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1 | INTRODUCTION

| Pengtao Yang” | Dongliang Duan’

| Xiang Cheng”

Abstract

Vehicle behaviour prediction provides important information for decision-making in mod-
ern intelligent transportation systems. People with different driving styles have consider-
ably different driving behaviours and hence exhibit different behaviour tendency. However,
most existing prediction methods do not consider the different tendencies in driving styles
and apply the same model to all vehicles. Furthermore, most of the existing driver classifi-
cation methods rely on offline learning that requires a long observation of driving history
and hence are not suitable for real-time driving behaviour analysis. To facilitate personalised
models that can potentially improve vehicle behaviour prediction, the authors propose an
algorithm that classifies drivers into different driving styles. The algorithm only requires
data from a short observation window and it is more applicable for real-time online appli-
cations compared with existing methods that require a long term observation. Experi-
ment results demonstrate that the proposed algorithm can achieve consistent classification
results and provide intuitive interpretation and statistical characteristics of different driving
styles, which can be further used for vehicle behaviour prediction.

tion, there are three typical research directions: motion model-
based prediction (e.g. [3-5]), manoeuvre-based prediction (e.g.

In recent years, humankind has made temarkable progress in
the transportation system. Specifically, advanced sensors ate
installed at both the infrastructure and the vehicles to provide
improved situational awareness and facilitate machine intelli-
gence during the decision-making while driving, realising the
Intelligent Transportation Systems (ITS). Among the various
issues, the prediction of the vehicle motion and behaviour is
a crucial topic, since it provides critical information to the
decision-making of both individual vehicles and the transporta-
tion control centre. As a result, there have been many recent
studies on vehicle trajectory tracking and behaviour prediction
(see, e.g., [1-17]) , and among the studies on behaviour predic-

[6-10]) and interaction-aware prediction (e.g [11-13]).

However, none of them has taken into account the impact of
different driving styles in the prediction. Specifically, all drivers
are treated identically and the same model is applied to all vehi-
cles to conduct behaviour analysis and prediction. In practice,
drivers with different driving styles (e.g aggressive or conser-
vative) or under different driving conditions (e.g. normal, rush,
or even drunken) could lead to considerably different tendency
in their driving behaviours. To achieve better behaviour predic-
tion, personalised models for individual drivers would be a bet-
ter alternative, which can be established if the driving styles or
conditions could be obtained in advance.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

propetly cited.

© 2022 The Authors. /2T Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Commun. 2022;16:1393—-1402.

wileyonlinelibrary.com/iet-com 1393


https://orcid.org/0000-0002-9898-5543
https://orcid.org/0000-0003-1015-2481
https://orcid.org/0000-0002-5943-0326
mailto:qingqing@umn.edu
mailto:xiangcheng.86@googlemail.com
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-com

1394 |

ZHENG ET AL.

In the meantime, there are a large amount of works on
driving style analysis and recognition (see, e.g., [18-36]). Most
works applied data mining techniques to classify different driv-
ing styles, typically clustering [18, 24, 26, 28, 30]. Some early
works rely on fuzzy logic to conduct the driving style recogni-
tion [21, 23]. Different types of probabilistic models are also
very popular among researchers for the classification of driv-
ing behaviour [25, 27, 29, 31]. With the booming of machine
learning, many researchers tend to use learning techniques, for
instance, Support Vector Machine [37] to conduct driving style
classification [28, 30]. Moreover, domain transformation from
time to frequency has also been applied in order to improve the
classification accuracy [20] or facilitate the data fusion from dif-
ferent sources [19, 22 36]. The eatly work [18] that applied data
mining techniques made use of principal component analysis
(PCA) [38] and hierarchical clustering algorithm (HCA) [39] to
deal with the driving data. However, this work [18] is only appli-
cable to very limited pre-selected driving parameters or features.
Specifically, the parameters covered here are limited to speed,
acceleration and mechanical work of the vehicle. There are no
position-related parameters that have been taken into account.
Although the authors did mention this work can be significantly
improved by taking other factors into consideration, no further
updates on the work have been published so far. In a recent
work [24], more features were included, and the partitioning
around medoids (PAM) [40] and K-means [41] clustering algo-
rithms were adopted to classify drivers into multiple groups with
different driving profiles. However, this work requires consider-
ably long observations on historical data of vehicles and drivers.
It might not be suitable for online real-time driving behaviour
analysis. Specifically, it might be inapplicable for traffic scenarios
with complex dynamics. In another recent work, Wang ez a/. [28]
proposed a modified semi-supervised SVM in order to mitigate
the burden of data labelling while maintaining the performance
of traditional supervised SVM approaches. However, they only
focus on the longitudinal driving behaviour with two features,
namely the vehicle speed and the throttle opening. In addition,
during the data pre-processing, to make labelling work easier,
K-means clustering method was introduced.

