IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 1

Heterogeneous Crowd Simulation using
Parametric Reinforcement Learning

Kaidong Hu*, Brandon Haworth*, Glen Berseth, Vladimir Pavlovic, Petros Faloutsos,
and Mubbasir Kapadia

Abstract—Agent-based synthetic crowd simulation affords the cost-effective large-scale simulation and animation of interacting digital
humans. Model-based approaches have successfully generated a plethora of simulators with a variety of foundations. However, prior
approaches have been based on statically defined models predicated on simplifying assumptions, limited video-based datasets, or
homogeneous policies. Recent works have applied reinforcement learning to learn policies for navigation. However, these approaches
may learn static homogeneous rules, are typically limited in their generalization to trained scenarios, and limited in their usability in
synthetic crowd domains. In this paper, we present a multi-agent reinforcement learning-based approach that learns a parametric
predictive collision avoidance and steering policy. We show that training over a parameter space produces a flexible model across
crowd configurations. That is, our goal-conditioned approach learns a parametric policy that affords heterogeneous synthetic crowds.
We propose a model-free approach without centralization of internal agent information, control signals, or agent communication. The
model is extensively evaluated. The results show policy generalization across unseen scenarios, agent parameters, and
out-of-distribution parameterizations. The learned model has comparable computational performance to traditional methods.
Qualitatively the model produces both expected (laminar flow, shuffling, bottleneck) and unexpected (side-stepping) emergent
qualitative behaviours, and quantitatively the approach is performant across measures of movement quality.

Index Terms—Multi-agent Navigation, Reinforcement Learning, Parametric Policy Learning

1 INTRODUCTION

Synthetic crowd simulation is an enabling technology for
several fields. In particular, agent-based crowd simulators
have found success in several applications, such as enter-
tainment (film, TV, and games), data-driven environment
design (procedural architecture, many worlds design), and
safety evaluation (fire egress, disaster scenarios). An agent-
based crowd simulator is usually composed of a hierarchy
of methods resolved by various models. Often, crowd sim-
ulation is defined by its lowest level of control — steering.
At this level, the agent perceives the environment and other
agents and produces some action or action plan. These ac-
tions are designed to resolve at least two primary concerns:
collision avoidance and goal-seeking movement. Decisions
at the steering level are generally responsible for emergent
behaviours in the simulated crowd.

However, defining a robust steering model is a com-
plex trade-off between accuracy and performance. There
are many ways to solve this problem. Most approaches

e Kaidong Hu, Viadimir Pavlovic, and Mubbasir Kapadia are at the
Computer Science Department, Rutgers University.

e Brandon Haworth is at the Department of Computer Science, University
of Victoria.

e Glen Berseth is at the Berkeley Artificial Intelligence Research (BAIR)
Lab, University of California, Berkeley.

e Petros Faloutsos is at the Department of Electrical Engineering & Com-
puter Science, York University, and is also with the University Health
Network: Toronto Rehabilitation Institute.

Manuscript received XXXXX; revised XXXXXX.

*. These authors contributed equally to this work.

consider one of data-driven [1], vision-based [2], space-time
planning [3], [4], [5], rule-based [6], velocity-based [7], [8],
force-based [9], [10], [11], and even composite [12] solutions
to the problem. Because it is difficult to model the myriad
factors which impact steering decisions, in real-time, and
produce predictable and expected qualitative and quantita-
tive results, often models choose one or more of these factors
over the others. Therefore, a plethora of models with diverse
capabilities has been developed suited for varying scenarios.

The problem space of steering in crowd simulation is
well suited to Reinforcement Learning (RL) in that RL
produces control policies, or a state-action mappings, for an
agent in an environment given some reward signal. How-
ever, RL may require a broad sampling of the state space,
which has led to many models that only work under re-
strictive conditions and typically with homogeneous agent
definitions. Multi-Agent Reinforcement Learning (MARL)
extends this by having multiple agents within the same
shared environment where their actions may impact each
other. The synthetic crowds problem is typically formulated
in a multi-agent problem space. Recently, MARL approaches
have been applied to multi-agent navigation, what we will
refer to as crowds [13], [14], [15], [16], [17], [18], [19]. These
methods have yet to support or evaluate fundamental fea-
tures of synthetic crowds such as generality, heterogeneity,
and reciprocal predictive collision avoidance. While models
often perform well in particular scenarios, the ability to
resolve scenarios with varying numbers of agents and en-
vironment complexity is essential. Synthetic crowd hetero-
geneity at the steering level often comes in the form of di-
versifying action updates. Perceptually, movement profiles
have the largest impact on heterogeneity, crowd variety, and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 2

Fig. 1: Multiple interacting heterogeneous HOP-RL agents in a randomized scenario. The HOP-RL model has learned to
continuously predictively avoid collisions with other heterogeneous agents and the environment.

naturalness [20], [21]. However, RL-based crowds methods
do not afford heterogeneity in this manner. This is mainly
due to the non-stationary problem of multiple learning
agents in the same environment (an essential problem in
MARL), which limits how different agents can be and still
learn useful policies. More generally, this limitation also
stems from the fact that machine learning models are fixed
once learned (unless online learning or domain adaptation
is used), or scenario-specific models are learned by training
on only variations of that scenario. Finally, predictive, or an-
ticipatory, avoidance has become commonplace in emerging
model-based crowd simulators while in the early rule-based
steering literature, models handled mostly reactive changes
in velocity at every simulation time-step.

We propose the Heterogeneous crowds using Parametric
Reinforcement Learning (HOP-RL) approach to steering in
synthetic crowd simulation, as seen in Figure |1, That is, a
learned policy that does not rely on any single concrete
definition of the rules translating states into actions, or, more
specifically, how agents are supposed to move or interact
with their environment. In our proposed approach, we at-
tempt to address all prior shortcomings regarding generality,
heterogeneity, and anticipatory reciprocal collision avoidance in
RL-based crowds. We propose a model-free multi-agent re-
inforcement learning approach with goal conditioning and
parameter sharing that does not rely on shared agent infor-
mation, centralized control, or agent-agent communication.
The end result is a model that learns generalized crowd
steering with parametric agents from a simulated procedu-
ral environment using an explicit trial-and-error algorithm.
Our goal in these contributions was to learn a MARL-
based approach that performs on par with or better than
traditional crowds steering methods both quantitatively and
qualitatively, while also allowing a practitioner using our
method (e.g. a game developer) to deploy diverse crowds
simply by setting diverse input parameters. We specifically
propose a learning-based method for crowds that affords
performant directability, and we show that it is capable of
learning more complex behaviours than traditional methods
and even succeeding at scenarios where past methods can
fail.

1) Heterogeneity: We propose that a parametric policy
space can be learned by observing parameter(s)

2)

3)

sampled during training. To make the MARL prob-
lem tractable, i.e. handle the non-stationary learning
of multiple agents, we use parameter sharing. This
method learns the desired policy using a single ar-
chitecture that can be duplicated amongst all agents
and evaluated independently. Ultimately this means
the agents are homogeneous in their definition (they
all use the same policy). However, we propose also
using goal conditioning (passing goal information
into the state observations), rewarding the desired
goal behaviour, and affording some form of con-
trol related to the goal in the action space. We
show that through this goal-conditioned learning,
we can produce parametric heterogeneous crowds
post-training. Agents learning using the proposed
method have parameters that can be changed as
needed and without retraining. We resolve both
the heterogeneous and parametric requirements of
crowds agents without producing multiple models.
This supports the authoring of crowds for prac-
titioners without need to engage in the learning
process.

Generality: We propose using an expanded procedu-
ral scenario definition, from the crowd evaluation
literature, which has a high likelihood of agent-
agent and agent-environment interactions [22]. Our
hypothesis is that the distribution of environ-
ments this procedural definition produces replicates
the distribution of local interactions found in the
broader scope of scenarios. While the generality of
crowd steering models can be difficult to prove, we
show that using our environment produces learned
policies that generalize well to a battery of crowds
scenarios from the comparative crowds analysis lit-
erature [23], [24], [25].

Reciprocal predictive collision avoidance: We propose
that by making use of widening the neural network
input to facilitate multiple state observations agents
may learn reciprocal collision avoidance. We show
that observing multiple prior state instances allows
agents to learn predictive policies and avoid future
collisions with other agents in a heterogeneous en-
vironment. This mitigates the partial observability

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 3

problem in our multi-agent reinforcement learning
approach where we decentralize information shar-
ing, control, and communication. We learn this be-
haviour through model-free, trial-and-error, learn-
ing in our simulated training environment. We show
that our agents can learn to make expected anticipa-
tory behaviours, as well as, avoid densely packed
areas without additional information.

2 RELATED WORK

Synthetic crowds, in particular, steering models, have a rich
history in the literature, beginning with the originative work
on flocking behaviours [6]. This history has since been
covered in comprehensive surveys of the field [26], [27],
[28], [29]. In this section, we address works related to crowd
steering models and then explore more recent works in
machine learning-based solutions. In particular, we focus on
decentralized agent-based approaches to the crowd steering
problem.

2.1 Learning Physical Character Control

As a precursor to this discussion we discuss a separate
(though fast converging) related field of physical character
control. The physical character control problem is typically
a closed-loop approach to physically driving virtual charac-
ters. The approaches have a long history in the literature
particularly the single character/agent solution-we focus
on those which incorporate neural networks in their de-
sign. Early biped character control models recreated the
neural oscillators found in mammals to produce walking
patterns [30]. Numerous works have gone the route of
using neural networks to learn control policies of humanoid
bipeds. The approaches are similar to ours in that a neural
network learns to map egocentric and proprioceptive sen-
sory inputs appropriate actions (in the form of joint level
control) [31], [32], [33]. More recent works have sought to
improve the robustness of models. For example, using phase
conditioned neural networks for producing cyclic humanoid
control over varied environments [34]. This approach can
be separated into two levels with phase conditioned lower-
level controller for locomotion skills and higher-level control
for producing more complex behaviours [35]. Recent has
extended this approach into the crowds problem domain by
using parameter sharing amongst a modified low-level con-
troller to mitigate the non-stationary problem in MARL [36].
While these approaches learn a high dimensional problem,
typically for one or few characters, they are often limited in
the skill and user parameterization of the character. Work
has been done to specifically address this by composing
individual controllers which learn specific skills [37]. Sim-
ilarly, modular policies can be learned and recomposed to
control characters of differing morphologies [38]. Another
approach uses RL to learn to mimic skills and blend be-
tween them using a parameter which can be directly user
controlled [39]. Related to our work, it has been shown that a
policy can be conditioned on body shape variation to learn a
single parametric controller for a class of physically enabled
characters of different body shapes [40]. This allows the user
to control a single physically enabled character, within a

range of body shapes for that morphology, using a single
policy.

