
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 1

Heterogeneous Crowd Simulation using
Parametric Reinforcement Learning

Kaidong Hu*, Brandon Haworth*, Glen Berseth, Vladimir Pavlovic, Petros Faloutsos,
and Mubbasir Kapadia

Abstract—Agent-based synthetic crowd simulation affords the cost-effective large-scale simulation and animation of interacting digital
humans. Model-based approaches have successfully generated a plethora of simulators with a variety of foundations. However, prior
approaches have been based on statically defined models predicated on simplifying assumptions, limited video-based datasets, or
homogeneous policies. Recent works have applied reinforcement learning to learn policies for navigation. However, these approaches
may learn static homogeneous rules, are typically limited in their generalization to trained scenarios, and limited in their usability in
synthetic crowd domains. In this paper, we present a multi-agent reinforcement learning-based approach that learns a parametric
predictive collision avoidance and steering policy. We show that training over a parameter space produces a flexible model across
crowd configurations. That is, our goal-conditioned approach learns a parametric policy that affords heterogeneous synthetic crowds.
We propose a model-free approach without centralization of internal agent information, control signals, or agent communication. The
model is extensively evaluated. The results show policy generalization across unseen scenarios, agent parameters, and
out-of-distribution parameterizations. The learned model has comparable computational performance to traditional methods.
Qualitatively the model produces both expected (laminar flow, shuffling, bottleneck) and unexpected (side-stepping) emergent
qualitative behaviours, and quantitatively the approach is performant across measures of movement quality.

Index Terms—Multi-agent Navigation, Reinforcement Learning, Parametric Policy Learning

F

∗
1 INTRODUCTION

Synthetic crowd simulation is an enabling technology for
several fields. In particular, agent-based crowd simulators
have found success in several applications, such as enter-
tainment (film, TV, and games), data-driven environment
design (procedural architecture, many worlds design), and
safety evaluation (fire egress, disaster scenarios). An agent-
based crowd simulator is usually composed of a hierarchy
of methods resolved by various models. Often, crowd sim-
ulation is defined by its lowest level of control – steering.
At this level, the agent perceives the environment and other
agents and produces some action or action plan. These ac-
tions are designed to resolve at least two primary concerns:
collision avoidance and goal-seeking movement. Decisions
at the steering level are generally responsible for emergent
behaviours in the simulated crowd.

However, defining a robust steering model is a com-
plex trade-off between accuracy and performance. There
are many ways to solve this problem. Most approaches

• Kaidong Hu, Vladimir Pavlovic, and Mubbasir Kapadia are at the
Computer Science Department, Rutgers University.

• Brandon Haworth is at the Department of Computer Science, University
of Victoria.

• Glen Berseth is at the Berkeley Artificial Intelligence Research (BAIR)
Lab, University of California, Berkeley.

• Petros Faloutsos is at the Department of Electrical Engineering & Com-
puter Science, York University, and is also with the University Health
Network: Toronto Rehabilitation Institute.

Manuscript received XXXXX; revised XXXXXX.
∗. These authors contributed equally to this work.

consider one of data-driven [1], vision-based [2], space-time
planning [3], [4], [5], rule-based [6], velocity-based [7], [8],
force-based [9], [10], [11], and even composite [12] solutions
to the problem. Because it is difficult to model the myriad
factors which impact steering decisions, in real-time, and
produce predictable and expected qualitative and quantita-
tive results, often models choose one or more of these factors
over the others. Therefore, a plethora of models with diverse
capabilities has been developed suited for varying scenarios.

The problem space of steering in crowd simulation is
well suited to Reinforcement Learning (RL) in that RL
produces control policies, or a state-action mappings, for an
agent in an environment given some reward signal. How-
ever, RL may require a broad sampling of the state space,
which has led to many models that only work under re-
strictive conditions and typically with homogeneous agent
definitions. Multi-Agent Reinforcement Learning (MARL)
extends this by having multiple agents within the same
shared environment where their actions may impact each
other. The synthetic crowds problem is typically formulated
in a multi-agent problem space. Recently, MARL approaches
have been applied to multi-agent navigation, what we will
refer to as crowds [13], [14], [15], [16], [17], [18], [19]. These
methods have yet to support or evaluate fundamental fea-
tures of synthetic crowds such as generality, heterogeneity,
and reciprocal predictive collision avoidance. While models
often perform well in particular scenarios, the ability to
resolve scenarios with varying numbers of agents and en-
vironment complexity is essential. Synthetic crowd hetero-
geneity at the steering level often comes in the form of di-
versifying action updates. Perceptually, movement profiles
have the largest impact on heterogeneity, crowd variety, and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 2

Fig. 1: Multiple interacting heterogeneous HOP-RL agents in a randomized scenario. The HOP-RL model has learned to
continuously predictively avoid collisions with other heterogeneous agents and the environment.

naturalness [20], [21]. However, RL-based crowds methods
do not afford heterogeneity in this manner. This is mainly
due to the non-stationary problem of multiple learning
agents in the same environment (an essential problem in
MARL), which limits how different agents can be and still
learn useful policies. More generally, this limitation also
stems from the fact that machine learning models are fixed
once learned (unless online learning or domain adaptation
is used), or scenario-specific models are learned by training
on only variations of that scenario. Finally, predictive, or an-
ticipatory, avoidance has become commonplace in emerging
model-based crowd simulators while in the early rule-based
steering literature, models handled mostly reactive changes
in velocity at every simulation time-step.

We propose the Heterogeneous crowds using Parametric
Reinforcement Learning (HOP-RL) approach to steering in
synthetic crowd simulation, as seen in Figure 1. That is, a
learned policy that does not rely on any single concrete
definition of the rules translating states into actions, or, more
specifically, how agents are supposed to move or interact
with their environment. In our proposed approach, we at-
tempt to address all prior shortcomings regarding generality,
heterogeneity, and anticipatory reciprocal collision avoidance in
RL-based crowds. We propose a model-free multi-agent re-
inforcement learning approach with goal conditioning and
parameter sharing that does not rely on shared agent infor-
mation, centralized control, or agent-agent communication.
The end result is a model that learns generalized crowd
steering with parametric agents from a simulated procedu-
ral environment using an explicit trial-and-error algorithm.
Our goal in these contributions was to learn a MARL-
based approach that performs on par with or better than
traditional crowds steering methods both quantitatively and
qualitatively, while also allowing a practitioner using our
method (e.g. a game developer) to deploy diverse crowds
simply by setting diverse input parameters. We specifically
propose a learning-based method for crowds that affords
performant directability, and we show that it is capable of
learning more complex behaviours than traditional methods
and even succeeding at scenarios where past methods can
fail.

1) Heterogeneity: We propose that a parametric policy
space can be learned by observing parameter(s)

sampled during training. To make the MARL prob-
lem tractable, i.e. handle the non-stationary learning
of multiple agents, we use parameter sharing. This
method learns the desired policy using a single ar-
chitecture that can be duplicated amongst all agents
and evaluated independently. Ultimately this means
the agents are homogeneous in their definition (they
all use the same policy). However, we propose also
using goal conditioning (passing goal information
into the state observations), rewarding the desired
goal behaviour, and affording some form of con-
trol related to the goal in the action space. We
show that through this goal-conditioned learning,
we can produce parametric heterogeneous crowds
post-training. Agents learning using the proposed
method have parameters that can be changed as
needed and without retraining. We resolve both
the heterogeneous and parametric requirements of
crowds agents without producing multiple models.
This supports the authoring of crowds for prac-
titioners without need to engage in the learning
process.

