
Journal of Discrete Event Dynamical Systems manuscript No.
(will be inserted by the editor)

A General Language-Based Framework for Specifying
and Verifying Notions of Opacity

Andrew Wintenberg · Matthew
Blischke · Stéphane Lafortune ·
Necmiye Ozay

Received: date / Accepted: date

Abstract Opacity is an information flow property that captures the notion
of plausible deniability in dynamic systems, that is whether an intruder can
deduce that “secret” behavior has occurred. In this paper we provide a general
framework of opacity to unify the many existing notions of opacity that exist
for discrete event systems. We use this framework to discuss language-based
and state-based notions of opacity over automata. We present several methods
for language-based opacity verification, and a general approach to transform
state-based notions into language-based ones. We demonstrate this approach
for current-state and initial-state opacity, unifying existing results. We then
investigate the notions of K-step opacity. We provide a language-based view
of K-step opacity encompassing two existing notions and two new ones. We
then analyze the corresponding language-based verification methods both for-
mally and with numerical examples. In each case, the proposed methods offer
significant reductions in runtime and space complexity.

Keywords Opacity · Verification · Language-Based Opacity · K-step Opacity

Research supported in part by US NSF under grants CNS-1738103, CNS-1801342, and
ECCS-1553873.

A. Wintenberg
E-mail: awintenb@umich.edu
M. Blischke
E-mail: matblisc@umich.edu
S. Lafortune
E-mail: stephane@umich.edu
N. Ozay
E-mail: necmiye@umich.edu
Department of EECS, University of Michigan,
1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA



2 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

1 Introduction

As modern systems become increasingly connected, information flow has be-
come critical to their correct operation. These systems have entered many
areas of life in the form of autonomous vehicles, the smart grid, location-based
services, and medical monitoring, to name but a few areas. The increasing
amount of physical and human interaction with these systems raises concerns
over security and privacy. Transmission of information across networks pos-
sesses an inherent risk of revealing private information to an outside observer
called the intruder, potentially with malicious intent. Formal modeling of infor-
mation flow properties has been proposed as a way to understand and manage
these risks in networked dynamic systems. Notions like non-interference [13]
and anonymity [20] were developed in the computer science community for
this purpose.

More recently, the notion of opacity [19] was proposed as a general informa-
tion flow property capturing the notion of “plausible deniability”: opacity holds
if an intruder cannot deduce sensitive information from their observations of
a system’s behavior. Opacity was further developed for a variety of Discrete
Event System (DES) models, including transition systems [4] [1], finite state
automata [21], Petri nets [3] [26], timed automata [6], modular automata [18],
and more. Within these models, many notions of opacity have been proposed
to capture different forms of private or secret information. Of particular impor-
tance are language-based opacity [17], current-state opacity [21], initial-state
opacity [22], and the related notions of K-step and infinite step opacity [23,24].
In addition to the type of private information, the capabilities of the intruder
are also integral to notions of opacity. While many works in DES consider
a single intruder with static observations of observable events, more complex
observation schemes have also been considered, such as decentralized observers
in [29] or dynamic observers in [7]. Opacity is an expressive notion of security.
Many existing security properties, including non-interference and anonymity,
can be formulated as opacity [14]. Additionally, opacity has been utilized in
practical applications, like the enforcement of privacy in language-based ser-
vices [32]. For a thorough review of works in opacity in the context of DES,
as of 2016, please see [15].

Although a variety of notions of opacity have been proposed, they may not
directly capture the desired notion of privacy or security in a given networked
system. One approach to analyzing specific notions of opacity is to trans-
form them into existing notions where existing methods can be applied. While
some transformations between the various forms of opacity over automata
have been studied (for example between current-state, initial-state, language-
based [29]), it is unclear if other notions like K-step opacity are comparable or
how to handle new notions. The first contribution of this paper is to develop
a systematic approach for specifying and analyzing various notions of opac-
ity. This is accomplished with a general definition of opacity extending the
notion developed for transition systems [4]. We use this framework to model
language-based opacity over automata and present several methods for verifi-



General Language-Based Opacity 3

cation thereof. Then we develop a general transformation between state-based
and language-based notions of opacity. Using this, state-based notions of opac-
ity can be described by constructing automata to specify secret behavior and
verified using language-based methods. This approach is first demonstrated
on the simple notions of current-state and initial-state opacity. The resulting
verification methods resemble the existing standard approaches for verification
of these forms of opacity.

The second contribution of this paper is to apply the proposed frame-
work and verification methods to the less well-understood notions of K-step
and infinite step opacity. Whereas current-state opacity only considers an in-
truder’s current state estimate, K-step and infinite step opacity may involve
the intruder smoothing their estimates, i.e., improving estimates of the past
with current information. While it may appear that these notions are incom-
parable [33], we provide a unified view of two prominent existing notions of
K-step opacity along with two new ones that emerge using our framework.
These notions are then transformed into language-based and hence current-
state opacity. Furthermore, the resulting language-based verification methods
offers considerable advantages over existing methods. We demonstrate this
both formally and with numerical examples.

The remaining sections of this paper are organized as follows. Section 2
presents a general behavioral definition of opacity. Section 3 reviews finite
automata and discusses language-based and state-based opacity over them
along with methods for verification. Section 4 applies these concepts to verify-
ing current-state and initial-state opacity. Section 5 defines K-step and infinite
step opacity in relation to existing notions. Section 6 presents methods for ver-
ification of K-step opacity while Section 7 discusses the complexity of these
methods. Section 8 discusses verification of infinite step opacity. Section 9
presents numerical results comparing verification methods for K-step opacity.
Finally, Section 10 concludes the paper.

2 A general framework for opacity

In this section we present a general framework of opacity to formalize the
intuition of a system having “plausible deniability”. In order to unify the dif-
ferent notions of opacity that exist for a variety of system models, we discuss
systems in terms of their behavior, taking the approach of [27]. Consider a
system under observation by an intruder. We denote the set of possible behav-
iors or runs of the system as R. For example, R may be the set of solutions
to a differential equation modeling a continuous-time system or R may be
the language of an automaton modeling a discrete event system. The intruder
makes observations of this behavior in the space O through an observation
map Θ : R → O. Opacity describes the inability of the intruder to discern a
class of secret runs RS ⊆ R from a class of nonsecret runs RNS ⊆ R. This
inability can either be total or partial. In the following definitions we extend
Θ to sets in the standard way, i.e., Θ(R) = {Θ(r) | r ∈ R}.



4 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Definition 1 We say that (RS, RNS) is totally opaque to Θ : R → O if

Θ(RS) ⊆ Θ(RNS) . (1)

Definition 2 We say that (RS, RNS) is partially opaque to Θ : R → O if

Θ(RS) ∩Θ(RNS) ̸= ∅ . (2)

When the behavior is taken to be the runs of a transition system, total opacity
corresponds to the notion of opacity given in [4].

Specific notions of opacity correspond to different specifications of the se-
cret and nonsecret runs of the system and capabilities of the intruder. In this
work, we focus on total opacity as it relates to desirable notions of privacy and
security, e.g., all secrets are hidden. Alternatively, partial opacity can express
notions like diagnosability [17], e.g., faults can be detected. While the secret
and nonsecret behavior can be arbitrary sets, we often consider them to be
complements. That is to say that nonsecret behavior means behavior which is
not secret RS = R \RNS. In this case observe the following.

Observation 1 If RS = R \RNS then (RS, RNS) is totally opaque if and only
if (R,RNS) is totally opaque. This is because

Θ(RS) ⊆ Θ(RNS) ⇔ Θ(R) = Θ(RS) ∪Θ(RNS) ⊆ Θ(RNS) . (3)

So under this condition, it suffices to consider only RNS and R. ♢

2.1 Joint & separate opacity

More complex notions of privacy can involve multiple classes of possibly over-
lapping secret behaviors. Consider a set of pairs of classes of secret and nonse-
cret behaviors {RS(i), RNS(i)}i∈I over an index set I. We consider two forms
of opacity over these pairs with respect to an observation map Θ.

Definition 3 We say that {RS(i), RNS(i)}i∈I is jointly opaque to Θ if(⋃
i∈I

RS(i),
⋂
i∈I

RNS(i)

)
is totally opaque. (4)

Joint opacity considers all secrets uniformly. It requires that a run in one secret
class can be explained by a run that is nonsecret in every class.

Definition 4 We say that {RS(i), RNS(i)}i∈I is separately opaque to Θ if

∀i ∈ I, (RS(i), RNS(i)) is totally opaque. (5)

Separate opacity considers all secrets individually. It requires that a run in
one secret class can be explained by a run that is nonsecret in that class, but
perhaps secret in another class.

Observation 2 When |I| = 1, joint and separate opacity reduce to total
opacity. When |I| ≥ 1, joint opacity implies separate opacity. For I ′ ⊆ I,
joint (separate) opacity of {RS(i), RNS(i)}i∈I implies joint (separate) opacity
of {RS(i), RNS(i)}i∈I′ , respectively. ♢



General Language-Based Opacity 5

3 Opacity over automata

Automata are a widely used model in discrete event systems. There are many
existing notions of opacity for automata which capture different privacy and
security properties. We can express these notions in the framework presented
in Section 2 as total opacity with appropriate choices of secret and nonse-
cret behavior and of the intruder. When secret and nonsecret behaviors are
given as languages marked by automata, we refer to this as language-based
opacity. More generally, when secret and nonsecret behaviors are defined in
terms of the automaton’s events and properties of the states we refer to this
as state-based opacity. For example, many state-based notions involve visits
to states designated as secret or nonsecret. It is known that some state-based
notions of opacity like current-state and initial-state opacity can be efficiently
transformed into language-based opacity as in [29]. In this section, we first re-
view automata theory then discuss language-based opacity in the framework
of Section 2 along with corresponding methods for verification. We then de-
velop a general transformation from state-based to language-based notions of
behavior. With this transformation, we describe how state-based opacity can
be verified using language-based methods.

3.1 Automata Review

Given a finite set of events E, we denote the set of finite strings over E as
E∗ including the empty string ϵ. For a string s ∈ E∗, we denote the length
of s as |s| and write s = s0 · · · s|s|−1. A language L ⊆ E∗ is a subset of
strings. A nondetermistic finite automaton (NFA) is defined by a tuple G =
(Q,E, f,Q0, Qm) with a finite set of states Q, events E, transition function
f : Q × E → 2Q, initial states Q0 and marked states Qm. A deterministic
finite automaton (DFA) is an NFA G such that |Q0| = 1 and for all q ∈ Q and
e ∈ E it holds that |f(q, e)| ≤ 1. Unless stated otherwise, the term automaton
will refer to an NFA. We also extend f to the domain Q×E∗ in the standard
way by

f(q, ϵ) = q, f(q, se) = f(f(q, s), e) . (6)

For arbitrary sets Q′
0, Q

′
m ⊆ Q, we define the language of G starting in Q′

0

and marked by Q′
m as

LQ′
m
(G,Q′

0) = {s ∈ E∗ | ∃q0 ∈ Q′
0 ∃qm ∈ Q′

m qm ∈ f(q0, s)} . (7)

Then the language generated by G is defined L(G) = LQ(G,Q0) and the
language marked by G is defined Lm(G) = LQm

(G,Q0). We call a language
marked by an automaton a regular language.

We now present several constructions using automata. For more details on
these constructions, see [5]. Given a deterministic automaton G we construct
the complement automaton Gc by inverting the marking of G, adding a marked
“dead” state, and completing any missing transitions in G to this dead state.
It then holds that Lm(Gc) = E∗ \ Lm(G).



6 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Given an automaton G we also construct the reversal GR of G by swapping
the initial and marked states and reversing all transitions, i.e., q′ ∈ f(q, e)
if only if in the reverse q ∈ fR(q′, e). Note the reversal of a deterministic
automaton may be nondeterministic. The result GR marks and generates the
reversals of the languages of G where the reversal LR of a language L is defined

LR = {snsn−1 · · · s0 | s0 · · · sn ∈ L} . (8)

Given a nondeterministic automaton G we construct the determinization
det(G) = (Q,E, f,Q0, Qm) where Q = 2Q, Q0 = {Q0}, Qm = {q ∈ Q |
q ∩Qm ̸= ∅} and

∀q ∈ Q e ∈ E, f(q, e) =
⋃
q∈q

f(q, e) . (9)

The result det(G) marks and generates the same languages as G and is de-
terministic. We refer to this as the power set construction. Given automata
G = (QG, E, fG, QG,0, QG,m) and H = (QH , E, fH , QH,0, QH,m), we construct
the product automaton G×H = (QG×QH , E, f×, QG,0×QH,0, QG,m×QH,m)
where f×((qG, qH), e) = fG(qG, e) × fH(qH , e). The result G ×H then marks
and generates the intersection of the languages of G and H.