An additional problem space, related to physical charac-
ter control, is human-robot interaction where we wish to
model a physical robot navigating and performing tasks
among groups of humans. It has been shown that robot nav-
igation among humans can be learned by conditioning the
policy on pairwise state observations of humans relative to
the robot and coarse estimations of human-human interac-
tions that allows the robot to further estimate future human
movements [41]. A similar approach using relational graphs
encodes the local relative interactions of the crowd in a way
that graph learning techniques (like Graph Convolutional
Networks) may then be used to estimate the movement
updates of the humans in the scene [42].

2.2 Agent-based Crowd Simulation

There are several de-facto standard models in agent-based
crowd steering with very different underlying approaches.
Crowd simulation and steering algorithms have a long
and rich history in the literature [29], [43], [44]. Physical
approaches (force-based) model interactions with agents
and the environment as forces that repel or attract the
agent [9], [10], [11]. Velocity obstacle-based approaches de-
compose velocity-space such that collision-free movement
updates can be guaranteed among agents [7], [8], [45], [46].
Vision-based models have been added to these models to
enhance their performance [2]. Multi-phase approaches in-
tegrate multiple steering models to generate a final steering
decision [12]. Space-time planning approaches have been
formulated to address the complexities of biomechanical
steering [4], [5]. Probabilistic approaches have successfully
modelled time-variant behaviours over fields [3].

2.3 Learning and Crowd Simulation

Defining static crowd steering models has led to a plethora
of simulators that typically focus on one element of steering
to the detriment of others. It is difficult to define, a unique
all-encompassing method that captures all the emergent
effects of crowds and reproduces dynamics accurately under
diverse conditions. Often, what works for one scenario does
not work for many others.

The steering problem in synthetic crowds is a high
dimensionality semi-chaotic open-loop system — and thus it
is a fundamentally difficult problem to solve. To address this
high dimensionality problem, methods have been proposed
to help tune, optimize, and explore the emergent properties
of a given model by learning optimal steering parameters
for crowd-centric outcomes measures [47].

Several machine learning methods have been proposed
to address the chaotic open-loop nature of the problem.
Unsupervised approaches have been used to learn trajectory
models rather than simulation time steering actions. For
example, data-driven learning of trajectory models may be
done via unsupervised clustering [48]. Deep learning has
been used to learn previously existing models through a
form of behaviour cloning, such as with RVO [49]. Similarly,
it is possible to decompose the problem into (1) a pairwise
single agent RL collision avoidance that is then (2) con-
strained using a known crowd model (ORCA) to produce

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 4

a multi-agent collision free decision [50]. (Recent work has
used a pool of LSTM networks to simulate trajectories
end-to-end for crowd simulation [51]. While these methods
may learn important behaviours such as reciprocal collision
avoidance, or they may reproduce density distribution sim-
ilar to their real-world counterparts, they are largely limited
to replicating their source data or model. This leads to new
models that have the same issues as the source model,
or models which only work in limited scenarios (i.e., that
reflect the distribution of the data source).

Recently, a different perspective on similar problem
space has emerged in the form of local trajectory prediction
methods. These methods formulate the agent movement
update as a local trajectory prediction step that extrapolates
from the agent’s current location, goals, and state into a
full trajectory. This work emerged from the idea of social
pooling using long short-term memory (LSTM) networks
used to predict trajectories of humans in dense environ-
ments [52]. This work was improved toward producing
numerous possible predictions using generative adversarial
networks (GANSs) to generate socially plausible trajecto-
ries [53]. This area has been further improved by using
Info-GANs (information maximizing GANSs), to preserve
the multi-modality of predicted trajectories, and condition-
ing the attention pooling on features from neuroscience
and biomechanics [54]. The convergence rate and real-
time deployment of these approaches have been improved
upon by using variational recurrent neural networks [55].
Highly effective results have been achieved using a graph-
structured recurrent model based on conditional variational
autoencoders (VAE) [56]. Other work has used VAEs to
model the distribution of predicted future goals and then
predict the many paths taken to solve them in a two-phase
approach [57].

Our focus in this paper is learning methods related
to Reinforcement Learning (RL), and Multi-agent Rein-
forcement Learning (MARL) in particular. Reinforcement
learning maps particularly well to the crowd simulation
problem [17], [19]. This approach has been used to learn
the above trajectory problem as well [58]. In RL, the task is
to sample the state space of a problem and learn policies for
producing corresponding actions. That is, RL’s outcome is
a Q-table or function which maximizes the value of state-
action pairs in the form of policies. Similarly, agent-based
synthetic crowd steering models sample the local state at
every model update and produce some form of action. Often
this is a rule-based approach that integrates some form of a
mathematical model of the agent and its interactions with
other agents and the environment. The task in RL-based
crowd simulation then is to learn this model. A Vector
Quantization approach has been used to successfully model
multi-agent pedestrian navigation [59]. Some related pre-
liminary work has been shown to produce small groups of
navigating agents successfully [60], [61]. A particularly well-
evaluated set of models was used to show that this problem
is tractable and scalable [16], [18]. However, this approach
requires scenario-specific training to converge on expected
emergent behaviours. Most related to our work is the re-
cent agent-based RL model learning continuous actions in
a curriculum manner [15]. Recently, another LSTM-based
method using Deep Reinforcement Learning proposed first

learning leader-based control in one phase and using RVO
to handle collisions in a second phase [14]. Similarly, RL
has been used to learn simple swarming behaviour from
leader-based control [13]. While these methods have taken
many approaches to crowd simulations they are all limited
in generalization and evaluation. Additionally, it is not clear
whether trained models can be reused or reparameterized
in scenarios not present in the training simulations.

2.4 Evaluation and Performance

The evaluation of crowds and steering models is a generally
ill-posed problem. Data-driven evaluation suffers from the
need to recreate real-world data or to find a means of mea-
suring the difference between real and simulated scenarios.
Metric-based solutions reflect the intricacies of their chosen
metrics and may not have meaning over different scenarios
or may require normalization. Normalization introduces the
issues of what reference to normalize with respect to. Early
comparative crowd evaluation methods noted the impor-
tance of a dense hierarchical approach to evaluation. That is,
by formulating a set of benchmarks from the lowest level of
steering behaviour performance (reaching waypoints) to the
highest (collision avoidance and emergent behaviours in so-
phisticated crowded scenarios) [25]. We use several similar
environments and build out an evaluation of crowd dynam-
ics in a similar manner. Similarly, the scenario test set can
be constrained to one definition, such as room evacuation to
compare across algorithms in a controlled environment [10].
This approach has been extended to sample over densities
to evaluate the changing performance found at different
service levels in egress or pedestrian hallway scenarios [24],
[62]. We define similar environments and procedures in our
evaluation set to test for expected outcomes related to dense
environments.

Metrics can be directly computed which give some sense
of performance within a particular scenario, such as colli-
sions [63]. This set of measures can be expanded to include
metrics that are computed along the path integral of the
agents throughout the simulation [64]. This provides an
in-depth look at performance but outcomes can only be
compared within scenarios.

When real- or ground-truth data does exist we can
deploy data-driven methods to evaluate algorithms. One
approach to this is to recreate the initial conditions of the
real data and measure the divergence between the simu-
lation and real data over time [65]. These approaches re-
quire highly accurate re-enactment and assumes that crowds
evolve deterministically from initial conditions. One way to
address this is to instead model the statistical error distri-
bution between the real data and the simulation. Principal
Component Analysis (PCA) can also be applied to the
sources of variability in metrics and trajectories to closely
examines the components from each data source that con-
tribute to the variability [66]. This facilitates close evaluation
of the differences between real and simulated data when the
results may be too noisy and/or too high dimensional.

Normalization of evaluation is important for comparing
models of different dimensionality but can be difficult to
apply to very different types of models (difficult to apply
to learning methods and rule-based at the same time). For

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 5

example, outcomes can be measured against their optimal
(or best possible value) assuming one can model the optimal
accurately (such as in crowds the shortest path can be
considered perfectly optimal) [67], [68]. Assuming reference
data exists, crowd model parameters can be optimized
to best fit reference data prior to performing evaluations
(including direct metric comparisons) [69], [70].

Finally, it is possible to also evaluate crowds simulators
from a perceptual approach. For example, an experiment
can be devised to elicit responses to different crowd simula-
tors and their impact on presence [71]. Most recently, there
are methods that blend approaches and devise perceptually
validated metrics that capture the salient features impacting
the perception of realism trajectories produced in simula-
tion [72].

2.5 Comparison to prior work

Our method differs from these prior works (specifically
the most related [15], [16], [18], [40]) in several ways. Our
proposed method is a model-free multi-agent reinforcement
learning using parameter sharing, with additional goal-
conditioned control parameters and state observation stack-
ing. The model-free component means our method can learn
from trial-and-error with an underlying ground truth model
of the environment. We specifically use parameter sharing
to mitigate the non-stationary problem of multi-agent rein-
forcement learning and massively improve the gathering of
experience during training [73]. This can be seen as a form of
centralization, however, we do not centralize internal agent
information, control signals, or facilitate communication
between agents. By goal-conditioning control parameters
and rewarding adherence to their expected outcomes we
can learn a policy that is then parametric on deployment,
i.e. practitioners can set the desired control parameters of
individual agents despite the sharing of the same duplicated
policy among them. This parametric learning approach is
somewhat related to conditioning a control policy on a low
dimensional latent variable to select a family of policies [74].
Finally, by using state observation stacking on a compact
state observation vector, we sidestep the computational
requirements and difficulties with vanishing or exploding
gradients found in recurrent neural networks (RNN) and
long short term memory (LSTM) approaches for temporal
dynamic behaviour that requires observations of higher-
order movement derivatives.

3 HETEROGENEOUS PARAMETRIC-RL MODEL

In this section, we cover the components involved in defin-
ing and solving the proposed Multi-agent Reinforcement
Learning problem. For this work, we represent agents with
a standard particle-based model which consists of three
components: {a,, a,, ay}, where a,, is the position, a, is the
radius, and ay is the present heading of the agent.