In summary, all above works are based on some pre-defined
categories and the rules to determine the different categories
could vary significantly for different system setups (e.g. heavy
traffic vs. light traffic, or day/night). Or they are data hungry to
reach certain accuracy while data may not be available in prac-
tice. None of the existing works discussed above has managed to
propose an algorithm to achieve consistent classification results
with a short-term observation window that would be suitable
for real-time applications in any practical system setup. Instead,
we attempts to classify the vehicle considering short observa-
tion window in order to provide new features for subsequent
work, so that it can use a personalised model for prediction to
achieve more precise result without worrying about the data
amount available. Moreover, by introducing the driving style
and the corresponding vehicle trajectoties, it can also facilitate
the vehicular communication channel modelling and estimation,
or contribute to the dynamic resource allocation [42—406], espe-
cially in trendy Vehicle-to-everything (V2X) scenarios [45] and

the future of beyond 5G and 6G communication systems for
vehicular communications [40].

Therefore, an integrated algorithm which is ready for real-
time applications is proposed, which can classify driver styles
by their driving behaviours, based on the sensor data related
to vehicle motions such as vehicle’s position, velocity, and
acceleration. Technically, we extract features of the vehicle
motion data via data filtering, domain transformation and
dimensionality reduction, and then apply the unsupervised
learning technique on a historic dataset as training set to cluster
the drivers into several different categories with different
driving styles. During this training process, the policies for
classification can be established to classify any newly observed
vehicle. The proposed algorithm is tested on an open-source
dataset (https://data.transportation.gov/Automobiles /Next-
Generation-Simulation-NGSIM- Vehicle-Trajector/8ect-6qj).
Results show that the proposed algorithm can successfully clas-
sify drivers into different categories of different driving styles
with reasonable interpretation. Moreover, the classification can
be conducted based on data with short observation windows,
which makes it feasible for online real-time applications. In
addition, the consistency of the proposed algorithm is also
validated. With the proposed driving style classification, a
new dimension can be added into existing vehicle behaviour
prediction algorithms for better prediction and analysis of
vehicle motion.

The rest of this paper is organised as follows. In Section 2,
an integrated algorithm for vehicle driving style classification is
proposed. Section 3 describes the NGSIM dataset and presents
the implementation of the proposed algorithm to the dataset.
The interpretation of results and performance evaluation are
shown in Section 4. Finally, some concluding remarks are given
in Section 5.

2 | THE PROPOSED ALGORITHM

In this paper, we aim to classify the drivers into different driv-
ing style categories according to the multi-modal and multi-
dimensional sensor data of the vehicle motion. The sensor data
could be ecither provided by on-board sensors of vehicles or
the road side units (RSUs) in the ITS. Given the heterogene-
ity natute in the sensor data, it is challenging to develop a
physical-based model for driving behaviours. Therefore, we pro-
pose a data-driven approach which is composed of two phases
for behaviour classification, namely the training and inference
phases. In the training phase, some historical data in a particular
transportation system (e.g. a segment of a highway) are collected
and an unsupervised learning approach [47] is applied to cluster
the data into different clusters, which corresponds to the driving
style categories. At the same time, the resultant clustering pol-
icy will be established and applied to classify any newly observed
vehicle in the same system into specific driving style in the infer-
ence phase. For both the training and inference phase, in order
to accelerate the clustering process, the high-dimensional sen-
sor data is pre-processed and dimensionally reduced such that
the features that are closely related to driving behaviour will be
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[20]. First, the frequency domain can contain more information
about the driving behaviour with limited data. For instance, the
FIGURE 1 Algorithm flow chart

extracted. A flow chart of the proposed algorithm is shown in
Figure 1.

