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Abstract

In many cyber-physical systems, imaging can be an im-
portant but expensive or ‘difficult to deploy’ sensing modal-
ity. One such example is detecting combustion instability
using flame images, where deep learning frameworks have
demonstrated state-of-the-art performance. The proposed
frameworks are also shown to be quite trustworthy such
that domain experts can have sufficient confidence to use
these models in real systems to prevent unwanted incidents.
However, flame imaging is not a common sensing modality
in engine combustors today. Therefore, the current road-
block exists on the hardware side regarding the acquisition
and processing of high-volume flame images. On the other
hand, the acoustic pressure time series is a more feasible
modality for data collection in real combustors. To uti-
lize acoustic time series as a sensing modality, we propose
a novel cross-modal encoder-decoder architecture that can
reconstruct cross-modal visual features from acoustic pres-
sure time series in combustion systems. With the “distilla-
tion” of cross-modal features, the results demonstrate that
the detection accuracy can be enhanced using the virtual
visual sensing modality. By providing the benefit of cross-
modal reconstruction, our framework can prove to be useful
in different domains well beyond the power generation and
transportation industries.

1. Introduction

In aerospace and energy industries, ultra-lean premixed
combustion is preferred to make gas turbine engines more
fuel-efficient with lower cost and low NOx (nitrogen ox-
ides) emissions. With this attempt to make engines effi-
cient and environment-friendly, such operating regimes can
make engines more prone to an undesirable phenomenon

called combustion instability, which is caused by the estab-
lishment of a positive feedback loop between heat release
rate fluctuations and fluctuating acoustic pressure [23]. In
confined environments, fluctuating heat release rate leads
to the generation of sound waves, which get reflected back
to modify the heat release rate. A positive feedback loop
can cause a growth of pressure fluctuations leading to large
levels of vibration in an engine [4, 5]. This can result in
huge revenue loss due to poor performance, reduced life,
or catastrophic failure of engine [7]. Significant trade-offs
are required in fuel efficiency and the design of combustion
systems to prevent combustion instability ([17]). To avoid
these trade-offs, it is important to develop an accurate and
feasible framework for active detection and control of insta-
bility.

Previously, researchers have studied combustion insta-
bility using full-scale computational fluid dynamics [22],
physics-based [2] and reduced order [28] modeling ap-
proaches. However, these approaches may require simplify-
ing assumptions and face difficulty in achieving validation.
An alternative is to implement data-driven methods utiliz-
ing acoustic pressure time-series [13, 20, 26]. These data-
driven methods, based only on acoustic pressure time se-
ries, can sometimes be inaccurate due to interference from
broadband background noise. Recently, researchers have
started developing instability detection frameworks using
machine learning [15, 27]. With the rapid development in
the field of computer vision, the application of deep learning
models has started in this domain to detect instability from
flame images [25, 1, 8, 11, 9]. The effectiveness of model
interpretability mechanisms such as ‘attention’ has been in-
vestigated from a domain knowledge perspective [11] and
deep learning results have been verified from a physics-
based understanding [9]. Therefore, the image-based deep
learning frameworks have proved to be accurate, trustwor-



thy and can build the confidence of domain experts to im-
plement these models in real systems to detect combustion
instability. However, the current roadblock exists on the
hardware side.

Acquisition and processing of high-volume flame image
data may not be feasible to perform fast enough using ex-
isting commercial hardware. Also, flame imaging is not a
common sensing modality in engines today. Therefore, the
image-based deep learning frameworks can only become
feasible with rapid improvement in the hardware sector.
Acoustic pressure time series is a more feasible modality
for data collection in real combustors. To circumvent the
hardware roadblock and simultaneously ensure high detec-
tion accuracy, the optimal solution can be to utilize acous-
tic time series as a sensing modality and implement image-
based deep learning models. In this work, we attempt to
think in that direction by proposing a novel virtual sensing
model (VSenseNet) to reconstruct cross-modal visual fea-
tures from acoustic pressure time series in combustion sys-
tems. While researchers have proposed cross-modal recon-
struction models for text-to-image [24, 32, 16], and speech-
to-face [21, 6], there has been no work on the reconstruc-
tion of visual features from time series in any application
domain.