In this work, we also consider nondeterministic automata with ϵ-transitions
where transitions may also be labeled with the empty string ϵ. The above
constructions can also be performed these automata with slight modification.
For example see [5].

Using the framework from Section 2, we consider systems whose behavior
R ⊆ E∗ can be represented as regular languages over the events E. In this
case, we can model the system as a finite automaton. We consider observation
maps Θ : R → O that map system behavior to a string of observations in a
finite set Γ with O = Γ ∗. Furthermore, this map should preserve regularity.
A class of such maps simply replace each event in E with an event in Γ or the
empty string.

Definition 5 A static mask over R ⊆ E∗ is a mapping Θ : R → Γ ∗ that
satisfies

1. Θ(ϵ) = ϵ,
2. ∀s = s0 · · · sn ∈ R, Θ(s) = Θ(s0) · · ·Θ(sn).

Any function Θ : E → Γ ∪ {ϵ} can be uniquely made into a static mask over
R ⊆ E∗ by concatenation.

For example, given a set of observable events Eo ⊆ E, the natural projection
PEo

is a static mask defined by PEo
(e) = e for e ∈ Eo and PEo

(e) = ϵ for
e ̸∈ Eo. Given an automaton G, we can construct an automaton that marks
Θ(Lm(G)) which in a slight abuse of notation we denote as Θ(G). This is done
by simply replacing the events labeling transitions in G with their observation
through Θ. Note, this may result in an automaton with ϵ-transitions. More
general regularity-preserving observation maps and similar constructions are
described in [17] but are not considered here.



General Language-Based Opacity 7

3.2 Language-based opacity

In the context of language-based opacity, we model the behavior of a system as
a regular language R ⊆ E∗ (not necessarily prefix-closed) marked by a finite
automaton G. The secret and nonsecret behaviors of this system are given as
regular sublanguages RS, RNS ⊆ R. We consider observation maps given by a
static mask Θ : R → O with O = Γ ∗.

Definition 6 Given an automaton G, languages RS, RNS ⊆ Lm(G), and a
static mask Θ, we say G is language-based opaque with respect to Θ, RS, and
RNS if Θ(RS) ⊆ Θ(RNS), or equivalently (RS, RNS) is totally opaque to Θ.

This definition corresponds to the notion of strong opacity in [17] and language-
based opacity in [29]. As Θ(RS) and Θ(RNS) are regular, language-based
opacity is equivalent to a regular language containment. For many existing
notions of opacity, the nonsecret behavior is simply behavior that is not se-
cret, i.e. RS = R \RNS. In this case, it is convenient to define RNS = R∩LNS

using a regular nonsecret specification language LNS over E. The language
LNS is specified by an automaton HNS such that LNS = Lm(HNS) and so
RNS = Lm(G×HNS). Using Observation 1, we see that language-based opac-
ity of G is equivalent to the regular language containment

Θ(R) ⊆ Θ(RNS), where Θ(R) = Lm(Θ(G)), Θ(RNS) = Θ(G×HNS) . (10)

3.3 Verification of language-based opacity

By expressing language-based opacity as the well-studied problem of regular
language containment, we can leverage existing techniques to verify opacity.
We present three methods to check this language containment.

As input, the following methods take an automaton G = (Q,E, f,Q0, Qm)
modeling the system, a nonsecret specification automaton HNS = (QNS, E,
fNS, QNS,0, QNS,m), and a static mask Θ : R → Γ ∗ where R = Lm(G). These
methods verify the total opacity of (RS, RNS) to Θ where RNS = Lm(G×HNS)
and RS = R \ RNS. This is done by verifying the equivalent containment of
equation (10).

Approach 1 (Forward Comparison) A standard approach for verifying
language containment utilizes the following equivalence:

Θ(R) ⊆ Θ(RNS) ⇔ Θ(R) ∩Θ(RNS)
c = ∅ . (11)

We construct GFC = Θ(G)× det(Θ(G×HNS))
c so that Lm(GFC) = Θ(R) ∩

Θ(RNS)
c. Note determinization is required to construct the complement as

Θ(G×HNS) is nondeterministic in general. Hence (RS, RNS) is totally opaque
if and only if GFC marks the empty language. We then verify opacity by
ensuring GFC contains no reachable, marked state. ♢



8 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

0 1 2 · · · n− 1 n

a, b

b a, b a, b a, b a, b

Fig. 1 An automaton Gn with n + 1 states. The forward determinization of det(Gn) has
2n + 1 states while the reverse determinization det(GR

n ) has only n+ 1 states.

Approach 2 (Reverse Comparison) Instead of directly checking the lan-
guage containment, note that containment of languages is equivalent to con-
tainment of the reversed languages, therefore:

Θ(R) ⊆ Θ(RNS) ⇔ Θ(R)R ⊆ Θ(RNS)
R . (12)

Similar to the forward comparison method, we can construct GRC = Θ(G)R×
det(Θ(G×HNS)

R)c so that Lm(GRC) = Θ(R)R∩ (Θ(RNS)
R)

c
. We then verify

opacity by ensuring GRC contains no reachable, marked state. For some forms
of opacity, reverse comparison significantly outperforms forward comparison.
This is possible because there are automata whose determinizations are ex-
ponentially larger than the determinizations of their reverses. For example
consider the automaton depicted in Figure 1. ♢

We can simplify the verification procedure by making assumptions on the
structure of HNS. Suppose that HNS is a complete automaton, i.e., L(HNS) =
E∗. Note that a given HNS can be made to satisfy this by adding at most one
state without affecting its marked language. In this case G×HNS will encode
both R and RNS with different sets of marked states. With this observation, we
can construct a deterministic finite automaton GSO = det(Θ(G×HNS)) called
the secret observer which marks nonsecret observations. With this automaton
we can verify opacity using the following result.

Proposition 1 Suppose that L(HNS) = E∗. Using the power set construc-
tion, define GSO = (Q,Γ, f, {q0}, Qm) where Q ⊆ 2Q and q0 = Q0 so that
GSO = det(Θ(G ×HNS)). Then (RS, RNS) is totally opaque to Θ if and only
if for all γ ∈ L(GSO) it holds for q = f(q0, γ) that

q ∩ (Qm ×QNS) = ∅ ∨ q ∩ (Qm ×QNS,m) ̸= ∅ . (13)

Proof First note as L(HNS) = E∗, it holds L(G×HNS) = L(G) ⊇ R. Hence

L(GSO) = L(Θ(G×HNS)) = Θ(L(G×HNS)) ⊇ Θ(R) . (14)

For γ ∈ L(GSO) let q = f(q0, γ). By the construction of GSO, note that

∃q ∈ q ∩Qm ×QNS ⇔ ∃r ∈ Lm(G) ∩ L(HNS) = R ∧ Θ(r) = γ . (15)

Likewise, note that

∃q ∈ q∩(Qm×QNS,m) ⇔ ∃r ∈ Lm(G)∩Lm(HNS) = RNS ∧ Θ(r) = γ . (16)

Hence the state q satisfies the conditions in (13) if and only if γ ∈ Θ(RNS) or
γ ̸∈ Θ(R). Combining these facts with equation (14) yields the result. ⊓⊔



General Language-Based Opacity 9

We use this result in the following approach.

Approach 3 (Secret Observer) Given L(HNS) = E∗, construct the secret
observer GSO = det(Θ(G ×HNS)). Using Proposition 1 we verify opacity by
checking that every reachable state of GSO satisfies the conditions in (13). ♢

In each of these approaches, we verify opacity by constructing an automa-
ton GFC , GRC , or GSO and checking if each of its reachable states satisfies a
given property. As these are the largest automata constructed in these ap-
proaches, we quantify the complexity of these approaches in terms of the
number of states in these automata. We can improve these methods by in-
crementally constructing the reachable part of these automata and terminate
if a violating state is found.

Remark 1 It is well-known that checking the containment of languages rep-
resented by nondeterministic automata, as required here, is PSPACE-complete
[25]. We can use this to establish the known result that verification of language-
based opacity in this setting is also PSPACE-complete. This provides a lower
bound on the complexity of the proposed approaches for general automata.
Still in practice, we may choose one approach over another based upon the
specific structure of HNS for a fixed notion of opacity. For example consider
the following.

When the secret observer method is applicable, i.e., L(HNS) = E∗, the
complexity of the secret observer method is always no worse than the com-
plexity of the forward comparison method. This is because both approaches
require the construction of the automaton det(Θ(G×HNS)), while this is all
that is required for the secret observer method. So for a given HNS satisfying
L(HNS) = E∗, we do not consider the forward comparison method. It is pos-
sible that a lower complexity could be obtained by a different choice of HNS

with L(HNS) ̸= E∗. ♢

3.4 Transforming state-based behavior

We now discuss state-based notions of opacity in the framework of Section 2.
Whereas in language-based opacity secret and nonsecret behaviors are defined
solely in terms of the events, in state-based opacity these behaviors are defined
in terms of both events and properties of the states visited in the automaton.
As many existing notions of state-based opacity implicitly assume prefix-closed
behavior, we consider a system modeled by an automaton A = (X,Σ, δ,X0)
without marked states in the context of state-based opacity. Here we use the
convention that automata denoted by A are used to represent state-based
behavior, while automata denoted by G and H more generally are used to
represent languages. We can express state-based opacity in the framework of
Section 2 by identifying the relevant behavior of the automaton.

We consider when the secret behavior is defined by labels A on the states
assigned by a map ℓ : X → A. Viewing the events as inputs and state labels



10 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

0 1 2

3 4

σu

σo

σo

σo

σu

σo

xinit

0 1 2

3 4

(σinit,NS)

(σu, S)

(σo,NS)

(σo,NS)

(σo,NS)

(σu, S)

(σo,NS)

Fig. 2 On the left, an automaton A is depicted. The labeling function ℓ is defined by
labeling square states as S and round states as NS (so A = {§,NS}). On the right, the
automaton G = T IO(A, ℓ) is depicted.

as outputs, we can describe the runs of this system as input-output sequences.
In this view, the system (A, ℓ) is sometimes referred to as a Moore machine
[5]. We write these runs as sequences of pairs of an input (event) and the
resulting output (state label). To do this we introduce an artificial event σinit

representing the system turning on to be paired with the label of the initial
state. For example consider the automaton A depicted in Figure 2. The run
starting at state 0 labeled NS, transitioning with event σu to state 1 labeled S,
then transitioning with event σo to state 2 labeled NS, would be represented
as r = (σinit,NS)(σu, S)(σo,NS). In this way, we see the state-based behavior
of the system can be written as a regular language marked by an automaton.
This automaton is constructed by augmenting events with state labels and
introducing an artificial initial state.

Definition 7 Given A = (X,Σ, δ,X0) and ℓ : X → A, we define the label-
transform of A by T IO(A, ℓ) = (Q,E, f,Q0, Qm), where Q = X ∪ {xinit},
E = (Σ ∪ {σinit}) × A, Q0 = {xinit}, Qm = X, and nonempty transitions
defined by

∀a ∈ A, f(xinit, (σinit, a)) = {x0 ∈ X0 | ℓ(x0) = a},
∀x ∈ X, ∀σ ∈ Σ, ∀a ∈ A, f(x, (σ, a)) = {x′ ∈ δ(x, σ) | ℓ(x′) = a} .

(17)

An example of this transformation is depicted in Figure 2. Note that this trans-
formation adds only a single state to A and allows us to make the following
definition.

Definition 8 We define the set of input-output sequences of A under ℓ as
LIO(A, ℓ) = Lm(T IO(A, ℓ)).

We then consider the behavior of A under ℓ to be R = LIO(A, ℓ). In this way,
we can specify and verify state-based notions of opacity over one automaton
as language-based notions over another.