2.1 | Data pre-processing
The data pre-processing is divided into two steps: data filtering
to select the associated features and domain transformation to
generate frequency domain features.

2.1.1 | Data filtering
In general, there might be a plenty of sensor data available that
cover many different aspects of vehicle motion. In order to
conduct driving behaviour classification, one should filter the
enormous sensor data by selecting only features that are either
related to the manoeuvre of the vehicle (such as position, speed,
and acceleration) or to its temporal and spatial relationship with
other vehicles (such as the relative position to the preceding
vehicle).

Assuming that #-dimensional related sensor data are available

x; = [x1, X2, x”]T s 1)

Assuming that £-dimensional related sensor data are selected
where £ < 7, a vehicle’s feature at the /th time slot can be repre-
sented by an £-dimensional vector x; as

F =[xl 2% xk]r , )

where each component of the vector corresponds to one fea-
ture selected. The driving behaviour is usually characterised by
the temporal development of vehicle motion. Assume that there
an observation window of /N, therefore the sensor data can be

speed of the vehicle in the time domain describes the instan-
taneous value of the velocity over a period of time, while in
the frequency domain, it can describe the fluctuation of the
vehicle speed. Hence, the frequency domain velocity can indi-
cate whether the vehicle is driving smoothly or not directly,
while in time domain, the steadiness may not be available given
a limited observation window. Second, the driver behaviour is
usually insensitive to the absolute time stamp of its actions.
For instance, if a vehicle changes the lane three times within
1 min, no matter when those lane-change actions happen,
this driver would be considered as an aggressive driver. Trans-
forming the data into frequency domain would further filter
the time stamps that are not relevant in deciding the driving
behaviour.

Performing the Fourier transform of each of the 4-
dimensional time domain features, one can obtain the frequency
domain features as follows:

1 1
XT X]T
2 2
| e |*F
= XN ©)
& £
_X]‘_ _xj_i_

in which F (+) represents the row-wise Fourier transform.

2.2 | Dimension reduction

Instead of using the raw frequency domain data X we
obtained in Section 2.1.2, we conduct dimension reduction
of the data before the clustering. There are several reasons
for doing this. First of all, during the dimensional reduc-
tion, the correlation among different components of the data
can be studied and the major structure in the data would be
revealed. This greatly facilitates the clustering process. Second,
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the noise would usually be reduced during the dimension reduc-
tion. Third, the computational complexity for the training pro-
cess would be greatly reduced with the dimensionally reduced
data.

Principal component analysis (PCA) is one of the most widely
used data dimensionality reduction algorithms. The main idea of
PCA is to sequentially find a set of mutually orthogonal coordi-
nate axes from the original space to map a higher £-dimensional
features to a lower r-dimensional vector. The selection of the
new coordinate axes is closely related to the data itself, wherein,
the first new coordinate axis selection is the direction with the
largest variance in the original data, and the second new coot-
dinate axis selection is the plane orthogonal to the first coordi-
nate axis. The value of the resultant dimensionality r is selected
according to the variance ratio of each dimension. Let the vari-
ance ratio of the dimension with the /th largest ratio be #;, then

,
r=arg @in Z v; 2 1y, ©)

o=l
in which 17, is the variance ratio threshold and can be treated
as a hyper-parameter in the proposed algorithm. When 1/, is
larger, r is larger, hence more dimensions will be retained after
the dimension reduction, and vice versa.

2.3 | Driving behaviour classification by
clustering

After data pre-processing in Section 2.1 and feature dimension-
ality reduction in Section 2.2, the K-means algorithm which is
an unsupervised learning algorithm, is then applied to cluster
the frequency domain features.