3.1 Reinforcement Learning

In reinforcement learning, we model the learning prob-
lem as finding a policy for a Markov Decision Process
(MDP). The MDP is defined as a tuple {S, A, P,R,~},
where § € R", A € R™ are the state space and action

space in the environment, the transition probability function
P :SxS8xA—|0,1)is a probability density function, with
P(s¢4+1 | st, at) being the probability density of s.y; given
that action a; is executed in state s;. The reward function
R : S x A — R gives a scalar reward for each transition in
the environment. v € [0, 1] is the discount factor that deter-
mines the planning look-ahead. The reinforcement learning
objective is to find a policy 7(als, #), with parameters 6, that
maximizes the following metric:

T
meax JW(Q) = EatNﬂ-(_‘St) |:Z q/t’r'(St, at):| (1)

t=0

This essentially means we wish to find a mapping be-
tween input state and action pairs that maximizes the ex-
pected discounted return, or the discounted future rewards.
The extension of the basic RL problem to multiple agents
can be thought of as a Markov game, or multiple interacting
MDPs. While our problem is multi-agent, we make use of
parameter sharing to reduce the overall parameters we need
to learn for our policy [73]. Policy gradient algorithms are
a popular approach to solve this problem, where VyJ is
estimated using on-policy samples, i.e., using data collected
from the current stochastic policy [75]. Specifically, we use
the Proximal Policy Optimization (PPO) algorithm to op-
timize the RL objective [76]. PPO is a model-free policy
optimization algorithm that trains a stochastic policy in an
on-policy fashion. That is, it samples actions based on the
latest version of its stochastic policy. On-policy methods
like these are more suited to our problem because it is
generally less expensive to collect data and they generally
require less tuning than off-policy methods. PPO aims to
make the changes between policies during learning updates
big enough to efficiently explore but small enough that the
policy does not drastically change between updates. The
implementation used in this paper uses a clipped objective
to reduce the incentive for the policy to drastically change
between update steps, i.e., a type of regularizer which can
help in the learning process [77]. Because PPO is model-
free, a policy can be learned from a trial-and-error approach
without relying on an underlying model, i.e. we do not need
a ground-truth model of the environment in order to learn
a policy successfully.

3.2 Network Architecture & Parametric Policy Learning

A key contribution of this paper is the learning of parametric
policy space to support user control and agent hetero-
geneity within a single learned policy space. A ubiquitous
parameter is required to accomplish this. In other words,
a parameter we use must be a part of the state, reward,
and either the action or representation of the agent in the
environment. In this way, the parameter can be used to
select subspaces within the learned policy space. We hy-
pothesize that this approach may be used to learn any other
fixed agent parameters, such as walking style or personal
space, that a user may wish to parameterize. We make four
assumptions about the parameters we wish to learn and
how they may be included in the RL problem definition such
that the parameters are “ubiquitous” within the defined
architecture.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 6

First, we include the parameter(s) (we wish to use for
selecting policy subspaces within the state observations of
each agent, such that m(als,0) becomes 7(als;(,0). That
is, we use a goal-conditioned policy approach to select
behaviours in the form of policy subspaces. In this paper,
we use desired speed and later agent personal space to
create agents that are heterogeneous with respect to speed
and movement policies. For parametric policy learning, the
value of this state is sampled uniformly random (each value
has an equal chance of being sampled) from the parameter
range, ¢ ~ U(Clow, Cni), where (o, (i are the bounds of the
components of ¢. In this way, we guide the learning process
to explore the policy subspaces. Here we rely on the ability
of deep neural networks to learn or embed the in-between
values which are not sampled directly during training. In
Section [3.3] we describe the agent state in detail.

Second, the parameter, in this form of learning, neces-
sarily impacts the policies (i.e., we wish to get different
behaviours from selected parameter values), so it must
relate to the action space. However, this relation may be
indirect. In this paper, the parameter has some bearing on
the action space since velocity is a term in the anti-derivative
(momentum) of the control signal (force applied to the
particle) and a constraint (maximum speed of the particle).

Third, the exploration of the policy subspaces is only
possible if we appropriately reward the value of the state-
action pairs. That is, the learning process in RL is guided by
reward, and further parametric policy learning is guided by
rewarding how well we achieve the desired action given the
current parameter setting in the state. This is simplified (i.e.
we reduce variances in the learning) by fixing the parameter
(fixed value in the state observations) over the lifetime of the
agent and making components of the rewards with respect
to the value.

Finally, to support parametric policy learning in het-
erogeneous environments, agents of particular parameter
settings must be exposed to agents of other parameter
settings within the same learning environment. In this way,
the individual subspaces of the larger policy encapsulate the
entire policy of a particular type of agent. In this paper, the
agent learns not only to fulfill its speed constraints but also
policies for interacting with other diverse agents.

The network model is 2 fully connected hidden layers of
512 hidden nodes each using the Swish activation function,
which has been shown to improve deep neural network
performance over a range of tasks [78], [79]. The network
model can be seen in Figure 2| with all the components of
the environment, state, and action. The following sections
describe the details of the involved components individu-
ally.

3.3 State Space

The state-space of the agent includes information required
to take actions that resolve the two primary goals of steering
— goal-seeking and collision avoidance. In this section, we
outline the components of a single state observation and
then extend this into several stacked snapshots of past ob-
servations motivated by a discussion of learning parametric,
heterogeneous agents — a key contribution of this paper. The
agent’s current goal in the state is represented by a distance

Action

Environment Hidden Layers

Stacked States

512 512

Fig. 2: The deep neural network is composed of 2 hidden
layers of 512 hidden nodes each using the Swish activation
function [79]. The environment observations are concate-
nated with a parameter (for learning parametric policies
spaces using goal conditioning and stacked to mitigate the
partial observability problem in multi-agent reinforcement
learning. The action changes the movement and orientation
of the agent. Each component is described in detail in State:

Section and Actions: Section

gq normalized by the diagonal of the virtual maximum
ground size, and by its direction g, relative to the agent’s
forward a;. The agent also has a form of vision as a series
of depth testing rays ¢1.9 € ® evenly spaced within a
90° field, each normalized by its maximum vision distance
¢q. For this work, we found through testing, that using
9 rays provided adequate local information for steering.
We postulate that using an odd number such that there
is a central forward-facing ray is important for collision
avoidance as it aligns with the agent forward vector a;.

To support the parametric and heterogeneous require-
ments of the agents, two factors regarding the state are
required. The first is that the parameter to be used is a part of
the state, such that the agent has information about the pa-
rameter’s value. That is, the state includes, in this particular
instantiation, the desired speed vq as well as the maximum
allowed speed v,,, which is randomly selected during
training from [Uin, Umaz) at initialization and remains fixed
over the agent’s lifetime. In this way, the approach is a goal-
conditioned policy that selects a subspace for the desired
behaviour. The agent’s forward relative velocity state, an, is
the normalized relative vector between the agent’s current
movement direction and its forward vector.

Additionally, in this particular instantiation, we note
that a single state can not capture velocity information of
neighbouring agents and thus will not be capable of learn-
ing policies for heterogeneous configurations. Prior work
has encapsulated this information as part of the state [80].
However, this requires that agents are aware of other agent’s
internal parameters. We want to avoid the overhead and
limitations associated with centralizing information, control,
or communication (i.e. agents should remain individual
and autonomous) and for agents to learn to “perceive” this
information. This is made partially possible by the depth
testing portion of the state, but this requires some form of
additional memory to observe the change in state over time,
e.g. changes in depth are a perception of relative velocity.

One approach to this problem is to expand the input
space with multiple sequential observations of the state,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 7

Neighbour agent

Fig. 3: The agent is a particle model represented by a
(blue) circle defined by its current position a,, forward
vector (orange), and radius a,. The state includes depth
test rays, representing vision, shown in green (®). These are
defined by their count, start/stop angles (field sweep), and
maximum test distance ¢4. In this definition, we use 9 rays
@1..9 within a 90° field—using an odd number ensures there
is always a central ray emitting from the forward vector
of the agent. Additionally, the state includes the current
distance to the goal g4 and the relative goal position g, =
(92, gy)- Details for the state are covered in Section The
action space is represented in fuchsia and includes the angle
to rotate 6, and the vector representing the force to apply
f, = (fs, fy)- Details for the action space are covered in

Section

or observation stacking. In this context, observation stacking
means expanding the number of input nodes of the network
to accommodate each stacked observation. That is, if a single
state observation is S = {ga, 8p, ®,aA, G5, Vd, Umaz } Where
|S| = 16 when the vector components are expanded, then
N stacked observations Sy amounts to |[Sy| = 16 - N input
nodes in the network. In this way the state includes the
current observation and the previous N — 1 observations. At
initialization, prior observations are zeroes. This method is
evaluated in Section A visual representation of a single
state observation can be seen in Figure 3}

3.4 Action Space

We define a three-dimensional action space. The first di-
mension represents the normalized rotation angle 6, to
apply to the forward vector as of the agent particle by the
maximum allowed angular speed (desired angular speed)
04. The second and third dimensions of the action space are
the two components of the driving force (f, f,) of the force
vector f,, to apply to the agent particle. The resultant velocity
is clamped by the desired speed. In this way, the model is
essentially learning to turn and to move using the final net
force vector which is to be applied to common force-based
approaches in steering [9], [10].

3.5 Reward Function

Our proposed reward function values movement towards
the goal and anticipatory collision avoidance while penal-
izing collisions. Both location-based rewards and collision-
based penalties have predictive and instantaneous coun-
terparts to also encourage predictive, or anticipatory, be-
haviours.

We define a predictive and cumulative location reward
r; designed to be conservative over all paths. That is, we
aim to value reduced effort paths of different modalities in
our reward. In this way, the location reward forms an accu-
mulation of predictive location-based rewards as a potential
field rs, = |g|6 , where g represents the agent-to-destination
vector. In each step, r; is calculated by taking the gradient
of r5, projected onto a vector of small step At shown as:

r=-V(rs)-Ad=—plg" " g vAt)

where Ad represents the distance travelled in the current
time frame, v represents current velocity, and At the time
interval associated with the current frame. We found § =
—0.5 produces desired results but can be tuned for more or
less direct goal-reaching behaviour.

We define an instantaneous location-based reward ry4
which only triggers when an agent reaches their target. We
found ry = 2 sufficiently incentivizes goal-reaching.

A predictive collision penalty scales the final reward
with respect to incoming collisions, defined as:

bt = H

Va'eN (a)

tanh T (a,a’) 3)

where (N (a)) is the set of neighbouring agents within the
radius n,. T(a,a’) is a function that predicts the time left
before two agents collide under their current velocities:

T(a,a") =
max(arg mtin(||ap — apy + t(vg — var)|| = ar + a,r),0)

(4)

where a, is the agent position, a, is the agent radius,
and the prime values (/) are for the other agent. In this
formulation, ¢ may have more than one solution, so we
solve this equation for the minimum ¢-the closest ray-disk
intersection test [9]. Dependent on Equation|4} if the time left
to collide is 3 seconds or more, then p; ~ 1, i.e., there is no
predictive collision penalty because p; is used as a scaling
factor for the continuous target reward in Equation 2} That
is, if tanh T (a,a’) < 1 (from Equation [3) then the agent is
going to be penalized for a potential incoming collision. This
predictive collision check is derived from [9] and converted
into a penalty ([0,1]) scaling the contribution of the relevant
goal reaching reward.

