource scheduling policies that 
involve resource allocation. Because plugins run to capture and an-
alyze under a context, they need to be activated as soon as possible 
to capture and analyze the environment in time. Some plugins may 
conflict on resources including access to sensor instruments. How-
ever, it is out of scope in this paper to investigate which policy 
works the best for this goal-driven scheduling. Instead, we assume 
that the system relies on the default scheduling policy supported 
by the resource manager.

5. Case study and discussion

We designed and implemented the scheduling model to sup-
port various scientific studies that require context-aware in situ 
data processing at the edge. To validate the functionality and ef-
fectiveness of the proposed scheduling model, we present a case 
study that demonstrates the edge scheduler on a realistic use 
case—traffic flow analysis. Traffic flow analysis is used to under-
stand how citizens contribute to daily traffic congestion and the 
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Fig. 5. Illustration of our case study. The edge computing nodes with a camera looking at an intersection run three user plugins to serve the science goal of traffic flow 
analysis. The illustration on the right is sourced from Freepik.com.

Table 3
Specification of the plugins used in the case study.
Plugin Description Output sensor measure

CarCounter Detect number of cars in the scene env.counter.car
TrafficFlowEstimator Estimate averaged speed of cars in the scene env.speed.car.avg
ImageSampler Sample still images Not available

Datetime Report system time
sys.time.hour
sys.time.sunrise.hour
sys.time.sunset.hour
relationship between such congestion and the current transporta-
tion infrastructure in the city. Edge computing along with machine 
learning algorithms has greatly improved the quality of service and 
real-time processing capability for monitoring traffic state [5]. Data 
collection is still a difficult task, however, because it faces chal-
lenges from limited network bandwidth, image labeling [25], and 
preserving of privacy on collected data [20]. The platforms used 
for the many traffic studies are not general enough to be reused 
for other science, and they require significant effort to maintain 
the sensor network platform. We believe the proposed schedul-
ing model with deployment of advanced edge devices could make 
a traffic-monitoring platform intelligent enough to accommodate 
multiple scientific studies served on the same platform.

In this case study we set up a scenario where a scientist wants 
to conduct a study on urban traffic flow. The city has multiple edge 
computing nodes already deployed near streets and city parks, and 
each node is equipped with an edge device and a camera look-
ing at an intersection of city roads (see Fig. 5). The scientist as 
a user is willing to receive some data about the number of cars 
passing the intersections and their dynamics (their average speed 
when passing), as well as some sampled still images of the in-
tersections when the traffic is slow. The user is provided two ML 
plugins and one non-ML plugin already registered in the edge code 
repository: CarCounter, TrafficFlowEstimator, and ImageSampler. Ad-
ditionally, a 1-system plugin named Datetime is already running 
on the edge nodes. Table 3 shows a description of the plugins. 
Note that the ImageSampler plugin does not produce any sensor 
measure but does produce still images captured from the camera, 
which will then be transmitted and stored in the data repository.

Given the sensor measures from the plugins, the user now 
starts designing the desired behaviors of the system using the con-
cept of science goal. Fig. 6 shows a state diagram of the desired 
logic. The user wants to run the CarCounter plugin only in the day-
time and run TrafficFlowEstimator only in a dense traffic situation. 
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Dense traffic is defined by a certain number of cars recognized 
from the scene at one time—five cars in our case study. The user 
also wants to run ImageSampler when the average speed of the 
traffic is slower than 48 km per hour. The plugins stop running 
whenever the counterpart of those conditions becomes logically 
true. Given the desired behaviors and sensor measures, a job sub-
mitted to the cloud scheduler would look as follows:

• Plugin: [CarCounter, TrafficFlowEstimator, ImageSampler]
• Node: [Node1 (at Main street), Node2 (at X street and Y av-

enue)]
• Minimum Performance: [CarCounter: (YoloV3, Resnet50),

TrafficFlowEstimator: (KalmanV1)]
• Science Rules:

– (A) sys.time.sunrise.hour ≤ sys.time.hour ≤
sys.time.sunset.hour ⇒ Daytime(Now)

– (A) sys.time.sunrise.hour > sys.time.hour ∨ sys.time.hour >

sys.time.sunset.hour ⇒ Nighttime(Now)

– (L) Daytime(Now) ⇒ Run(CarCounter)
– (L) Nighttime(Now) ⇒ Stop(CarCounter)
– (A) env.count.car > 5 ⇒ T raf f ic(Dense)
– (A) env.count.car ≤ 5 ⇒ T raf f ic(Light)
– (L) T raf f ic(Dense) ⇒ Run(T raf f icF lowEstimator)
– (L) T raf f ic(Light) ⇒ Stop(T raf f icF lowEstimator)
– (A) env.speed.car.avg < 48 ⇒ T raf f ic(Slow)