2) Generality: We propose using an expanded procedu-
ral scenario definition, from the crowd evaluation
literature, which has a high likelihood of agent-
agent and agent-environment interactions [22]. Our
hypothesis is that the distribution of environ-
ments this procedural definition produces replicates
the distribution of local interactions found in the
broader scope of scenarios. While the generality of
crowd steering models can be difficult to prove, we
show that using our environment produces learned
policies that generalize well to a battery of crowds
scenarios from the comparative crowds analysis lit-
erature [23], [24], [25].

3) Reciprocal predictive collision avoidance: We propose
that by making use of widening the neural network
input to facilitate multiple state observations agents
may learn reciprocal collision avoidance. We show
that observing multiple prior state instances allows
agents to learn predictive policies and avoid future
collisions with other agents in a heterogeneous en-
vironment. This mitigates the partial observability

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 3

problem in our multi-agent reinforcement learning
approach where we decentralize information shar-
ing, control, and communication. We learn this be-
haviour through model-free, trial-and-error, learn-
ing in our simulated training environment. We show
that our agents can learn to make expected anticipa-
tory behaviours, as well as, avoid densely packed
areas without additional information.

2 RELATED WORK

Synthetic crowds, in particular, steering models, have a rich
history in the literature, beginning with the originative work
on flocking behaviours [6]. This history has since been
covered in comprehensive surveys of the field [26], [27],
[28], [29]. In this section, we address works related to crowd
steering models and then explore more recent works in
machine learning-based solutions. In particular, we focus on
decentralized agent-based approaches to the crowd steering
problem.

2.1 Learning Physical Character Control

As a precursor to this discussion we discuss a separate
(though fast converging) related field of physical character
control. The physical character control problem is typically
a closed-loop approach to physically driving virtual charac-
ters. The approaches have a long history in the literature
particularly the single character/agent solution–we focus
on those which incorporate neural networks in their de-
sign. Early biped character control models recreated the
neural oscillators found in mammals to produce walking
patterns [30]. Numerous works have gone the route of
using neural networks to learn control policies of humanoid
bipeds. The approaches are similar to ours in that a neural
network learns to map egocentric and proprioceptive sen-
sory inputs appropriate actions (in the form of joint level
control) [31], [32], [33]. More recent works have sought to
improve the robustness of models. For example, using phase
conditioned neural networks for producing cyclic humanoid
control over varied environments [34]. This approach can
be separated into two levels with phase conditioned lower-
level controller for locomotion skills and higher-level control
for producing more complex behaviours [35]. Recent has
extended this approach into the crowds problem domain by
using parameter sharing amongst a modified low-level con-
troller to mitigate the non-stationary problem in MARL [36].
While these approaches learn a high dimensional problem,
typically for one or few characters, they are often limited in
the skill and user parameterization of the character. Work
has been done to specifically address this by composing
individual controllers which learn specific skills [37]. Sim-
ilarly, modular policies can be learned and recomposed to
control characters of differing morphologies [38]. Another
approach uses RL to learn to mimic skills and blend be-
tween them using a parameter which can be directly user
controlled [39]. Related to our work, it has been shown that a
policy can be conditioned on body shape variation to learn a
single parametric controller for a class of physically enabled
characters of different body shapes [40]. This allows the user
to control a single physically enabled character, within a

range of body shapes for that morphology, using a single
policy.

An additional problem space, related to physical charac-
ter control, is human-robot interaction where we wish to
model a physical robot navigating and performing tasks
among groups of humans. It has been shown that robot nav-
igation among humans can be learned by conditioning the
policy on pairwise state observations of humans relative to
the robot and coarse estimations of human-human interac-
tions that allows the robot to further estimate future human
movements [41]. A similar approach using relational graphs
encodes the local relative interactions of the crowd in a way
that graph learning techniques (like Graph Convolutional
Networks) may then be used to estimate the movement
updates of the humans in the scene [42].

2.2 Agent-based Crowd Simulation
There are several de-facto standard models in agent-based
crowd steering with very different underlying approaches.
Crowd simulation and steering algorithms have a long
and rich history in the literature [29], [43], [44]. Physical
approaches (force-based) model interactions with agents
and the environment as forces that repel or attract the
agent [9], [10], [11]. Velocity obstacle-based approaches de-
compose velocity-space such that collision-free movement
updates can be guaranteed among agents [7], [8], [45], [46].
Vision-based models have been added to these models to
enhance their performance [2]. Multi-phase approaches in-
tegrate multiple steering models to generate a final steering
decision [12]. Space-time planning approaches have been
formulated to address the complexities of biomechanical
steering [4], [5]. Probabilistic approaches have successfully
modelled time-variant behaviours over fields [3].

2.3 Learning and Crowd Simulation
Defining static crowd steering models has led to a plethora
of simulators that typically focus on one element of steering
to the detriment of others. It is difficult to define, a unique
all-encompassing method that captures all the emergent
effects of crowds and reproduces dynamics accurately under
diverse conditions. Often, what works for one scenario does
not work for many others.

The steering problem in synthetic crowds is a high
dimensionality semi-chaotic open-loop system – and thus it
is a fundamentally difficult problem to solve. To address this
high dimensionality problem, methods have been proposed
to help tune, optimize, and explore the emergent properties
of a given model by learning optimal steering parameters
for crowd-centric outcomes measures [47].

Several machine learning methods have been proposed
to address the chaotic open-loop nature of the problem.
Unsupervised approaches have been used to learn trajectory
models rather than simulation time steering actions. For
example, data-driven learning of trajectory models may be
done via unsupervised clustering [48]. Deep learning has
been used to learn previously existing models through a
form of behaviour cloning, such as with RVO [49]. Similarly,
it is possible to decompose the problem into (1) a pairwise
single agent RL collision avoidance that is then (2) con-
strained using a known crowd model (ORCA) to produce

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 4

a multi-agent collision free decision [50]. (Recent work has
used a pool of LSTM networks to simulate trajectories
end-to-end for crowd simulation [51]. While these methods
may learn important behaviours such as reciprocal collision
avoidance, or they may reproduce density distribution sim-
ilar to their real-world counterparts, they are largely limited
to replicating their source data or model. This leads to new
models that have the same issues as the source model,
or models which only work in limited scenarios (i.e., that
reflect the distribution of the data source).

Recently, a different perspective on similar problem
space has emerged in the form of local trajectory prediction
methods. These methods formulate the agent movement
update as a local trajectory prediction step that extrapolates
from the agent’s current location, goals, and state into a
full trajectory. This work emerged from the idea of social
pooling using long short-term memory (LSTM) networks
used to predict trajectories of humans in dense environ-
ments [52]. This work was improved toward producing
numerous possible predictions using generative adversarial
networks (GANs) to generate socially plausible trajecto-
ries [53]. This area has been further improved by using
Info-GANs (information maximizing GANs), to preserve
the multi-modality of predicted trajectories, and condition-
ing the attention pooling on features from neuroscience
and biomechanics [54]. The convergence rate and real-
time deployment of these approaches have been improved
upon by using variational recurrent neural networks [55].
Highly effective results have been achieved using a graph-
structured recurrent model based on conditional variational
autoencoders (VAE) [56]. Other work has used VAEs to
model the distribution of predicted future goals and then
predict the many paths taken to solve them in a two-phase
approach [57].