An instantaneous collision penalty p, is applied on sim-
ulation steps when an agent either collides with another
agent or with a wall. We found p. = —0.01 sufficiently
disincentivizes collisions.

Together the total reward function becomes the summa-
tion of all rewards and penalties with a weight factor w; for
71 to adjust its contribution to the finalized reward:

Tal = WiTPs + 74 + Pe)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 8

We found w; = 3 balanced desired goal-seeking behaviours
with collision avoidance learning. This final reward signal
values ideal agent movement which is anticipatory, reduces
effort in steering (takes short paths), and avoids collisions. In
our multiplicative reward, anticipatory collision avoidance
(pt) and goal-seeking (r;) is weighted (w; is for behavioural
control and can be tuned by someone retraining the model)
and scaled by their severity and likelihood (w;r;p;) while
discrete target rewards only occur when and an agent com-
pletes their global task(ry) and collisions are heavily and
consistently penalized at each step. In practice, p; reduces
the reward gained by r; to penalize potential collisions more
as they become more likely.

3.6 Training

We summarize our agents as the state space & =
{94, 8p, ®,aA, as, V4, Umag } and action space A = {6,, 1, }.
All agents learn and share the same network parameters
but have different randomized goals in randomized envi-
ronments as described in the following sections.

3.6.1 Environment and Scenarios

We utilize domain randomization for our training envi-
ronments. The training environment is defined by a grid
in a square region (20m x 20m) in which obstacles of
size (Im x Im) may be randomly placed at the center of
each grid cell with a probability of 10%. There are 100
agents spawned in each training iteration. However, purely
random agent, goal, and obstacle spawning may lead to
enclosed, i.e. unreachable, agents or goals. To deal with this
during training we ensure that there is a free path between
agent and goal when spawning, if not we reattempt at new
locations until there is. The environment definition is a high-
density procedural scenario and is intended to force agent-
centric encounters between various environment and agent
configurations, aimed to find more general policies [22]. This
environment can be seen in Figure (4, That is, the training
environment is intended to have coverage over the space
of possible agent interactions and be sufficiently noisy to
produce generalizations in the learned policies. Our eval-
uations in Section |4/ show that this produces a model that
generalizes to various environment configurations, agent
configurations, and the number of agents.

3.6.2 Simulation

After obstacles are placed on the ground, stationary agents
are randomly spawned, with random initial headings. Each
agent is assigned a single randomly positioned static world
target and there are no overlaps among obstacles, agent
spawn locations, or agent targets. This formulates the initial
conditions of our domain randomization approach during
training. Each agent computes their shortest path to their
randomized world target using the A* pathfinding algo-
rithm on a NavMesh representation of the environment [81].
An Agents long-term path is updated every 2 seconds or
when they lose sight of the current waypoint (the long-term
path is composed of a series of waypoints on the NavMesh).
Agents will initially receive the topmost waypoint in the
queue as their current local target for steering and will
iteratively switch to the next waypoint in the queue until

Fig. 4: Agents learn to continuously avoid each other as well
as obstacles in arbitrarily complex environments. This figure
is a single example of the procedural training environment.

the next waypoint can not be seen (obstructed by obstacles
in the environment), i.e. simplified string-pulling. Once the
agent reaches its final world target, it will be removed
from the environment. We make use of long-term path
planning because we performed several tests without the
addition of explicit long-term path planning and agents
were not able to handle complex planning in environments,
particularly those with concavities. This is a known effect
of steering/planning separation in the literature, and this
paper focuses on the steering model layer. We hypothesize
that it is possible to learn this planning layer policy and
recent works have succeeded in doing so already [82], [83],
[84]. However, this is outside the scope of this paper.

3.6.3 Learning

Our deep neural network is composed of 2 hidden layers of
512 hidden nodes, or artificial neurons, each using the Swish
activation function [79]. We train this network using Prox-
imal Policy Optimization (PPO) with the Adam optimizer
to update network weights [85]. Relevant hyperparameters
include, v = 0.99 (the reward decay factor in the expected
discounted return seen in Equation , B = 0.005 (the
weight of entropy regularization dictating policy random-
ness), € = 0.2 (the threshold of divergence in policy updates,
used in the clipped objective for PPO [77]), A = 0.95
(the reliance on current value estimates in the Generalized
Advantage Estimate calculation [86]) with a learning rate of
0.0003 (the weight of gradient descent update steps), a batch
size of 512 (the number of experiences to use in a gradient
update step), and a buffer size of 20480 (the number of
experiences to use in a model update). Each episode of
simulation in the training is triggered either when all agents
complete their goals or 10,000 training steps have been
reached. The reward update period is 0.02s, or 50Hz. Given
our 7 value and update frequency, our agents are learning
to plan approximately 2s ahead.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, ##HHt #### 9

4 EVALUATION

We constructively evaluate our contributions in a series of
experiments. We note first, as in Sect‘ion that the analysis
of steering algorithms, and comparative crowds analysis
in general, is an ill-posed problem. We take the approach
of incrementally evaluating portions of the proposed ap-
proach, from several perspectives, with respect to metrics
and scenarios from the literature.

First, we cover learning performance and features found
in training. We focus on performance during training (from
the perspective of reward) and the quantitative performance
of our proposed state observation stacking methodology.
Second, we cover several common qualitative benchmarks
to show our model produces desired steering behaviours.
Third, we cover the quantitative performance of general
multi-agent navigation. We use metrics from the compar-
ative crowds analysis literature to understand where the
method is performant with respect to traditional methods.
Fourth, we verify our behaviour conditioned model on het-
erogeneous scenarios and show that heterogeneous crowds
diverge from homogeneous crowds in our outcomes. Fifth,
we cover density-dependent artifacts to verify the model
produces expected outcomes in a common multi-agent sce-
nario from the literature. Sixth, we cover the computational
performance of the method with respect to agent count.
We focus on giving a general idea of how performant our
model is with respect to real-time applications. Finally, we
repeat training on an additional parameter to show that the
method is extensible to other parameters a practitioner may
wish to use.

4.1 Learning Reciprocal Collision Avoidance in Hetero-
geneous Environments

In this section, we evaluate the learning performance and
the contribution of our proposed stacking methodology
for state observations. We hypothesize that observation
stacking affords the learning of velocity-aware policies that
resolve reciprocal collision avoidance in heterogeneous en-
vironments as described in Section We further hypoth-
esize that there is a critical value after which the depth of
the stack has diminishing returns. That is, stacking in this
model is used to increase performance for policies handling
time-variant heterogeneous agent features, such as velocity,
acceleration, and jerk. We adjust the number of stacked ob-
servation state vectors over several training experiments to
find the critical point at which stacking no longer produces
useful returns. We sample six levels of observation stacking
1,2, 4, 8, 12, 16, or values for N in Sy. To choose a final
stacking level we observe the training performance, as well
as, several multi-agent navigation-specific metrics. These
metrics are six separate path integrals, summed over all
agents, which measure key aspects of collision and steering
performance: unique collisions count, collision magnitude,
completion time, acceleration, distance travelled, and kinetic
energy. For this latter study, each stacking level is evaluated
over 25 simulations of the training environment with ran-
dom initial conditions for the obstacles and 20 agents.

In addition to a thorough stacking experiment, we also
conduct a simple experiment on out-of-distribution parame-
ters (desired speed outside the trained range). In particular,

Rewards

—— Stack 1
Stack 2
—— Stack 4
—— Stack 8
—— Stack 12
—— Stack 16

—15

_20 4

010 012 0:4 0:6 0:8 ljD

Steps le7
Fig. 5. The training portion of the observation stack-
ing experiment investigates the improvement in memory-
dependent behaviour conditioned learning. We increase the
number of observation vectors in the stack and explore the
mean reward overtraining. The stacking provides a form
of crude memory, for handling the parameterization of
velocity, a time-dependent factor between agents which the
model is not given directly. The 4 level observation stacking
model is selected based on these training results, quantita-
tive (see Section& Figure@, and qualitative results (see
Section. Each model is trained for 10 million iterations.
Because training curves are similar for stacks and can only
provide limited information, we perform additional follow-
up studies on the performance of the learned policies, see
Section and Figure@

we sample at random across all agents in the ranges of {4,
6, 8}m/s. In typical Deep Reinforcement Learning applica-
tions, the action space is clamped to ensure that unexpected
values still fall within the expected range. We conduct this
experiment twice, first where we limit the action outputs to
the max speed in the originally trained range (i.e., we limit
within distribution) and second, where there is no limit on
the output action. We conduct these experiments using the
final network with the chosen stacking level (level 4, see
Results & Discussion below)

4.1.1 Results & Discussion

The training performance in terms of mean reward during
training iterations, of these stacking levels, can be seen
in Figure [5| This data is too noisy and without a clear
and obvious candidate for selection, so we must pair it
with quantitative results on the quality of the policy to
understand the impact of stacking state observations. The
results for quantitative policy quality are shown in Figure@
(a) unique collisions count, (b) collision magnitude, (c) com-
pletion time, (d) acceleration, (e) distance travelled, and (f)
kinetic energy.

The evaluation of stacking levels with respect to learning
performance over training rewards and steering policy qual-
ity measures show clearly that the 4 level observation stack
produced the best results. This stacking level minimizes
collision counts and collision magnitudes while performing
on par and at acceptable levels with all other metrics. The
rest of the paper uses this model for evaluation.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, ##HHt #### 10

45 T v : v : T v T
+ - +
20 30t
a0l j | +
=3
18} 4
@ —
= T @
» Sl | N 1 E N
J r- 1E +
5% — = El T T =+ Seof
- - i < ‘ : | g
= 1 - 1 5 L | ;l =
o L | 4 =14} 1o +
= } =] _'_ E
‘ oS = S1st
T @ e
B e 1e12 . 1 ! _'_
—
L _
= . - 5 | o 3 !
* = 10 1or \ o
e 4
T + L -+ -+ -
1 2 4 8 12 16 1 2 4 8 12 16 1 2 12 16
Stacking Levels Stacking Levels Stacknng Levels
(a) (b) (c)
- T
T T 20+ T
+ 6500 + 4
120
18} + 6000 ,]
“wi00 - = 5500 1
E + E - =
- ;’16 [Bso00 4
5 8 I @ +
2 aof R = s i G +
[T = ! - 1 4500 4
& : g 14 I | — 1L
© — I | I « -
Q 1 — = I —_ | - 1 £ 4000 - 1
g o0 TRl = '
g Fzf 12 3500} —
£ } & -
= +
40F + — 1 L — | 3000 |
= - e ‘ - H
] [! 2500 |- !
20l % . E=] I I 1 L o i i I L 1
L - -+ .
1 L 1 1 L 8f L L 1 L 2000 | L
1 2 4 8 12 16 1 2 4 8 12 16 1 2 1z 16
Stacking Levels Stacking Levels Slackmg Levels

Fig. 6: (a) Collisions, (b) Collision magnitudes, (c) Completion times, (d) Total accelerations, (e) Total distance travelled,
and (f) Total kinetic energy in the observation stacking experiment. Each stacking level's {1,2,4,7,12,16} performance is
represented by a box plot illustrative summary statistics where the median is the red line, the bottom and top edges of
the box (blue) indicate the 25th and 75th percentiles, respectively, while the whiskers cover the range of all values except
outliers which are shown individually using the ‘+" (red) symbol. Several stacking levels are compared across several
common crowds metrics. We find that a stacking level of depth 4 outperforms or is on par across all metrics.

