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A compact and uniform approach for synthesizing state-based

property-enforcing supervisors for discrete-event systems
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Abstract—In this paper, we are interested in the problem of synthe-

sizing a partial-observation supervisor for a discrete-event system such
that it enforces a desired property. We introduce a compact and uniform

approach to the problem of synthesizing state-based property-enforcing

supervisors. A state-based property is a property that only depends on the

current estimate of the past behavior of the system and does not depend on
its future behavior. Previous work has introduced a uniform methodology

to solve this problem through the construction of a finite structure called

the All Enforcement Structure (AES) which captures a game between
the supervisor and the environment. Although the AES is a powerful

structure that includes all possible property-enforcing supervisors, its

construction is computationally challenging since the number of states

grows exponentially in the number of states and the number of events of
the system. Our contribution is the definition of a compact AES that is

equivalent to but computationally more efficient than the original AES.

Specifically, the compact AES enjoys the same properties as the original
AES with respect to synthesizing maximally permissive supervisors under

the assumption of incomparable sets of controllable and observable

events. We also provide experimental results to show the benefits of the

compact AES over the original AES.

Index Terms—Discrete-event systems, Supervisory control, Property
enforcement

I. INTRODUCTION

In the context of Discrete Event Systems (DES), an important

research issue is the problem of synthesizing a supervisor that

enforces a desired property. This problem first appeared in the seminal

work of Ramadge and Wonham in [1]. Since then different variations

of this problem have been investigated by the control engineering

community where different assumptions on the control loop or

different properties are considered. In this paper, we are interested

in the problem of synthesizing a partial observation supervisor for a

DES such that it enforces a desired property.

The properties under consideration in [1] were safety and non-

blockingness, where safety describes the desired legal behavior for the

controlled system while non-blockingness describes the condition of

always being able to achieve desired behaviors. Moreover, a maximal

permissiveness constraint is also imposed on the supervisor, i.e.,

the supervisor should allow a “maximal” controlled behavior while

enforcing the desired properties. This problem setting, termed as

the standard supervisory control problem under full observation was

solved in [1], while different solutions for the partial observation

setting were proposed, see, e.g., [2]–[8]. In the case of enforcement

of different properties than the above, different approaches have also

emerged, e.g., for diagnosability [9], opacity [10]–[13], and so forth.

A uniform approach to the problem of synthesizing property-

enforcing supervisors for a large class of properties was presented

in [14]. The class of properties investigated in [14] is referred

to as state-based properties. Intuitively, a state-based property is

a property that only depends on the current state estimate of the

system and does not depend on its future behavior. Properties such

as safety, opacity, diagnosability, and detectability are state-based

properties while non-blockingness is not a state-based property [14].
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The approach developed in [14] is based on the construction of a finite

structure called All Enforcement Structure (AES) which captures a

game between the supervisor and the environment. Intuitively, the

AES embeds all property-enforcing supervisors and it serves as the

basis for solving the synthesis problem for state-based properties.

Although the AES is a powerful structure that includes all possible

property-enforcing supervisors, its construction is computationally

challenging since the number of its states grows exponentially in the

number of states and the number of events of the system. In this paper,

we introduce a compact AES that is equivalent and computationally

more efficient than the original AES1 described in [14]. Based

on the set of unobservable events of the system, we introduce an

equivalence relation over the set of control decisions a supervisor

can select. This equivalence relation allows the construction of a

so called compact AES, which is equivalent to the original AES

for the purpose of synthesizing maximally permissive supervisors.

Specifically, the compact AES enjoys the same properties as the

original AES with respect to synthesizing maximally permissive

supervisors under the assumption of incomparable sets of controllable

and observable events, but it has a state space that is provably more

compact than that of the original AES under general conditions.

Our presentation is organized as follows. Section II introduces

necessary background on supervisory control theory. The property-

enforcing supervisory control problem is stated in Section III. We

briefly review the original AES method in Section IV. In Section V,

we present the compact AES and show its soundness and complete-

ness with respect to the property-enforcement problem. Experimental

results are presented in Section VI. Finally, we conclude the paper

in Section VII.

II. PRELIMINARIES

We consider a deterministic discrete transition system modeled as

a finite-state automaton. A finite-state automaton G is defined as a

tuple G = (XG,Σ, δG, x0,G), where XG is a finite set of states; Σ
is a finite set of events; δG : XG × Σ → XG is a partial transition

function; and x0,G ∈ XG is the initial state.

The function δG is extended in the usual manner to domain

XG ×Σ∗. The language generated by G is defined as L(G) = {s ∈
Σ∗|δG(x0, s)!}, where ! means “is defined”. For x ∈ XG, we define

EnG(x) = {e ∈ Σ | δG(x, e)!} as the active event set at state x. For

K ⊆ Σ∗, we denote by pr(K) as the set of all prefixes of strings in

K and K is said to be prefix-closed if K = pr(K).
In the context of supervisory control theory of DES [1], we

consider an uncontrolled system (plant) G that needs to be controlled

in order to satisfy given safety specifications. In order to control G,

the event set Σ is partitioned into two disjoint sets, which are the

set of controllable events Σc and the set of uncontrollable events

Σuc. The safety specifications on G are enforced by a supervisor,

denoted by S, that dynamically enables/disables controllable events.