In order to determine the value of K, Calinski-Harabasz
score (CH score)[48] is used to evaluate the results of the clus-
tering. In clustering, the internal-cluster variance is defined as

K

SpK) =Y, Y llx—mll%, ©)

=1 xeC;

in which C, is the set of all points in the 7th cluster, m; is the cen-
tre point of the date in the /th cluster and inter-cluster vatiance
is defined as

K

Sp(K) = Y nllm = m;|)?, )

i=1

in which me is the center point of all data, m; is the centre point
of the date in the /th cluster and #; is the number of data in the
7th cluster. Then the CH Score is defined as

CH(K) = Spk)/ (k= 1)

= . 8
S (B (1= &) ©

It can be seen that the larger the CH Score is, the more close the
data are to each other within the same category, and the more
dispersed the data between different categories. In other words,
the clustering performance is better.

2.4 | Inference phase

During the training phase of this unsupervised learning
approach described in Sections 2.1, 2.2, 2.3, drivers in a par-
ticular system are classified into different categories with dif-
ferent driving styles. When a new driver in the same system is
observed, one can apply the rules obtained during the cluster-
ing to classify this driver.

Specifically, with the available training data, suppose that A/
different categories are generated. For any new vehicle, its dis-
tance to the M cluster centres in the feature domain can be cal-
culated by the data in a short time, and one can calculate the
probability that this vehicle belongs to each category by the
normalised distance function. With the same data processing
method and the dimensionality reduction procedure described
above, the feature of the observed vehicle is obtained, and the
distance between the vehicle feature and the 7th centre in the
feature space can be denoted as 4;. According to the central limit
theorem, it is assumed that the data follows Gaussian distribu-
tion. Then the probability density that the vehicle belongs to the
7th class is

1{1'2

fild)y=Ae 7, ©)

where 4 and B are constant. Then the normalisation is applied
to find the probability for the /th class

2
fild)y e
M 27

ijzl /@) Z/=1 e

d) = (10)

that is,

PAdildy, dys . dyy) = softmax(@d|d %, dy?, ., dy®). (11)

3 | EXPERIMENTS
We use some real-world data to verify the proposed algorithm
with detailed information given in the following subsection.

3.1 | Dataset description

The data used in this paper are provided by Federal High-
way Administration’s NGSIM project [49]. There are two
typical datasets available: US. Highway 101 and Interstate
80 in California, and both datasets provide the vehicle tra-
jectory data extracted by video cameras. We worked on the
US. Highway 101 dataset, where vehicle trajectory data are
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» 1338 % 108 Vehicle Trajectories TABLE 2  Ratio of variance after PCA
Domain Dimension order
213371 b
\ Time domain 88.22%  11.77%  0.0011%  0.00045%  0.00020%
2.1336 b
Frequency domain ~ 99.77%  0.088%  0.050% 0.040% 0.028%
2.13351 b
2.1334 \ ]
213331 N \ i from 217 to 9834 depending on how long the vehicle stays
21332] ; NN\ ] within the area of interest.
6.04274 6.04276 6.04278 6.0428 6.04282 6.04284 6.04286 6.04288 6.0429
x10°
3.2 | Algorithm implementation
FIGURE 2 50 randomly selected vehicle trajectories in the dataset
In this section, an example to show how the algorithm imple-
TABLE 1 Raw features used in behaviour classification mentation on the NGSIM dataset is presented'
Name Description
Local X Lateral coordinate of the front centre of the vehicle in feet 321 | Data preprocessing
with respect to the left-most edge of the section in the
direction of travel. The data in NGSIM dataset contains 25 dimensions. Some
Local Y Longitudinal coordinate of the front centre of the vehicle dimensions are used to identifying the owner of the data, such as
in feet with respect to the left-most edge of the Vehicle_ID, and Frame_ID, and the others describe some infor-
section in the direction of travel. . . . . .
mation related to vehicle motion. Among many dimensions,
Global X X Coordinate of the front centre of the vehicle in feet there are eight dimensions of the dataset been selected as the
based on CA State Plane III in NADS3. N . .
features of interests, as shown in Table 1 to conduct analysis on
Global Y Y Coordinate of the front centre of the vehicle in feet driver behaviours
based on CA State Plane IIT in NADS3. . ' . . .
As mentioned previously, a vehicle’s feature at the 7th frame
1 _vel Instantaneous velocity of vehicle in feet/second. can be represented by an 8-dimensional vector 2
7
V_ace Instantaneous acceleration of vehicle in feet/second

square.