Our out-of-distribution parameter experiment revealed
some interesting qualitative behaviours. In both the limited
and unlimited max speed tests, agents can still navigate to
their final goals. In the limited scenario, agents produce inef-
ficient paths, often seemingly confused with how to handle
agent-obstacle collision avoidance. This is expected as the
desired speed and max speed outcome do not align. That is,
the policy has learned the distribution of speeds needed to
meet the set input parameter. This is further shown in the
unlimited max speed test. In this test, it is clear the learned
policy has generalized to unseen desired speed values, as
the agents move faster than they were trained on and
approximate the out-of-distribution parameter. However,
their ability to navigate is hindered by apparent undamped
steering, that is, the agents often overshoot their navigation
goal even though they eventually finish.

4.2 Qualitative Multi-Agent Navigation Performance

In this and following sections, HOP-RL is analyzed with
respect to common steering models of similar capability.
That is, each model attempts to address the reciprocal pre-
dictive collision avoidance problem, has similar inputs or
state space, and is specifically a steering model. Model-free
approaches must be compared against established crowd
simulation techniques in a fair and unbiased manner before
they can be truly used in practical contexts. Each model

in the comparative analyses uses the same A* long-term
path planner with simplified string-pulling described in
Section These models are:

¢ HOP-RL- a model-free RL-based approach with
parametric policy learning using observation stack-
ing.

¢ Reciprocal Velocity Obstacles (RVO) - a compu-
tational geometry-based approach that optimizes
collision-free actions in velocity space [8].

e Predictive Avoidance Model (PAM) - a physics-
based approach that predicts linear collisions and
applies appropriate avoidance forces [9].

We show several examples of classic scenario bench-
marks in crowd evaluations where each scenario has ex-
pected qualitative outcomes. We evaluate over scenarios of
increasing difficulty in a similar fashion to . In particular,
these benchmarks are intended to exhibit specific controlled
behaviours making up the components of a successful steer-
ing policy.

Agents must be able to navigate towards goals while
avoiding collisions with each other. In the crowd simula-
tion literature, this is achieved in either a reactionary way
(adequate) or an anticipatory way (desirable). We show
several examples of agents successfully learning to complete
this task in an anticipatory manner in Figure HOP-RL

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, ##HHt #### 11

— O o0

(a)

(b)

T

mis

(©

@

(@)

3 3

Fig. 72 Agents learn a high value predictive reciprocal
collision avoidance behaviour. In (a), predictive avoidance
can be seen in the early movements away from the collision
path. This point is highlighted with circles of the agent
colour. In (b-d) we qualitatively compare HOP-RL, PAM,
and RVO respectively. We include the distribution of agent
speeds (red right, blue left)—each figure is over the domain
[0.0, 2.2]m/s. Distribution over the scenario and across
methods is similar. HOP-RL agents learn to anticipate and
smoothly avoid collisions early. PAM agents have sudden
changes in trajectory when the predictive force becomes
stronger. RVO agents produce reciprocal collision avoidance
only when the agents are near and the trajectory has a
mechanical quality.

agents learn to anticipate and smoothly avoid collisions
early. PAM agents have sudden changes in trajectory as
the predictive force becomes stronger. RVO agents produce
reciprocal collision avoidance only when the agents are
near and the reciprocity is exact, giving the trajectory a
mechanical quality.

Agents must be able to avoid obstacles and each other
while navigating towards their goals. We show this in
multiple examples of increasing difficulty. First, in Figure
we show agents avoiding a single obstacle. Second, as
shown in Figure [4f agents continuously avoid each other
and obstacles in a complex environment. The latter is an
example instantiation of the training environment. HOP-
RL agents learn to anticipate and avoid obstacles and each
other early. PAM agents may violate obstacle boundaries
when collision avoidance and predictive forces coincide and
overcome obstacle forces. RVO agents mostly slow down to
avoid the conflicting paths.

Synthetic crowd steering models must also produce ex-
pected emergent behaviours under certain conditions. First,
we show that HOP-RL agents produce vortexes in a ho-
mogeneous diametric goals scenario—a seminal benchmark
for steering models intended to exemplify emergent least
effort paths. An example of this can be seen in Figure El
which shows a diametric goal scenario approximately 20m
in diameter at several key points, with both homogeneous
and heterogeneous parameterizations across agents. Second,

Fig. 8: Agents learn to avoid collision with each other
and with simple obstacles. The point predictive obstacle
collision avoidance learned by HOP-RL is highlighted in (a)
a circle of the lighter agent colour, and the point reciprocal
collision avoidance begins is highlighted with the circle of
the agent colour. In (b-d) we compare HOP-RL, PAM, & RVO
respectively. We include the distribution of agent speeds
(red right, blue left)—each figure is over the domain [0.0,
2.2]m/s. Distribution over the scenario and across methods
is similar. HOP-RL agents learn to anticipate and avoid the
obstacle and each other early. PAM agents may violate ob-
stacle boundaries when collision avoidance and predictive
forces coincide and overcome obstacle forces. RVO agents
mostly slow down to avoid the conflicting paths.

we show that HOP-RL produces laminar flow in crossing
groups scenarios. An example of this can be seen in Fig-
ure Laminar flow is an important qualitative behaviour
found in crossing flows of human groups. Finally, we show
HOP-RL in the classic heterogeneous bottleneck egress sce-
nario in Figure where crowding near the egress point
forms because of the agent density. RVO tends to produce
aggressive overtaking behaviours in this scenario while
HOP-RL produces smoother more predictable behaviours.

4.3 Quantitative Multi-Agent Navigation Performance

In this section, we evaluate the quantitative quality of our
learned steering policy by comparing HOP-RL with both the
industry baselines and two baseline RL-based approaches
over the steering models metrics introduced in Section
Our baseline RL approaches use the same state-action-
reward definition as HOP-RL but we remove the parameter
learning and train new models with and without stacking
state observations.

This experiment analyzes the performance of all five
models within the procedural training environment de-
scribed in Sectionm For each model, the experimental
scenario is randomly initialized 20 times such that obstacle
placements, agent initial conditions (placements and desired
velocities), and agent goals are randomized. Each simulation
involves 100 agents navigating the environment until they
reach their final navigation goal.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, ###t #i### 12

TmisT

Fig. 9: Frames, ordered from left to right, in the top row show agents learn to continuously avoid each other in a diametric
scenario by producing an emergent vortex behaviour. In the bottom row, the same scenario repeated but with randomly
distributed desired velocities. We include the distribution of agent speeds—each figure is over the domain [0.0, 2.2]m/s.
Both rows are using the same trained policy with no retraining or updating.

Fig. 10: Agents learn to avoid collision with each other in
a crossing groups scenario. HOP-RL (top) and RVO (bot-
tom) produce lane forming behaviour. However, RVO may
produce slow down artifacts when agents of very different
speeds must steer with respect to each other. We include the
distribution of agent speeds—each figure is over the domain
[0.0, 2.2]m/s.

4.3.1 Results & Discussion

The results for policy quality with respect to baselines are
shown in Figure (a) unique collisions count, (b) collision
magnitude, (c) completion time, (d) acceleration, (e) distance
travelled, and (f) kinetic energy. The quantitative crowd
results show that HOP-RL performs on par with, or better
than, RVO in terms of collision count, and on par with
PAM in terms of collision magnitude and total accelerations.
Importantly, HOP-RL outperforms other models in terms
of completion time and total kinetic energy. PAM may on
occasion violate agent bounds because of the exponentially
increasing forces as agents approach their boundaries. In
contrast, RVO produces a significantly higher total accel-
eration than PAM or HOP-RL due to sudden changes in
direction and repeated stopping conditions. We show that

Fig. 11: The model produces smooth movement in het-
erogeneous bottleneck scenarios and crowding near the
bottleneck as density increases. In the top row HOP-RL,
and in bottom row the RVO model can be seen for refer-
ence. In this scenario, RVO produces aggressive overtak-
ing behaviour which occasionally causes the violation of
agent bounds, ie. passing through agents, while HOP-RL
produces predictable overtaking and passing behaviours
without artifacts.

the baseline RL methods with and without stacking, both do
not perform as well in terms of collisions, completion times,
total accelerations, total distance, and total kinetic energy.
The lack of performance in completion times, distance, and
kinetic energy are mostly due to the homogeneous nature
of the agents causing more bottlenecks through equilibrium
states particularly in this scenario where density can rapidly
rise (all agents have the same movement profile so often
they get stuck and have to push around each other). All
other models in the experiment are heterogeneously param-
eterized and naturally break these ties in dense movement.
Taken together HOP-RL is performative with respect to
baselines and also produces lower cost, more efficient paths.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##

NO. ##, #HHEE #HH##

zo00 [180

1800

2

1600

5

T
—_
I
|
I
I
I
I
I
I

1400

HR=i

I

I
600 - [4 ;
4

————| + +

1200

B

1000

Collisions

2

=

:

Total Collision Magnitude (N)

3

3

2R

Completion Times (s)
w - w (=] -~ =3
=} o o (=} o =3

n
=3

=3

L L L s
RL Stack 4 RVO HOP-RL RL

(a)

L L
HOP-RL RL PAM

PAM RL PAM

300 T T T

o
o
=)

g

@ B
S =]

Total Distance (m)

Total Acceleration (mfsz)
5]
(=]

-

==

1

=

12000

To‘tal Kinelic‘ Energy (J)
% 5]
8

g

:

= |

RL Stack 4 RVO RL

(d)

HOP-RL RL HOP-RL

RL Stack 4

(e)

RL Stack 4 PAM

(f)

RvVO PAM HOP-RL RL RVO

Fig. 12: (a) Collisions, (b) Collision magnitudes, (c) Completion times, (d) Total accelerations, (e) Total distance travelled,
and (f) Total kinetic energy in the comparative quantitative experiment. Each model’s { HOP-RL, RL, RL Stack 4, RVO, PAM
} performance is represented by a box plot illustrating summary statistics where the median is the red line, the bottom and
top edges of the box (blue) indicate the 25th and 75th percentiles, respectively, while the whiskers covers the range of all
values except outliers which are shown individually using the ‘+” (red) symbol.