The resulting controlled behavior is a new DES denoted by S/G,

resulting in the closed-loop language L(S/G), defined in the usual

manner (see, e.g., [7], [8]).

1We will use the term “original” AES to denote the AES described in [14].
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In addition, when the system is partially observed due to the limited

sensing capabilities of G, the event set is also partitioned into Σ =
Σo ∪ Σuo, where Σo is the set of observable events and Σuo is

the set of unobservable events. Based on this second partition, the

projection function Po : Σ∗ → Σ∗
o is recursively defined as: Po(ǫ) =

ǫ, Po(se) = Po(s)e if e ∈ Σo, and Po(se) = Po(s) otherwise. The

inverse projection P−1
o : Σ∗

o → 2Σ
∗

is defined as P−1
o (t) = {s ∈

Σ∗|Po(s) = t}.

Supervisor S makes its control decisions based on a string of

observable events. Formally, a partial-observation supervisor is a (par-

tial) function S : Po(L(G)) → Γ, where Γ = {γ ∈ 2Σ : Σuc ⊆ γ}.

The set of all supervisors S : Po(L(G)) → Γ is denoted by S.

We also recall the notions of controllability and observability for

a prefix-closed language K ⊆ L(G). We say that the language K is

• controllable w.r.t. Σc, if KΣuc ∩ L(G) ⊆ K;

• observable w.r.t. Σo and Σc, if (∀s ∈ K,∀e ∈ Σc : se ∈
K)[P−1

o (Po(s))e ∩ L(G) ⊆ K].

Let CO(K) be the collection of all prefix-closed controllable

and observable sublanguages of K w.r.t. G, Σc and Σo. Formally,

CO(K) = {K′ ⊆ L(G) | K′ = pr(K′) ⊆ K s.t. K′ is controllable

and observable w.r.t. (Σc,Σo)}. There does not exist in general a

supremal element in CO(K) [7]. Moreover, there exists a supervisor

S for any L ∈ CO(K) \ {∅} such that L(S/G) = L.

Example II.1. Consider the system G depicted in Fig. 1(a). Let

K = L(Ac(G, {6})) be the language specification that a supervised

system must enforce, where Ac(G,X) denotes the operation that

returns the accessible subautomaton of G after deleting states X ⊆
XG. The two automata shown in Fig. 1(b) and Fig. 1(c) belong to

CO(K).
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Fig. 1: System G: Σc = {o1, o2, a}, Σo = {o1, o2}, and Xuns =
{6}. Dashed lines in G1 and G2 are events disabled by a supervisor.

We complete this section by defining useful notation for strings.

The transition function δG is extended to set of states X ⊆ XG as

δG(X, e) = ∪x∈X{δG(x, e)} where δG(x, e) = ∅ if δG(x, e) is not

defined. The unobservable reach of a set of states X ⊆ XG under

the subset of events γ ⊆ Γ is given by:

URγ(X) =
⋃

s∈(Σuo∩γ)∗

δG(X, s) (1)

Given L ⊆ L(G), the set of all possible states in G reachable from

its initial state via a string with the same projection as s ∈ L is given

by:

ReG(s, L) =
⋃

t∈L:
Po(s)=Po(t)

{δG(x0,G, t)} (2)

Lastly, for any string s ∈ Σ∗, |s| denotes the length of s. We define

si to be the ith prefix of s where s0 = ǫ.

III. PROPERTY-ENFORCING PROBLEM

In general, a language-based property over events Σ is defined as

a function ϕ : 2Σ
∗

→ {0, 1}, where L ⊆ Σ∗ satisfies the property

if ϕ(L) = 1. Safety is a classical property example that can be

specified as a language-based property. Given a specification language

K ⊆ Σ∗, the safety property is defined as ϕ(L) = 1 if and only if

L ⊆ K.

Although language-based properties encompass a large class of

properties in DES, it may not be possible to bound a priori the

memory needed for their verification. To simplify our problem

formulation, we investigate a particular class of properties called

state-based properties. State-based properties are not as general as

language-based ones. However, many important properties in the DES

literature can be expressed as state-based properties provided that

state space refinement of the system may be needed [14]. Safety,

diagnosability, and opacity are expressible as state-based properties

as described in [14]. Formally, state-based properties are defined as

follows.

Definition III.1. (Def. III.2 in [14]) A state-based property ϕ w.r.t. G
is a function ϕ : 2XG → {0, 1}. A sublanguage L ⊆ L(G) satisfies

ϕ if ∀s ∈ L: ϕ(ReG(s, L)) = 1.

Example III.2. In Example II.1, the supervisor must enforce a safety

property over the supervised system, i.e., to not reach state 6. The

property ϕ defined for X ⊆ XG as ϕ(X) = 1 if and only if {6} ∩
X = ∅ captures this safety property. In general, a safety property

over G is defined as ϕ(X) = 1 if and only if Xuns ∩X = ∅, where

X ⊆ XG and Xuns ⊆ XG is a set of unsafe states that must not be

reached.