Contributions. We summarize the contributions of this
work as follows:

1. To the best of our knowledge, this is the first work
on cross-modal reconstruction of visual features from
time series in any domain. The proposed cross-modal
encoder-decoder model VSenseNet is novel in the con-
text of combustion systems to reconstruct flame im-
ages from acoustic pressure time series.

2. In VSenseNet, visual reconstruction from time series
is achieved by training the encoder-decoder with “dis-
tillation” of cross-modal features from models pre-
trained on images. During testing, the classification
performance of synthetic images is compared against
that of actual images.

3. With acoustic time series as the sensing modality, we
demonstrate that instability detection accuracy can be
enhanced using our proposed virtual sensing modeling
approach. VSenseNet can prove to be a great resource
in different sectors where imaging is an important but
‘difficult to deploy’ sensing modality.

2. Related Work

Researchers have proposed models involving cross-
modal reconstruction for text, speech, and image datasets.
Conditional Generative Adversarial Nets (GANSs) [19] can
direct the data generation process by conditioning the model
on additional information. A training strategy involving

GAN [12] architecture can enable text-to-image synthe-
sis of bird and flower images from human-written descrip-
tions [24]. Conditional GANs have been used to achieve
the cross-modal audio-visual generation of musical perfor-
mances [3]. AttnGAN [32] is an attention-driven model
for text-to-image generation where the layered attentional
structure can pay attention to the relevant words in the natu-
ral language description for generating different parts of the
image. Obj-GAN [16] is an object-driven attentive genera-
tive network for synthesizing complex images from text de-
scriptions utilizing an object-driven attentive generative net-
work and an object-driven discriminator. Speech2Face [21]
model has been proposed to study the task of reconstruct-
ing a facial image of a person from a short audio record-
ing of that person speaking. Face images of a speaker can
be generated with a self-supervised approach by exploit-
ing the audio and visual signals naturally aligned in videos
[6]. Cross-modal matching can be used to generate faces
from voices that match several biometric characteristics of
the speaker [31]. A model has been proposed to use both
audio and a low-resolution image to perform extreme face
super-resolution [18].

3. Virtual Sensing Model (VSenseNet)

To address the hardware roadblock of flame image ac-
quisition, to use acoustic time series as sensing modal-
ity, and to simultaneously utilize an image-based detection
framework for better accuracy, we propose a novel cross-
modal encoder-decoder virtual sensing model VSenseNet.
In this section, we demonstrate two versions of VSenseNet
- VSenseNet I and VSenseNet II. The training framework
of VSenseNet II additionally comprises of image classifier,
while that of VSenseNet I only includes the time series en-
coder and the image decoder. We demonstrate the ablation
studies of both versions in the supplementary materials.

3.1. Convolutional Autoencoder Pre-Training

Autoencoders can learn meaningful representations us-
ing a compression function (encoder) and a decompres-
sion function (decoder). The encoder compresses the in-
put into a low dimensional embedding, and the decoder re-
constructs the high dimensional information from that em-
bedding. Without the requirement of explicit annotations,
the weights of an autoencoder model can be learned with
the objective of minimizing the reconstruction loss. The
first step is to utilize the training dataset of flame images
to pre-train a convolutional autoencoder which comprises
an image encoder and an image decoder as demonstrated in
Fig. 14. The encoder takes in a flame image (resolution 64
x 64) as input. The encoder model comprises a series of
2D convolutional and 2D max-pooling layers. After that, a
fully connected layer is used to compute a 128-dimensional
embedding. From the 128-dimensional embedding, the de-
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Figure 1. The encoder and decoder of the convolutional autoencoder model used for pre-training.
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Figure 2. The details of time series encoder for training the
VSenseNet.

coder attempts to reconstruct the original flame image as
closely as possible using a series of 2D up-sampling and
2D convolutional transpose layers. The details of image en-
coder and decoder models are provided in the supplemen-
tary section.