Space_headway Space Headway in feet. Spacing provides the distance
between the front centre of a vehicle to the front center

of the preceding vehicle.

Time_headway Time Headway in seconds. Time Headway provides the
time to travel from the front center of a vehicle (at the
speed of the vehicle) to the front center of the

preceding vehicle.

collected from a section of US. Highway 101, Los Angeles,
CA. The length of this section is 640 m, and it consists of
five lanes, one auxiliary lane and two ramps. The dataset
records vehicle motion information for 45 min from 7:50
AM to 8:35 AM on 15 June 2005. Each piece of data is
recorded at 0.1 s intervals, that is the sampling frequency is
10 Hz (https://data.transportation.gov/Automobiles /Next-
Generation-Simulation-NGSIM-Vehicle-Trajector/8ect- 6qj).
An illustration of 50 randomly selected vehicle trajectories in
the dataset are shown in Figure 2 for description of the selected
highway section.

The data in the dataset contains 25 features such as [2hi-
ce_ID, Frame ID, Local X, Local Y, Global X, and Global_Y,
which describe the absolute position, relative position, relation-
ship with the preceding vehicle, speed, and acceleration. Tehi-
¢le_ID can distinguish which vehicle the data belongs to. In
total, there are 3233 vehicles and 118,505,266 data frames in the
dataset, and the number of data frames of each vehicle ranges

xX; = [XLo[d/_X9 X ocal Y> XGlobal _X> XGlobal_Y>

()

XU pels XV _aces xSpyﬂ_/ymdLJ/@w X ﬁme_/ymdu/@']

Taking an observation window with /N frames, then a
time-domain feature matrix for each vehicle is obtained as
[x1 X9 .. xi\v]. Then, as described in 2.1.2, frequency domain
feature matrix is obtained after taking the Foutier transform of
each row

T F

X ocal X X ocal X
A F
XLomL Y XLomL Y
T F
X Global_X X Global_X
T F
Xcwvaly | 7oy | *Glbary
. = Xee e 13
X V_vel X V_vel
7 F
XV_a[[ XV_ﬂa
T F

x&‘)am_bmdwqy x. Space_headway

T r

Time_headway Time_headway

For real-time applications, and considering the selected highway
section, the observation window is set to 200 frames (2V = 200),
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2 o 1 o

(a) Time-domain.

%108
10

(b) Single principal component.

FIGURE 3  Clustering using different features

that is the data with a continuous 20 s record. This indicates
that the proposed algorithm can determine the driving style of a
vehicle with a very short observation window. Note that, not all
of the 3233 vehicles in the original dataset contains 200 frames
of data, and 2356 vehicles were selected after removing bad data.

3.22 | Dimension reduction

PCA is applied to this dataset to reduce and select the dimen-
sionality of the frequency domain feature. The variance ratio of
the first five dimensions after their dimensionality reduction is
shown in Table 2.

It can be seen that the variance ratio of the first dimension
in frequency domain exceeds 99% and the summation of first
two dimension in time domain exceeds 99.99%. The summa-
tion of first three dimensions of time domain and frequency
domain both exceeds 99.99%. As shown in Figure 3(a), the time
domain clustering result does not show clear boundary between
clusters and the points within each cluster are dispersed. The
single frequency-domain principal component clustering result
shown in Figure 3(b), the number of clusters is still 3 as the
proposed scheme. However, the points within each cluster are
not quite concentrated as compared with the result shown in

©10° The Relationship between Value of K and CH Score
3.5
B
s 337855:23)
25
o
5 2
O
(7]
T
O 15
1
0.5
o | | | | | | | |
2 3 4 5 6 7 8 9 10
K Value
FIGURE 4 The relationship between value of K and CH score

Figure 5 which uses three principal components for flustering.
Therefore, the first three principal components are selected as
features for the following clustering procedure.

3.2.3 | Driving behaviour classification

The final step of the algorithm is to cluster the extracted fea-
tures. As described in Section 2.3, the CH-Score index is used
to judge the clustering effect, so some comparative experiments
were performed to obtain the best K value. It can be seen from
Figure 4 that the clustering performance is best when K = 3.
Hence, the value of K is set to 3 for the selected dataset.