We are now ready to present the maximally permissive state-based

property-enforcement problem (MPSEP).

Problem III.1. Given system G and state-based property ϕ with

respect to G, synthesize a supervisor S ∈ S such that

(1) L(S/G) satisfies ϕ;

(2) For any S′ ∈ S satisfying (1), we have L(S/G) 6⊂ L(S′/G)

Remark III.1. In [14], the MPSEP includes an additional liveness

constraint in the problem formulation. For simplicity and without loss

of generality, we relax this constraint from our problem formulation

since our method can be easily extended to include this constraint.

IV. ALL ENFORCEMENT STRUCTURE

In [14], a uniform approach for synthesizing state-based property-

enforcing supervisors for partially-observed DES is presented. Their

method constructs a finite bipartite transition system (BTS), called

All Enforcement Structure (AES), which embeds all admissible

supervisors that enforce a desired state-based property. We review

the concept of BTS and the construction of the AES as in [14].

Intuitively, a BTS is a bipartite graph where its nodes are divided

into two disjoint sets. In a BTS, node types represent the two entities

in the supervisory control framework, i.e., one node type represents

a supervisor S while the other node type represents the plant G.

Definition IV.2. Given the system G and a set of control patterns

C ⊆ Γ, the bipartite transition system B is defined by B =
(QB

1 , Q
B
2 , h

B
1 , hB

2 ,Σ, C, q
B
0 )2, where

• QB
1 ⊆ 2XG is the set of player 1 states;

• QB
2 ⊆ 2XG × C is the set of player 2 states, I(q) and

Γ(q) denote, respectively, the projection to the first and second

components of q ∈ QB
2 ;

• hB
1 : QB

1 ×C → QB
2 is a partial transition function over C that

satisfies:

hB
1 (q, γ)! ⇒ hB

1 (q, γ) = (URγ(q), γ) (3)

2We drop the superscript B whenever B is clear from the context.
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• hB
2 : QB

2 ×Σo → QB
1 is the transition function defined as:

hB
2 (q, e) =

{

δG(I(q), e) if e ∈ Γ(q) ∩EnG(I(q))
undefined otherwise

(4)

• qB0 = {x0,G} ∈ QB
1 is the initial state;

The BTS B is the largest BTS with respect to C if hB
1 is complete

at every reachable state in QB
1 . We use T to denote the largest BTS

with respect to C. By convention, the sets QB
1 and QB

2 are defined to

be the accessible states from the initial state and following Eqs. (3-4).

Each element in Q1 represents the current state estimate of G. In

state q ∈ Q1, player 1 selects a control decision in C and transitions

to a state in Q2. In state q ∈ Q2, player 2 selects an observable event

to occur within the set of enabled events Γ(q) and transitions back to

a Q1 state. Therefore, the BTS B exactly simulates the supervisory

control framework.

Remark IV.2. For convenience, the transition function hT
1 is com-

plete with respect to C in the definition of T . Such definition

improves the clarity of our proofs. However, the definition of hT
1 can

be further constrained based on the active events of the state estimate

q ∈ QT
1 , i.e., complete only for γ ∈ C such that γ ⊆ EnG(q)∪Σuc.

To formalize that T enumerates all possible interactions between

supervisors and corresponding event observations of G, we extend

hB
1 as HB

1 to be a transition function from QB
1 to QB

1 states. The

function HB
1 : QB

1 ×C ×Σo → QB
1 is defined as:

HB
1 (q, γ, e) = hB

2 (hB
1 (q, γ), e) (5)

This function can be extended to string se ∈ Σ∗
oΣo and control deci-

sions γ0 . . . γ|s| in a recursive manner, i.e., HB
1 (q, γ0 . . . γ|s|, se) =

HB
1 (HB

1 (q, γ0 . . . γ|s|−1, s), γ|s|, e). Next, we define CB(q) = {γ ∈
Γ | hB

1 (q, γ)!} to be the set of control decisions defined at q ∈ QB
1 .

Definition IV.3. A supervisor S ∈ S is said to be included in B
if for any string s ∈ Po(L(S/G)), its control decision S(s) is

defined at the state q ∈ QB
1 reached by string s and control decisions

S(s0) . . . S(s|s|−1). Formally,

S(s) ∈ CB(H
B
1 (qB0 , S(s0) . . . S(s|s|−1), s))

∀s ∈ Po(L(S/G))). S(B) denotes the set of all supervisors included

in B.

Definition IV.3 states that for every string in the supervised system,

its control decision is defined at the QB
1 state reached via this

string and its intermediate control decisions. Based on Def. IV.3,

we can state that any supervisor for system G, control patterns C
and observable events Σo is included in T .

Lemma IV.1. Any supervisor S : Po(L(G)) → C is included in

S(T ).

The result of Lemma IV.1 is intuitive since CT (q) = C for any

state q ∈ QT
1 and hT

2 is defined for every feasible observable event.

Nonetheless, it is based on Lemma IV.1 that the following results are

possible.