4.4 Heterogeneity Dependent Performance

In the application of synthetic crowds, across many do-
mains, heterogeneity is of utmost importance. This may be
visual only heterogeneity via avatar rendering styles, 3D
models, accessories, etc. However, in crowd visualization
(games, animation, film, VR), the factor in crowd dynam-
ics which most diversifies agents perceptually is velocity
and motion profiles . HOP-RL learns this form of het-
erogeneous steering using parametric policy learning via
observation stacking. So far we have shown that HOP-RL
is performant with respect to common crowds measures
in heterogeneous environments — successfully producing
reciprocal collision avoidance and performing on par with
model-based approaches quantitatively and qualitatively.
This experiment serves to complete that analysis focusing
on levels of heterogeneity within the makeup of the crowd.

In this experiment, we show the important quantitative
impacts of heterogeneity in crowds, specifically that our
model successfully produces divergent outcomes between
completely homogeneous and completely heterogeneous
parameterizations as found in traditional methods. To show
this, we sample several mixtures of heterogeneous and
homogeneous crowds in a one-way egress environment.
Starting with an all homogeneous crowd we incrementally
increase the number of heterogeneous agents, with ran-
domly assigned desired speeds vy € [0.5,1.6] m/s. We
repeat this for three initial homogeneous speed profiles (0.6,
1.3, and 1.8 m/s) in contrast to the heterogeneous portion

of the crowd, measuring the flow rate for each scenario. In
this work, flow rate is defined simply as the rate (in agents
per second) at which N agents reach their goal, f(p) %
where t; is the completion time of the last agent.

4.4.1 Results & Discussion

The zero value on the x-axis of Figureis the flow rate pro-
file of an entirely homogeneous crowd. As the curves move
more to the right, the crowd is more and more heteroge-
neous (x-axis is the number of heterogeneous agents within
the crowd). It can be seen that homogeneous crowds of the
selected speeds are separate with mean values above their
vg setting. This is expected as steering algorithms strive to
meet their desired speed but require divergent movements
to handle collision avoidance cases. The deviation from the
set homogeneous values is greater with RVO, while PAM
closely matches desired speeds at lower values but is under
desired speed at higher heterogeneous mixtures. Generally,
RVO will select valid speeds (between min. and max. speed
values) while PAM is much more conservative due to the
anticipatory collision avoidance force. HOP-RL is more con-
servative than RVO but closely matches in performance. At
the point of full heterogeneity, all curves for all algorithms
converge on an average value.

4.5 Density-Dependent Performance

The literature on pedestrian dynamics, both synthetic and
real, has shown density-dependent artifacts with respect to

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, ##HHt #### 14

3.0 3.0

2.54
'
2.04

0.5 1

Flow Rate (s™")
Flow Rate (s™')

e
n

0.0

e

w
o

— 18ms !
13ms !
— 0.6ms !

— 18ms !
13ms !
—— 0.6ms !

——

Flow Rate (s™')

e
n

e
=]

0 10 20 30 40 50 0
Number of Heterogeneous Agents

(a) HOP-RL

20

10
Number of Heterogeneous Agents

(b) RVO

e
=]

30 40 50 o 20 30 40 50

10
Number of Heterogeneous Agents

(c) PAM

Fig. 13: Flow-heterogeneity fundamental diagrams over several heterogeneity mixtures reveal a heterogeneity dependent
artifact in the results for each baseline model and HOP-RL. Both homogeneous and heterogeneous results use the same
crowd densities and environments (approximately 1.9 agents/m? in the bottleneck scenario). The large standard deviation
in the less heterogeneous scenarios is due to singular agents with random velocities in the extremes of the full sampling
range [0.5,1.6]m/s. Very slow agents may induce laminar, or lane-forming flows, while very fast agents may induce rapid

oscillations in the crowd from pushing and overtaking.

3.0

2.8

2.6

2.4

Flow Rate

2.2

2.0

—— PAM

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Agent Density

Fig. 14: Density dependent artifacts found in synthetic
crowd steering models. Both RVO and HOP-RL reproduce
the plateau artifacts shown in most other traditional steering
models without the aid of additional density modelling.
PAM has a lower overall flow rate and can struggle to deal
with the balance of forces since static obstacles induce no
predictive avoidance forces.

quantitative multi-agent navigation outcomes such as flow
f(p) and speed. In real crowds, the benefits of increasing
crowd density are lost at a critical point at which increasing
density causes rapid decreases in throughput (measured
by crowd speed or flow) [87], [88]. This artifact is not
often reproduced by synthetic crowds models without an
additional density model , . We show that HOP-RL
replicates this behaviour found in traditional methods.

In this experiment, we vary the density of a crowd in a
simple bottleneck egress scenario. All the agents share the
same desired walking speed of 1.33m/s and the same goal
area after the egress point. We measure the flow rate of the
crowd with respect to density for each model.

4.5.1 Results & Discussion

We compare density flow rate curves of the methods in
Figure The RVO model produces an increasing flow

rate without a clear critical point and instead plateaus
as expected [89]. HOP-RL performs similarly to the RVO
model. The PAM model struggles in this scenario as the lack
of a predictive force for static objects produces qualitative
artifacts, like the violation of agent bounds ie. passing
through agents, at higher densities.

4.6 Computational Performance

We evaluate the computational performance of our final
proposed model. This is done by randomly sampling a
procedural floor plan generator. Previous work has shown
that modern building energy modelling forms a type of
typology . We adapt this floorplan typology matrix to
generate arbitrarily large-scale realistic buildings to facilitate
arbitrarily large crowds. All agents are randomized (ran-
dom targets and initialization) and we capture the average
frames-per-second (FPS) value of the scenario. This measure
allows us to view at which point performance drops below
real-time as a function of the number of agents. We generate
scenarios with varying numbers of agents from 1 to 3000
total simultaneously navigating agents.

We compare the computational performance (FPS)
curves of the methods in Figure The results show that
HOP-RL performs on par with the industry standard RVO
steering model used in games, animation, robotics, and
crowd analysis. This RVO model is a highly optimized
internal (black box) implementation shipped with the Unity
game engine. Both have a real-time use (30 FPS) at around
500-600 agents and converge on performance after around
2000 agents. The PAM model evaluated is our own imple-
mentation which performs marginally worse overall.

4.7 Extensibility

Section outlines the conditions needed, or expected,
for parametric policy training to succeed. These conditions
include 1) the parameter being visible in the state, 2) the
parameter having some effect on or being valued by the
reward, and 3) having some effect on the action space. We
evaluate the extensibility of HOP-RL by training over an-
other parameter. We note that the agent radius, or personal

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, ##HHt #### 15

=

o
™~
s

FPS (frame-per-second) Rate
=
=

10°
0 500

1000 1500 2000 2500

Number of Agents

3000

Fig. 15: Mean frames per second (FPS), with standard
deviations, over several different agent counts. Here, RVO
is an internal (black box) highly optimized implementation
shipped in the Unity game engine. This experiment shows
HOP-RL performs similarly to this version of RVO, while
our implementation of PAM, another force-based predictive
collision avoidance approach, marginally underperforms.
This is, in part, because the calculations that a forced-based
approach would do (i.e. neighbour lookups, and pairwise
predictive avoidance checks) are avoided in the proposed
method, a benefit of relatively simple neural network archi-
tectures and well-crafted state observations. The real-time
performance cut-off (30 FPS) is highlighted in the figure.

£
N “__
- - »”
. '
:i\ .S ““V‘—T.f =
¢ T~

Fig. 16: HOP-RL agents learn policies with emergent lam-
inar flow with both heterogeneous desired speed and per-
sonal space in the two way hallway scenario.

space, already impacts the collision portion of the reward
and affects the decisions made in the action space. We repeat
the training procedure of HOP-RL but include agent radius
(or personal space), in addition to the desired speed, by
uniformly sampling over the interval of [0.3, 1.2]m.

The result of this experiment is a model that is also
parameterized on personal space. HOP-RL successfully
learns a parametric policy that affords highly heteroge-
neous agents, which respects the bounds of the parametric
personal space for each agent. This parameter allows a
practitioner to make tight packing crowds and less uniform
behaviour as smaller agents may try to squeeze between
others. Additionally, it may be used to model pertinent
behaviours such as social distancing. This can be seen in
Figurein a two-way hallway and in Figurein a four-
way hallway scenario.

£ A
- W
«
-
e

Fig. 17: HOP-RL agents learn good policies for navigating
the difficult four-way hallway scenario with both heteroge-
neous desired speed and personal space.

5 CONCLUSION

In this paper, we have presented a parametrizable reinforce-
ment learning-based and “model-free” approach to hetero-
geneous agent-based crowd simulation. We have shown
that the model learns predictive reciprocal collision avoid-
ance. Additionally, we performed several quantitative ex-
periments that show that the method has competitive com-
putational performance, reproduces traditional behaviours
in high-density scenarios, and produces diverse heteroge-
neous results. An important outcome of this work was to
show that reinforcement learning can produce post-training
parametric models. This directly supports the authoring of
diverse crowds by practitioners in a usable manner.

5.1 Limitations & Future Work

We recognize that there are numerous diverse gaits, cultural
observations, contexts (like COVID-19, social distancing)
that dictate how agents representing humans may interact
and that the proposed model does not directly account
for all of these. Often crowd simulators and practitioners
must carefully balance parameter settings or add additional
layers of intelligence, such as decision or behaviour trees, to
capture specific behaviours. Practitioners could our method
by adding their own rewards or penalties during training
to guide learning toward policies they want or add their
own behavioural parameters as we have done here with
desired speed and personal space. In fact, there are many
more parameters one can imagine being made open to the
end-user. Deep Reinforcement Learning also allows us to
learn more complex tasks and behavior and another avenue
of future exploration would be higher level behaviours, pos-
sibly using hierarchical reinforcement learning or behaviour
cloning, to break up the problem into layers of intelligence
similar to classic crowds does.