4 | RESULT AND ANALYSIS

In this section, statistical results of clustering are presented, and
then the characteristics of the drive styles in different categories
are analysed. Finally, we introduce how the labels obtained by
clustering can be used to classify new observed vehicles.

4.1 | Clustering results

After the dimensionality of the frequency domain feature is
reduced, the clustering results with highest CH-score are shown
in Figure 5, and the statistical characteristics of three cluster are
shown in Table 3. In the following, we will refer to the categories
of red, green and blue as category 0, category 1 and category
2, respectively.

4.2 | Characteristic in different categories

By analysing the statistical characteristics of each type of driving
style (as shown in Table 3), the characteristics of each category’s
vehicles driving style can be interpreted as follows:
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6 2.1333
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2 2.13325
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6.04281 6.04282 6.04283 6.04284 6.04285 6.04286 6.04287
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(a) Category 0
x10°
‘ ‘ " Bveicle 1
4o 213335} Vehicle 2
FIGURE 5  Clustering result visualisation: The number of category 0 (red) 21333 7
is 1767, the number of category 1 (green) is 294 and the number of category 2
(blue) is 295 213325} |
2.1332F 1
TABLE 3  Statistical characteristics of clustering
i ; 2.13315 ‘ : : : :
Category Attribute Mean Variance 6.04281 604282 6.04283 6.04284 6.04285 6.04286 6.04287
> x10°
0 Local X 35.64 ft 5.29 ft (b) Category 1
V_vel 27.36 ft/s 4712 e /5% 1o°
X
V_ace -0.11 ft/s? 29.77 fi? /s* ‘ EVehicIe1
213335} [—Vehicle 2|
Space_headway 67.46 ft 728.23 fit?
Time_headway 144.83 s 1,103,061 s? 2.1333f 1
1 Local X 36.03 ft 6.22 fi?
2.13325 |

_vel 29.40 ft/s 48.56 %/

V. _ace 011 ft/s? 27.56 % /s* 21332 1

Space_headway 72.70 ft 947.14 f¢? 213315 ‘ ‘ ‘ B ‘

Time_beadnay 58.96 s 440.478 2 " 76.04281 604282 6.04283 6.04284 6.04285 6.04286 6.04287

- : ' ? x10°
2 Local X 31.26 ft 4.25 ft? (c) Category 2
V. _vel 31.85 ft/s 48.90 fe /s?
FIGURE 6 Typical trajectory of each category

V. _ace -0.07 ft/s> 30.23 ft?/s*

Space_headway 75.93 ft 2319.85 ft?

Time_headhvay 12701 s 819.074 <2 age variance of the distance from the left side of the road is
the largest, indicating that the drivers tend to take lane changes
much more frequently.

42.1 | Category 0 ‘conservative drivers’

The average speed (27.30) is the slowest of the three categories.
It can be seen from the exemplary trajectory that the speed is
slower when making turns. At the same time, the time taken to
reach the position of preceding car is significantly longer than
the other two categories, which means that the drivers in this
category are more conservative to prevent rear-end collision.

422 | Category 1 ‘aggressive drivers’

The average speed (29.04) is faster, second only to category 3.
The time taken to reach the position of the preceding car is sig-
nificantly less than the other two categories, indicating that they
tend to follow closer to the preceding cars. In addition, the aver-

423 | Category 2 ‘experienced drivers’
The average speed (31.85) is the fastest, but the driving is rela-
tively stable, because the absolute value of the average acceler-
ation (-0.07, the other two categories are -0.11) is the smallest,
indicating that the brakes are the least used. The average vati-
ance of the distance from the left side of the road is the smallest,
indicating that the driver is good at selecting routes and change
lanes less often. And the average distance from preceding car is
the largest, but the time taken to reach the position of preceding
car is moderate, indicating that the driver can better control the
distance from the preceding car and the speed while following
the preceding car.