Our focus in this paper is learning methods related
to Reinforcement Learning (RL), and Multi-agent Rein-
forcement Learning (MARL) in particular. Reinforcement
learning maps particularly well to the crowd simulation
problem [17], [19]. This approach has been used to learn
the above trajectory problem as well [58]. In RL, the task is
to sample the state space of a problem and learn policies for
producing corresponding actions. That is, RL’s outcome is
a Q-table or function which maximizes the value of state-
action pairs in the form of policies. Similarly, agent-based
synthetic crowd steering models sample the local state at
every model update and produce some form of action. Often
this is a rule-based approach that integrates some form of a
mathematical model of the agent and its interactions with
other agents and the environment. The task in RL-based
crowd simulation then is to learn this model. A Vector
Quantization approach has been used to successfully model
multi-agent pedestrian navigation [59]. Some related pre-
liminary work has been shown to produce small groups of
navigating agents successfully [60], [61]. A particularly well-
evaluated set of models was used to show that this problem
is tractable and scalable [16], [18]. However, this approach
requires scenario-specific training to converge on expected
emergent behaviours. Most related to our work is the re-
cent agent-based RL model learning continuous actions in
a curriculum manner [15]. Recently, another LSTM-based
method using Deep Reinforcement Learning proposed first

learning leader-based control in one phase and using RVO
to handle collisions in a second phase [14]. Similarly, RL
has been used to learn simple swarming behaviour from
leader-based control [13]. While these methods have taken
many approaches to crowd simulations they are all limited
in generalization and evaluation. Additionally, it is not clear
whether trained models can be reused or reparameterized
in scenarios not present in the training simulations.

2.4 Evaluation and Performance

The evaluation of crowds and steering models is a generally
ill-posed problem. Data-driven evaluation suffers from the
need to recreate real-world data or to find a means of mea-
suring the difference between real and simulated scenarios.
Metric-based solutions reflect the intricacies of their chosen
metrics and may not have meaning over different scenarios
or may require normalization. Normalization introduces the
issues of what reference to normalize with respect to. Early
comparative crowd evaluation methods noted the impor-
tance of a dense hierarchical approach to evaluation. That is,
by formulating a set of benchmarks from the lowest level of
steering behaviour performance (reaching waypoints) to the
highest (collision avoidance and emergent behaviours in so-
phisticated crowded scenarios) [25]. We use several similar
environments and build out an evaluation of crowd dynam-
ics in a similar manner. Similarly, the scenario test set can
be constrained to one definition, such as room evacuation to
compare across algorithms in a controlled environment [10].
This approach has been extended to sample over densities
to evaluate the changing performance found at different
service levels in egress or pedestrian hallway scenarios [24],
[62]. We define similar environments and procedures in our
evaluation set to test for expected outcomes related to dense
environments.

Metrics can be directly computed which give some sense
of performance within a particular scenario, such as colli-
sions [63]. This set of measures can be expanded to include
metrics that are computed along the path integral of the
agents throughout the simulation [64]. This provides an
in-depth look at performance but outcomes can only be
compared within scenarios.

When real- or ground-truth data does exist we can
deploy data-driven methods to evaluate algorithms. One
approach to this is to recreate the initial conditions of the
real data and measure the divergence between the simu-
lation and real data over time [65]. These approaches re-
quire highly accurate re-enactment and assumes that crowds
evolve deterministically from initial conditions. One way to
address this is to instead model the statistical error distri-
bution between the real data and the simulation. Principal
Component Analysis (PCA) can also be applied to the
sources of variability in metrics and trajectories to closely
examines the components from each data source that con-
tribute to the variability [66]. This facilitates close evaluation
of the differences between real and simulated data when the
results may be too noisy and/or too high dimensional.

Normalization of evaluation is important for comparing
models of different dimensionality but can be difficult to
apply to very different types of models (difficult to apply
to learning methods and rule-based at the same time). For

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 5

example, outcomes can be measured against their optimal
(or best possible value) assuming one can model the optimal
accurately (such as in crowds the shortest path can be
considered perfectly optimal) [67], [68]. Assuming reference
data exists, crowd model parameters can be optimized
to best fit reference data prior to performing evaluations
(including direct metric comparisons) [69], [70].

Finally, it is possible to also evaluate crowds simulators
from a perceptual approach. For example, an experiment
can be devised to elicit responses to different crowd simula-
tors and their impact on presence [71]. Most recently, there
are methods that blend approaches and devise perceptually
validated metrics that capture the salient features impacting
the perception of realism trajectories produced in simula-
tion [72].

2.5 Comparison to prior work
Our method differs from these prior works (specifically
the most related [15], [16], [18], [40]) in several ways. Our
proposed method is a model-free multi-agent reinforcement
learning using parameter sharing, with additional goal-
conditioned control parameters and state observation stack-
ing. The model-free component means our method can learn
from trial-and-error with an underlying ground truth model
of the environment. We specifically use parameter sharing
to mitigate the non-stationary problem of multi-agent rein-
forcement learning and massively improve the gathering of
experience during training [73]. This can be seen as a form of
centralization, however, we do not centralize internal agent
information, control signals, or facilitate communication
between agents. By goal-conditioning control parameters
and rewarding adherence to their expected outcomes we
can learn a policy that is then parametric on deployment,
i.e. practitioners can set the desired control parameters of
individual agents despite the sharing of the same duplicated
policy among them. This parametric learning approach is
somewhat related to conditioning a control policy on a low
dimensional latent variable to select a family of policies [74].
Finally, by using state observation stacking on a compact
state observation vector, we sidestep the computational
requirements and difficulties with vanishing or exploding
gradients found in recurrent neural networks (RNN) and
long short term memory (LSTM) approaches for temporal
dynamic behaviour that requires observations of higher-
order movement derivatives.

3 HETEROGENEOUS PARAMETRIC-RL MODEL

In this section, we cover the components involved in defin-
ing and solving the proposed Multi-agent Reinforcement
Learning problem. For this work, we represent agents with
a standard particle-based model which consists of three
components: {ap, ar,af}, where ap is the position, ar is the
radius, and af is the present heading of the agent.

3.1 Reinforcement Learning
In reinforcement learning, we model the learning prob-
lem as finding a policy for a Markov Decision Process
(MDP). The MDP is defined as a tuple {S,A, P,R, γ},
where S ∈ Rn, A ∈ Rm are the state space and action

space in the environment, the transition probability function
P : S×S×A→ [0, 1) is a probability density function, with
P (st+1 | st, at) being the probability density of st+1 given
that action at is executed in state st. The reward function
R : S × A → R gives a scalar reward for each transition in
the environment. γ ∈ [0, 1] is the discount factor that deter-
mines the planning look-ahead. The reinforcement learning
objective is to find a policy π(a|s, θ), with parameters θ, that
maximizes the following metric:

max
θ
Jπ(θ) = Eat∼π(·|st)

[
T∑
t=0

γtr(st, at)

]
(1)

This essentially means we wish to find a mapping be-
tween input state and action pairs that maximizes the ex-
pected discounted return, or the discounted future rewards.
The extension of the basic RL problem to multiple agents
can be thought of as a Markov game, or multiple interacting
MDPs. While our problem is multi-agent, we make use of
parameter sharing to reduce the overall parameters we need
to learn for our policy [73]. Policy gradient algorithms are
a popular approach to solve this problem, where ∇θJπ is
estimated using on-policy samples, i.e., using data collected
from the current stochastic policy [75]. Specifically, we use
the Proximal Policy Optimization (PPO) algorithm to op-
timize the RL objective [76]. PPO is a model-free policy
optimization algorithm that trains a stochastic policy in an
on-policy fashion. That is, it samples actions based on the
latest version of its stochastic policy. On-policy methods
like these are more suited to our problem because it is
generally less expensive to collect data and they generally
require less tuning than off-policy methods. PPO aims to
make the changes between policies during learning updates
big enough to efficiently explore but small enough that the
policy does not drastically change between updates. The
implementation used in this paper uses a clipped objective
to reduce the incentive for the policy to drastically change
between update steps, i.e., a type of regularizer which can
help in the learning process [77]. Because PPO is model-
free, a policy can be learned from a trial-and-error approach
without relying on an underlying model, i.e. we do not need
a ground-truth model of the environment in order to learn
a policy successfully.