– (A) env.speed.car.avg >= 48 ⇒ T raf f ic(Normal)
– (L) T raf f ic(Slow) ∧ Run(T raf f icF lowEstimator)

⇒ Run(ImageSampler)
– (L) T raf f ic(Normal) ⇒ Stop(ImageSampler)
– (L) Stop(T raf f icF lowEstimator) ⇒ Stop(ImageSampler)

• Success Criteria:
– sys.time.year > 2021

https://Freepik.com
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Fig. 6. States of the plugins in the case study and desired transitions between the states. CC, TF, and IS stand respectively for CarCounter, TrafficFlowEstimator, and Image-
Sampler. The transition from state A to B may happen unintentionally.
The science rules reflect the logic, shown in Fig. 6, for running 
and stopping the plugins. The dot-separated words in the science 
rules are variables defined in the ontology, and the variables match 
with the output sensor measures defined in Table 3. For exam-
ple, sys.time.sunrise.hour stores an integer number indicating the 
hour that the sun rises in the area, and env.count.car represents 
the number of detected cars. One of the benefits of having these 
variables is that they are general enough to be applied to different 
contexts; for example, the same sunrise variable can be applied to 
multiple nodes in different locations without changing its meaning. 
(A) and (L) denote arithmetic and logical science rules, respectively. 
The success criteria describe that the job is accomplished if the 
year 2022 comes; that is, the job is valid until the end of 2021.

We note that the user defined only the transitions of inter-
est, and thus the cloud scheduler might need to check whether 
the science goal transitions into undesired states. For example, 
day-long traffic congestion might occur in the city, which would 
keep both TrafficFlowEstimator and ImageSampler running because 
the number of detected cars would be greater than five for the 
whole day. According to the science rules, however, CarCounter
stops running at night. Because TrafficFlowEstimator relies on the 
sensor measure from CarCounter, the plugin cannot be properly 
triggered at night. This will lead the system to the undesired 
transition from the state A to B in Fig. 6. This may be resolved 
simply by adding an additional science rule Stop(CarCounter) ⇒
Stop(T raf f icF lowEstimator), which stops TrafficFlowEstimator at 
night and also stops ImageSampler in a cascade. Adding such a sci-
ence rule may require the user to monitor the run-time behavior 
of the edge scheduler on handling the user’s science goal because 
the user may not foresee the transition when designing the sci-
ence goal. The user is responsible for changing the science goal as 
needed. A model-checking technique [13] is one way of checking 
states of science goals prior to scheduling. The technique checks 
whether given specifications for a science goal are valid; if not, it 
provides a counterexample of any invalid specifications. In this ex-
ample, a specification ∃SB , where SB is the state B , can be checked 
for finding any state change leading to the transition to the state 
B . A formal logic check for science goals is out of scope in this 
work and will be left for future research.

To demonstrate this case study, we set up a machine simulating 
a cloud computing environment that hosted the cloud scheduler 
and a virtual machine inside the host machine acting as an edge 
node named “Node1.” Both cloud and edge schedulers were con-
nected via the virtual network. Kubernetes was used as a resource 
manager on the edge node, launching and terminating plugins. The 
three user plugins were all made up in a way that they produce 
sensor measures as programmed. The CarCounter plugin outputted 
its sensor measure ranged randomly from 10 to 13 for hours in 
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7 to 10 and 16 to 19, and the measure went down between 0 
and 3 for the rest of the hours, in order to simulate daily rush 
hours in a city. The TrafficFlowEstimator plugin behaved inversely 
because dense traffic usually means low speed of the traffic; it pro-
duced higher numbers when the car count measure was lower, and 
vice versa. After the job was submitted to the cloud scheduler via 
an API call, a science goal was generated and distributed to the 
“Node1” node. Then, the edge scheduler running inside the node 
loaded the science rules and started reasoning about the current 
context using sensor measures being reported. The Datetime plu-
gin was specially designed to accelerate the simulation time such 
that it took 1 minute to drive 1 hour in the simulation; thus it 
took 24 minutes to simulate a day.

Fig. 7 illustrates the reported sensor measures and correspond-
ing state changes of the 3 user plugins in the node during the 
run. The plugins were launched and terminated as intended by the 
science goal. The sensor measures in the figure show the impli-
cation on how the edge scheduler received those measures and 
used them to validate the science rules, which then triggered the 
plugins via the resource manager. In this work we used the de-
fault scheduling policy that allocated resources to whichever plu-
gin came to the resource manager first. Because the container 
images of the plugins were downloaded in the edge node before 
the simulation began, it took only a few seconds for the resource 
manager to initialize the plugins for launching.