3.2. Time Series Encoder

The training frameworks of both versions of VSenseNet
consist of the time series encoder to compute an embedding
from the time series. Long Short Term Memory (LSTM)
networks can effectively capture long-term temporal depen-
dencies [14], and LSTM networks are effective in different
applications involving time series data [10]. We develop the
time series encoder model consisting of two LSTM layers
with dropout added after each layer to prevent over-fitting.
The time series encoder is shown in Fig. 2. The first LSTM
layer takes in the multivariate time series as input. The hid-
den state outputs of the first LSTM layer act as inputs to
the second LSTM layer. The last hidden state of the sec-
ond LSTM layer is considered the compressed information
for the time series. A fully connected layer is used to get a
128-dimensional time series embedding.

3.3. VSenseNet 1

The VSenseNet I modeling approach is illustrated in
Fig. 9. The trainable parts of the VSenseNet I framework
are the time series encoder and image decoder, and the pre-
trained (and fixed) part is the image encoder. The weights
of VSenseNet I are learned with two learning objectives -
minimizing the embedding loss and minimizing the recon-
struction loss.

The pre-trained image encoder is utilized to compute the
128-dimensional image embedding. The trainable time se-
ries encoder (Fig. 2) generates the 128-dimensional time se-
ries embedding. The embedding loss is the mean squared
error (MSE) computed between the time series embedding
and image embedding. In the training process, the time se-
ries encoder learns to compute an embedding that can match
the image embedding as closely as possible.

The image decoder in Fig. 9 is trained from scratch
alongside the time series encoder in the training loop. The
model architecture of the decoder is the same as that in the
autoencoder model (Fig. 14). The input to the image de-
coder is the time series embedding, from which it attempts
to reconstruct the image corresponding to the input time se-
ries. The learning objective of the image decoder is to mini-
mize the reconstruction loss between the actual flame image
and the reconstructed image.

3.4. VSenseNet I1

Compared to VSenseNet I, VSenseNet II has an image
classifier model in the training framework apart from the
time series encoder and the image decoder. We demonstrate
the training framework of VSenseNet II in Fig. 12. The
trainable parts are the time series encoder, image decoder,
and image classifier. Similar to VSenseNet I, in VsenseNet
I also, the pre-trained image encoder is utilized. The train-
ing framework consists of two steps.

In the first step, the time series encoder is trained to
regress to the image embedding computed from the image
encoder. With the time series as input, the time series en-
coder computes a 128-dimensional time series embedding.
The learning objective is to minimize the embedding loss
(MSE) between the time series and image embeddings.

In the next step, the image decoder and image classifier
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Figure 3. Training framework of VSenseNet I. It utilizes the pre-trained image encoder to compute the image embedding. The time series
encoder and image decoder are trained with two loss functions - embedding loss and reconstruction loss.
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Figure 4. Training framework of VSenseNet II. It comprises two steps. The first step is to train the time series encoder. The next step is to
train the image decoder and image classifier utilizing reconstruction loss and classification loss.

models are trained. The model architecture of the decoder
is the same as that used in Fig. 14. The image classifier
model comprises 2D convolutional, 2D max-pooling, and
fully connected layers. It is a binary classification model
to predict a flame image as stable or unstable. The model
architecture of the image classifier is provided in supple-
mentary materials. The generated time series embeddings
are utilized for training this part of the framework. From an
embedding, the image decoder learns to reconstruct the cor-
responding flame image as closely as possible. With the re-
constructed flame image as input, the image classifier model

predicts it as stable or unstable.

3.5. Test Framework for VSenseNet

The overall test framework for VSenseNet is shown in
Fig. 5. It consists of three steps - time series encoder, image
decoder, and image classifier.

For VSenseNet I, the time series encoder and the image
decoder are trained as shown in Fig. 9. The image classi-
fier is trained separately using actual flame images of the
training dataset. For VSenseNet II, the time series encoder,
the image decoder, and the image classifier are trained as
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Figure 5. Test framework of VSenseNet comprising time series encoder, image decoder and image classifier.

shown in Fig. 12.

After taking in the multivariate time series as input, the
trained time series encoder model computes the time series
embedding. From this embedding, the trained image de-
coder computes the reconstructed image. This image is fed
into the trained image classifier model to classify it as sta-
ble or unstable. Therefore, the virtual sensing framework
utilizes acoustic time series as the sensing modality from
which it reconstructs the cross-modal visual features. The
reconstructed image is then used to identify the presence of
combustion instability. With this approach of using a feasi-
ble sensing modality, the hardware roadblock of flame im-
age acquisition can be avoided, and simultaneously, better
detection accuracy can be achieved.