3.2 Network Architecture & Parametric Policy Learning

A key contribution of this paper is the learning of parametric
policy space to support user control and agent hetero-
geneity within a single learned policy space. A ubiquitous
parameter is required to accomplish this. In other words,
a parameter we use must be a part of the state, reward,
and either the action or representation of the agent in the
environment. In this way, the parameter can be used to
select subspaces within the learned policy space. We hy-
pothesize that this approach may be used to learn any other
fixed agent parameters, such as walking style or personal
space, that a user may wish to parameterize. We make four
assumptions about the parameters we wish to learn and
how they may be included in the RL problem definition such
that the parameters are “ubiquitous” within the defined
architecture.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 6

First, we include the parameter(s) ζ we wish to use for
selecting policy subspaces within the state observations of
each agent, such that π(a|s, θ) becomes π(a|s; ζ, θ). That
is, we use a goal-conditioned policy approach to select
behaviours in the form of policy subspaces. In this paper,
we use desired speed and later agent personal space to
create agents that are heterogeneous with respect to speed
and movement policies. For parametric policy learning, the
value of this state is sampled uniformly random (each value
has an equal chance of being sampled) from the parameter
range, ζ ∼ U(ζlow, ζhi), where ζlow, ζhi are the bounds of the
components of ζ . In this way, we guide the learning process
to explore the policy subspaces. Here we rely on the ability
of deep neural networks to learn or embed the in-between
values which are not sampled directly during training. In
Section 3.3, we describe the agent state in detail.

Second, the parameter, in this form of learning, neces-
sarily impacts the policies (i.e., we wish to get different
behaviours from selected parameter values), so it must
relate to the action space. However, this relation may be
indirect. In this paper, the parameter has some bearing on
the action space since velocity is a term in the anti-derivative
(momentum) of the control signal (force applied to the
particle) and a constraint (maximum speed of the particle).

Third, the exploration of the policy subspaces is only
possible if we appropriately reward the value of the state-
action pairs. That is, the learning process in RL is guided by
reward, and further parametric policy learning is guided by
rewarding how well we achieve the desired action given the
current parameter setting in the state. This is simplified (i.e.
we reduce variances in the learning) by fixing the parameter
(fixed value in the state observations) over the lifetime of the
agent and making components of the rewards with respect
to the value.

Finally, to support parametric policy learning in het-
erogeneous environments, agents of particular parameter
settings must be exposed to agents of other parameter
settings within the same learning environment. In this way,
the individual subspaces of the larger policy encapsulate the
entire policy of a particular type of agent. In this paper, the
agent learns not only to fulfill its speed constraints but also
policies for interacting with other diverse agents.

The network model is 2 fully connected hidden layers of
512 hidden nodes each using the Swish activation function,
which has been shown to improve deep neural network
performance over a range of tasks [78], [79]. The network
model can be seen in Figure 2 with all the components of
the environment, state, and action. The following sections
describe the details of the involved components individu-
ally.

3.3 State Space

The state-space of the agent includes information required
to take actions that resolve the two primary goals of steering
– goal-seeking and collision avoidance. In this section, we
outline the components of a single state observation and
then extend this into several stacked snapshots of past ob-
servations motivated by a discussion of learning parametric,
heterogeneous agents – a key contribution of this paper. The
agent’s current goal in the state is represented by a distance

Environment Stacked States Hidden Layers Action

3

9

2

2

3

512 512
[ζd, ζmax]

Fig. 2: The deep neural network is composed of 2 hidden
layers of 512 hidden nodes each using the Swish activation
function [79]. The environment observations are concate-
nated with a parameter ζ for learning parametric policies
spaces using goal conditioning and stacked to mitigate the
partial observability problem in multi-agent reinforcement
learning. The action changes the movement and orientation
of the agent. Each component is described in detail in State:
Section 3.3 and Actions: Section 3.4

gd normalized by the diagonal of the virtual maximum
ground size, and by its direction gp relative to the agent’s
forward af . The agent also has a form of vision as a series
of depth testing rays φ1..9 ∈ Φ evenly spaced within a
90◦ field, each normalized by its maximum vision distance
φd. For this work, we found through testing, that using
9 rays provided adequate local information for steering.
We postulate that using an odd number such that there
is a central forward-facing ray is important for collision
avoidance as it aligns with the agent forward vector af .

To support the parametric and heterogeneous require-
ments of the agents, two factors regarding the state are
required. The first is that the parameter to be used is a part of
the state, such that the agent has information about the pa-
rameter’s value. That is, the state includes, in this particular
instantiation, the desired speed vd as well as the maximum
allowed speed vmax which is randomly selected during
training from [vmin, vmax] at initialization and remains fixed
over the agent’s lifetime. In this way, the approach is a goal-
conditioned policy that selects a subspace for the desired
behaviour. The agent’s forward relative velocity state, a∆, is
the normalized relative vector between the agent’s current
movement direction and its forward vector.

Additionally, in this particular instantiation, we note
that a single state can not capture velocity information of
neighbouring agents and thus will not be capable of learn-
ing policies for heterogeneous configurations. Prior work
has encapsulated this information as part of the state [80].
However, this requires that agents are aware of other agent’s
internal parameters. We want to avoid the overhead and
limitations associated with centralizing information, control,
or communication (i.e. agents should remain individual
and autonomous) and for agents to learn to “perceive” this
information. This is made partially possible by the depth
testing portion of the state, but this requires some form of
additional memory to observe the change in state over time,
e.g. changes in depth are a perception of relative velocity.

One approach to this problem is to expand the input
space with multiple sequential observations of the state,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 7

φd

ar

φ1

φ2

φ3
φ4 φ5 φ6

φ7
φ8

φ9

(fx,fy)

(gx,gy)

gd

ap
θa

Neighbour agent

Agent

Fig. 3: The agent is a particle model represented by a
(blue) circle defined by its current position ap, forward
vector (orange), and radius ar. The state includes depth
test rays, representing vision, shown in green (Φ). These are
defined by their count, start/stop angles (field sweep), and
maximum test distance φd. In this definition, we use 9 rays
φ1..9 within a 90◦ field–using an odd number ensures there
is always a central ray emitting from the forward vector
of the agent. Additionally, the state includes the current
distance to the goal gd and the relative goal position gp =
(gx, gy). Details for the state are covered in Section 3.3. The
action space is represented in fuchsia and includes the angle
to rotate θa and the vector representing the force to apply
fa = (fx, fy). Details for the action space are covered in
Section 3.4.

or observation stacking. In this context, observation stacking
means expanding the number of input nodes of the network
to accommodate each stacked observation. That is, if a single
state observation is S = {gd,gp,Φ,a∆, as, vd, vmax} where
|S| = 16 when the vector components are expanded, then
N stacked observations SN amounts to |SN | = 16 ·N input
nodes in the network. In this way the state includes the
current observation and the previous N−1 observations. At
initialization, prior observations are zeroes. This method is
evaluated in Section 4.1. A visual representation of a single
state observation can be seen in Figure 3.