In [14], the construction of the AES for a given property

ϕ is done in two steps [Alg. 1 in [14]]. First, the largest

BTS T is constructed with respect to C = Γ. Let Tmax =
(Qmax

1 , Qmax
2 , hmax

1 , hmax
2 ,Σ,Γ, qmax

0 ) denote the largest BTS with

respect to Γ. The second step is to prune Tmax in order to only

obtain control decisions that satisfy ϕ, i.e., we remove supervisors

that violate property ϕ. This pruning process can be posed as a fully

observed supervisory control problem over Tmax, where Tmax is

considered as an automaton.

Definition IV.4. Consider Tmax with Euc = Σo ∪ {Σuc} as the set

of uncontrollable events. Let K = L(Ac(Tmax,M)) where M =
{q ∈ Qmax

1 | ϕ(q) = 0} ∪ {q ∈ Qmax
2 | ϕ(I(q)) = 0} be the

specification over Tmax. The All Enforcement Structure AESϕ is

defined as the subautomaton of Tmax representation of the supremal

controllable sublanguage of K w.r.t. Euc and Tmax.

We consider Tmax as a meta-system with all control decisions,

with the exception of control decision Σuc, to be controllable events.

The control decision Σuc is considered to be uncontrollable since the

supervisor should always be able to enable the uncontrollable events.

The specification is given based on ϕ since it removes states in Tmax

that violate the property ϕ. It follows that AESϕ is a subautomaton

of Tmax, which implies that AESϕ is also a BTS.

Example IV.3. We return to system G in Fig. 1(a) with the state-

based property defined in Example III.2. The BTS Tmax is depicted

in Fig. 2. For convenience, we omit the deadlock states ({5}, γ), for

γ ∈ Γ, reached by the gray transitions defined in state {5}. AESϕ

is obtained by removing states marked by a red cross and the dashed

transitions.

Fig. 2: Example of the construction of Tmax and AESϕ. In the

diagram, rectangular states correspond to states in Qmax
1 and oval

states correspond to states in Qmax
2 . For simplicity, A and B represent

state estimates, i.e., A = {0, 1, 3} and B = {0, 1, 2, 3, 4}; and we

omit all uncontrollable events in the control decisions, e.g., decision

{} represents {b, c}.

To conclude this section, we restate a theorem from [14] that states

that AESϕ contains all supervisors that satisfy property ϕ.

Theorem IV.1. (Theorem V.1. [14]) A supervisor S ∈ S enforces

a state-based property ϕ with respect to G if and only if S ∈
S(AESϕ).

V. COMPACT ALL ENFORCEMENT STRUCTURE

To obtain AESϕ, we must construct Tmax which takes into

account all possible control decisions in Γ. The set Γ grows expo-

nentially in the number of controllable events, i.e., |Γ| = |2Σc |. This

exponential growth implies that the number of player 2 states in Tmax

grows exponentially in the number of controllable events. Therefore,

the construction and the manipulation of Tmax is computationally

expensive.

In this section, we provide a sound, complete and computationally

more efficient method for synthesizing property-enforcing supervisors

for partially-observed DES. Namely, we construct a compact AESϕ

from which every supervisor that enforces property ϕ can be ex-

tracted. Our method is based on the original AESϕ but it eliminates

recoverable information in its construction method.

A. Control decision equivalence classes

In the largest BTS T , the transition function hT
1 is defined for

every control decision in C. In the case of Tmax, hmax
1 is defined

for every control decision in Γ. Once player 1 selects a control
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decision γ ∈ Γ in state q ∈ Qmax
1 , it transitions to a player 2

state by performing an unobservable reach computation based on

the selected control decision and recording this control decision, i.e.,

hmax
1 (q, γ) = (URγ(q), γ).

The unobservable reach function depends on the set of unobserv-

able events in the selected γ ∈ Γ. For this reason, we define an

equivalence relation on Γ based on Σuo. Formally, R ⊆ Γ × Γ is

defined as:

R = {(γ1, γ2) | γ1 ∩ Σuo = γ2 ∩ Σuo} (6)

It can be shown that R is indeed an equivalence relation. For any

γ ∈ Γ, let JγK denote the equivalence class of γ, i.e., JγK = {γ′ ∈
Γ | (γ, γ′) ∈ R}.

Since the unobservable reach depends on the set of enabled

unobservable events, we can state a property of the unobservable

reach operation based on the equivalence classes of Γ. For a given

set of G states X ⊆ XG, control decisions in the same equivalence

class produce the same unobservable reach of X . Formally, we have

the following proposition.

Proposition V.1. Let γ ∈ Γ and X ⊆ XG, for any γ∗ ∈ JγK we

have that URγ(X) = URγ∗ (X) = URγ∩Σuo(X).

Proof. The proof follows from the definition of the unobservable

reach.

Proposition V.1 hints that there exists recoverable information in

the construction of Tmax. Namely, there might be states in Qmax
2

that hold information that can be retrieved from other Qmax
2 states.

B. Compact bipartite transition system

Proposition V.1 is the key property used to obtain a BTS that is a

compact version of Tmax. In order to construct this compact BTS, we

restrict the set of control decisions based on the equivalence classes

of Γ.

Using Tmax of Example IV.3, we illustrate the above discussion.