Heterogeneity in this context is concerned largely with
the past literature and is related to velocity control and
personal space. However, human locomotion heterogeneity
is much more complex and the modelling of diverse crowds
is of deep importance in fields that use synthetic crowds. For
instance, models with different underlying action spaces,
for example, non-holonomic differential controllers (like
wheelchairs) are not modelled directly in this approach.
However, we hypothesize that it is possible to learn het-
erogeneous control in synthetic crowds. To achieve this, fu-
ture work will include investigating mixed-model diversity
learning.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 16

ACKNOWLEDGMENTS

The research was supported in part by the Murray Post-
doctoral Fellowship, NSERC Create DAV, Ontario Re-
search Foundation (Grant No. RE08-054), NSERC Discov-
ery [funding reference number RGPIN-2021-03541], and
NSF awards: 1IS-1703883, S&AS-1723869, 11S-1955404, IIS-
1955365, RETTL-2119265, and EAGER-2122119.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by exam-
ple,” in Computer graphics forum, vol. 26, no. 3. Wiley Online
Library, 2007, pp. 655-664.

J. Ondfej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-
vision based steering approach for crowd simulation,” in ACM
TOG, vol. 29, no. 4. ACM, 2010, p. 123.

D. Wolinski, M. C. Lin, and J. Pettré, “Warpdriver: context-aware
probabilistic motion prediction for crowd simulation,” ACM Trans-
actions on Graphics (TOG), vol. 35, no. 6, p. 164, 2016.

G. Berseth, M. Kapadia, and P. Faloutsos, “Robust space-time foot-
steps for agent-based steering,” Computer Animation and Virtual
Worlds, 2015.

S. Singh, M. Kapadia, G. Reinman, and P. Faloutsos, “Footstep
navigation for dynamic crowds,” Computer Animation and Virtual
Worlds, vol. 22, no. 2-3, pp. 151-158, 2011.

C. W. Reynolds, “Flocks, herds and schools: A distributed behav-
ioral model,” in ACM Siggraph Computer Graphics, vol. 21, no. 4.
ACM, 1987, pp. 25-34.

J. van den Berg, S. J. Guy, M. Lin, and D. Manocha,
“Reciprocal n-body collision avoidance,” in Robotics Research.
Springer, 2011, vol. 70, pp. 3-19. [Online]. Available: http:
//dx.doi.org/10.1007 /978-3-642-19457-3-1

J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE In-
ternational Conference on Robotics and Automation. IEEE, 2008, pp.
1928-1935.

I. Karamouzas, P. Heil, P. van Beek, and M. H. Overmars, “A
predictive collision avoidance model for pedestrian simulation,”
in MiG. Springer, 2009, pp. 41-52.

D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical fea-
tures of escape panic,” Nature, vol. 407, no. 6803, pp. 487-490, 2000.
D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

S. Singh, M. Kapadia, B. Hewlett, G. Reinman, and P. Faloutsos,
“A modular framework for adaptive agent-based steering,” in
Proceedings of I3D. ACM, 2011, pp. 141-150. [Online]. Available:
http://doi.acm.org/10.1145/1944745.1944769

X. Lan, Y. Liu, and Z. Zhao, “Cooperative control for swarming
systems based on reinforcement learning in unknown dynamic
environment,” Neurocomputing, vol. 410, pp. 410418, 2020.

L. Sun,]J. Zhai, and W. Qin, “Crowd navigation in an unknown
and dynamic environment based on deep reinforcement learning,”
IEEE Access, vol. 7, pp. 109 544-109 554, 2019.

J. Lee, J. Won, and J. Lee, “Crowd simulation by deep rein-
forcement learning,” in Proceedings of the 11th Annual International
Conference on Motion, Interaction, and Games. ACM, 2018, p. 2.

F. Martinez-Gil, M. Lozano, and F. Fernandez, “Emergent be-
haviors and scalability for multi-agent reinforcement learning-
based pedestrian models,” Simulation Modelling Practice and Theory,
vol. 74, pp. 117-133, 2017.

F. Martinez-Gil, M. Lozano, and F. Fernandez, “Strategies for simu-
lating pedestrian navigation with multiple reinforcement learning
agents,” Autonomous Agents and Multi-Agent Systems, vol. 29, no. 1,
pp- 98-130, 2015.

, “Marl-ped: A multi-agent reinforcement learning based
framework to simulate pedestrian groups,” Simulation Modelling
Practice and Theory, vol. 47, pp. 259-275, 2014.

L. Torrey, “Crowd simulation via multi-agent reinforcement
learning,” in Proceedings of the Sixth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, ser.
AIIDE’10. AAAI Press, 2010, pp. 89-94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014666.3014683

L. Hoyet, A.-H. Olivier, R. Kulpa, and J. Pettré, “Perceptual effect
of shoulder motions on crowd animations,” ACM Transactions on
Graphics (TOG), vol. 35, no. 4, pp. 1-10, 2016.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

(36]

(37]

[38]

(39]

[40]

[41]

[42]

R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan,
“Clone attack! perception of crowd variety,” ACM Transactions on
Graphics (TOG), vol. 27, no. 3, p. 26, 2008.

M. Kapadia, M. Wang, S. Singh, G. Reinman, and P. Falout-
sos, “Scenario space: characterizing coverage, quality, and failure
of steering algorithms,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ~ACM,
2011, pp. 53-62.

M. B. Haworth, “Biomechanical locomotion heterogeneity in
synthetic crowds,” Ph.D. dissertation, York University, Toronto,
Canada, November 2019.

B. Haworth, M. Usman, G. Berseth, M. Kapadia, and P. Faloutsos,
“On density—flow relationships during crowd evacuation,” Com-
puter Animation and Virtual Worlds, vol. 28, no. 3-4, 2017.

S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “Steerbench:
A benchmark suite for evaluating steering behaviors,” Computer
Animation and Virtual Worlds, vol. 20, no. 5-6, pp. 533-548, 2009.

F. Martinez-Gil, M. Lozano, I. Garcia-Fernandez, and F. Fernandez,
“Modeling, evaluation, and scale on artificial pedestrians: a litera-
ture review,” ACM Computing Surveys (CSUR), vol. 50, no. 5, p. 72,
2017.

N. Pelechano, J. M. Allbeck, and N. I. Badler, Virtual Crowds:
Methods, Simulation, and Control. Morgan & Claypool Publishers,
2008.

S. Huerre, J. Lee, M. Lin, and C. O’Sullivan, “Simulating believable
crowd and group behaviors,” in ACM SIGGRAPH ASIA 2010
Courses, pp. 13:1-13:92.

D. Thalmann and S. R. Musse, Crowd Simulation, Second Edition.
Springer, 2013.

G. Taga, Y. Yamaguchi, and H. Shinizu, “Self-organized control
of bipedal locomotion by neural oscillators in unpredicatable
environments,” Biological Cybernetics, vol. 65, no. 3, pp. 147-159,
1991.

T. Geng, B. Porr, and F. Worgoétter, “A reflexive neural network
for dynamic biped walking control.” Neural Computation, vol. 18,
no. 5, pp. 1156-96, 2006.

A. Kun and W. T. Miller III, “Adaptive dynamic balance of a
biped robot using neural networks,” in Proceedings of the IEEE
International Conference on Robotics and Automation, vol. pages.
IEEE, 1996, pp. 240-245.

W. T. Miller III, “Real-time neural network control of a biped
walking robot,” Control Systems, IEEE, vol. 14, no. 1, pp. 41-48,
1994.

D. Holden, T. Komura, and J. Saito, “Phase-functioned neural
networks for character control,” ACM Transactions on Graphics
(TOG), vol. 36, no. 4, pp. 1-13, 2017.

X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

B. Haworth, G. Berseth, S. Moon, P. Faloutsos, and M. Kapadia,
“Deep integration of physical humanoid control and crowd navi-
gation,” in Motion, Interaction and Games, 2020, pp. 1-10.

P. Faloutsos, M. Van de Panne, and D. Terzopoulos, “Composable
controllers for physics-based character animation,” in Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques, 2001, pp. 251-260.

W. Huang, 1. Mordatch, and D. Pathak, “One policy to control
them all: Shared modular policies for agent-agnostic control,” in
International Conference on Machine Learning. ~PMLR, 2020, pp.
4455-4464.

X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deep-
mimic: Example-guided deep reinforcement learning of physics-
based character skills,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, pp. 1-14, 2018.

J. Won and J. Lee, “Learning body shape variation in physics-
based characters,” ACM Transactions on Graphics (TOG), vol. 38,
no. 6, pp. 1-12, 2019.

C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep rein-
forcement learning,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 6015-6022.

C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 10007-10013.

http://dx.doi.org/10.1007/978-3-642-19457-3-1
http://dx.doi.org/10.1007/978-3-642-19457-3-1
http://doi.acm.org/10.1145/1944745.1944769
http://dl.acm.org/citation.cfm?id=3014666.3014683

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 17

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]

(53]

(54]

[55]

[56]

(57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

W. van Toll and J. Pettré, “Algorithms for microscopic crowd
simulation: Advancements in the 2010s,” in Computer Graphics
Forum, vol. 40, no. 2. Wiley Online Library, 2021, pp. 731-754.
M. Kapadia, N. Pelechano, J. Allbeck, and N. Badler, “Virtual
crowds: Steps toward behavioral realism,” Synthesis lectures on
visual computing: computer graphics, animation, computational photog-
raphy, and imaging, vol. 7, no. 4, pp. 1-270, 2015.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environ-
ments using velocity obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, pp. 760-772, 1998.

, “Motion planning in dynamic environments using the rel-
ative velocity paradigm,” in Proceedings of the IEEE International
Conference on Robotics and Automation. I1EEE, 1993, pp. 560-565.
G. Berseth, M. Kapadia, B. Haworth, and P. Faloutsos, “Steerfit:
Automated parameter fitting for steering algorithms,” in Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. Eurographics Association, 2014, pp. 113-122.

Q. Cheng, Z. Duan, and X. Gu, “Data-driven and collision-free
hybrid crowd simulation model for real scenario,” in International
Conference on Neural Information Processing. ~ Springer, 2018, pp.
62-73.

P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance
policy for distributed multiagent navigation.” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 656663, 2017.

H. Li, B. Weng, A. Gupta,]J. Pan, and W. Zhang, “Reciprocal col-
lision avoidance for general nonlinear agents using reinforcement
learning,” arXiv preprint arXiv:1910.10887, 2019.

N. Bisagno, N. Garau, A. Montagner, and N. Conci, “Virtual
crowds: An Istm-based framework for crowd simulation,” in
International Conference on Image Analysis and Processing. Springer,
2019, pp. 117-127.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social Istm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961-971.

A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255-2264.

J. Amirian, J.-B. Hayet, and]. Pettré, “Social ways: Learning
multi-modal distributions of pedestrian trajectories with gans,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2019, pp. 0-0.

B. Brito, H. Zhu, W. Pan, and]. Alonso-Mora, “Social-vrnn: one-
shot multi-modal trajectory prediction for interacting pedestri-
ans,” arXiv preprint arXiv:2010.09056, 2020.