General Language-Based Opacity 11

3.5 Specification and verification of state-based opacity

We can express existing state-based notions of opacity over an automaton A
with state labeling map ℓ as total opacity over the input-output behavior R =
LIO(A, ℓ) with respect to some secret and nonsecret behaviors RS, RNS ⊆ R
and a static mask Θ : R → Γ ∗. We assume that the secret and nonsecret runs
are specified as in the language-based setting.

Assumption 1 There exists a nonsecret specification automaton HNS such
that

LNS = Lm(HNS), RNS = R ∩ LNS, RS = R \RNS . (18)

Such specification automata HNS for current-state and initial-state opacity are
presented in Section 4.

Remark 2 Nonsecret behavior could also be specified with a temporal logic
formula ϕNS with appropriate semantics. From ϕNS, the finite automaton HNS

marking runs that satisfy ϕNS could be synthesized. In this way, opacity can
be viewed as a temporal logic hyperproperty [8]. ♢

Additionally, the state-based notions we consider model observation as
projection of strings with respect to a set of observable events Σo ⊆ Σ. As such
we only consider the observation map over the input-output sequences induced
by this projection. By convention we will consider σinit to be observable, i.e.,
the intruder observes when the system turns on. In this case we make the
following assumption

Assumption 2 The intruder observes only occurrences of observable events
Σo ⊆ Σ. This induced observation map is then a static mask defined by
Θ : R → Γ ∗ where Γ = Σo ∪{σinit} and Θ((σ, a)) = σ if σ ∈ Σo ∪{σinit} and
Θ((σ, a)) = ϵ otherwise.

Remark 3 Although not done here, one could also consider partially observ-
able state outputs by defining an appropriate static mask over the event and
state labels. ♢

Under these assumptions, notions of state-based opacity are specified by a
nonsecret specification automaton HNS and set of observable events Σo. We
will consider this setting in the remainder of this work. We can then apply any
of the language-based approaches of Section 3.3 to G = T IO(A, ℓ), HNS, and
the observation map Θ induced by Σo to verify the total opacity of (RS, RNS)
to Θ. This procedure is summarized in Figure 3. Due to the structure of
G resulting from the transformation T IO, the secret observer method has a
simple interpretation.

Theorem 1 The pair (RS, RNS) is totally opaque to Θ if every non-initial
state of GSO = det(Θ(G×HNS)) is marked.



12 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

System Model:
Automaton A

State Label Map ℓ
R = LIO(A, ℓ)

Nonsecret Spec.:
Automaton HNS

LNS = Lm(HNS)
(CSO & ISO - Sec. 4

K-step - Sec. 6
Inf. Step - Sec. 8)

Observable Event
Set: Σo ⊆ Σ

Induced Obs. Map:
Static Mask Θ
(Assumption 2)

Transform
State Labels

G = T IO(A, ℓ)
(Sec. 3.4)

Construct
Nonsecret System
GNS = G×HNS

Construct
Observations

Θ(G)
(Sec. 3.2)

Construct
Observations

Θ(GNS)
(Sec. 3.2)

Verify Opacity as
Language Containment

Lm(Θ(G)) ⊆ Lm(Θ(GNS))
using approaches:

Forward Comparison
Reverse Comparison

Secret Observer
(Sec. 3.3)

Fig. 3 The proposed method for verifying state-based opacity by transforming to language-
based opacity.

Proof By construction, every non-initial state of G is marked. Hence the con-
ditions in (13) hold exactly when a secret observer state is the initial state or
contains pair of states marked in G × HNS, i.e., the secret observer state is
marked. So by Proposition 1, total opacity holds if every non-initial state of
GSO is marked. ⊓⊔

4 Current-state and initial-state opacity

Several existing notions of opacity used in discrete event systems define secret
behavior in terms of secret states of automata. By viewing the secrecy of a
state as a state output, we can express these notions as language-based opacity
over the label-transform of the automaton. To verify these notions, we can then
apply any of the language-based methods. In this section, we consider current-
state opacity (CSO) and initial-state opacity (ISO). Although it is known that
these notions can be transformed into language-based opacity [29], we include
this discussion to demonstrate our transformation and provide insight into
application to more complex state-based notions of opacity. In a sense, this
work generalizes and systematizes the transformations of [29].

4.1 Labeling secret states

Consider an automaton A = (X,Σ, δ,X0) with a subset of states XS ⊆ X des-
ignated as secret and observable events Σo ⊆ Σ. We also define the nonsecret
states as XNS = X \ XS. This property of the states can be represented by
labeling secret states with S and other nonsecret states as NS. So we define
the set of labels A = {S,NS} and labeling map ℓ : X → A by

ℓ(x) =

{
S, x ∈ XS

NS, x ∈ XNS

(19)



General Language-Based Opacity 13

A visit to a secret state in A following an event σ ∈ Σ corresponds to the input-
output pair e = (σ, S). Likewise starting in a secret state in A corresponds to
the pair e = (σinit, S). Using this observation, we define the set of secret and
nonsecret input-output pairs as

ES = (Σ ∪ {σinit})× {S} ENS = (Σ ∪ {σinit})× {NS} . (20)

These sets can be used to specify the secret and nonsecret behavior in terms
of the input-output sequences R = LIO(A, ℓ) for CSO and ISO.

4.2 Current-state opacity (CSO)

First we consider current-state opacity. Current state opacity describes the
inability of an intruder to deduce that the current state of the system is secret.
It can be defined as follows.

Definition 9 (Current-State Opacity [12]) An automatonA = (X,Σ, δ,X0)
is said to be current-state opaque with respect to the secret states XS ⊆ X
and observable events Σo ⊆ Σ if

∀x0 ∈ X0 ∀s ∈ L(A) s.t. ∃xS ∈ δ(x0, s) ∩XS,

∃x′
0 ∈ X0 ∃s′ ∈ L(A), PΣo

(s) = PΣo
(s′) ∧ ∃xNS ∈ δ(x′

0, s
′) ∩X \XS .

(21)

In words, runs of A ending with a visit to a secret state should look like a
run ending with a visit to a nonsecret state. In terms of input-output sequences,
this definition divides the behavior R = LIO(A, ℓ) into secret and nonsecret
behavior RS, RNS ⊆ R defined by

LNS = E∗ENS, RNS = R ∩ LNS, RS = R \RNS , (22)

where ENS is defined in equation (20). We can use the nonsecret specification
automatonHNS depicted in Figure 4 with Lm(HNS) = LNS so that Assumption
1 is satisfied. Then using the observation map Θ : R → Γ ∗ induced by the
observable events Σo as defined in Assumption 2, we can see that A is current-
state opaque if and only if (RS, RNS) is totally opaque with respect to Θ. Hence
we can use the language-based methods for verification.

0 1

ENS

ES ENS

ES

0 1

2

ENS

ES

E

E

Fig. 4 The nonsecret specification automata HNS for CSO (left) and ISO (right).



14 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

(xinit, 0)

(0, 1) (1, 0) (2, 1)

(3, 1) (4, 0)

(σinit,NS)

(σu, S)

(σo,NS)

(σo,NS)

(σo,NS)

(σu, S)

(σo,NS)

{(xinit, 0)}

{(0, 1), (1, 0)}

{(2, 1), (3, 1), (4, 0)}

{(2, 1)}

σinit

σo

σo

σo

Fig. 5 The product G×HNS (left) for G = T IO(A, ℓ) where A is from from Figure 2 and
the nonsecret specification automaton HNS for CSO from Figure 4 and the corresponding
secret observer GSO (right).

To do this we first construct G = T IO(A, ℓ). As L(HNS) = E∗, using
Theorem 1 we can verify CSO of A by checking if every non-initial state of
the secret observer GSO = det(Θ(G×HNS)) is marked where G = T IO(A, ℓ).
As an example of this method, we verify the current-state opacity of A from
Figure 2 using its transformation G = T IO(A, ℓ). Assuming Σo = {σo}, we
construct G×HNS and GSO = det(Θ(G×HNS)) which are depicted in Figure
5. As every non-initial state of GSO is marked, we deduce A is CSO.

Remark 4 The construction G = T IO(A, ℓ) essentially moves the state label
information from the states of A to the events of G. In the product G×HNS,
these labels are then moved from the events back to the states in the form of
state markings. As a result G×HNS is the same as the original automaton A
where nonsecret states are marked and there are new initial states resulting
from xinit in G. In this way the secret observer method is comparable to the
standard method for verifying current-state opacity [21] which checks if each
state of the observer of A contains a nonsecret state. While our approach may
seem convoluted for verifying CSO, the purpose of our discussion and of the
above example are to demonstrate how our approach can be used to verify
state-based notions of opacity in general. ♢

4.3 Initial-state opacity(ISO)

Next, we discuss the notion of initial-state opacity. Initial-state opacity de-
scribes the inability of an intruder to deduce that the initial-state of a run was
secret. It can be defined as follows.

Definition 10 (Initial-State Opacity [29]) The automatonA = (X,Σ, δ,X0)
is said to be initial-state opaque with respect to secret states XS ⊆ X0 and



General Language-Based Opacity 15

observable events Σo ⊆ Σ if

∀x0 ∈ XS ∀s ∈ L(A) s.t. ∃x ∈ δ(x0, s),

∃x′
0 ∈ XNS ∃s′ ∈ L(A), PΣo

(s) = PΣo
(s′) ∧ ∃x′ ∈ δ(x′

0, s
′) .

(23)

Similar to the discussion of current-state opacity, we see that the initial-state
opacity of A is equivalent to the total opacity of (RS, RNS) to the observation
map Θ induced by Σo where

LNS = ENSE
∗, RNS = R ∩ LNS, RS = R \RNS . (24)

We can construct HNS as in Figure 4 so that Lm(HNS) = LNS and L(HNS) =
E∗. Applying the secret observer method in this case is similar to transforming
initial-state opacity to current-state opacity as in [29] and using the standard
approach to verify current-state opacity. Furthermore, we can take advantage
of the specific structure of HNS to obtain more efficient verification methods.
Namely, applying the reverse comparison method is similar to verifying ISO
using the reversed initial-state estimator of [29] which is significantly more
efficient than the inital method proposed in [22].

5 K-step & infinite step opacity

While current-state opacity captures the notion of hiding current secrets, K-
step and infinite step opacity capture the notion of hiding past secrets. In this
section, we define state-based notions of K-step and infinite step opacity over
automata. We then show how these relate to the existing notions.

5.1 State-based K-step opacity

Consider a system as described in Section 4.1 consisting of an automaton
A = (X,Σ, δ,X0) and map ℓ : X → A labeling secret states with behavior R =
LIO(A, ℓ). We are given a subset of observable events Σo ⊆ Σ inducing the
observation map Θ.K-step opacity concerns visits to these secret states during
the last K observations made by the intruder. We use the term observation
epoch to refer to the system’s behavior between observations. More specifically,
the epoch starts when an observation is made and ends right before another
observation is made or at the end of the run. We consider two types of secret
behavior that can be exhibited in an observation epoch. In the first type, which
we call type 1, at least one secret state is visited. In the second type, which
we call type 2, only secret states are visited.

In order to describe these observation epochs in terms of the input-output
pairs E = (Σ∪{σinit})×A, we define the sets of observable and unobservable
input-output pairs by

Eo = {e ∈ E | Θ(e) ̸= ϵ}, Euo = E \ Eo . (25)



16 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Here observability relates to the concepts of silent transitions from [14]. An
unobservable pair e ∈ Euo is silent in that Θ(e) = ϵ, while an observable pair
e ∈ Eo is not silent as Θ(e) ̸= ϵ. As we consider Θ induced by the projection
of observable events Σo, it holds that Eo = (Σo ∪ {σinit}) × A. In order to
describe the secrecy of an observation epoch, we use the previous definition
of the sets of secret and nonsecret input-output pairs ES, ENS as in equation
(20). With this we make the following definition.

Definition 11 The set of observation epochs is defined to be Lep = EoE
∗
uo.