Figure 3 shows part of Tmax of our running example. Starting from

q = {0}, player 1 can select one of the three defined control

decisions. Since these three control decisions belong to the same

equivalence class, Proposition V.1 guarantees that UR{o1,a}(q) =
UR{o2,a}(q) = UR{o1,o2,a}(q) = B = {0, 1, 2, 3, 4}.

Fig. 3: States with recoverable information in Tmax

Next, player 2 selects one observable event allowed by the current

control decision from each of the Qmax
2 states defined in Fig. 3.

Since there are only two observable events and the unobservable

reaches are identical, the Qmax
2 states can only transition to two

distinct Qmax
1 states. The possible states are states {5} and {5, 6}

as depicted in Fig. 3. If we remove player 2 state (B, {o1, o2, a})
from Qmax

2 , we would not remove any state-based information since

B = {0, 1, 2, 3, 4} and both {5}, {5, 6} would remain in the struc-

ture. Therefore, the information about player 2 state (B, {o1, o2, a})
can be retrieved from the remaining states. This implies that h1 can

be defined for control decisions {o1, a} and {o2, a} in state {0}.

In the above illustrative discussion, since the state-based informa-

tion about {o1, o2, a} is retrievable from {o1, a} and {o2, a}, defin-

ing h1 only for control decisions {o1, a} and {o2, a} is sufficient. We

define the function Cext
B that finds all retrievable control decisions

of a player 1 state in BTS B. Formally,

Cext
B (q) ={γ ∈ Γ | (∃I ⊆ JγK ∩ CB(q))[γ =

⋃

γ∗∈I

γ∗]} (7)

In words, γ belongs to Cext
B (q) if it can be reconstructed via the

union of control decisions in the same equivalence class defined in

state q.

Remark V.3. In Figure 3, defining h1 only for {o1, o2, a} also obtains

the entire state-based information for this example, i.e., states B =
{0, 1, 2, 3, 4}, {5}, {5, 6} are going to be defined. However, it is

difficult to retrieve the information about {o1, a} and {o2, a} from

{o1, o2, a}. Namely, it is simpler to assess the safety of the union of

two safe control decisions in the same equivalence class.

If we construct a BTS T comp such that it is possible to retrieve

every possible control decision from each Qcomp
1 state, then this

constructed T comp will have the same information as Tmax. In other

words, we must have Cext
Tcomp(q) = Γ for any q ∈ Qcomp

1 . To obtain

this result, we define the set of all control decisions with at most one

controllable and observable event as:

Ccomp = {γ ∈ Γ | |γ ∩ Σo ∩ Σc| ∈ {0, 1}} (8)

Let T comp denote the largest BTS constructed based on Ccomp.

Based on the above discussion, we have the following proposition.

Proposition V.2. Given Tmax and T comp, then:

(1) (∀q ∈ Qcomp
1 )[Cext

Tcomp(q) = Γ];
(2) Qmax

1 = Qcomp
1 ;

(3) (∀q ∈ Qmax
2 )(∃q∗ ∈ Qcomp

2 )[I(q) = I(q∗)].

Proof. (1) Let γ ∈ Γ and let obs = γ ∩ Σo ∩ Σc. By definition of

Ccomp, for any o ∈ obs there exists γo ∈ Ccomp ∩ JγK such that

o ∈ γo. It follows that γ = ∪o∈obsγo. By definition of Cext
T and of

hcomp
1 , γ ∈ Cext

Tcomp(q) for any q ∈ Qcomp
1 .

(2) By the definition of T , it is clear that Qcomp
1 ⊆ Qmax

1 since

Ccomp ⊆ Γ. The second inclusion follows from (1) and the

construction of Ccomp.

(3) It follows from (2) and Ccomp.

Proposition V.2 states that T comp has the same state-based infor-

mation as Tmax. It remains to be proven that T comp also has the

same set of included supervisors as Tmax.

Example V.4. We return to our running example to show T comp

and compare it with Tmax. First, we obtain the set Ccomp =
{{}, {a}, {o1}, {o2}, {o1, a}, {o2, a}} as our compact control de-

cision set. Based on Ccomp, T comp is constructed and is de-

picted in Fig. 4. As we expected, T comp has fewer states than

Tmax, i.e., states (A, {o1, o2}), (B, {o1, o2, a}), ({5}, {o1, o2}), and

({5}, {o1, o2, a}) are not defined in T comp. For convenience, we

omit the deadlock states ({5}, γ), for γ ∈ Ccomp, reached by the

gray transitions defined in state {5}.

Fig. 4: Example of the construction of T comp and AEScomp
ϕ . For

simplicity, A and B represent state estimates, i.e., A = {0, 1, 3}
and B = {0, 1, 2, 3, 4}. AEScomp

ϕ is obtained by removing states

marked by a red cross and dashed transitions.
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According to Lemma IV.1, every supervisor for G is included

in S(Tmax). Although every supervisor S : Po(L(G)) → Ccomp

is included in S(T comp), it is not true that every supervisor S :
Po(L(G)) → Γ is included in S(T comp). This issue is resolved by

extending the definition of supervisor inclusion in B based on the

definition of Cext
B .