3.4 Action Space

We define a three-dimensional action space. The first di-
mension represents the normalized rotation angle θa to
apply to the forward vector af of the agent particle by the
maximum allowed angular speed (desired angular speed)
θd. The second and third dimensions of the action space are
the two components of the driving force (fx, fy) of the force
vector fa to apply to the agent particle. The resultant velocity
is clamped by the desired speed. In this way, the model is
essentially learning to turn and to move using the final net
force vector which is to be applied to common force-based
approaches in steering [9], [10].

3.5 Reward Function

Our proposed reward function values movement towards
the goal and anticipatory collision avoidance while penal-
izing collisions. Both location-based rewards and collision-
based penalties have predictive and instantaneous coun-
terparts to also encourage predictive, or anticipatory, be-
haviours.

We define a predictive and cumulative location reward
rl designed to be conservative over all paths. That is, we
aim to value reduced effort paths of different modalities in
our reward. In this way, the location reward forms an accu-
mulation of predictive location-based rewards as a potential
field rΣ = |g|β , where g represents the agent-to-destination
vector. In each step, rl is calculated by taking the gradient
of rΣ projected onto a vector of small step ∆t shown as:

rl = −∇ (rΣ) ·∆d = −β |g|β−1
ĝ · v∆t (2)

where ∆d represents the distance travelled in the current
time frame, v represents current velocity, and ∆t the time
interval associated with the current frame. We found β =
−0.5 produces desired results but can be tuned for more or
less direct goal-reaching behaviour.

We define an instantaneous location-based reward rd
which only triggers when an agent reaches their target. We
found rd = 2 sufficiently incentivizes goal-reaching.

A predictive collision penalty scales the final reward
with respect to incoming collisions, defined as:

pt =
∏

∀a′∈N (a)

tanhT (a, a′) (3)

where (N (a)) is the set of neighbouring agents within the
radius nr. T(a, a′) is a function that predicts the time left
before two agents collide under their current velocities:

T(a, a′) =

max(arg min
t

(‖ap − ap′ + t(va − va′)‖ = ar + ar′), 0)

(4)

where ap is the agent position, ar is the agent radius,
and the prime values (′) are for the other agent. In this
formulation, t may have more than one solution, so we
solve this equation for the minimum t–the closest ray-disk
intersection test [9]. Dependent on Equation 4, if the time left
to collide is 3 seconds or more, then pt ≈ 1, i.e., there is no
predictive collision penalty because pt is used as a scaling
factor for the continuous target reward in Equation 2. That
is, if tanhT (a, a′) < 1 (from Equation 3) then the agent is
going to be penalized for a potential incoming collision. This
predictive collision check is derived from [9] and converted
into a penalty ([0,1]) scaling the contribution of the relevant
goal reaching reward.

An instantaneous collision penalty pc is applied on sim-
ulation steps when an agent either collides with another
agent or with a wall. We found pc = −0.01 sufficiently
disincentivizes collisions.

Together the total reward function becomes the summa-
tion of all rewards and penalties with a weight factor ωl for
rl to adjust its contribution to the finalized reward:

rall = ωlrlpt + rd + pc (5)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 8

We found ωl = 3 balanced desired goal-seeking behaviours
with collision avoidance learning. This final reward signal
values ideal agent movement which is anticipatory, reduces
effort in steering (takes short paths), and avoids collisions. In
our multiplicative reward, anticipatory collision avoidance
(pt) and goal-seeking (rl) is weighted (ωl is for behavioural
control and can be tuned by someone retraining the model)
and scaled by their severity and likelihood (ωlrlpt) while
discrete target rewards only occur when and an agent com-
pletes their global task(rd) and collisions are heavily and
consistently penalized at each step. In practice, pt reduces
the reward gained by rl to penalize potential collisions more
as they become more likely.

3.6 Training
We summarize our agents as the state space S =
{gd,gp,Φ,a∆, as, vd, vmax} and action space A = {θa, fa}.
All agents learn and share the same network parameters
but have different randomized goals in randomized envi-
ronments as described in the following sections.

3.6.1 Environment and Scenarios
We utilize domain randomization for our training envi-
ronments. The training environment is defined by a grid
in a square region (20m x 20m) in which obstacles of
size (1m x 1m) may be randomly placed at the center of
each grid cell with a probability of 10%. There are 100
agents spawned in each training iteration. However, purely
random agent, goal, and obstacle spawning may lead to
enclosed, i.e. unreachable, agents or goals. To deal with this
during training we ensure that there is a free path between
agent and goal when spawning, if not we reattempt at new
locations until there is. The environment definition is a high-
density procedural scenario and is intended to force agent-
centric encounters between various environment and agent
configurations, aimed to find more general policies [22]. This
environment can be seen in Figure 4. That is, the training
environment is intended to have coverage over the space
of possible agent interactions and be sufficiently noisy to
produce generalizations in the learned policies. Our eval-
uations in Section 4 show that this produces a model that
generalizes to various environment configurations, agent
configurations, and the number of agents.

3.6.2 Simulation
After obstacles are placed on the ground, stationary agents
are randomly spawned, with random initial headings. Each
agent is assigned a single randomly positioned static world
target and there are no overlaps among obstacles, agent
spawn locations, or agent targets. This formulates the initial
conditions of our domain randomization approach during
training. Each agent computes their shortest path to their
randomized world target using the A* pathfinding algo-
rithm on a NavMesh representation of the environment [81].
An Agents long-term path is updated every 2 seconds or
when they lose sight of the current waypoint (the long-term
path is composed of a series of waypoints on the NavMesh).
Agents will initially receive the topmost waypoint in the
queue as their current local target for steering and will
iteratively switch to the next waypoint in the queue until

Fig. 4: Agents learn to continuously avoid each other as well
as obstacles in arbitrarily complex environments. This figure
is a single example of the procedural training environment.

the next waypoint can not be seen (obstructed by obstacles
in the environment), i.e. simplified string-pulling. Once the
agent reaches its final world target, it will be removed
from the environment. We make use of long-term path
planning because we performed several tests without the
addition of explicit long-term path planning and agents
were not able to handle complex planning in environments,
particularly those with concavities. This is a known effect
of steering/planning separation in the literature, and this
paper focuses on the steering model layer. We hypothesize
that it is possible to learn this planning layer policy and
recent works have succeeded in doing so already [82], [83],
[84]. However, this is outside the scope of this paper.