The sets of observation epochs exhibiting type 1 or type 2 secrets, respectively,
are defined by

Lep,S,1 = Lepoch ∩ (E∗ \ E∗
NS), Lep,S,2 = Lep ∩ E∗

S . (26)

Likewise the sets of type 1 and type 2 nonsecret epochs are defined by

Lep,NS,1 = Lep \ Lep,S,1 = Lep ∩ E∗
NS,

Lep,NS,2 = Lep \ Lep,S,2 = Lep ∩ (E∗ \ E∗
S) .

(27)

Because every run in R starts with the input-output pair (σinit, a) for some
a ∈ A and (σinit, a) ∈ Eo by definition, it holds that R ⊆ EoE

∗ = L+
ep. This

means any run r ∈ R can uniquely be written as a concatenation of observation
epochs, i.e., ∃M > 0, r = rep,0 · · · rep,M−1 with rep,i ∈ Lep for all i < M . We
refer to the epoch rep,M−k−1 as the epoch kth from the end or as k epochs ago.
For K-step opacity, we define different classes of secret and nonsecret behavior
for each epoch in the past, up to K epochs ago. For k ≤ K and type j ∈ {1, 2}
secrets, we define

LS,j(k) = L∗
epLep,S,jL

k
ep , (28)

LNS,j(k) = L+
ep \ LS,j(k) = (L∗

epLep,NS,jL
k
ep) ∪

k⋃
i=1

Li
ep . (29)

We refer to LS,j(k) and LNS,j(k) as the k-delayed secret and nonsecret be-
havior specifications, respectively. Note that a run consisting of fewer than
k+ 1 observation epochs is by definition not an element of LS,j(k) as a secret
could not have occurred k+1 epochs ago. The k-delayed secret and nonsecret
behavior of R with type j ∈ {1, 2} secrets are then defined

RS,j(k) = R ∩ LS,j(k), RNS,j(k) = R \RS,j(k) = R ∩ LNS,j(k) . (30)

By considering these secrets jointly, we can model an intruder deducing if a
secret occurred within K epochs ago (or when a secret ever occurred in the
case where K = ∞).

Definition 12 For K ∈ N ∪ {∞}, we say the system A with secrets labeled
by ℓ is jointly K-step opaque with type j secrets if {(RS,j(k), RNS,j(k))}Kk=0 as
defined in (30) is jointly opaque.



General Language-Based Opacity 17

By considering these secrets separately, we can model an intruder deducing
when a secret occurred within K epochs ago (or when a secret ever occurred
in the case that K = ∞).

Definition 13 For K ∈ N ∪ {∞}, we say the system A with ℓ is separately
K-step opaque with type j secrets if {(RS,j(k), RNS,j(k))}Kk=0 as defined in (30)
is separately opaque.

For K = ∞ we refer to these definitions as infinite step opacity. While
separate K-step opacity involves RNS,j(k) and hence LNS,j(k) for k ≤ K,
joint opacity only involves their intersections. For convenience we define for
K ∈ N

Ljoint
NS,j (K) =

K⋂
k=0

LNS,j(k) = L∗
epL

K+1
ep,NS,j ∪

K⋃
k=1

Lk
ep,NS,j , (31)

so that
⋂K

k=0 RNS,j(k) = R ∩ Ljoint
NS,j (K). In the joint sense, a run is secret if

it consists entirely of nonsecret epochs or its last nonsecret epoch was at least
K + 1 epochs ago.

By comparing the nonsecret specification languages, we can relate the dif-
ferent notions of K-step opacity for K ∈ N∪{∞}. Because Lep,NS,1 ⊆ Lep,NS,2,
it holds that LNS,1(K) ⊆ LNS,2(K) and thus RNS,1(K) ⊆ RNS,2(K). Hence
joint and separate K-step opacity with type 1 secrets imply joint and separate
K-step opacity with type 2 secrets, respectively. Additionally using Observa-
tion 2, we see that joint K-step opacity with type j ∈ {1, 2} secrets implies
separate K-step opacity with type j secrets. These implications are depicted
in Figure 6. This figure also depicts the relation to the existing notions of
K-step opacity derived in the next section. Furthermore for K ≤ K ′, joint
and separate K ′-step opacity with type j ∈ {1, 2} secrets implies joint and
separate K-step opacity with type j secrets.

Joint, Type 1
Strong [11]

Trajectory-based [21]

Separate, Type 1
New

Joint, Type 2
New

Separate, Type 2
Weak [11]

Non-trajectory based [21]

Fig. 6 Types of K-step opacity. Arrows indicate logical implication. For example, joint
type 1 K-step opacity implies separate type 1 K-step opacity.

5.2 Relation to existing notions of K-step opacity

Now we show how these definitions relate to the existing notions of K-step
opacity (for finite K). These notions were originally defined over deterministic



18 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

finite automata, so for consistency we derive these relations in this setting.
Consider a deterministic automaton A = (X,Σ, δ, {x0}) and interpret δ as a
partial function δ : X × Σ → X. Consider a set of secret states XS ⊆ X and
nonsecret states XNS = X \XS as well as a set of observable events Σo ⊆ Σ.

The first form of K-step opacity was developed in [21], and was later
referred to as non-trajectory-based K-step opacity in [23] and weak K-step
opacity in [12].

Definition 14 (K-step Weak Opacity [12]) The automaton A is weakly
K-step opaque with respect to XS and Σo if

(∀uv ∈ L(A) s.t. |PΣo(v)| ≤ K ∧ δ(x0, u) ∈ XS)

(∃u′v′ ∈ L(A))

(PΣo(uv) = PΣo(u
′v′) ∧ PΣo(u) = PΣo(u

′) ∧ δ(x0, u
′) ∈ XNS) .

The second version we consider is referred to as trajectory-based K-step opac-
ity in [23] and strong K-step opacity in [12].

Definition 15 (K-step Strong Opacity [12]) The automaton A is strongly
K-step opaque with respect to XS and Σo if

(∀t ∈ L(A))

(∃t′ ∈ L(A), ∀u′, v′ s.t. t′ = u′v′)

(PΣo(t) = PΣo(t
′) ∧ (|PΣo(v

′)| ≤ K ⇒ δ(x0, u
′) ∈ XNS)

Weak K-step opacity describes the inability of the intruder to deduce an
exact time of a visit to a secret state within the last K observations. Strong
K-step opacity describes the inability of the intruder to deduce there was a
visit to a secret state within the last K observations. With this intuition we
can relate weak to separate and strong to joint opacity.

Theorem 2 Consider a deterministic automaton A with labeling map ℓ de-
fined by the secret states XS and observable events Σo. Then

1. Weak K-step opacity of A is equivalent to separate K-step opacity with
type 2 secrets of A.

2. Strong K-step opacity of A is equivalent to joint K-step opacity with type
1 secrets of A.

Proof Because the automaton A is deterministic, there is a unique sequence
of states associated with each string in L(A). This defines a bijection h : R →
L(A) where R = LIO(A, ℓ) such that

∀r ∈ R, P I(r) = σinit · h(r), Θ(r) = σinit · PΣo
(h(r)) . (32)

Then note that we can write for k ≤ K

h(RNS,1(k)) = {t ∈ L(A) | ∀i ≤ |t|, |PΣo(ti · · · t|t|−1)| = k ⇒
δ(x0, t0 · · · ti−1) ∈ XNS} (33)



General Language-Based Opacity 19

0

1 2

σu

σo

0 1

3

2

4 5

σo

σu

σo

σo σo

0 1

2 3

σo

σu

σo

A1 A2 A3

Fig. 7 Automata demonstrating the differences in the various notions of K-step opacity.
Here square states denote secret states. The observable event set is Σo = {σo}.

h(RNS,2(k)) = {t ∈ L(A) | |PΣo(t)| < k ∨ ∃i ≤ |t| |PΣo(ti · · · t|t|−1)| = k ∧
δ(x0, t0 · · · ti−1) ∈ XNS)} . (34)

Suppose A is weakly K-step opaque and let k ≤ K. Consider a run of
A given by r ∈ R. If |Θ(r)| < k then by definition r ∈ RNS,2(k). Otherwise
consider t = h(r) so |PΣo

(t)| ≥ k. Let i ≤ |t| be such that |PΣo
(ti · · · t|t|−1)| = k

and define u = t0 · · · ti−1 and v = ti · · · t|t|−1. By weak opacity of A, there must
exist t′ = u′v′ such that PΣo(t) = PΣo(t

′), |PΣo(v
′)| = k, and δ(x0, u

′) ∈ XNS.
Thus for r′ = h−1(t′) it holds that r′ ∈ RNS,2(k) and Θ(r) = Θ(r′). Hence A
is separately K-step opaque with type 2 secrets. The proof of the converse is
similar.

Now we consider strong K-step opacity. Suppose that A is strongly K-step
opaque. Consider a run of A given by r ∈ R and define t = h(r). By strong K-
step opacity of A, there exists t′ ∈ L(A) with PΣo

(t) = PΣo
(t′) where for every

i′ ≤ |t′| such that |PΣo
(t′i′ · · · t′|t′|−1)| ≤ K it holds that δ(x0, t

′
0 · · · t′i′−1) ∈

XNS. Thus for r′ = h−1(t′) it holds that r′ ∈ RNS,1(k) for all k ≤ K and
Θ(r′) = Θ(r). Thus A is jointly K-step opaque with type 1 secrets. The proof
of the converse is similar. ⊓⊔

The other notions of joint opacity with type 2 secrets and separate opacity
with type 1 secrets, to our knowledge, have not been previously proposed.
The differences between the proposed notions of K-step opacity stem from
how secrets interact with unobservable behavior. To demonstrate how these
notions differ, consider the automata A1,A2,A3 from Figure 7 and secret
states XS given by the square states and observable event set Σo = {σo}.
In A1 for example, there are no type 2 secret epochs possible as a visit to
secret state 1 must be preceded by a visit to nonsecret state 0 in the same
epoch. Hence A1 is jointly and separately 1-step opaque with type 2 secrets.
We can verify the various notions of 1-step opacity for all of these automata
as depicted in Table 1.

To paraphrase, jointK-step opacity with type 1 secrets reflects the inability
of the intruder to deduce if there was a period between observations where a
single secret state was visited, while joint K-step opacity with type 2 secrets
reflects the inability of the intruder to deduce if there was a period between
observations where only secret states were visited. Likewise, separate K-step
opacity with type 1 secrets reflects the inability of the intruder to deduce
when there was a period between observations where a single secret state was



20 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

1-Step Opacity Type A1 A2 A3

Separate Type 2 Yes Yes Yes
Separate Type 1 No Yes No
Joint Type 2 Yes No No
Joint Type 1 No No No

Table 1 The results of verifying joint and separate 1-step opacity with type 1 and type 2
secrets for the automata A1,A2,A3 from Figure 7.

H∗ 0

E

Hep init 0

Euo

Eo

Hep,1 init 0
ENS ∩ Eo

ENS ∩ Euo

Hep,2

init 0

1

ENS ∩ Eo

Eo

Euo

Euo

ENS ∩ Euo

Fig. 8 Automata used to construct nonsecret specification automata for K-step opacity
defined over input-output pairs E categorized into nonsecret pairs ENS as defined in equation
(20), and observable and unobservable pairs Eo, Euo as defined in equation (25).

visited, while separate K-step opacity with type 2 secrets reflects the inability
of the intruder to deduce when there was a period between observations where
only secret states were visited. So we see for automata without unobservable
events, type 1 and type 2 secrets are equivalent and these new notions of joint
and separate reduce to the the existing notions of strong and weak. While
these new notions may only reflect differences in the modeling of unobservable
events in some sense, they demonstrate how the proposed approach can be
used to formulate precise notions of opacity appropriate for a given problem.

6 Verification methods for finite K-step opacity

In this section we will present methods for verification of K-step opacity for
finite K. First, we construct automata specifying nonsecret behavior. Then we
show how to use these automata to verify joint K-step opacity and separate
K-step opacity.