4. Experiments
4.1. Dataset

For dataset collection, we induce combustion instability
in a laboratory-scale swirl combustor (details provided in
the supplementary section). The fuel is injected co-axially
with air at selected upstream distances. For dataset collec-
tion, the chosen upstream distances are 90 mm and 120 mm.
For the upstream distance of 90 mm, partial premixing of
the fuel with air occurs, while the distance of 120 mm facil-
itates full premixing of the fuel and air.

The ground truth labels (stable, unstable) for the hi-speed
flame image sequences are provided by the domain ex-
perts. The conditions are defined as stable or unstable based
on the dominant frequency, and root mean square (RMS)
value of pressure fluctuations (between initial and final in-
stants). The stable conditions demonstrate broadband fre-
quency (estimated from fast Fourier transform) and RMS
pressure values less than 100 Pa. For unstable conditions,
the frequency of oscillations corresponds to sharp values in
the range of 130-150 Hz, and the RMS pressure exceeds 500
Pa. Hence, the images are labeled using the corresponding
pressure modality and not using image features.

We identify the conditions by upstream distance (pre-
mixing length), airflow rate (AFR), and fuel flow rate
(FFR). Both AFR and FFR are expressed in lpm (liters per
minute). The hi-speed images are captured at 3000 Hz (with
a resolution of 1024 x 1024) for 3 seconds at each condi-
tion. Simultaneously, the pressure data is recorded at 4 lo-

cations of the experimental setup with a frequency of 9000
Hz. Therefore, for each condition, we have 9000 frames
and 27000 time steps of multivariate pressure data. From a
total of six conditions, we use four conditions for training
our proposed models and keep two conditions for testing
the performance of the models.

The stable and unstable conditions in the training set are:

1. Stable;20/60/600: Condition has Premixing Length
=120 mm, FFR = 60 and AFR = 600.

2. Stablegg/45/450: Condition has Premixing Length =
90 mm, FFR =45 and AFR = 450.

3. Unstable;zg/45/900: Condition has Premixing
Length = 120 mm, FFR =45 and AFR = 900.

4. Unstablegg/2g/600: ~ Condition has Premixing
Length = 90 mm, FFR = 28 and AFR = 600.

The stable and unstable conditions in the test set are:

1. Stable;20/45/450: Condition has Premixing Length
=120 mm, FFR =45 and AFR = 450.

2. Unstablegg/45/900:  Condition has Premixing
Length = 90 mm, FFR =45 and AFR = 900.

4.2. Baseline Models

For comparison of results, we use three baseline models.

1. Image Classifier: The image classifier model is the
same as that used in the test framework of VSenseNet
(Fig. 5). This image-based baseline model takes a
flame image as input and classifies it as stable or un-
stable. It is trained on actual training set images and
tested on actual test set images.

2. Time Series Classifier: This is an entirely time series
based model with no cross-modal reconstruction of vi-
sual features. The time series classifier model is de-
veloped by augmenting the time series encoder model
(Fig. 2) - two fully connected layers are added after the
computation of the 128-dimensional time series em-
bedding. The entire model architecture of the time se-
ries classifier has been provided in the supplementary
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Figure 6. Framework to train the time series encoder of the baseline Cross-Modal Model which is inspired from Speech2Face [21].

section. With the multivariate time series as input, the
model predicts it as stable or unstable. The time series
classifier model is trained using time series only, and it
is tested using time series of the test set.

3. Cross-Modal Model: We develop this cross-modal
baseline model inspired from the Speech2Face [21]
model. Speech2Face was proposed to reconstruct a hu-
man face from an audio recording of a person speak-
ing. Speech2Face model consists of a voice encoder
that takes spectrogram as input - the spectrogram is
computed from the audio recording. The voice encoder
is trained utilizing a pre-trained face encoder network.
The voice encoder computes an embedding that is fed
to a pre-trained face decoder model to reconstruct the
human face. We implement a framework similar to that
of Speech2Face - time series encoder is used instead
of voice encoder to encode the time series, pre-trained
image encoder, and image decoder models (Fig. 14)
are used as replacements of pre-trained face encoder
and face decoder models, respectively. The framework
to train the time series encoder is shown in Fig. 6. The
test framework of the Cross-Modal model is the same
as that of VSenseNet, as demonstrated in Fig. 5.