T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with het-
erogeneous data,” in Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVIII
16. Springer, 2020, pp. 683-700.

K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, way-
points & paths to long term human trajectory forecasting,” arXiv
preprint arXiv:2012.01526, 2020.

P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in 2010 IEEE International Con-
ference on Robotics and Automation. 1EEE, 2010, pp. 981-986.

F. Martinez-Gil, M. Lozano, and F. Fernandez, “Multi-agent re-
inforcement learning for simulating pedestrian navigation,” in
International Workshop on Adaptive and Learning Agents. Springer,
2011, pp. 54-69.

L. Casadiego and N. Pelechano, “From one to many: Simulating
groups of agents with reinforcement learning controllers,” in
International Conference on Intelligent Virtual Agents. Springer, 2015,
pp- 119-123.

L. Casadiego Bastidas, “Social crowd controllers using reinforce-
ment learning methods,” Master’s thesis, Universitat Politecnica
de Catalunya, 2014.

B. Haworth, M. Usman, G. Berseth, M. Kapadia, and P. Faloutsos,
“Evaluating and optimizing level of service for crowd evacua-
tions,” in Proceedings of the 8th ACM SIGGRAPH Conference on
Motion in Games. ACM, 2015, pp. 91-96.

W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM, 2005, pp. 19-28.

M. Kapadia, S. Singh, B. Allen, G. Reinman, and P. Faloutsos,
“Steerbug: an interactive framework for specifying and detect-

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

[77]
(78]

[79]

[80]

[81]

[82]

(83]

[84]

[85]

ing steering behaviors,” in Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM,
2009, pp. 209-216.

J. Pettré, J. Ondrej, A.-h. Olivier, A. Cretual, and S. Donikian,
“Experiment-based modeling, simulation and validation of inter-
actions between virtual walkers,” in Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, vol.
2009, 2009, p. 189.

M. Chraibi, T. Ensslen, H. Gottschalk, M. Saadi, and A. Seyfried,
“Assessment of models for pedestrian dynamics with functional
principal component analysis,” Physica A: Statistical Mechanics and
its Applications, vol. 451, pp. 475-489, 2016.

M. Kapadia, M. Wang, G. Reinman, and P. Faloutsos, “Improved
benchmarking for steering algorithms.” in Proceedings of the 4th
International Conference on Motion in Games. Springer, 2011, pp.
266-277.

M. Kapadia, M. Wang, S. Singh, G. Reinman, and P. Falout-
sos, “Scenario space: characterizing coverage, quality, and failure
of steering algorithms,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ~ACM,
2011, pp. 53-62.

D. Wolinski, S. J. Guy, A.-H. Olivier, M. C. Lin, D. Manocha, and
J. Pettré, “Optimization-based pedestrian model calibration for
evaluation,” Transportation Research Procedia, vol. 2, pp. 228-236,
2014.

——, “Parameter estimation and comparative evaluation of crowd
simulations,” Computer Graphics Forum, vol. 33, no. 2, pp. 303-312,
2014.

N. Pelechano, C. Stocker, J. Allbeck, and N. Badler, “Being a part
of the crowd: towards validating vr crowds using presence,” in
Proceedings of the 7th international Joint Conference on Autonomous
Agents and Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2008, pp. 136-142.
B. C. Daniel, R. Marques, L. Hoyet, J. Pettré, and J. Blat, “A
perceptually-validated metric for crowd trajectory quality evalua-
tion,” arXiv preprint arXiv:2108.12346, 2021.

J. K. Terry, N. Grammel, A. Hari, L. Santos, and B. Black, “Revis-
iting parameter sharing in multi-agent deep reinforcement learn-
ing,” 2021.

W. Yu, V. C. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” 2019 IEEE/RS] International Conference
on Intelligent Robots and Systems (IROS), Nov 2019. [Online].
Available: http://dx.doi.org/10.1109/IR0OS40897.2019.8968053

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in NIPS, 1999.

J. Schulman, E Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR, vol.
abs/1707.06347, 2017. [Online]. Available: http:/ /arxiv.org/abs/
1707.06347

——, “Proximal policy optimization algorithms,” 2017.

A. D. Rasamoelina, F. Adjailia, and P. Sin¢ak, “A review of activa-
tion function for artificial neural network,” in 2020 IEEE 18th World
Symposium on Applied Machine Intelligence and Informatics (SAMI).
IEEE, 2020, pp. 281-286.

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” 2017.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor
skills for legged robots,” Science Robotics, vol. 4, no. 26, 2019.
[Online]. Available: https:/ /robotics.sciencemag.org/content/4/
26/eaaud872

M. Kallmann and M. Kapadia, “Navigation meshes and real-time
dynamic planning for virtual worlds,” in ACM SIGGRAPH 2014
Courses, 2014, pp. 1-81.

N. Sohre and S. J. Guy, “Spnets: Human-like navigation behaviors
with uncertain goals,” in Motion, Interaction and Games, 2020, pp.
1-11.

S. Niu, S. Chen, H. Guo, C. Targonski, M. C. Smith, and
J. Kovacevi¢, “Generalized value iteration networks: Life beyond
lattices,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems, 2016, pp. 2154-2162.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2017.

http://dx.doi.org/10.1109/IROS40897.2019.8968053
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://robotics.sciencemag.org/content/4/26/eaau5872
https://robotics.sciencemag.org/content/4/26/eaau5872

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 18

[86] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage es-
timation,” in International Conference on Learning Representations
(ICLR 2016), 2016.

P. Wang, S. Cao, and M. Yao, “Fundamental diagrams for pedes-
trian traffic flow in controlled experiments,” Physica A: Statistical
Mechanics and its Applications, vol. 525, pp. 266-277, 2019.

A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, “The fun-
damental diagram of pedestrian movement revisited,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2005, no. 10, p.
P10002, 2005.

S. Curtis and D. Manocha, “Pedestrian simulation using geometric
reasoning in velocity space,” in Pedestrian and Evacuation Dynamics
2012. Springer, 2014, pp. 875-890.

T. Dogan, E. Saratsis, and C. Reinhart, “The optimization potential
of floor-plan typologies in early design energy modeling,” in Pro-
ceedings of BS2015: 14th Conference of International Building Perfor-
mance Simulation Association. International Building Performance
Simulation Association (IBPSA), 12 2015.

(87]

[88]

[89]

[90]

Kaidong Hu is a Ph.D. candidate at Rutgers.
She received her B.Sc. in Chemistry from Nan-
jing University in 2016. Her research interests
focus on providing human behavior-like Al by
emulate the natural development (learning) pro-
cess. She is a member of the Intelligent Visual
Interfaces Lab supervised by Dr. Mubbasir Ka-
padia.

Brandon Haworth is an Assistant Professor in
the Department of Computer Science, Faculty
of Engineering & Computer Science at the Uni-
versity of Victoria. He is also the Director of
the Graphics, Artificial Intelligence, Design, &
Games (GAIDG) Lab and a Research Fellow at
the Institute on Aging and Lifelong Health at the
University of Victoria. Brandon works within the
broad areas of Graphics, Simulation, Artificial
Intelligence, and Human-Computer Interaction.
His primary research focuses are diversity in
crowds simulations, locomotion & biomechanical modelling in human
steering, multi-agent reinforcement learning, and human-centric artificial
& augmented intelligence in simulation and design with a purpose to
explore the intersections between visibility, representation, and decision-
making in interactive technologies.

Glen Berseth is an assistant professor at the
University of Montreal and a member of Mila. He
was a Postdoctoral Researcher at the Berkeley
Artificial Intelligence Research (BAIR) working
with Sergey Levine. He completed his NSERC-
awarded Ph.D. in Computer Science at the Uni-
versity of British Columbia in 2019, where he
worked with Michiel van de Panne. His goal is
to create systems that can learn and act in the
world intelligently by developing deep learning
and reinforcement learning methods to solve di-
verse, high-dimensional perception and planning problems.

Vladimir Pavlovic is a Professor of Computer
Science at Rutgers University in New Jersey,
USA. Vladimir’s research interests include prob-
abilistic machine learning, multimodal repre-
sentation learning, and next generation human
sensing. Over the past twenty years Vladimir has
published extensively in the domains of com-
puter vision and human-computer interaction,
including his seminal works on human gesture
modeling and recognition, human motion analy-
sis, and non-verbal human affect understanding.
At Rutgers, he co-leads the Center for Accelerated Real Time Analytics
(CARTA), is a member of the Executive Committee of Rutgers Center
for Cognitive Science (RUCCS), and an associate member of the Center
for Quantitative Biology (CQB). Vladimir received his Ph.D. in Electrical
and Computer Engineering from the University of lllinois at Urbana-
Champaign.

Petros Faloutsos is a Professor at the Depart-
ment of Electrical Engineering and Computer
Science at York University, and an affiliate Scien-
tist at the UHN-Toronto Rehabilitation Institute.
Before joining York, he was a faculty member at
the Computer Science Department at the Uni-
versity of California at Los Angeles, where in
2002 he founded the first computer graphics lab

‘ at UCLA. Faloutsos received his PhD degree
W (2002) and his MSc degree in Computer Science
from the University of Toronto, Canada and his
BEng degree in Electrical Engineering from the National Technical Uni-
versity of Athens, Greece.

Mubbasir Kapadia is currently the Director of
the Intelligent Visual Interfaces Lab and an As-
sociate Professor with the Computer Science
Department, Rutgers University, New Brunswick,
NJ, USA. Previously, he was an Associate Re-
search Scientist with Disney Research Zurich.
His research lies at the intersection of artificial
intelligence, visual computing, and humancom-
puter interaction, with a mission to develop in-
telligent visual interfaces to empower content
creation for human-aware architectural design,
digital storytelling, and serious games.

	Introduction
	Related Work
	Learning Physical Character Control
	Agent-based Crowd Simulation
	Learning and Crowd Simulation
	Evaluation and Performance
	Comparison to prior work

	Heterogeneous Parametric-RL Model
	Reinforcement Learning
	Network Architecture & Parametric Policy Learning
	State Space
	Action Space
	Reward Function
	Training
	Environment and Scenarios
	Simulation
	Learning

	Evaluation
	Learning Reciprocal Collision Avoidance in Heterogeneous Environments
	Results & Discussion

	Qualitative Multi-Agent Navigation Performance
	Quantitative Multi-Agent Navigation Performance
	Results & Discussion

	Heterogeneity Dependent Performance
	Results & Discussion

	Density-Dependent Performance
	Results & Discussion

	Computational Performance
	Extensibility

	Conclusion
	Limitations & Future Work

	References
	Biographies
	Kaidong Hu
	Brandon Haworth
	Glen Berseth
	Vladimir Pavlovic
	Petros Faloutsos
	Mubbasir Kapadia