Definition V.5. A supervisor S ∈ S is said to be included-by-

extension in B if (∀s ∈ Po(L(S/G)))(∃γi ∈ JS(si)K)(∀i ∈
{0, . . . , |s| − 1})[S(s) ∈ Cext

B (HB
1 (q0, γ0 . . . γ|s|−1, s))]. Let

Sext(B) be the set of all supervisors included-by-extension in B.

Definition V.5 states that a supervisor is included-by-extension in

B if for every string in the supervised system, its control decision

is retrievable in the state reached via this string and intermediate

equivalent control decisions. It follows that every supervisor for G is

included-by-extension in T comp. This statement is formally written

in the following lemma.

Proposition V.3. S ∈ S if and only if S ∈ Sext(T comp).

Proof. It follows from Prop. V.2 and the definition of Sext.

C. Compact all enforcement structure

As in the definition of AESϕ, denoted hereafter as the original

AES, we must prune T comp in order to eliminate states that violate

a given property ϕ. The pruning process is exactly the same as the

one in Definition IV.4 since the state spaces of T comp and Tmax

are equivalent. Nevertheless, we repeat Definition IV.4 to explicitly

differentiate the AES obtained via Tmax from the one obtained from

T comp.

Definition V.6. Consider T comp with Euc = Σo ∪ {Σuc} as the

set of controllable events. Let K = L(Ac(T comp,M)) where M =
{q ∈ Qcomp

1 | ϕ(q) = 0} ∪ {q ∈ Qcomp
2 | ϕ(I(q)) = 0} be the

specification. The Compact All Enforcement Structure AEScomp
ϕ is

defined as the subautomaton of T comp representation of the supremal

controllable sublanguage of K w.r.t. Euc and T comp.

Similarly to Definition IV.4, we consider T comp as a meta-system

with all control decisions, with the exception of control decision Σuc,

to be controllable events.

Example V.5. Back to our running example, Figure 4 depicts

T comp for system G. Considering the state-based property defined

in Example IV.3, we obtain AEScomp
ϕ following Definition V.6.

The pruning procedure starts with T comp and eliminates state {5, 6}
since it violates ϕ. Next, it prunes state (B, {o1, a}) since it violates

controllability. The procedure converges and AEScomp
ϕ is depicted

in Fig. 4 by states not marked by a red cross and the solid transitions.

Note that, AEScomp
ϕ has three fewer states than AESϕ.

Intuitively, AEScomp
ϕ includes(-by-extension) the same supervi-

sors as AESϕ since every state-based information in Tmax is in

T comp and every control decision in Γ is retrievable in every player

1 state of T comp. Therefore, the pruning of T comp only prunes the

control decisions that violate the desired property. This statement is

formally presented in the following theorem.

Theorem V.2. A supervisor S ∈ S enforces a state-based property

ϕ with respect to G if and only if S ∈ Sext(AEScomp
ϕ ).

Proof. For notational purposes, we use C(q) := CAESϕ(q) and

Cext(q) := Cext
AES

comp
ϕ

(q). Intuitively, the proof shows that every

control decision defined in any player 1 state of AESϕ is retrievable

from the same state in AEScomp
ϕ , i.e., C(q) = Cext(q) for any

q ∈ Q
AESϕ

1 = Q
AEScomp

ϕ

1 .

First, it follows from Prop. V.2, and Defs. IV.4 and V.6 that

Q
AEScomp

ϕ

1 = Q
AESϕ

1 . Thus, we just need to show that C(q) =

Cext(q) for any q ∈ Q
AESϕ

1 . After that the result follows from

Theorem IV.1.

We show that C(q) = Cext(q) in four steps.

Step 0: If γ ∈ C(q), then γ′ ∈ C(q) for any γ′ ⊆ γ and γ′ ∈
JγK ∩ Ccomp. This follows from the pruning process of Tmax. Any

Q1 state reached from q after γ and e ∈ γ∩Σo is also reached via a

γ′ and e in Tmax. Since γ survives the pruning, then γ′ also remains

in AESϕ since the future Q1 states reached from q after γ′ are a

subset of the future states reached after γ.

Step 1: Given two control decisions γ1, γ2 in the same equivalence

class. If γ1, γ2 ∈ C(q), then γ1 ∪ γ2 ∈ C(q). This can be proven

similarly as Step 0. Every future state reached after γ1 or γ2 can

also be reached after γ1 ∪ γ2. Since both γ1 and γ2 remained after

the pruning, then γ1 ∪ γ2 is not pruned.

Step 2: A control decision γ in Ccomp is in C(q) if and only if γ
is in Cext(q). It follows from T comp being a subautomaton of Tmax

and the pruning process.

Step 3: A control decision γ belongs to C(q) if and only if γ
is in Cext(q). From Step 2, we only need to show this result for

γ ∈ Γ \ Ccomp.

Only if: Assume γ ∈ C(q). From Step 0, it follows that ∃I ∈
JγK∩Ccomp such that I ⊆ C(q) and γ = ∪γ′∈Iγ

′. From Step 2, we

have that I ⊆ Cext(q) and γ ∈ Cext(q).