3.6.3 Learning

Our deep neural network is composed of 2 hidden layers of
512 hidden nodes, or artificial neurons, each using the Swish
activation function [79]. We train this network using Prox-
imal Policy Optimization (PPO) with the Adam optimizer
to update network weights [85]. Relevant hyperparameters
include, γ = 0.99 (the reward decay factor in the expected
discounted return seen in Equation 1), β = 0.005 (the
weight of entropy regularization dictating policy random-
ness), ε = 0.2 (the threshold of divergence in policy updates,
used in the clipped objective for PPO [77]), λ = 0.95
(the reliance on current value estimates in the Generalized
Advantage Estimate calculation [86]) with a learning rate of
0.0003 (the weight of gradient descent update steps), a batch
size of 512 (the number of experiences to use in a gradient
update step), and a buffer size of 20480 (the number of
experiences to use in a model update). Each episode of
simulation in the training is triggered either when all agents
complete their goals or 10, 000 training steps have been
reached. The reward update period is 0.02s, or 50Hz. Given
our γ value and update frequency, our agents are learning
to plan approximately 2s ahead.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 16

ACKNOWLEDGMENTS

The research was supported in part by the Murray Post-
doctoral Fellowship, NSERC Create DAV, Ontario Re-
search Foundation (Grant No. RE08-054), NSERC Discov-
ery [funding reference number RGPIN-2021-03541], and
NSF awards: IIS-1703883, S&AS-1723869, IIS-1955404, IIS-
1955365, RETTL-2119265, and EAGER-2122119.

REFERENCES

[1] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by exam-
ple,” in Computer graphics forum, vol. 26, no. 3. Wiley Online
Library, 2007, pp. 655–664.

[2] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-
vision based steering approach for crowd simulation,” in ACM
TOG, vol. 29, no. 4. ACM, 2010, p. 123.

[3] D. Wolinski, M. C. Lin, and J. Pettré, “Warpdriver: context-aware
probabilistic motion prediction for crowd simulation,” ACM Trans-
actions on Graphics (TOG), vol. 35, no. 6, p. 164, 2016.

[4] G. Berseth, M. Kapadia, and P. Faloutsos, “Robust space-time foot-
steps for agent-based steering,” Computer Animation and Virtual
Worlds, 2015.

[5] S. Singh, M. Kapadia, G. Reinman, and P. Faloutsos, “Footstep
navigation for dynamic crowds,” Computer Animation and Virtual
Worlds, vol. 22, no. 2-3, pp. 151–158, 2011.

[6] C. W. Reynolds, “Flocks, herds and schools: A distributed behav-
ioral model,” in ACM Siggraph Computer Graphics, vol. 21, no. 4.
ACM, 1987, pp. 25–34.

[7] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha,
“Reciprocal n-body collision avoidance,” in Robotics Research.
Springer, 2011, vol. 70, pp. 3–19. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-19457-3-1

[8] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE In-
ternational Conference on Robotics and Automation. IEEE, 2008, pp.
1928–1935.

[9] I. Karamouzas, P. Heil, P. van Beek, and M. H. Overmars, “A
predictive collision avoidance model for pedestrian simulation,”
in MiG. Springer, 2009, pp. 41–52.

[10] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical fea-
tures of escape panic,” Nature, vol. 407, no. 6803, pp. 487–490, 2000.

[11] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[12] S. Singh, M. Kapadia, B. Hewlett, G. Reinman, and P. Faloutsos,
“A modular framework for adaptive agent-based steering,” in
Proceedings of I3D. ACM, 2011, pp. 141–150. [Online]. Available:
http://doi.acm.org/10.1145/1944745.1944769

[13] X. Lan, Y. Liu, and Z. Zhao, “Cooperative control for swarming
systems based on reinforcement learning in unknown dynamic
environment,” Neurocomputing, vol. 410, pp. 410–418, 2020.

[14] L. Sun, J. Zhai, and W. Qin, “Crowd navigation in an unknown
and dynamic environment based on deep reinforcement learning,”
IEEE Access, vol. 7, pp. 109 544–109 554, 2019.

[15] J. Lee, J. Won, and J. Lee, “Crowd simulation by deep rein-
forcement learning,” in Proceedings of the 11th Annual International
Conference on Motion, Interaction, and Games. ACM, 2018, p. 2.

[16] F. Martinez-Gil, M. Lozano, and F. Fernandez, “Emergent be-
haviors and scalability for multi-agent reinforcement learning-
based pedestrian models,” Simulation Modelling Practice and Theory,
vol. 74, pp. 117–133, 2017.

[17] F. Martinez-Gil, M. Lozano, and F. Fernández, “Strategies for simu-
lating pedestrian navigation with multiple reinforcement learning
agents,” Autonomous Agents and Multi-Agent Systems, vol. 29, no. 1,
pp. 98–130, 2015.

[18] ——, “Marl-ped: A multi-agent reinforcement learning based
framework to simulate pedestrian groups,” Simulation Modelling
Practice and Theory, vol. 47, pp. 259–275, 2014.

[19] L. Torrey, “Crowd simulation via multi-agent reinforcement
learning,” in Proceedings of the Sixth AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, ser.
AIIDE’10. AAAI Press, 2010, pp. 89–94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014666.3014683

[20] L. Hoyet, A.-H. Olivier, R. Kulpa, and J. Pettré, “Perceptual effect
of shoulder motions on crowd animations,” ACM Transactions on
Graphics (TOG), vol. 35, no. 4, pp. 1–10, 2016.

[21] R. McDonnell, M. Larkin, S. Dobbyn, S. Collins, and C. O’Sullivan,
“Clone attack! perception of crowd variety,” ACM Transactions on
Graphics (TOG), vol. 27, no. 3, p. 26, 2008.

[22] M. Kapadia, M. Wang, S. Singh, G. Reinman, and P. Falout-
sos, “Scenario space: characterizing coverage, quality, and failure
of steering algorithms,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM,
2011, pp. 53–62.

[23] M. B. Haworth, “Biomechanical locomotion heterogeneity in
synthetic crowds,” Ph.D. dissertation, York University, Toronto,
Canada, November 2019.

[24] B. Haworth, M. Usman, G. Berseth, M. Kapadia, and P. Faloutsos,
“On density–flow relationships during crowd evacuation,” Com-
puter Animation and Virtual Worlds, vol. 28, no. 3-4, 2017.

[25] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “Steerbench:
A benchmark suite for evaluating steering behaviors,” Computer
Animation and Virtual Worlds, vol. 20, no. 5-6, pp. 533–548, 2009.

[26] F. Martinez-Gil, M. Lozano, I. Garcı́a-Fernández, and F. Fernández,
“Modeling, evaluation, and scale on artificial pedestrians: a litera-
ture review,” ACM Computing Surveys (CSUR), vol. 50, no. 5, p. 72,
2017.

[27] N. Pelechano, J. M. Allbeck, and N. I. Badler, Virtual Crowds:
Methods, Simulation, and Control. Morgan & Claypool Publishers,
2008.

[28] S. Huerre, J. Lee, M. Lin, and C. O’Sullivan, “Simulating believable
crowd and group behaviors,” in ACM SIGGRAPH ASIA 2010
Courses, pp. 13:1–13:92.

[29] D. Thalmann and S. R. Musse, Crowd Simulation, Second Edition.
Springer, 2013.

[30] G. Taga, Y. Yamaguchi, and H. Shinizu, “Self-organized control
of bipedal locomotion by neural oscillators in unpredicatable
environments,” Biological Cybernetics, vol. 65, no. 3, pp. 147–159,
1991.

[31] T. Geng, B. Porr, and F. Wörgötter, “A reflexive neural network
for dynamic biped walking control.” Neural Computation, vol. 18,
no. 5, pp. 1156–96, 2006.

[32] A. Kun and W. T. Miller III, “Adaptive dynamic balance of a
biped robot using neural networks,” in Proceedings of the IEEE
International Conference on Robotics and Automation, vol. pages.
IEEE, 1996, pp. 240–245.