6.1 Nonsecret specification automata

In order to use language-based methods to verify K-step opacity, we must
first construct automata that mark the corresponding nonsecret specification



General Language-Based Opacity 21

languages. To do this, we will use the automata depicted in Figure 8 as build-
ing blocks. These automata are defined in terms of the input-output pairs E
categorized into nonsecret pairs ENS as defined in equation (20), and observ-
able and unobservable pairs Eo, Euo as defined in equation (25). Note that
Lm(H∗) = E∗, Lm(Hep) = Lep, Lm(Hep,1) = Lep,NS,1, and Lm(Hep,2) =
Lep,NS,2

1. To efficiently represent the nonsecret specifications languages, we
note that

LNS,j(k+1) = LNS,j(k)Lep∪Lep, Ljoint
NS,j (k+1) = Ljoint

NS,j (k)Lep,NS,j∪Lep,NS,j .
(35)

So by appropriately defining the initial states and concatenating the automata
from Figure 8, we can construct automata that specify the nonsecret runs.
While the standard concatenation construction adds an epsilon-transition be-
tween the marked states of one automaton and the initial states of the next,
we can reduce the resulting number of states by merging these states as in the
following construction.

Definition 16 Let Hi = (Qi, E, f i, Qi
0, Q

i
m) for i ∈ {1, 2} be such that Q2

0 ∩
Q2

m = ∅. Let Q∪· = Q1 ⊔ Q2 \ Q2
0, Q

∪·
0 = Q1

0 ∪ Q1
m, and Q∪·

m = Q2
m. Here ⊔

denotes the disjoint union. We define the concatenated automaton H1 ∪· H2 =
(Q∪· , E, f∪· , Q∪·

0 , Q
∪·
m) where for all σ ∈ E,

∀q1 ∈ Q1 \Q1
m, f∪· (q1, σ) = f1(q1, σ)

∀q2 ∈ Q2 \Q2
0, f∪· (q2, σ) = f2(q2, σ)

∀q1 ∈ Q1
m, f∪· (q1, σ) = f1(q1, σ) ∪

⋃
q2∈Q2

0

f2(q2, σ) .

This construction merges the marked states of H1 with the initial states of H2.
Note that Lm(H1∪· H2) = (Lm(H1)∪Lmm(H1)) ·Lm(H2), where Lmm(H1) =
Lm(H1, Q1

m) is the marked language of H1 starting at the marked states of
H1.

Based on the relation in (35), we use this ∪· to construct specification automata.

Definition 17 We define the nonsecret specification automata for K-step opac-
ity iteratively as follows. Let HNS,j(0) = Hjoint

NS,j (0) = H∗∪· Hep,j and for k ≥ 0
define

HNS,j(k + 1) = HNS,j(k) ∪· Hep, Hjoint
NS,j (k + 1) = Hjoint

NS,j (k) ∪· Hep,j . (36)

The following result relates these nonsecret specification automata to the K-
delayed nonsecret behavior defining K-step opacity.

Proposition 2 For every K ∈ N it holds that

L+
ep ∩ Lm(HNS,j(K)) = LNS,j(K),

L+
ep ∩ Lm(Hjoint

NS,j (K)) = Ljoint
NS,j (K) .

(37)

1 While Hep,2 could be designed to be deterministic, our nondeterministic Hep,2 offers
reduced complexity.



22 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Proof We show this for HNS,2(K). The proofs for the other cases are similar.
We claim that for all k ≤ K that Lmm(HNS,2(k)) = E∗

uo and

Lm(HNS,2(k)) = E∗Lep,NS,2L
k
ep ∪ E∗

uo

k⋃
i=1

Li
ep . (38)

Note that this condition holds for k = 0 as

Lm(HNS,2(0)) = E∗Lep,NS,2, Lmm(HNS,2(0)) = E∗
uo . (39)

Now assume that condition (38) holds for some k < K. Then by definition of
∪· we have

Lm(HNS,2(k + 1)) = (Lm(HNS,2(k)) ∪ Lmm(HNS,2(k)))Lm(Hep)

= (E∗Lep,NS,2L
k
ep ∪ E∗

uo ·
k⋃

i=1

Li
ep ∪ E∗

uo)Lep

= E∗Lep,NS,2L
k+1
ep ∪ E∗

uo ·
k+1⋃
i=1

Li
ep

Hence by induction, condition (38) holds for all k ≤ K. Then note because
Lep = EoE

∗
uo that

L+
ep ∩ Lm(HNS,2(k)) = L∗

epLep,NS,2L
k
ep ∪

k⋃
i=1

Li
ep

= LNS,2(k) .

⊓⊔

We can then use the automata HNS,j(K) and Hjoint
NS,j (K) in specifying K-

step opacity. As before, consider an automaton A with secret states labeled
by ℓ with behavior given by the input-output pairs R = LIO(A, ℓ). Then in
terms of equation (30),

R ∩ LNS,j(K) = RNS,j(K), R ∩ Ljoint
NS,j (K) =

K⋂
k=0

RNS,j(k) . (40)

So HNS,j(k) for k ≤ K can be used as nonsecret specification automata for

verification of separateK-step opacity with type j secrets. Likewise,Hjoint
NS,j (K)

can be used for joint K-step opacity with type j secrets. In any case, it holds
that L(HNS,j(K)) = L(Hjoint

NS,j (K)) = E∗ so we will be able to apply the secret
observer method later on.

Remark 5 By expanding the recursive definitions of H = HNS,j(K) or H =

Hjoint
NS,j (K), we can write H in the form

⋃·K+1
i=0 Hi. To avoid ambiguity due to

redundant state names, we refer to the state q of Hi by (q, i) when embedded
in H. ♢



General Language-Based Opacity 23

Hjoint
NS,1 (2)

(0, 0) (1, 0) (2, 0) (3, 0)

E

ENS ∩ Eo ENS ∩ Eo

ENS ∩ Euo ENS ∩ Euo

ENS ∩ Eo

ENS ∩ Euo

Fig. 9 The nonsecret specification automaton Hjoint
NS,1 (2) for 2-step joint opacity with type

1 secrets.

6.2 Verification of joint K-step opacity

Using the nonsecret specification automaton Hjoint
NS,j (K) for K ∈ N, we can

verify joint K-step opacity with type j secrets as follows.

Approach 4 (Joint K-step opacity verification) Given A, ℓ, Σo, and
K < ∞, construct the label-transform G = T IO(A, ℓ), the nonsecret specifica-
tion automaton Hjoint

NS,j (K), and the static mask Θ induced by Σo. We can then

apply any of the language-based methods from Section 3.3 to G,Hjoint
NS,j (K),

and Θ to verify the joint K-step opacity with type j secrets of A. ♢

For example we depict Hjoint
NS,1 (2) in Figure 9. Recall this automaton is

constructed by concatenating H∗ and three copies of Hep,1. We apply the
secret observer method to the automaton A from Figure 2 using its label
transform G = T IO(A, ℓ) also depicted in 2. The construction of GSO =
det(Θ(G×Hjoint

NS,1 (2) is depicted in Figure 10. We see that the string σinitσoσo

is not marked in GSO. Hence by the secret observer method, A is not jointly
2-step opaque with type 1 secrets. Upon observing σoσo we can deduce that A
traversed the states 0, 1, 2, 2 or 0, 3, 4, 2 which both pass through secret states.

6.3 Verification of separate K-step opacity

Verification of separate K-step opacity is less straightforward than joint opac-
ity. Using the definition of separate opacity, we could do this by verifying the
total opacity of (R,RNS,j(k)) for each k ≤ K using the language-based meth-
ods. Alternatively, we can combine these into a single test as in the joint case
and avoid determinizing multiple automata by using two different approaches
taking advantage of the structure of the problem.

By construction, HNS,j(k) is embedded within HNS,j(K) as a subautoma-
ton for k ≤ K. So we can use HNS,j(K) to specify the nonsecret runs RNS,j(k)
for k ≤ K for separateK-step opacity. As in Remark 5, we can writeHNS,j(k) =⋃· k+1

i=0 Hi where H0 = H∗, H1 = Hep,NS,j , and Hi = Hep for i ≥ 2. Recall us-
ing the convention of Remark 5, the marked states of HNS,j(k) are simply the
marked states of Hk denoted by Qk+1

NS,m embedded into HNS,j(k) as Q
k+1
NS,m ×

{k + 1}. Hence it holds that LQk+1
NS,m×{k+1}(HNS,j(K)) = Lm(HNS,j(k)). This

yields the following approach.



24 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

(xinit, (0, 0)) (xinit, (1, 0)) (xinit, (2, 0)) (xinit, (3, 0))

(0, (0, 0)) (0, (1, 0)) (0, (2, 0)) (0, (3, 0))

(3, (0, 0)) (3, (1, 0)) (3, (2, 0)) (3, (3, 0))

(4, (0, 0))

(2, (0, 0)) (2, (1, 0)) (2, (2, 0)) (2, (3, 0))

(1, (0, 0))

(σinit,NS) (σinit,NS) (σinit,NS) (σinit,NS)

(σu, S)

(σo,NS) (σo,NS) (σo,NS) (σo,NS)

(σo,NS)

(σo,NS)

(σo,NS)

(σo,NS) (σo,NS) (σo,NS)

(σu,NS)

(σo,NS)

(σo,NS)

{(xinit, (0, 0)), (xinit, (1, 0)), (xinit, (2, 0)), (xinit, (3, 0))}

{(0, (0, 0)), (1, (0, 0)), (0, (1, 0)), (0, (2, 0)), (0, (3, 0))}

{(3, (0, 0)), (4, (0, 0)), (3, (1, 0)), (2, (0, 0)), (2, (1, 0)), (3, (2, 0)), (3, (3, 0))}

{(2, (0, 0)), (2, (1, 0)), (2, (2, 0))}

{(2, (0, 0)), (2, (1, 0)), (2, (2, 0)), (2, (3, 0))}

σinit

σo

σo

σo

σo

Fig. 10 The product(top) of G from Figure 2 with the nonsecret specification Hjoint
NS,1 (2)

and the corresponding secret observer GSO (bottom).



General Language-Based Opacity 25

Approach 5 (Separate K-step opacity verification using secret ob-
server) Given A, ℓ, Σo, and K < ∞, construct the label-transform G =
T IO(A, ℓ), the nonsecret specification automaton HNS,j(K), and the static
mask Θ induced by Σo. Recall that A is separate K-step opaque with type j
secrets if the k-delayed behavior with type j secrets is opaque for each k ≤ K.
We can verify this by applying the secret observer method for each k ≤ K
to G, HNS,j(K), and Θ where we redefine the marked states of HNS,j(K) to
be Qk+1

NS,m × {k + 1}. Each of these tests involves analyzing the states of the
same automaton GSO = det(Θ(G×HNS,j(K))) under different notions of state
markings. As a result, we must only determinize a single automaton to apply
this approach. ♢

However, the idea of this approach is not applicable to the reverse compar-
ison method as this would require considering multiple sets of initial states.
Alternatively, we can avoid multiple determinizations by utilizing the fact that
the intruder’s knowledge of the system’s behavior only increases as they make
more observations. Informally, if the intruder deduces a secret happened within
the last K − 1 observations, after making another observation they can still
deduce a secret happened within the last K observations. So if the intruder can
always make more observations, it suffices to consider secrets that occurred
exactly K observations ago for the purposes of verification. This is similar
to the results of Lemma 2 in [21]. We will show under some conditions that
it suffices to verify total opacity of (R,RNS,j(K)) to verify separate K-step
opacity with type j secrets. Here we say that A is observation extendable
with respect to Θ if for every r ∈ R = LIO(A, ℓ), there exists rsuf ∈ E∗

uoEo so
that (r · rsuf ) ∈ R, where Euo, Eo are defined as in equation (25). With this
we claim the following result.

Theorem 3 If A is observation extendable, then A is separate K-step opaque
with type j secrets if and only if (R,RNS,j(K)) is totally opaque to Θ.

Proof Suppose that A is separately K-step opaque with type j secrets. Let
r ∈ R. By the separate opacity of A, there exists a run r′ ∈ RNS,j(K) = RNS

with Θ(r) = Θ(r′). Hence (RS, RNS,j(K)) is totally opaque to Θ.
Conversely, suppose that (R,RNS,j(K)) is totally opaque to Θ. Then let

r ∈ R and k ∈ {0, · · · ,K}. As R is observation extendable, there exists an
extended run rext = r · rsuf so that rext ∈ R and |Θ(rsuf )| = K − k. By
hypothesis, there exists a run r′ext ∈ RNS = RNS,j(K) with Θ(r′ext) = Θ(rext).
By defining r′suf to be the last K − k observation epochs of r′ext, we can write
r′ext = r′ · r′suf with |Θ(r′suf )| = K − k. Then we see that r′ ∈ RNS,j(k) and
Θ(r′) = Θ(r). Hence A is separately K-step opaque with type j secrets. ⊓⊔

So when the system is observation extendable, we can verify separate K-
step opacity in the following way.