If: Assume γ ∈ Cext(q). By definition of Cext(q), ∃I ∈ JγK ∩
Ccomp such that I ⊆ Cext(q) and γ = ∪γ′∈Iγ

′. From Step 2,

I ⊆ C(q). Finally, Step 1 provides that the union of the elements of

I is also an element of C(q), i.e., γ ∈ C(q).
This concludes our proof.

Theorem V.2 states that AEScomp
ϕ has the same information as

AESϕ, i.e., it encodes all property enforcing supervisors. Therefore,

our methodology of obtaining all property-enforcing supervisors for

system G is sound and complete. Moreover, it is more efficient than

the methodology presented in [14]. In Section VI, we compare the

scalability of the two methods.

D. Synthesis of maximally permissive supervisors

Given a state-based property, Theorem V.2 provides a solution

space from where property-enforcing supervisors can be extracted.

Here, we present a synthesis algorithm for constructing a supervisor S
realized with finite memory that solves Problem III.1. This algorithm

is based on the MAX-SYNT algorithm presented in [14]. However,

we modify the algorithm in order to retrieve control decisions that are

not defined in AEScomp
ϕ , i.e., Cext

AES
comp
ϕ

. This algorithm starts from

qAEScomp

0 and in a Depth-First Search manner traverses player 1

and player 2 states. In player 1 states it selects a locally maximal

control decision while in player 2 states it explores all possible

observations. Both player 1 and player 2 states are only visited once.

This procedure is described in Algorithm 1. The correctness of this

algorithm follows from the correctness of the Algorithm MAX-SYNT

in [14]. For notational purposes, we use Cext(q) := Cext
AES

comp
ϕ

(q).

Remark V.4. The worst-case running time of the entire procedure

is O(22|XG|+2|Σc∩Σuo|). The methodology presented in [14] has a

worst-case running time of O(22|XG|+2|Σc|). Although this exponen-

tial complexity in the number of states of G seems to be unavoidable

[3], the exponential complexity in the number of events might be

reducible. In this paper, we were able to reduce this complexity from

2|Σc| to 2|Σc∩Σuo| by exploiting the classes of equivalent control

decisions. Note that, if Σc ⊆ Σuo then our methodology has the
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Algorithm 1 MAX-SYNT-COMPACT

Input: AEScomp
ϕ ; Output: DFA S;

1: XS ← {qAEScomp

0 }, δS ← ∅, x0,S = qAEScomp

0 ;

2: Expand(S,AEScomp
ϕ , qAEScomp

0 );

3: return S

4: function EXPAND(S,AEScomp
ϕ , q)

5: select γ ∈ Cext(q) s.t. ∀γ′ ∈ Cext(q) : γ 6⊂ γ′;

6: for all e ∈ γ do

7: if e ∈ Σo then

8: select γ′ ∈ JγK s.t. HAEScomp

1 (q, γ′, e)!
9: q′ ← HAEScomp

1 (q, γ′, e), δS ← δS ∪ {q, e, q′};

10: if q′ /∈ XS then

11: XS ← XS ∪ {q′};

12: Expand(S, AEScomp
ϕ , q′)

13: else

14: δS ← δS ∪ {q, e, q};

same worst case complexity as in [14]. Moreover, if Σc ⊆ Σo then

our methodology is only exponential in the number of states in G.

VI. EXPERIMENTAL RESULTS

A. Methodology

We implemented and compared both the original and the compact

AES methods. Moreover, we also compared the compact AES method

to the VLP-PO algorithm [6] and a standard algorithm to compute

the supremal controllable and normal sublanguage [5]. All methods

were explicitly implemented in the MDESops tool3.

We evaluated these methods based on randomly generated deter-

ministic finite automata, which were generated based on the REGAL

tool [15]. The REGAL tool generates DFAs based on parameters

n,m ∈ N+ that represent the number of states and the number of

events, respectively. We further selected parameters c, o ∈ [m] and

randomly select c controllable events and o observable events. Finally,

we randomly selected one unsafe xuns ∈ XG. Although the REGAL

tool generates a representative set of DFAs, we leave to future work

studying industrial or large scale case studies to complement the set

of experiments provided in this section.

All experiments were performed on an Intel Xeon CPU at 3.50GHz

with 64GB of RAM running Ubuntu 18.04 LTS OS and a single core

was used. Our objective is to compare our method against the original

AES methodology and other algorithms that solve Problem III.1.

B. AESϕ versus AEScomp
ϕ

We start by comparing the original AES construction versus the

compact one. First, we fix all parameters involved to generate the

random DFAs but we vary the intersection between controllable and

unobservable events, i.e., we vary Σc ∩ Σuo. This demonstrates the

potential of the compact method over the original one since the

compact method takes advantage of the equivalence classes over the

set of control decisions.

We fix the parameters as: n = 40, m = 10, c = 6, o = 6.