[33] W. T. Miller III, “Real-time neural network control of a biped
walking robot,” Control Systems, IEEE, vol. 14, no. 1, pp. 41–48,
1994.

[34] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural
networks for character control,” ACM Transactions on Graphics
(TOG), vol. 36, no. 4, pp. 1–13, 2017.

[35] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

[36] B. Haworth, G. Berseth, S. Moon, P. Faloutsos, and M. Kapadia,
“Deep integration of physical humanoid control and crowd navi-
gation,” in Motion, Interaction and Games, 2020, pp. 1–10.

[37] P. Faloutsos, M. Van de Panne, and D. Terzopoulos, “Composable
controllers for physics-based character animation,” in Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques, 2001, pp. 251–260.

[38] W. Huang, I. Mordatch, and D. Pathak, “One policy to control
them all: Shared modular policies for agent-agnostic control,” in
International Conference on Machine Learning. PMLR, 2020, pp.
4455–4464.

[39] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deep-
mimic: Example-guided deep reinforcement learning of physics-
based character skills,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, pp. 1–14, 2018.

[40] J. Won and J. Lee, “Learning body shape variation in physics-
based characters,” ACM Transactions on Graphics (TOG), vol. 38,
no. 6, pp. 1–12, 2019.

[41] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep rein-
forcement learning,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 6015–6022.

[42] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2020, pp. 10 007–10 013.

http://dx.doi.org/10.1007/978-3-642-19457-3-1
http://dx.doi.org/10.1007/978-3-642-19457-3-1
http://doi.acm.org/10.1145/1944745.1944769
http://dl.acm.org/citation.cfm?id=3014666.3014683

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 17

[43] W. van Toll and J. Pettré, “Algorithms for microscopic crowd
simulation: Advancements in the 2010s,” in Computer Graphics
Forum, vol. 40, no. 2. Wiley Online Library, 2021, pp. 731–754.

[44] M. Kapadia, N. Pelechano, J. Allbeck, and N. Badler, “Virtual
crowds: Steps toward behavioral realism,” Synthesis lectures on
visual computing: computer graphics, animation, computational photog-
raphy, and imaging, vol. 7, no. 4, pp. 1–270, 2015.

[45] P. Fiorini and Z. Shiller, “Motion planning in dynamic environ-
ments using velocity obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, pp. 760–772, 1998.

[46] ——, “Motion planning in dynamic environments using the rel-
ative velocity paradigm,” in Proceedings of the IEEE International
Conference on Robotics and Automation. IEEE, 1993, pp. 560–565.

[47] G. Berseth, M. Kapadia, B. Haworth, and P. Faloutsos, “Steerfit:
Automated parameter fitting for steering algorithms,” in Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. Eurographics Association, 2014, pp. 113–122.

[48] Q. Cheng, Z. Duan, and X. Gu, “Data-driven and collision-free
hybrid crowd simulation model for real scenario,” in International
Conference on Neural Information Processing. Springer, 2018, pp.
62–73.

[49] P. Long, W. Liu, and J. Pan, “Deep-learned collision avoidance
policy for distributed multiagent navigation.” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 656–663, 2017.

[50] H. Li, B. Weng, A. Gupta, J. Pan, and W. Zhang, “Reciprocal col-
lision avoidance for general nonlinear agents using reinforcement
learning,” arXiv preprint arXiv:1910.10887, 2019.

[51] N. Bisagno, N. Garau, A. Montagner, and N. Conci, “Virtual
crowds: An lstm-based framework for crowd simulation,” in
International Conference on Image Analysis and Processing. Springer,
2019, pp. 117–127.

[52] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[53] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255–2264.

[54] J. Amirian, J.-B. Hayet, and J. Pettré, “Social ways: Learning
multi-modal distributions of pedestrian trajectories with gans,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2019, pp. 0–0.

[55] B. Brito, H. Zhu, W. Pan, and J. Alonso-Mora, “Social-vrnn: one-
shot multi-modal trajectory prediction for interacting pedestri-
ans,” arXiv preprint arXiv:2010.09056, 2020.

[56] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with het-
erogeneous data,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII
16. Springer, 2020, pp. 683–700.

[57] K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, way-
points & paths to long term human trajectory forecasting,” arXiv
preprint arXiv:2012.01526, 2020.

[58] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in 2010 IEEE International Con-
ference on Robotics and Automation. IEEE, 2010, pp. 981–986.

[59] F. Martinez-Gil, M. Lozano, and F. Fernández, “Multi-agent re-
inforcement learning for simulating pedestrian navigation,” in
International Workshop on Adaptive and Learning Agents. Springer,
2011, pp. 54–69.

[60] L. Casadiego and N. Pelechano, “From one to many: Simulating
groups of agents with reinforcement learning controllers,” in
International Conference on Intelligent Virtual Agents. Springer, 2015,
pp. 119–123.

[61] L. Casadiego Bastidas, “Social crowd controllers using reinforce-
ment learning methods,” Master’s thesis, Universitat Politècnica
de Catalunya, 2014.

[62] B. Haworth, M. Usman, G. Berseth, M. Kapadia, and P. Faloutsos,
“Evaluating and optimizing level of service for crowd evacua-
tions,” in Proceedings of the 8th ACM SIGGRAPH Conference on
Motion in Games. ACM, 2015, pp. 91–96.

[63] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in Pro-
ceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM, 2005, pp. 19–28.

[64] M. Kapadia, S. Singh, B. Allen, G. Reinman, and P. Faloutsos,
“Steerbug: an interactive framework for specifying and detect-

ing steering behaviors,” in Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM,
2009, pp. 209–216.

[65] J. Pettré, J. Ondrej, A.-h. Olivier, A. Cretual, and S. Donikian,
“Experiment-based modeling, simulation and validation of inter-
actions between virtual walkers,” in Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, vol.
2009, 2009, p. 189.

[66] M. Chraibi, T. Ensslen, H. Gottschalk, M. Saadi, and A. Seyfried,
“Assessment of models for pedestrian dynamics with functional
principal component analysis,” Physica A: Statistical Mechanics and
its Applications, vol. 451, pp. 475–489, 2016.

[67] M. Kapadia, M. Wang, G. Reinman, and P. Faloutsos, “Improved
benchmarking for steering algorithms.” in Proceedings of the 4th
International Conference on Motion in Games. Springer, 2011, pp.
266–277.

[68] M. Kapadia, M. Wang, S. Singh, G. Reinman, and P. Falout-
sos, “Scenario space: characterizing coverage, quality, and failure
of steering algorithms,” in Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM,
2011, pp. 53–62.

[69] D. Wolinski, S. J. Guy, A.-H. Olivier, M. C. Lin, D. Manocha, and
J. Pettré, “Optimization-based pedestrian model calibration for
evaluation,” Transportation Research Procedia, vol. 2, pp. 228–236,
2014.

[70] ——, “Parameter estimation and comparative evaluation of crowd
simulations,” Computer Graphics Forum, vol. 33, no. 2, pp. 303–312,
2014.

[71] N. Pelechano, C. Stocker, J. Allbeck, and N. Badler, “Being a part
of the crowd: towards validating vr crowds using presence,” in
Proceedings of the 7th international Joint Conference on Autonomous
Agents and Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2008, pp. 136–142.

[72] B. C. Daniel, R. Marques, L. Hoyet, J. Pettré, and J. Blat, “A
perceptually-validated metric for crowd trajectory quality evalua-
tion,” arXiv preprint arXiv:2108.12346, 2021.