Approach 6 (Separate K-step opacity verification for observation
extendable systems) Given A, ℓ, Σo, and K < ∞ where A is observa-
tion extendable with respect to the static mask Θ induced by Σo, construct



26 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

(0, 0) (1, 0)

(1, 1)

(2, 0) (3, 0)

E

ENS ∩ Eo

Eo

Eo

Euo

ENS ∩ Euo

Euo

Euo

Eo

Euo

Fig. 11 The nonsecret specification automaton HNS,2(2) for separate 2-step opacity with
type 2 secrets.

the label-transform G = T IO(A, ℓ) and the nonsecret specification automaton
HNS,j(K) We can verify the separate K-step opacity with type j secrets of A
by applying any of the language-based approaches to G, HNS,j(K), and Θ. ♢

Remark 6 While it may not be the case that A is observation extendable (for
example if A is deadlocked), we can always modify A to be observation extend-
able while preserving K-step opacity. To do this we define a new automaton
Aext by adding an artificial observable event σext as a self-loop for every state
in A. Then one can show that Aext will be separately K-step opaque if and
only if A is. Then by construction Rext will be observation extendable, and so
we can apply Approach 6 to Aext. ♢

Using Approach 6 we can verify separate K-step opacity using the reverse
comparison or secret observer method. For example consider the system A
from Figure 2 which is observation extendable and the nonsecret specification
automaton HNS,2(2) which is depicted in Figure 11. The resulting secret ob-
server GSO = det(Θ(G ×HNS,2(2))) for G = T IO(A, ℓ) is depicted in Figure
12. As every state except the initial state is marked, we see that A is separately
2-step opaque with type 2 secrets.

7 Complexity of K-step opacity verification

In this section, we analyze the complexity of the proposed methods for ver-
ifying K-step opacity for finite K for an automaton A with labeling map ℓ.
These methods use the transformed automaton G = T IO(A, ℓ). First we an-
alyze the secret observer using Approach 4 for joint opacity and Approach 5
for separate opacity. Then we analyze the reverse language comparison using
Approach 6. Finally, we compare the secret observer methods to existing ver-
ifiers for K-step opacity known as the K-delayed state and trajectory estima-
tors [11, 24]. For separate K-step we also compare with the two-way observer
method [33] [16]. These results are summarized in Table 2 and Table 3. Note
we allow the automaton A to be nondeterministic in general, but require A to
be deterministic when comparing with existing methods as they only consider
deterministic automata.



General Language-Based Opacity 27

{xinit} × {(0, 0), (1, 0), (2, 0), (3, 0)}

{0, 1} × {(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)}

{2, 3, 4} × {(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)}

{2} × {(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)}

σinit

σo

σo

σo

Fig. 12 The secret observer GSO constructed for the automaton A from Figure 2 with the
nonsecret specification HNS,2(2).

7.1 Secret observer complexity

Recall that applying the secret observer method in Approach 4, 5, or 6 to verify
K-step opacity involves constructing the automaton GSO = det(Θ(G×HNS))
for an appropriate choice ofHNS. We will bound the number of reachable states
in this automaton to bound state complexity of these verification approaches.
A naive upper bound for the number of states in the power set construction
for determinization of an automaton with n states is simply 2n. Using the
known structure of HNS, we can obtain a tighter bound for determinizing the
automaton Θ(G×HNS). To do this, we will analyze which states of HNS can
be reached by runs that reach a fixed state of G in the following observation.

Observation 3 Consider two automata G = (QG, E, fG, QG,0, QG,m) and
HNS = (QH , E, fH , QH,0, QH,m) with a static mask Θ : E∗ → Γ ∗. For conve-
nience for s ∈ E∗ let fG(s) =

⋃
qG∈QG

fG(qG, s) and fH(s) =
⋃

qH∈QH
fH(qH , s).

Suppose we are given sets F ⊆ 2QH and C ⊆ Γ ∗ such that F is closed under
union, ∅ ∈ F , and for all s ∈ L(G × H) such that Θ(s) ∈ C it holds that
fH(s) ∈ F . Then for every γ ∈ C we can define the function wγ : QG → F by

wγ(qG) =
⋃

s∈Θ−1(γ)
s.t. qG∈fG(s)

fH(s) (41)

Then denote the automaton Θ(G×HNS) as

Θ(G×HNS) = (QΘ(G×H), Γ ∪ {ϵ}, fΘ(G×H), QΘ(G×H),0, QΘ(G×H),m) . (42)

For γ ∈ C it holds that

fΘ(G×H)(γ) =
⋃

s∈Θ−1(γ)

fG(s)× fH(s) =
⋃

qG∈QG

({qG} × wγ(qG)) . (43)



28 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Hence the number of states in det(Θ(G × HNS)) reached by a string in C is
bounded by the number of functions from QG to F , of which there are |F ||QG|.
♢

We can apply this observation to bound the complexity of the secret ob-
server method. As GSO = det(Θ(G × HNS)) is deterministic, it has a single
initial state reached by ϵ. So all states of GSO other than the initial state are
reached by C = Γ+. Then to apply Observation 3, we must determine a set
F ⊇ {fHNS

(s) | s ∈ C} which is also closed under union and contains the
empty set. We claim in verifying joint K-step opacity that

– for HNS = Hjoint
NS,1 (K), we can choose |F | = K + 3 with

F = {∅} ∪ {{0, · · · , k} × {0}}K+1
k=0 , (44)

– for HNS = Hjoint
NS,2 (K), we can choose |F | = 2(K + 1) + 1 with

F = {∅} ∪ {{(0, 0), (k + 1, 1)} ∪ ({1, · · · , k} × {0, 1})}Kk=0∪
{{(0, 0)} ∪ ({1, · · · , k + 1} × {0, 1})}Kk=0 . (45)

If we denote the number of states of the original automaton A as n = |X|,
then the number of states of G = T IO(A, ℓ) is n + 1, including the artificial
initial state. Observation 3 then shows the number of states of GSO other than
the initial state is bounded by |F |n. These bounds are given by (K + 3)n for
Hjoint

NS,1 (K) and (2K+3)n for Hjoint
NS,2 (K). For separate opacity, we use the naive

power set bounds of 2n(K+2) for HNS,1(K) and 2n(K+3) for Hjoint
NS,2 (K). These

bounds are summarized in Table 2 and Table 3.

7.2 Reverse comparison complexity

We can use the same approach to analyze the reverse comparison method as
in Approach 4 and Approach 6 to verify K-step opacity. These approaches
require constructing the automaton GRC = Θ(G)R × det(Θ(G × HNS)

R) for
an appropriate choice of HNS. By observing that Θ(G × HNS)

R = Θ(GR ×
HR

NS), we can use Observation 3, to bound the number of reachable states
of det(Θ(GR × HR

NS). For the nonsecret specification automata HNS use for
K-step opacity, the reachable sets of HR

NS are simpler than HNS. Consider a
string s ∈ (L+

ep)
R with k = max(0,K + 1 − |Θ(s)|). Using the notation from

Remark 5, we can see that HNS must reach a state corresponding to Hk
NS.

Consider the set Ck = ΓK+1−k with 1 ≤ k ≤ K and C0 = ΓK+1Γ ∗. Then
we determine a set Fk ⊃ {δHR

NS
(s) | s ∈ Ck} that is closed under union and

contains the empty set. We claim that

– for HNS = Hjoint
NS,1 or HNS = HNS,1 we can choose |Fk| = 2 with

Fk = {{(k, 0)}, ∅} . (46)



General Language-Based Opacity 29

K Forward (n = 4) Reverse (n = 4) Forward (n = 6) Reverse (n = 6)
0 5 6 7 8
2 53 29 187 67
4 293 45 3007 147
8 2117 77 114487 275
16 16517 141 T/O 531

K Forward (n = 4) Reverse (n = 4) Forward (n = 6) Reverse (n = 6)
0 5 6 7 8
2 35 29 137 67
4 137 45 1547 147
8 749 77 36047 275
16 4949 141 1071767 531

Fig. 13 The number of states in the forward secret observer automata GSO(n) and reverse
automata GRC(n) constructed from G(n) = T IO(A(n), ℓn). The bottom table uses HNS =

Hjoint
NS,1 (K) and the top table uses HNS = HNS,2(K). Here T/O denotes a timeout where

the automaton could not be constructed.

– for HNS = Hjoint
NS,2 or HNS = HNS,2 we can choose |Fk| = 3 with

Fk = {{(k, 0)}, {(k, 0), (k, 1)}, ∅} (47)

So by Observation 3 for Ck, the number of states of det(Θ(GR×HR
NS)) reached

by a string γ ∈ Γ+ with k = max(0,K +1− |γ|) is bounded by |Fk|n+1 where
n = |X| is the number of states in the original automaton A. Hence the number
of states of det(Θ(GR ×HR

NS)) is O((K +1)2n) for type 1 secrets and O((K +
1)3n) for type 2 secrets. So then the number of states of GRC = Θ(GR) ×
Θ(det(G × HNS))

c is O(n(K + 1)2n) for HNS = HNS,1(K), Hjoint
NS,1 (K) and

O(n(K + 1)3n) for HNS = HNS,2(K), Hjoint
NS,2 (K). These bounds are depicted

in Table 2 and Table 3. From these bounds, we see that the reverse comparison
method is distinguished by the factor K entering linearly into the bound. This
may indicate for systems with a large number of states but small value of K,
the reverse comparison method may be more efficient.

To demonstrate the advantage of the reverse language comparison, consider
the following family of automata. For n > 1 defineA(n) = (Xn, Σn, δn, Xn,0, Xn,m)
where Xn = {0, · · · , n − 1}, Σn = {σ0, · · · , σn−1}, δn(i, σj) = (i + j) mod n,
Xn,0 = Xn \ {0}, and Xn,m = Xn. Likewise define the labels A = {S,NS}
with ℓn(0) = S and ℓn(i) = NS for i ̸= 0. We define all events to be
observable Σo = Σn. After constructing G(n) = T IO(A(n), ℓn) for vari-
ous n, we compute the number of states in the secret observer automaton
GSO(n) = det(Θ(G(n) × HNS))

c and in the reverse automaton GRC(n) =
Θ(G(n)R)×det(Θ(G(n)R×HR

NS))
c forHNS = Hjoint

NS,1 (K) andHNS = HNS,2(K)
across various values of K. These results are depicted in Figure 13. The num-
ber of states in the forward automata increases roughly exponentially with K
while the number of states in the reverse automata increases linearly.



30 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

7.3 Comparison to K-delay State & trajectory estimators

We can compare our secret observer method with some existing methods for
verification of K-step opacity. The first proposed verification methods for weak
and strong K-step opacity are called the K-delay state estimator and K-delay
trajectory estimator. These K-delay state estimators construct an automaton
that estimates the possible states sequences over the last K observations from
which one can deduce if weak opacity has been violated. The K-delay tra-
jectory estimator augments this structure with a sequence of binary variables
representing whether or not a secret state was visited between the observa-
tions to deduce if strong opacity has been violated. Their complexities are
depicted in Table 2 and Table 3. By analyzing our Approach 5 for verifying
weak K-step opacity, we see the resulting automaton estimates only the cur-
rent state and whether a secret state has been visited during each of the last K
observations. Likewise the automaton from our Approach 4 for strong K-step
opacity estimates the current state and whether only secret states have been
visited during each of the last K observations. As we can deduce whether or
not secret states have been visited from the possible sequences of past states,
we can view our secret observer automata as quotients of the K-delay estima-
tors. In this way, the complexity of our proposed methods are at most that
of the K-delay estimators for the respective forms of K-step opacity. We have
provided a formal proof of this result in longer version of this paper [28].