4.3. Results

In this section, we discuss the classification and recon-
struction performance of the proposed approach.

We use three evaluation metrics for classification perfor-
mance: Accuracy, F1 Score, and False Negative Rate. F1
Score, also known as F-score or F-measure, is the harmonic
mean of precision and recall. False negative rate (FNR)
refers to falsely predicting negative (stable) when it is ac-
tually positive (unstable). FNR is the ratio between the
predicted number of false negative samples and the actual

number of positive samples. It summarizes how often sta-
ble is predicted when the actual is unstable. For detection of
combustion instability, it is highly significant to have a low
model FNR. We use Adam optimizer with a learning rate of
0.001 and a batch size of 32. The models are trained using
NVIDIA Titan RTX GPU.

For reconstruction performance, we use two evaluation
metrics - Mean Squared Error (MSE) and Structural Simi-
larity Index Measure (SSIM). MSE computed between the
actual and reconstructed images may not always be highly
indicative of the structural similarity. SSIM [29, 30] ad-
dresses this issue by considering texture and also including
luminance masking and contrast masking terms. Therefore,
SSIM can be efficient in estimating the perceived similarity
between the actual and reconstructed images.

Table 1 presents the empirical results for the test set con-
ditions. The Image Classifier Model, which is tested using
actual flame images, shows an average accuracy of 99.38%.
The Time Series Classifier Model, which doesn’t involve
any cross-modal reconstruction, shows an average accuracy
of 98.50%. Therefore, the image-based model is more ac-
curate than the time series based framework. From Table 1,
we observe that our proposed models (VSenseNet I and
VSenseNet II) demonstrate better accuracy than the time
series model. Both of our proposed models also outper-
form the Cross-Modal baseline model in terms of accuracy,
F1 Score, and FNR. Using time series as the input modal-
ity with virtual sensing approach, we can enhance the av-
erage classification accuracy from 98.50% to 99.01% and
approach closer towards the 99.38% accuracy achieved by
the imaging modality-based model. Therefore, by adopt-
ing the proposed training approach of distillation of cross-
modal features and reconstruction of synthetic images, we
enhance the instability detection performance with acoustic
time series as the sensing modality.



Model Reconstruction Performance Classification Performance
SSIM | Mean Squared Error Accuracy | F1 Score | FNR
Image Classifier NA NA 0.9938 + 0.0064 | 0.9938 + 0.0065 | 0.0122 + 0.0129
Time Series Classifier NA NA 0.9850 £ 0.0021 | 0.9847 £ 0.0022 | 0.0300 + 0.0044
Cross-Modal 0.6655 0.0072 0.9888 £ 0.0005 | 0.9887 4 0.0005 | 0.0222 + 0.0010
VSenseNet I 0.6980 0.0062 0.9895 £ 0.0003 | 0.9894 4 0.0002 | 0.0209 + 0.0006
VSenseNet I1 0.6876 0.0070 0.9901 £ 0.0003 | 0.9900 + 0.0003 | 0.0197 + 0.0007

Table 1. Empirical Results for the test set. For classification performance, average and standard deviation of the evaluation metrics (Accu-
racy, F1 Score, FNR) are reported after training each model five times. For reconstruction performance, average values of SSIM and MSE

are reported.
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Figure 7. The reconstructions obtained from the proposed VSenseNet models are compared against the reconstructions obtained from the
Cross-Modal baseline model, and the actual flame images for the test set Stable;20,45/450 condition.

In terms of reconstruction performance, both VSenseNet
I and VSenseNet II outperform the Cross-Modal baseline
model in terms of SSIM and MSE as demonstrated in Ta-
ble 1. Sample reconstruction results are shown in Fig. 7 and
Fig. 8. The reconstructed images are generally a bit more
smooth than the actual images. From Fig. 7, we observe
that all the models can reliably reconstruct the flame im-
ages for the test set Stable;2q/45,450 condition. For the
other test set condition Unstablegg 45,900, the proposed
VSenseNet models reconstruct the flame structures better
than the baseline Cross-Modal model as highlighted by red
boxes in Fig. 8.