The simulation showed that the KB inside the edge sched-
uler was using the last reported sensor measures when inferring 
on the science rules. This approach may be undesirable when 
having time-sensitive science rules that imply the temporal as-
pect indirectly. For example, the science rule env.count.car > 5 ⇒
T raf f ic(Dense) implies that the traffic is “now” dense (by check-
ing whether the current car counter is greater than 5). If the taken 
sensor measure was produced hours ago, this rule may not give 
the correct context, depending on the actual intention by the user. 
One may suggest making the rule explicit for its temporal prop-
erty as T raf f icDense(Now), but that may make the science goal 
much more complicated. Instead, using a time-series database and 
query languages that support such a temporal property may be a 
reasonable approach because science rules are derived from sensor 
measures. For example, a querying form3 env.count.car[1m] may 
give a cumulative number of cars recognized in the last minute.

The proposed scheduling model has left many research ques-
tions. Scheduling policy is one of the questions because it affects 
how science goals are delivered on edge nodes. This needs to be 

3 The form is referred from time-series database query languages such as 
Prometheus.
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Fig. 7. Scheduling result for the case study. The edge scheduler ran the three user plugins to serve the science goal of traffic flow analysis. The graph shows a day’s worth of 
scheduling.
investigated along with characteristics of user jobs. For example, 
the ImageSampler plugin needed to be running as soon as the 
system noticed a dense traffic. If the plugin was launched much 
later—even a few minutes since the traffic may change rather 
quickly—capturing an image of the dense traffic would not be 
possible. In addition to the scheduling policy problem, establish-
ing priorities between conflicting science goals is another topic to 
study. We believe that in general one should not compare prior-
ities between science goals because each goal represents a user’s 
job. However, rarity of phenomena of interest may be a good factor 
to use because it may give higher priority to science goals seeking 
rarer events. Because the edge scheduler schedules plugins based 
on triggers made by science rules at run-time, it was assumed that 
any scheduled plugins will need to be run as soon as possible. 
But, having a tolerance time window—deadline—specified in sci-
ence goal will make the scheduler more flexible on scheduling the 
plugin along with other plugins being scheduled. Lastly, the ontol-
ogy expressing sensor measures of user plugins and its semantic 
representation should be universally agreed upon as the proposed 
model urges users to pick plugins for their science. The ontology 
may need to support arithmetic and temporal operations to sup-
port more expressions on sensor measures. This will allow more 
elaborate science rules that represent the intention of a science 
goal more precisely. An edge platform using the proposed schedul-
ing model should form an ontology representing the default sen-
sors such as meteorological sensors, cameras, and microphone that 
the platform provides and promote it as a foundation for edge ap-
plications, i.e. plugins, to add their data terms into the ontology. 
Users then should be able to use the terms in the ontology to de-
sign execution flow of plugins for their science goal. Nevertheless, 
we will need to start looking at more use cases requiring edge 
computing capability and understand their job execution flow and 
requirements.

6. Conclusion

Smart city infrastructures use distributed sensor systems and 
IoT. Edge computing provides the opportunity for customized and 
on-demand services by deploying user applications on distributed 
computing nodes. Interacting with edge computing systems often 
is difficult for users because of the complexity and dynamics of 
the system. Users would benefit from a system that enables them 
to describe what they need without extensive computer language 
skills. In this paper we proposed a two-layered scheduling model 
to ease the use of the system and isolate edge computing nodes 
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from direct user interaction. Such isolation ensures that the sched-
ulers behave logically and their result can be logically tracked. The 
concept of “science goal” fills the gap between user job description 
and system specific parameters, and the goal-oriented schedul-
ing model handles the event-driven nature of user applications on 
edge nodes. Those applications are proactively sought by the edge 
scheduler whenever they need to run, based on the current con-
text obtained from the local environment. The context-awareness 
used in this paper allows users to define states of interest and use 
the scheduler to capture them.

The case study showed a complete example inspired from ex-
isting studies in urban traffic. It indicated how one can specify a 
job for the science and how the job gets interpreted and served 
by the system. We admit that constructing science goals and ap-
plying them in real-case scenarios require some learning practice 
and in-depth understanding about input/output of sensors and plu-
gins. For example, the user in the scenario described in Section 5
needed to be aware of how CarCounter and TrafficFlowEstimator be-
have and what resolution and view of the camera was needed to 
produce the car counts from the CarCounter plugin. This meta in-
formation about sensors and plugins should have been given to 
the user ahead of job submission. Additionally, if the user was 
not familiar to using predicate logic, there might be some learn-
ing practice involved on how to use the syntax to define science 
rules. By understanding the mechanism of the scheduling model, 
users should be able to describe their job more precisely, captur-
ing the full system behavior at the edge.
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