To demonstrate this result, we construct a family of automata A(i) where
the secret observer method has significantly reduced complexity compared to
the delayed state/trajectory method for verification of strong/weak K-step
opacity. For i > 1 define the deterministic automaton A(i) = (Xi, Σi, δi, {2})
where Xi = {1, · · · , i}, Σi = {σ1, · · · , σi}, Σo = Σ, and the transition func-
tion defined by δi(j, σk) = k. Consider the labeling map ℓi : Xi → A where
A = {S,NS} defined by ℓi(1) = S and ℓi(j) = NS for j ̸= 1. Note that A(i)
recognizes a run along every state sequence in {2} · (Xi)

∗. Hence we see the

K-delayed state observer states correspond to
⋃K

k=0{2}×(Xi)
k, of which there

are
∑K

k=0 i
k = 1−iK+1

1−i = O(iK) states. Let G(i) = T IO(A(i), ℓi). The secret
observer GSO(i) = det(Θ(G(i) ×HNS,2(K))) estimates the current state and
the secrecy of the past K +1 epochs. We can verify that the number of states
in GSO(i) is O(i2K). So we see that the secret observer method can be signif-
icantly less complex than the delayed state estimator for verification of weak
K-step opacity. A similar result holds for strong K-step opacity.

8 Infinite step opacity

Now we consider K-step opacity for K = ∞, also called infinite step opacity.
The results of Theorem 2 can be extended to the infinite step case. In particular
our notion of separate infinite-step opacity with type 2 secrets corresponds to
the existing notion of infinite step opacity as in [23, 33]. We will discuss how
the previous verification methods for finite K can be adapted to this case.



General Language-Based Opacity 31

Separate Type 2 (Weak)
Algorithm State Complexity

Secret Observer O(2n(K+3))
Reverse Comparison O(n(K + 1)3n)

State Estimator [24] O((|Σo|+ 1)K2n)

Two-way Observer [33] O(min(2n, |Σo|K)2n)

Table 2 State complexities of verification methods for separate K-step opacity with type
2 secrets (weak K-step opacity) of an automaton with n states. The discussion in Section
7.3 implies that the secret observer method has state complexity no worse than the K-delay
state estimator.

Joint Type 1 (Strong)
Algorithm State Complexity

Secret Observer O((K + 3)n)
Reverse Comparison O(K2n)

Trajectory Estimator [11] O((|Σo|+ 1)K2n)

Table 3 State complexities of verification methods for joint K-step opacity with type 1
secrets (strong K-step opacity) of an automaton with n states. The discussion in Section
7.3 implies that the secret observer method has state complexity no worse than the K-delay
trajectory estimator.

Recall our definition of infinite step opacity involves an infinite number
of nonsecret language specifications, i.e. the k-delayed nonsecret behavior
LNS,j(k) for k ∈ N as defined in (30). Recall in the finite case we were able
to reduce the multiple language comparison checks into a single check for ver-
ifying separate opacity. In Approach 5, we constructed one automaton that
encompassed all of the nonsecret behavior, but this automaton would neces-
sarily be infinite for K = ∞. In Approach 6, under the condition of observation
extendability we showed it suffices to consider secret behavior occurring ex-
actly K epochs ago, but there is no clear analog for this for K = ∞. Hence it
appears that we cannot directly use our methods for verification of separate
infinite step opacity. However we can use a result of [33] that states that infi-
nite step opacity (separate opacity with type 2 secrets) is equivalent to K-step
opacity for K = 2n where n denotes the number of states of the automaton
in question. With this observation, we can verify separate infinite step opac-
ity with type 2 secrets by verifying separate 2n-step opacity. Alternatively,
the two-way observer could be used to directly verify separate infinite step
opacity [33].

We can more effectively apply our methods to joint infinite step opacity
as this involves only one language comparison by definition. Note that we can
define

Ljoint
NS,j (∞) =

∞⋂
i=0

LNS,j(i) = L+
ep,NS,j (48)

As in the finite case, we can construct an automaton to specify this non-
secret behavior. Consider the automata depicted in Figure 14. To obtain a
smaller complexity bound, we will apply the forward comparison method in-
stead of the secret observer method. Recall in this case that we do not re-



32 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Hjoint
NS,1 (∞)

0 1
ENS ∩ Eo

ENS

Hjoint
NS,2 (∞)

0 1

2

ENS ∩ Eo

Eo

Euo ∪ (Eo ∩ ENS)

Eo

Euo

ENS ∩ Euo

Fig. 14 The nonsecret specification automata for joint infinite step opacity.

quire Lm(Hjoint
NS,j (∞)) = E∗. As before, we will analyze the complexity us-

ing Observation 3. Consider the set C = Γ+. Then we determine a set
F ⊃ {δHNS

(s) | s ∈ Ck} that is closed under union and contains the empty
set. We claim that

– for HNS = Hjoint
NS,1 (∞) we can choose |F | = 2 with

F = {∅, {1}} . (49)

– for HNS = Hjoint
NS,2 (∞) we can choose |F | = 3 with

F = {∅, {2}, {1, 2}} (50)

So by Observation 3 for C, the number of states of det(Θ(G×HNS)) reached
by a string γ ∈ Γ+ is bounded by |F |n with n = |X| where G = T IO(A, ℓ).
Then the number of states in the automaton GFC = Θ(G)×det(Θ(G×HNS))

c

other than the initial state is O(n2n) for type 1 secrets and O(n3n) for type 2
secrets. To the best of our knowledge, verification of joint infinite step opacity
has not been reported in the literature previously.

9 Numerical examples

We evaluate the effectiveness of our verification methods for K-step opacity
with numerical experiments. We compare the time and space complexity of
the proposed methods with existing methods for verifying the existing notions
of strong and weak K-step opacity. Recall these correspond to the notions
of joint K-step opacity with type 1 secrets and separate K-step opacity with
type 2 secrets, respectively. It should be noted while the existing methods were
originally described for deterministic automata, there is a natural extension to
the nondeterministic automata considered here. We compare the runtimes and
number of states in the final verifier automata for an implementation of each
method. In order to show how these methods scale with the size of the original
system and the value of K, we verify the opacity of systems represented by
randomly generated automata with secret states. We generate these automata
in two ways. We present the runtimes and number of states in the verification



General Language-Based Opacity 33

Fig. 15 Plots of average runtime (time usage) and the number of states in the verifier
automata (space usage) versus the number of states in the random automata system model
(|X|) for several methods for verifying strong K-step opacity.

automata averaged over 100 systems for fixed system sizes up to 250 states.
These methods were implemented in the MDESops library 2.

9.1 First random generation approach

For the first experiment, we generate automata with a fixed number of states
with a random number of outgoing transitions to random states. There are 18
events total with 6 observable events. All states are considered to be initial,
and one state is labeled as secret.

For strong K-step opacity, we compare the proposed forward comparison,
reverse comparison, and secret observer methods with the existing K-delay
trajectory estimator. We consider both K = 1 and K = 4. The average results

2 The library is available at https://gitlab.eecs.umich.edu/M-DES-tools/desops/.

https://gitlab.eecs.umich.edu/M-DES-tools/desops/


34 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

Fig. 16 Plots of average runtime (time usage) and the number of states in the verifier
automata (space usage) versus the number of states in the random automata system model
(|X|) for several methods for verifying weak K-step opacity.

over the randomly generated automata for verifying strong K-step opacity
are depicted in Figure 15. Due to the long runtime of the K-delay trajectory
estimator (> 100s), we do not evaluate this method for large automata in the
K = 1 case and remove it entirely in the K = 4 case. In these examples, the
forward comparison method performed nearly identically to the secret observer
method, which is why it does not appear in the space usage plots. From these
plots, we see that the proposed methods for verification perform significantly
faster than the existing method. This supports the claim of Section 7.3, stating
that the complexity of the secret observer method for verifying K-step opacity
is less than that of the K-delay trajectory estimator. It is also interesting
to note that the secret observer method outperforms the reverse language
comparison for the small values of K investigated. This indicates the linear
scaling with K in the complexity of this method is only significant for large
values of K.



General Language-Based Opacity 35

Fig. 17 Plots of average runtime (time usage) and the number of states in the verifier
automata (space usage) versus the number of states in the system model (|X|) for several
methods for verifying strong and weak 1-step opacity for the grid-based automata.

For weak K-step opacity, we compare the proposed forward comparison,
reverse comparison, and secret observer methods with the existing K-delay
state estimator and the two-way observer [33]. For the secret observer method,
Approach 5 is used, while for the forward and reverse comparison methods,
Approach 6 is used. As in the strong case, we consider both K = 1 and K = 4.
The average results over the randomly generated automata for verifying weak
K-step opacity are depicted in Figure 16. Due to the long runtime of the
K-delay state estimator and two-way observer in some cases, we omit these
results when necessary. As in the strong case, the forward comparison method
performed nearly identically to the secret observer method. From these plots,
we see that the proposed methods for verification outperform the existing
K-delay state estimator in average runtime and size in all cases. While the
runtime in applying the two-way observer is smaller for small-sized automata,
the secret observer method outperforms it on the average in time and space



36 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

for larger automata (> 15 states). It should be noted that one property of this
method for generating random automata is that for larger system sizes, nearly
all of the automata generated were opaque for each notion of K-step opacity.
We consider a more balanced and structured method for generation next.

9.2 Second random generation approach (grid-based)

In the second experiment, we generate automata as a square grid where states
can transition to the 4 adjacent states. These transitions are then randomly
removed or labeled with a random event. The number of observable events
and secret states are scaled logarithmically with the system size. Again, all
states are considered initial. The generation of these automata was tuned to
provide a balance of automata that were opaque and not opaque across all
system sizes.

We present results for verifying weak and strong 1-step opacity in Figure
17. These results show similar trends to the previous method for generating
random automata. One notable difference is that the two-way observer method
for verifying weak K-step opacity offers slightly improved performance over
the proposed secret observer method.

10 Conclusion

We have presented several new results for the information-flow property of
opacity in the context of discrete event systems. We presented a general frame-
work of opacity to unify the many existing notions across a variety of system
and intruder models. We used this framework to discuss notions of opacity over
automata, both language-based and state-based. We provided several meth-
ods for verification of language-based opacity. We then developed a general
approach for specifying state-based notions of opacity with automata and a
transformation of these notions to language-based ones. Together, we used
these results to describe existing notions of opacity like current-state opacity
and initial-state opacity. We demonstrated how our approach unifies exist-
ing methods for opacity by showing the resulting language-based verification
methods for these notions embody the existing verification methods. We fur-
ther demonstrated the effectiveness of this approach in our investigation of
K-step and infinite step opacity.

Using the intuition of K-step opacity with our approach, we derived a uni-
form view of four notions of K-step and infinite-step opacity. Two of these
notions correspond to the existing notions of strong and weak K-step opacity,
while the other two are new and meaningful notions. We developed appro-
priate specification automata for these notions, allowing verification with the
language-based methods. We formally analyzed the complexity of these meth-
ods forK-step and infinite step opacity, showing these methods compare favor-
ably in some instances to existing methods. In particular, we showed that the



General Language-Based Opacity 37

proposed secret observer method outperforms the existing K-delay estimators
for verifying strong and weak K-step opacity. Finally, we performed numerical
experiments with randomly-generated automata to compare the verification
methods. These results showed that the proposed verification methods offer
increased performance over existing methods.

It would be interesting to apply our approach of specifying notions of opac-
ity to capture more specific notions of privacy and security for real systems
and evaluate the corresponding verification methods. These notions could cap-
ture time-dependent notions of privacy like K-step opacity or multiple notions
of privacy arranged hierarchically. As we express opacity in a language-based
way, any method for checking regular-language containment could be used for
verification. For example, lattice-based methods as in [9] could be used for ver-
ification while avoiding the complexity of explicit determinization required by
the methods presented here (note the general problem still remains PSPACE-
complete). Additionally, it would be useful to extend the proposed framework
to consider notions of opacity beyond the binary property considered here.
For example, probabilistic opacity in a stochastic setting [34], approximate
opacity for systems with numerical observations [35], or quantifying levels of
opacity [2].

Finally, it would be interesting to use the proposed framework for opacity in
the context of enforcement. Enforcement involves the synthesis of mechanisms
to alter the system in order to guarantee opacity. As the framework expresses
state-based notions of opacity in a language-based manner, existing language-
based synthesis methods could be leveraged to enforce more general notions of
opacity. For example, enforcement of opacity via supervisory control has been
studied in [10] [33]. Additionally, enforcement via obfuscation as in [30, 31]
appears to be readily implementable with this approach.