While stable-unstable flame classification can help in de-
signing active combustion control mechanisms to mitigate
the instability, it does not provide any scientific insight to

the domain experts in terms of the coherent structures re-
sponsible for triggering the instability, and hence, the over-
all approach may lack interpretability. Therefore, we stress
upon the need for flame image reconstruction that can pro-
vide valuable insights during offline analysis as well as
build sufficient trust of the domain experts via necessary
interpretability.

5. Conclusion

Deep learning frameworks have demonstrated state-of-
the-art performance in detecting combustion instability
from flame images. Such frameworks have also proved
to be trustworthy to build the confidence of domain ex-
perts. But the current roadblock exists in the acquisition



Actual Image

Reconstructed Image
(Model: Cross-Modal)

Reconstructed Image
(Model: VSenseNet 1)

Reconstructed Image
{Model: VSenseNet II)

Figure 8. The reconstructions obtained from the proposed VSenseNet models are compared against the reconstructions obtained from the
Cross-Modal baseline model, and the actual flame images for the test set Unstablegg /45,900 condition.

of high-volume flame images within the confines of an en-
gine having high temperatures. From the hardware side,
capturing acoustic pressure time series in real combustors
is a more feasible modality. To utilize acoustic time series
as a sensing modality and, at the same time, to simultane-
ously ensure high detection accuracy, we propose a novel
cross-modal encoder-decoder virtual sensing model that can
reconstruct cross-modal visual features from acoustic pres-
sure time series in combustion systems.

Our proposed VSenseNet approach demonstrates effec-
tiveness in reconstructing the flame images. By choosing
different conditions in the test set, we demonstrate the ro-
bustness of our model. We demonstrate that by cross-modal
reconstruction of synthetic images, the classification perfor-
mance is better than that from time series alone. Therefore
we are enhancing the accuracy of combustion instability de-
tection using time series data with our virtual sensing mod-
eling approach. Domain experts can also gain valuable in-
sights during an offline analysis of the reconstructed flame
images.

VSenseNet provides the unique benefit of generating
synthetic visual features corresponding to time series in-
formation. We believe that our proposed approach has the
potential to impact different sectors dealing with cyber-
physical systems where imaging is an important but ‘diffi-
cult to deploy’ sensing modality. Our VSenseNet approach
can fill up the gap by providing the benefit of cross-modal
reconstruction, and we envision that this can bring a trans-
formative advancement in different application domains. In
the future, we plan to extend VSenseNet to capture transi-

tions in a combustion system. We would also like to apply
our modeling approach to other cyber-physical systems.
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Supplementary Materials

S.1 Ablation Study

The training framework of VSenseNet II additionally
comprises of image classifier, while that of VSenseNet
I only includes the time series encoder and the image
decoder. For the ablation study of VSenseNet I and
VSenseNet II, we conduct multiple experiments.

S.1.1 VSenseNet 1

The VSenseNet I modeling approach is illustrated in
Fig. 9. The trainable parts of the VSenseNet I framework
are the time series encoder and image decoder, and the pre-
trained (and fixed) part is the image encoder. The weights of
VSenseNet I are learned with two learning objectives - min-
imizing the embedding loss and minimizing the reconstruc-
tion loss. The pre-trained image encoder is utilized to com-
pute the 128-dimensional image embedding. The trainable
time series encoder generates the 128-dimensional time se-
ries embedding. The embedding loss is the mean squared
error (MSE) computed between the time series embedding
and image embedding. In the training process, the time se-
ries encoder learns to compute an embedding that can match
the image embedding as closely as possible. The input to
the image decoder is the time series embedding, from which
it attempts to reconstruct the image corresponding to the in-
put time series. The learning objective of the image decoder
is to minimize the reconstruction loss between the actual
flame image and the reconstructed image.