We generate 5 sets of samples based on the constraint |Σc ∩
Σuo| ∈ {0, 1, 2, 3, 4}, each of which consists of 100 DFAs. Table I

summarizes the results of this experiment where all AESmax
ϕ and

AEScomp
ϕ were obtained within 200 seconds. As expected, T comp

and AEScomp
ϕ have less states than Tmax and AESϕ. Moreover, the

compact structures exhibit a significant reduction in the number of

states for smaller values of |Σc ∩Σuo|. Again, this result is expected

3https://gitlab.eecs.umich.edu/M-DES-tools/desops

|Σc ∩ Σuo| 4 3 2 1 0

Tmax 221161 76635 19841 3753 567

T comp 167788 39933 6857 844 81

AESϕ 51718 22168 6217 1508 127

AES
comp
ϕ 40503 13017 2650 471 39

TABLE I: Average number of states of each structure based on 100
DFAs generated.

since the number of states in T comp is proportional to 2|Σc∩Σuo|.

We compare the empirical reduction rate between the number of

states in T comp and Tmax against the theoretical reduction rate. The

theoretical maximum reduction is defined based on the difference of

Γ and Ccomp since in the worst case both Tmax and T comp could

reach the 2XG possible state estimates. In this manner, the theoretical

normalized reduction ratio is given by:

r =
2|Σc| − (1 + |Σc ∩ Σo|)2

|Σc∩Σuo|

2|Σc|
(9)

Figure 5 compares the empirical reduction value against the theoret-

ical reduction value. Since the two curves are close to each other, it

shows that our methodology reduces the states of T comp as expected.
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Fig. 5: Empirical and theoretical normalized reduction ratios.

The first experiment demonstrates differences between the compact

and the original method but it fails to show how our methodology

will scale in comparison to the original one. For this reason, we

introduce a second experiment to compare the two methods. In this

experiment, we fix the parameter values m = 12, c = 6, o = 6 and

randomly generate 200 DFAs for n ∈ {40, 45, . . . , 100}. We do not

add any constraint with respect to the intersection Σc ∩ Σuo, i.e.,

the two sets are uniformly randomly selected. We impose a runtime

limit of 120 seconds such that we can compare the completion

rates of each method. The 120 seconds value is selected based on

the runtime of our implementation. These rates are defined as the

ratio of completed AES construction under 120 seconds for each

n ∈ {40, 45, . . . , 100}. These completion rates are summarized in

Fig. 6. As expected, the compact method outperforms the original

since it completes at least the same number of problem instances

as the original method. We reiterate that our tool is a prototype

implementation, and is not optimized for speed.

C. AEScomp
ϕ versus standard algorithms

In this section, we design an experiment to compare different

algorithms that compute solutions for Problem III.1 against our

compact AES method. As mentioned in Example II.1, Problem III.1

might admit several solutions. For this reason, we focus on the case

where the existence of a unique solution is guaranteed, i.e., we

assume that Σc ⊆ Σo which guarantees the existence of the supremal
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Fig. 6: Completion rates for construction of AESmax and AEScomp

within 120 seconds

controllable and observable sublanguage of a given specification. We

compare the compact AES method against the VLP-PO algorithm

described in [6] and the algorithm to find the supremal controllable

and normal sublanguage (SupCN) described in [5]. This comparison

is possible since these three algorithms generate the same unique

solution. It is important to remark that while the VLP-PO algorithm

solves Problem III.1, the SupCN algorithm only solves Problem III.1

under the assumption that Σc ⊆ Σo.

In this experiment, we fix the parameter values m = 12, c = 8, o =
9, and randomly generate 200 DFAs for each n ∈ {80, 90, . . . , 230}
such that Σc ⊆ Σo. We impose a runtime limit of 30 seconds

such that we can compare the completion ratio of each method.

Again, this runtime limit is selected based on the time to run these

algorithms in the MDESops tool. These ratios are defined as the

ratio of successfully extracting a supervisor under 30 seconds for

each n ∈ {80, 90, . . . , 230}, e.g., after running Algorithm 1 in the

case of the AES method. These ratios are summarized in Fig. 7.

As expected, the compact AES method is equivalent to the VLP-

PO algorithm since both have a worst-case runtime exponential

in the number of states when Σc ⊆ Σo. Their completion rate

difference in Fig. 7 is due to the different way each algorithm obtains

the solution. The SupCN algorithm performs badly since it has a

computationally expensive preprocessing phase. This preprocessing

involves the refinement of G so that it satisfies the State-Partition

property, see [5], [16]. Nevertheless, SupCN can be used with non-

blockingness properties while VLP-PO and the AES cannot.

Regarding the case when Σc 6⊆ Σo, we do not compare the

VLP-PO algorithm against the compact AES method since VLP-PO

greedily searches for one supervisor while the AES method obtains

all possible property-enforcing supervisors. Therefore, the VLP-PO

algorithm outperforms the compact AES method as the VLP-PO has

a better worst-case runtime than the compact AES when Σc 6⊆ Σo.
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Fig. 7: Completion rates for supervisor construction with AEScomp,

VLP-PO, and SupCN within 30 seconds

VII. CONCLUSION

We considered the problem of synthesizing state-based property-

enforcing supervisors for partially-observed discrete-event systems.

We introduced the compact AES which preserves the same prop-

erties as the original AES [14]. Moreover, the compact AES is, in

general, computationally more efficient than its original version. We

also presented an empirical comparison between both methods that

confirms the benefits of the compact AES. In the future, we would

like to investigate if the compact method can be used for properties

other than state-based properties, e.g., [17]–[19].
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