Acknowledgments

The authors would like to thank the reviewers for their useful and very detailed
comments. They were most helpful in improving the paper for clarity and
precision.

References

1. The Complexity of Diagnosability and Opacity Verification for Petri Nets | Springer-
Link. URL https://link-springer-com.proxy.lib.umich.edu/chapter/10.1007/

978-3-319-57861-3_13

2. Bérard, B., Mullins, J., Sassolas, M.: Quantifying Opacity. Mathematical Structures
in Computer Science 25(2), 361–403 (2015). DOI 10.1017/S0960129513000637. URL
http://arxiv.org/abs/1301.6799. ArXiv: 1301.6799

3. Bryans, J., Koutny, M., Ryan, P.: Modelling Opacity Using Petri Nets. Electr. Notes
Theor. Comput. Sci. 121, 101–115 (2005). DOI 10.1016/j.entcs.2004.10.010

4. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to transition
systems. International Journal of Information Security 7(6), 421–435 (2008). DOI
10.1007/s10207-008-0058-x. URL https://doi.org/10.1007/s10207-008-0058-x

https://link-springer-com.proxy.lib.umich.edu/chapter/10.1007/978-3-319-57861-3_13
https://link-springer-com.proxy.lib.umich.edu/chapter/10.1007/978-3-319-57861-3_13
http://arxiv.org/abs/1301.6799
https://doi.org/10.1007/s10207-008-0058-x


38 A. Wintenberg, M. Blischke, S. Lafortune, N. Ozay

5. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, 2. ed edn.
Springer, New York, NY (2008). OCLC: 255370614

6. Cassez, F.: The Dark Side of Timed Opacity. In: J.H. Park, H.H. Chen, M. Atiquzzaman,
C. Lee, T.h. Kim, S.S. Yeo (eds.) Advances in Information Security and Assurance,
Lecture Notes in Computer Science, pp. 21–30. Springer Berlin Heidelberg (2009)

7. Cassez, F., Dubreil, J., Marchand, H.: Dynamic Observers for the Synthesis of Opaque
Systems. In: Z. Liu, A.P. Ravn (eds.) Automated Technology for Verification and Anal-
ysis, Lecture Notes in Computer Science, pp. 352–367. Springer, Berlin, Heidelberg
(2009). DOI 10.1007/978-3-642-04761-9 26

8. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.:
Temporal Logics for Hyperproperties. In: M. Abadi, S. Kremer (eds.) Principles of
Security and Trust, Lecture Notes in Computer Science, pp. 265–284. Springer, Berlin,
Heidelberg (2014). DOI 10.1007/978-3-642-54792-8 15

9. Doyen, L., Raskin, J.F.: Antichains for the Automata-Based Approach to Model-
Checking. Logical Methods in Computer Science 5(1), 5 (2009). DOI 10.2168/
LMCS-5(1:5)2009. URL http://arxiv.org/abs/0902.3958. ArXiv: 0902.3958

10. Dubreil, J., Darondeau, P., Marchand, H.: Supervisory Control for Opacity. IEEE
Transactions on Automatic Control 55(5), 1089–1100 (2010). DOI 10.1109/TAC.2010.
2042008. Conference Name: IEEE Transactions on Automatic Control

11. Falcone, Y., Marchand, H.: Runtime Enforcement of K-step Opacity. pp. 7271–7278
(2013). DOI 10.1109/CDC.2013.6761043

12. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of various notions
of opacity. Discrete Event Dynamic Systems 25(4), 531–570 (2015). DOI 10.1007/
s10626-014-0196-4. URL https://doi.org/10.1007/s10626-014-0196-4

13. Focardi, R., Gorrieri, R., Martinelli, F.: Non Interference for the Analysis of Crypto-
graphic Protocols. In: U. Montanari, J.D.P. Rolim, E. Welzl (eds.) Automata, Languages
and Programming, Lecture Notes in Computer Science, pp. 354–372. Springer, Berlin,
Heidelberg (2000). DOI 10.1007/3-540-45022-X 31

14. Hadjicostis, C.N.: Introduction to Estimation and Inference in Discrete Event Systems.
In: C.N. Hadjicostis (ed.) Estimation and Inference in Discrete Event Systems: A Model-
Based Approach with Finite Automata, Communications and Control Engineering, pp.
1–14. Springer International Publishing, Cham (2020). DOI 10.1007/978-3-030-30821-6
1. URL https://doi.org/10.1007/978-3-030-30821-6_1

15. Jacob, R., Lesage, J.J., Faure, J.M.: Overview of discrete event systems opacity: Mod-
els, validation, and quantification. Annual Reviews in Control 41, 135–146 (2016).
DOI 10.1016/j.arcontrol.2016.04.015. URL https://www.sciencedirect.com/science/

article/pii/S1367578816300189
16. Lan, H., Tong, Y., Guo, J., Giua, A.: Comments on “A new approach for the verification

of infinite-step and K-step opacity using two-way observers” [Automatica 80 (2017)
162–171]. Automatica 122, 109290 (2020). DOI 10.1016/j.automatica.2020.109290.
URL https://www.sciencedirect.com/science/article/pii/S0005109820304891

17. Lin, F.: Opacity of discrete event systems and its applications. Automatica 47(3), 496–
503 (2011). DOI 10.1016/j.automatica.2011.01.002. URL http://www.sciencedirect.

com/science/article/pii/S0005109811000173
18. Masopust, T., Yin, X.: Complexity of detectability, opacity and A-diagnosability

for modular discrete event systems. Automatica 101, 290–295 (2019). DOI 10.
1016/j.automatica.2018.12.019. URL https://linkinghub.elsevier.com/retrieve/

pii/S0005109818306253
19. Mazaré, L.: Using unification for opacity properties. In: In Proceedings of the Workshop

on Issues in the Theory of Security (wits’04, pp. 165–176 (2004)
20. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Transactions

on Information and System Security 1(1), 66–92 (1998). DOI 10.1145/290163.290168.
URL https://doi.org/10.1145/290163.290168

21. Saboori, A., Hadjicostis, C.N.: Notions of security and opacity in discrete event systems.
In: 2007 46th IEEE Conference on Decision and Control, pp. 5056–5061 (2007). DOI
10.1109/CDC.2007.4434515. ISSN: 0191-2216

22. Saboori, A., Hadjicostis, C.N.: Verification of initial-state opacity in security applica-
tions of DES. In: 2008 9th International Workshop on Discrete Event Systems, pp.
328–333 (2008). DOI 10.1109/WODES.2008.4605967

http://arxiv.org/abs/0902.3958
https://doi.org/10.1007/s10626-014-0196-4
https://doi.org/10.1007/978-3-030-30821-6_1
https://www.sciencedirect.com/science/article/pii/S1367578816300189
https://www.sciencedirect.com/science/article/pii/S1367578816300189
https://www.sciencedirect.com/science/article/pii/S0005109820304891
http://www.sciencedirect.com/science/article/pii/S0005109811000173
http://www.sciencedirect.com/science/article/pii/S0005109811000173
https://linkinghub.elsevier.com/retrieve/pii/S0005109818306253
https://linkinghub.elsevier.com/retrieve/pii/S0005109818306253
https://doi.org/10.1145/290163.290168


General Language-Based Opacity 39

23. Saboori, A., Hadjicostis, C.N.: Verification of infinite-step opacity and analysis of its
complexity*. IFAC Proceedings Volumes 42(5), 46–51 (2009). DOI https://doi.org/
10.3182/20090610-3-IT-4004.00013. URL https://www.sciencedirect.com/science/

article/pii/S1474667015355944

24. Saboori, A., Hadjicostis, C.N.: Verification of K-step opacity and analysis of its com-
plexity. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, pp. 205–210 (2009). DOI
10.1109/CDC.2009.5400083. ISSN: 0191-2216

25. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time(Preliminary
Report). In: Proceedings of the fifth annual ACM symposium on Theory of computing,
STOC ’73, pp. 1–9. Association for Computing Machinery, New York, NY, USA (1973).
DOI 10.1145/800125.804029. URL https://doi.org/10.1145/800125.804029

26. Tong, Y., Li, Z., Seatzu, C., Giua, A.: Verification of State-Based Opacity Using Petri
Nets. IEEE Transactions on Automatic Control 62(6), 2823–2837 (2017). DOI 10.1109/
TAC.2016.2620429. Conference Name: IEEE Transactions on Automatic Control

27. Willems, J.C.: The Behavioral Approach to Open and Interconnected Systems. IEEE
Control Systems Magazine 27(6), 46–99 (2007). DOI 10.1109/MCS.2007.906923. Con-
ference Name: IEEE Control Systems Magazine

28. Wintenberg, A., Blischke, M., Lafortune, S., Ozay, N.: A General Language-Based
Framework for Specifying and Verifying Notions of Opacity. arXiv:2103.10501 [cs]
(2021). URL http://arxiv.org/abs/2103.10501. ArXiv: 2103.10501

29. Wu, Y.C., Lafortune, S.: Comparative analysis of related notions of opacity in cen-
tralized and coordinated architectures. Discrete Event Dynamic Systems 23(3),
307–339 (2013). DOI 10.1007/s10626-012-0145-z. URL https://doi.org/10.1007/

s10626-012-0145-z

30. Wu, Y.C., Lafortune, S.: Synthesis of insertion functions for enforcement of opac-
ity security properties. Automatica 50(5), 1336–1348 (2014). DOI 10.1016/
j.automatica.2014.02.038. URL https://www.sciencedirect.com/science/article/

pii/S0005109814000764

31. Wu, Y.C., Raman, V., Rawlings, B.C., Lafortune, S., Seshia, S.A.: Synthesis of Obfus-
cation Policies to Ensure Privacy and Utility. Journal of Automated Reasoning 60(1),
107–131 (2018). DOI 10.1007/s10817-017-9420-x. URL https://doi.org/10.1007/

s10817-017-9420-x

32. Wu, Y.C., Sankararaman, K.A., Lafortune, S.: Ensuring Privacy in Location-Based Ser-
vices: An Approach Based on Opacity Enforcement. IFAC Proceedings Volumes 47(2),
33–38 (2014). DOI 10.3182/20140514-3-FR-4046.00008. URL https://linkinghub.

elsevier.com/retrieve/pii/S1474667015373778

33. Yin, X., Lafortune, S.: A new approach for the verification of infinite-step and K-step
opacity using two-way observers. Automatica 80, 162–171 (2017). DOI 10.1016/j.
automatica.2017.02.037. URL http://www.sciencedirect.com/science/article/pii/

S0005109817301115

34. Yin, X., Li, Z., Wang, W., Li, S.: Infinite-step opacity of stochastic discrete-event sys-
tems. In: 2017 11th Asian Control Conference (ASCC), pp. 102–107 (2017). DOI
10.1109/ASCC.2017.8287150

35. Yin, X., Zamani, M., Liu, S.: On Approximate Opacity of Cyber-Physical Systems. IEEE
Transactions on Automatic Control pp. 1–1 (2020). DOI 10.1109/TAC.2020.2998733.
Conference Name: IEEE Transactions on Automatic Control

https://www.sciencedirect.com/science/article/pii/S1474667015355944
https://www.sciencedirect.com/science/article/pii/S1474667015355944
https://doi.org/10.1145/800125.804029
http://arxiv.org/abs/2103.10501
https://doi.org/10.1007/s10626-012-0145-z
https://doi.org/10.1007/s10626-012-0145-z
https://www.sciencedirect.com/science/article/pii/S0005109814000764
https://www.sciencedirect.com/science/article/pii/S0005109814000764
https://doi.org/10.1007/s10817-017-9420-x
https://doi.org/10.1007/s10817-017-9420-x
https://linkinghub.elsevier.com/retrieve/pii/S1474667015373778
https://linkinghub.elsevier.com/retrieve/pii/S1474667015373778
http://www.sciencedirect.com/science/article/pii/S0005109817301115
http://www.sciencedirect.com/science/article/pii/S0005109817301115

	Introduction
	A general framework for opacity
	Opacity over automata
	Current-state and initial-state opacity
	K-step & infinite step opacity
	Verification methods for finite K-step opacity
	Complexity of K-step opacity verification
	Infinite step opacity
	Numerical examples
	Conclusion