As part of ablation study for VSenseNet I, we develop
the models VSenseNet I(A) and VSenseNet I(B), demon-
strated in Fig. 10 and Fig. 11 respectively. In VSenseNet
I(A), we remove the embedding loss - the time series en-
coder and the image decoder are trained with only recon-
struction loss. In VSenseNet I(B), we add another loss
function in addition to the embedding loss and reconstruc-
tion loss. The additional loss is added after the second
convolutional transpose layer of the image decoder to fa-
cilitate knowledge distillation from the image decoder pre-
trained on images. From Table 2, we observe that while
VSenseNet I(A) is better than VSenseNet I(B) in terms of
reconstruction performance, VSenseNet I(B) outperforms
VSenseNet I(A) in terms of classification performance.
Overall, VSenseNet I performs better in terms of both re-
construction and classification performance.

S.1.2 VSenseNet 11

Compared to VSenseNet I, VSenseNet II has the image
classifier model in the training framework apart from the
time series encoder and the image decoder. We demon-
strate the training framework of VSenseNet II in Fig. 12.
The trainable parts are the time series encoder, image de-
coder, and image classifier. With the time series as input,
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the time series encoder computes a 128-dimensional time
series embedding. From a time series embedding, the im-
age decoder learns to reconstruct the corresponding flame
image as closely as possible. With the reconstructed flame
image as input, the image classifier model predicts it as sta-
ble or unstable.

As part of the ablation study for VSenseNet II, we de-
velop the model VSenseNet II(A) demonstrated in Fig. 13.
While VSenseNet II consists of two steps for training,
VSenseNet II(A) consists of a single step to train the time
series encoder, image decoder, and image classifier. From
Table 3, we observe that in terms of classification perfor-
mance VSenseNet II is better than VSenseNet II(A). For re-
construction, VSenseNet II(A) performs better, but the per-
formance is not as good as VSenseNet 1.

S.2 Convolutional Autoencoder

Autoencoders can learn meaningful representations us-
ing a compression function (encoder) and a decompres-
sion function (decoder). The encoder compresses the input
into a low dimensional embedding, and the decoder recon-
structs the high dimensional information from that embed-
ding. Without the requirement of explicit annotations, the
weights of an autoencoder model can be learned with the
objective of minimizing the reconstruction loss. The first
step of developing our proposed framework is to utilize the
training dataset of flame images to pre-train a convolutional
autoencoder which comprises an image encoder and an im-
age decoder as demonstrated in Fig. 14. The encoder takes
in a flame image (resolution 64 x 64) as input. The en-
coder model comprises a series of 2D convolutional and 2D
max-pooling layers. After that, a fully connected layer is
used to compute a 128-dimensional embedding. From the
128-dimensional embedding, the decoder attempts to recon-
struct the original flame image as closely as possible using
a series of 2D up-sampling and 2D convolutional transpose
layers. The details of the image encoder and decoder model
are shown in Fig. 15 and Fig. 16 respectively.

S.3 Baseline Models
S.3.1 Image Classifier

This image-based model is a binary classification model
which takes a flame image as input and classifies it as sta-
ble or unstable. It is trained on actual training set images
and tested on actual test set images. The image classifier
model comprises 2D convolutional, 2D max-pooling, and
fully connected layers. The model architecture of the image
classifier is shown in Fig. 17.

S.3.2 Time Series Classifier

This is an entirely time series based model with no cross-
modal reconstruction of visual features. The model archi-
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Figure 9. Training framework of VSenseNet I. It utilizes the pre-trained image encoder to compute the image embedding. The time series
encoder and image decoder are trained with two loss functions - embedding loss and reconstruction loss.
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Figure 10. Training framework of VSenseNet I(A). The time series encoder and image decoder are trained with reconstruction loss.

tecture of the time series classifier has been demonstrated
in Fig. 18. With the multivariate time series as input, the
model predicts it as stable or unstable. The time series clas-
sifier model is trained using time series only, and it is tested
using time series of the test set.

S.4 Dataset Collection

For dataset collection, we induce combustion instabil-
ity in a laboratory-scale swirl combustor (Fig. 19), which
has a swirler of diameter 30 mm and vane angles of 60 de-
grees. Air is provided to the combustor through a settling
chamber of diameter 28 cm and thereafter through a square
cross-section of side 6 cm. The experimental setup includes
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an inlet section, an inlet optical access module (IOAM), a
primary combustion chamber, and a secondary duct. The
IOAM facilitates optical access to the fuel tube. The fuel
is injected co-axially with air through a fuel injection tube,
having slots on the surface at selected distances upstream of
the swirler.