[73] J. K. Terry, N. Grammel, A. Hari, L. Santos, and B. Black, “Revis-
iting parameter sharing in multi-agent deep reinforcement learn-
ing,” 2021.

[74] W. Yu, V. C. Kumar, G. Turk, and C. K. Liu, “Sim-to-real transfer
for biped locomotion,” 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nov 2019. [Online].
Available: http://dx.doi.org/10.1109/IROS40897.2019.8968053

[75] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in NIPS, 1999.

[76] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR, vol.
abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[77] ——, “Proximal policy optimization algorithms,” 2017.
[78] A. D. Rasamoelina, F. Adjailia, and P. Sinčák, “A review of activa-

tion function for artificial neural network,” in 2020 IEEE 18th World
Symposium on Applied Machine Intelligence and Informatics (SAMI).
IEEE, 2020, pp. 281–286.

[79] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” 2017.

[80] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor
skills for legged robots,” Science Robotics, vol. 4, no. 26, 2019.
[Online]. Available: https://robotics.sciencemag.org/content/4/
26/eaau5872

[81] M. Kallmann and M. Kapadia, “Navigation meshes and real-time
dynamic planning for virtual worlds,” in ACM SIGGRAPH 2014
Courses, 2014, pp. 1–81.

[82] N. Sohre and S. J. Guy, “Spnets: Human-like navigation behaviors
with uncertain goals,” in Motion, Interaction and Games, 2020, pp.
1–11.

[83] S. Niu, S. Chen, H. Guo, C. Targonski, M. C. Smith, and
J. Kovačević, “Generalized value iteration networks: Life beyond
lattices,” in Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[84] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems, 2016, pp. 2154–2162.

[85] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2017.

http://dx.doi.org/10.1109/IROS40897.2019.8968053
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://robotics.sciencemag.org/content/4/26/eaau5872
https://robotics.sciencemag.org/content/4/26/eaau5872

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ##, NO. ##, #### #### 18

[86] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage es-
timation,” in International Conference on Learning Representations
(ICLR 2016), 2016.

[87] P. Wang, S. Cao, and M. Yao, “Fundamental diagrams for pedes-
trian traffic flow in controlled experiments,” Physica A: Statistical
Mechanics and its Applications, vol. 525, pp. 266–277, 2019.

[88] A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, “The fun-
damental diagram of pedestrian movement revisited,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2005, no. 10, p.
P10002, 2005.

[89] S. Curtis and D. Manocha, “Pedestrian simulation using geometric
reasoning in velocity space,” in Pedestrian and Evacuation Dynamics
2012. Springer, 2014, pp. 875–890.

[90] T. Dogan, E. Saratsis, and C. Reinhart, “The optimization potential
of floor-plan typologies in early design energy modeling,” in Pro-
ceedings of BS2015: 14th Conference of International Building Perfor-
mance Simulation Association. International Building Performance
Simulation Association (IBPSA), 12 2015.

Kaidong Hu is a Ph.D. candidate at Rutgers.
She received her B.Sc. in Chemistry from Nan-
jing University in 2016. Her research interests
focus on providing human behavior-like AI by
emulate the natural development (learning) pro-
cess. She is a member of the Intelligent Visual
Interfaces Lab supervised by Dr. Mubbasir Ka-
padia.

Brandon Haworth is an Assistant Professor in
the Department of Computer Science, Faculty
of Engineering & Computer Science at the Uni-
versity of Victoria. He is also the Director of
the Graphics, Artificial Intelligence, Design, &
Games (GAIDG) Lab and a Research Fellow at
the Institute on Aging and Lifelong Health at the
University of Victoria. Brandon works within the
broad areas of Graphics, Simulation, Artificial
Intelligence, and Human-Computer Interaction.
His primary research focuses are diversity in

crowds simulations, locomotion & biomechanical modelling in human
steering, multi-agent reinforcement learning, and human-centric artificial
& augmented intelligence in simulation and design with a purpose to
explore the intersections between visibility, representation, and decision-
making in interactive technologies.

Glen Berseth is an assistant professor at the
University of Montreal and a member of Mila. He
was a Postdoctoral Researcher at the Berkeley
Artificial Intelligence Research (BAIR) working
with Sergey Levine. He completed his NSERC-
awarded Ph.D. in Computer Science at the Uni-
versity of British Columbia in 2019, where he
worked with Michiel van de Panne. His goal is
to create systems that can learn and act in the
world intelligently by developing deep learning
and reinforcement learning methods to solve di-

verse, high-dimensional perception and planning problems.

Vladimir Pavlovic is a Professor of Computer
Science at Rutgers University in New Jersey,
USA. Vladimir’s research interests include prob-
abilistic machine learning, multimodal repre-
sentation learning, and next generation human
sensing. Over the past twenty years Vladimir has
published extensively in the domains of com-
puter vision and human-computer interaction,
including his seminal works on human gesture
modeling and recognition, human motion analy-
sis, and non-verbal human affect understanding.

At Rutgers, he co-leads the Center for Accelerated Real Time Analytics
(CARTA), is a member of the Executive Committee of Rutgers Center
for Cognitive Science (RUCCS), and an associate member of the Center
for Quantitative Biology (CQB). Vladimir received his Ph.D. in Electrical
and Computer Engineering from the University of Illinois at Urbana-
Champaign.

Petros Faloutsos is a Professor at the Depart-
ment of Electrical Engineering and Computer
Science at York University, and an affiliate Scien-
tist at the UHN-Toronto Rehabilitation Institute.
Before joining York, he was a faculty member at
the Computer Science Department at the Uni-
versity of California at Los Angeles, where in
2002 he founded the first computer graphics lab
at UCLA. Faloutsos received his PhD degree
(2002) and his MSc degree in Computer Science
from the University of Toronto, Canada and his

BEng degree in Electrical Engineering from the National Technical Uni-
versity of Athens, Greece.

Mubbasir Kapadia is currently the Director of
the Intelligent Visual Interfaces Lab and an As-
sociate Professor with the Computer Science
Department, Rutgers University, New Brunswick,
NJ, USA. Previously, he was an Associate Re-
search Scientist with Disney Research Zurich.
His research lies at the intersection of artificial
intelligence, visual computing, and humancom-
puter interaction, with a mission to develop in-
telligent visual interfaces to empower content
creation for human-aware architectural design,

digital storytelling, and serious games.

	Introduction
	Related Work
	Learning Physical Character Control
	Agent-based Crowd Simulation
	Learning and Crowd Simulation
	Evaluation and Performance
	Comparison to prior work

	Heterogeneous Parametric-RL Model
	Reinforcement Learning
	Network Architecture & Parametric Policy Learning
	State Space
	Action Space
	Reward Function
	Training
	Environment and Scenarios
	Simulation
	Learning

	Evaluation
	Learning Reciprocal Collision Avoidance in Heterogeneous Environments
	Results & Discussion

	Qualitative Multi-Agent Navigation Performance
	Quantitative Multi-Agent Navigation Performance
	Results & Discussion

	Heterogeneity Dependent Performance
	Results & Discussion

	Density-Dependent Performance
	Results & Discussion

	Computational Performance
	Extensibility

	Conclusion
	Limitations & Future Work

	References
	Biographies
	Kaidong Hu
	Brandon Haworth
	Glen Berseth
	Vladimir Pavlovic
	Petros Faloutsos
	Mubbasir Kapadia