The example trajectories as shown in Figure 6 can be anal-
ysed for intuitive interpretations, where all trajectories are cho-
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sen from the same fragment of X-axis from 6,042,810 to
6,042,870 and Y-axis from 2,133,150 to 2,133,380. It can
be further confirmed that the trajectories match the driv-
ing styles from conservative to aggressive and experienced.
Since each data point represents the position of the vehi-
cle at each time slot, denser points indicate slower speed. In
Figure 6(a), the driver slows down significantly before per-
forming the lane change. In Figure 6(b), one of the vehicles,
marked by blue square, does not keep the line, and another
vehicle, marked as brown circle, does not slow down when per-
forming the lane change. The experienced drivers, shown in
Figure 6(c), keep within a relatively straight lane and maintain
a steady speed, that is the data point density does not change
significantly.

It should be noted that the three categories obtained here are
only applicable to this particular dataset. For other transporta-
tion systems such as a different road section, there might be
drivers with different number of driving styles which all have
quite different characteristics in their behaviour. However, for
any system, similar procedure could be followed to analyse some
historical observations on the vehicles in the system and obtain
the driving styles among them.

4.3 |

Performance for classification

Now for the NGSIM dataset, three cluster centres have been
found. Then the probability for the /th class is

2

Ji(d;) e
R ==y
x =0 i) X j=0¢ "’
that is
Py(r\rys i) = softmax(dizwoz, 5112, 422). (15)

In the evaluation experiment, the clustering results obtained
from all NGSIM data were used for cross-validation and veri-
fication of the training and testing results. In order to validate
the model and avoid underfitting or overfitting, £-fold cross-
validation is applied here [50]. Set 1/£ portion of the vehicles
from the dataset as the testing set, and the rest as training set,
where £ is an integer and the total number of vehicles is 3233.
Note that 2356 vehicles were selected after removing vehicles
that contain less than 200 frames of data. The training set is
applied to obtain the cluster centres, and the test set is then
classified into the clusters. Finally, the classification result of the
test set is compared with the clustering results obtained from
the whole dataset to obtain the classification accuracy. In order
to further justify the consistency of the proposed algorithm, we
evaluate the performance of the classifier with the different set-
ting of the random state and max iterations. The default settings
are random_state = None and max_iter = 300, and experiments
are also conducted with settings of randon_state from 0 to 10 and
max_iter increasing to 500 and 1000. The training and testing

TABLE 4  Training and testing results

k-fold Accuracy Attribute Macro avg. Weighted avg.

3 0.79 precision 0.79 0.92
recall 0.81 0.79
S-score 0.74 0.82

4 0.87 precision 0.50 0.81
recall 0.67 0.87
S-score 0.56 0.83

5 0.92 precision 0.87 0.95
recall 0.91 0.92
[1-score 0.87 0.93

results are consistent and shown in Table 4. The accuracy is 79%
at £ = 3 and is increased to 87% at £ = 4. However, the macro
average of precision at £ = 4 is decreased to 0.5 from 0.79 at
£ = 3 because the distinction between category 2 and category
1 is blurred due to the testing and training split settings. The
best performance is obtained at £ = 5, and the proposed algo-
rithm achieves a 92% accuracy, and both precision and recall are
higher than previous settings. Any £ > 5 will result in overfitting
which means that the metrics of classification results all equal to
1. This shows that the proposed algorithm can successfully learn
and extract important features about driving behaviour, making
it possible to classify vehicle driving style based on the vehicle
motion information with a short observation window.

5 | CONCLUSIONS AND FUTURE WORK

An algorithm for driving style classification is proposed. The
proposed method can successfully classify driving styles with
limited data from a short observation window and achieve con-
sistent classification results. The training phase consists of a
series of data mining techniques, including data filtering, domain
transformation, dimension reduction and clustering, The first
three techniques are conducted in order to enable the clustering
to work with limited data. In the inference phase, it can clas-
sify the driving style based on the sensor data including vehicle
motion and position data which collected in a short observa-
tion window. Moreover, distinct vehicle trajectories of different
driving styles can easily be obtained. It should be noted that
the classifier obtained would be only applicable to the particular
system where the training data are collected. For any new sys-
tem, training must be re-conducted to learn the driving styles
among the vehicles in that system. In the future, we plan to
update the classifier to more generalised dataset and further
utilise the categories of driving styles as new feature to build
personalised models for better vehicle behaviour and trajectory
prediction.
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