The chosen upstream distances are 90 mm and 120 mm.
For the upstream distance of 90 mm, partial premixing of
the fuel with air occurs, while the distance of 120 mm facil-
itates full premixing of the fuel and air. Based on the swirler
diameter, different airflow rates are chosen for a fixed fuel
flow rate. In another way, the inlet air flow rate can be kept
fixed for different fuel flow rates.
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Figure 11. Training framework of VSenseNet I(B). The time series encoder and image decoder are trained with three loss functions.

Model Reconstruction Performance Classification Performance
SSIM | Mean Squared Error Accuracy | F1 Score | FNR

Image Classifier NA NA 0.9938 £+ 0.0064 | 0.9938 £ 0.0065 | 0.0122 + 0.0129
Time Series Classifier NA NA 0.9850 + 0.0021 | 0.9847 + 0.0022 | 0.0300 + 0.0044
Cross-Modal 0.6655 0.0072 0.9888 £+ 0.0005 | 0.9887 4+ 0.0005 | 0.0222 + 0.0010
VSenseNet I 0.6980 0.0062 0.9895 £ 0.0003 | 0.9894 + 0.0002 | 0.0209 + 0.0006
VSenseNet I(A) 0.6965 0.0061 0.9859 +£0.0011 | 0.9857 +0.0012 | 0.0280 + 0.0023
VSenseNet I(B) 0.6894 0.0063 0.9890 £ 0.0002 | 0.9889 4 0.0002 | 0.0218 + 0.0005

Table 2. Ablation study with VSenseNet I for the test set. For classification performance, average and standard deviation of the evaluation
metrics (Accuracy, F1 Score, FNR) are reported after training each model five times. For reconstruction performance, average values of
SSIM and MSE are reported.
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Figure 12. Training framework of VSenseNet II. It comprises two steps. The first step is to train the time series encoder. The next step is
to train the image decoder and image classifier utilizing reconstruction loss and classification loss.
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Figure 13. Training framework of VSenseNet II(A). It consists of a single step to train the time series encoder, image decoder and image
classifier.

Model Reconstruction Performance Classification Performance
SSIM | Mean Squared Error Accuracy | F1 Score | FNR
Image Classifier NA NA 0.9938 £+ 0.0064 | 0.9938 & 0.0065 | 0.0122 + 0.0129
Time Series Classifier NA NA 0.9850 £+ 0.0021 | 0.9847 £ 0.0022 | 0.0300 + 0.0044
Cross-Modal 0.6655 0.0072 0.9888 £ 0.0005 | 0.9887 4+ 0.0005 | 0.0222 + 0.0010
VSenseNet 11 0.6876 0.0070 0.9901 £ 0.0003 | 0.9900 £ 0.0003 | 0.0197 + 0.0007
VSenseNet I1(A) 0.6978 0.0065 0.9898 + 0.0006 | 0.9897 4+ 0.0006 | 0.0202 + 0.0012

Table 3. Ablation study with VSenseNet II for the test set. For classification performance, average and standard deviation of the evaluation
metrics (Accuracy, F1 Score, FNR) are reported after training each model five times. For reconstruction performance, average values of

SSIM and MSE are reported.
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Figure 14. The encoder and decoder of the convolutional autoencoder model used for pre-training.
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Figure 15. Encoder model for pre-training of convolutional autoencoder.
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Figure 16. Decoder model for pre-training of convolutional autoencoder.
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Figure 17. Image Classifier model classifies a flame image as stable or unstable.
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(b) Image of the Laboratory Scale Combustor

Figure 19. The laboratory-scale combustor used for data collection. (a) Schematic of the experimental setup. 1 - settling chamber, 2 - inlet
duct, 3 - IOAM, 4 - test section, 5 - big extension duct, 6 — small extension ducts, 7 - pressure transducers, Xs - swirler location measured
downstream from settling chamber exit, Xp - transducer port location measured downstream from settling chamber exit, Xi - fuel injection
location measured upstream from swirler exit. (b) Image of the laboratory scale combustor.
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