A compact and uniform approach for synthesizing state-based
property-enforcing supervisors for discrete-event systems

Romulo Meira-Gées, Jack Weitze, Stéphane Lafortune

Abstract—In this paper, we are interested in the problem of synthe-
sizing a partial-observation supervisor for a discrete-event system such
that it enforces a desired property. We introduce a compact and uniform
approach to the problem of synthesizing state-based property-enforcing
supervisors. A state-based property is a property that only depends on the
current estimate of the past behavior of the system and does not depend on
its future behavior. Previous work has introduced a uniform methodology
to solve this problem through the construction of a finite structure called
the All Enforcement Structure (AES) which captures a game between
the supervisor and the environment. Although the AES is a powerful
structure that includes all possible property-enforcing supervisors, its
construction is computationally challenging since the number of states
grows exponentially in the number of states and the number of events of
the system. Our contribution is the definition of a compact AES that is
equivalent to but computationally more efficient than the original AES.
Specifically, the compact AES enjoys the same properties as the original
AES with respect to synthesizing maximally permissive supervisors under
the assumption of incomparable sets of controllable and observable
events. We also provide experimental results to show the benefits of the
compact AES over the original AES.

Index Terms—Discrete-event systems, Supervisory control, Property
enforcement

I. INTRODUCTION

In the context of Discrete Event Systems (DES), an important
research issue is the problem of synthesizing a supervisor that
enforces a desired property. This problem first appeared in the seminal
work of Ramadge and Wonham in [1]. Since then different variations
of this problem have been investigated by the control engineering
community where different assumptions on the control loop or
different properties are considered. In this paper, we are interested
in the problem of synthesizing a partial observation supervisor for a
DES such that it enforces a desired property.

The properties under consideration in [1] were safety and non-
blockingness, where safety describes the desired legal behavior for the
controlled system while non-blockingness describes the condition of
always being able to achieve desired behaviors. Moreover, a maximal
permissiveness constraint is also imposed on the supervisor, i.e.,
the supervisor should allow a “maximal” controlled behavior while
enforcing the desired properties. This problem setting, termed as
the standard supervisory control problem under full observation was
solved in [1], while different solutions for the partial observation
setting were proposed, see, e.g., [2]-[8]. In the case of enforcement
of different properties than the above, different approaches have also
emerged, e.g., for diagnosability [9], opacity [10]-[13], and so forth.

A uniform approach to the problem of synthesizing property-
enforcing supervisors for a large class of properties was presented
in [14]. The class of properties investigated in [14] is referred
to as state-based properties. Intuitively, a state-based property is
a property that only depends on the current state estimate of the
system and does not depend on its future behavior. Properties such
as safety, opacity, diagnosability, and detectability are state-based
properties while non-blockingness is not a state-based property [14].

The authors are with the Department of EECS, University of Michigan,
MI 48109 USA (e-mail:{romulo,jweitze,stephane } @umich.edu). Their work
is supported in part by US NSF grants CNS-1738103 and CNS-1801342.

The approach developed in [14] is based on the construction of a finite
structure called All Enforcement Structure (AES) which captures a
game between the supervisor and the environment. Intuitively, the
AES embeds all property-enforcing supervisors and it serves as the
basis for solving the synthesis problem for state-based properties.

Although the AES is a powerful structure that includes all possible
property-enforcing supervisors, its construction is computationally
challenging since the number of its states grows exponentially in the
number of states and the number of events of the system. In this paper,
we introduce a compact AES that is equivalent and computationally
more efficient than the original AES! described in [14]. Based
on the set of unobservable events of the system, we introduce an
equivalence relation over the set of control decisions a supervisor
can select. This equivalence relation allows the construction of a
so called compact AES, which is equivalent to the original AES
for the purpose of synthesizing maximally permissive supervisors.
Specifically, the compact AES enjoys the same properties as the
original AES with respect to synthesizing maximally permissive
supervisors under the assumption of incomparable sets of controllable
and observable events, but it has a state space that is provably more
compact than that of the original AES under general conditions.

Our presentation is organized as follows. Section II introduces
necessary background on supervisory control theory. The property-
enforcing supervisory control problem is stated in Section III. We
briefly review the original AES method in Section IV. In Section V,
we present the compact AES and show its soundness and complete-
ness with respect to the property-enforcement problem. Experimental
results are presented in Section VI. Finally, we conclude the paper
in Section VIIL.

II. PRELIMINARIES

We consider a deterministic discrete transition system modeled as
a finite-state automaton. A finite-state automaton G' is defined as a
tuple G = (X¢, X, da, o,c), where X is a finite set of states; &
is a finite set of events; d¢ : X¢ X ¥ — X¢ is a partial transition
function; and xo,¢ € X¢ is the initial state.

The function d¢ is extended in the usual manner to domain
Xa x X*. The language generated by G is defined as L(G) = {s €
¥*0c (wo, s)!}, where ! means “is defined”. For z € X, we define
Eng(z) ={e € X | dc(x,e)!} as the active event set at state . For
K C ¥*, we denote by pr(K) as the set of all prefixes of strings in
K and K is said to be prefix-closed if K = pr(K).

In the context of supervisory control theory of DES [1], we
consider an uncontrolled system (plant) G that needs to be controlled
in order to satisfy given safety specifications. In order to control G,
the event set X is partitioned into two disjoint sets, which are the
set of controllable events Y. and the set of uncontrollable events
Yue. The safety specifications on G are enforced by a supervisor,
denoted by S, that dynamically enables/disables controllable events.
The resulting controlled behavior is a new DES denoted by S/G,
resulting in the closed-loop language L£(S/G), defined in the usual
manner (see, e.g., [7], [8]).

'We will use the term “original” AES to denote the AES described in [14].

In addition, when the system is partially observed due to the limited
sensing capabilities of (G, the event set is also partitioned into ¥ =
Yo U 2o, where X, is the set of observable events and Y., is
the set of unobservable events. Based on this second partition, the
projection function P, : ¥* — X7 is recursively defined as: P, (¢) =
€, Py(se) = P,(s)e if e € ¥, and P,(se) = P,(s) otherwise. The
inverse projection P, ' : $% — 27 is defined as P, '(t) = {s €
S|Py (s) =t}

Supervisor S makes its control decisions based on a string of
observable events. Formally, a partial-observation supervisor is a (par-
tial) function S : P,(L(G)) — T, where T’ = {y € 2% : &, C ~}.
The set of all supervisors S : P,(L(G)) — T is denoted by S.

We also recall the notions of controllability and observability for
a prefix-closed language K C L£(G). We say that the language K is

o controllable w.r.t. 3, if KX, NL(G) C K;
o observable w.rt. ¥, and Y., if (Vs € K,Ve € Y. : se €
K)[P; Y (P,(s))en L(G) C K.

Let CO(K) be the collection of all prefix-closed controllable
and observable sublanguages of K w.rt. G, 3. and Y,. Formally,
COK)={K' CL(G) | K' =pr(K') C K s.t. K’ is controllable
and observable w.r.t. (3¢,3,)}. There does not exist in general a
supremal element in CO(K) [7]. Moreover, there exists a supervisor
S for any L € CO(K) \ {0} such that £(S/G) = L.

Example II.1. Consider the system G depicted in Fig. 1(a). Let
K = L(Ac(G,{6})) be the language specification that a supervised
system must enforce, where Ac(G, X) denotes the operation that
returns the accessible subautomaton of G after deleting states X C
X¢g. The two automata shown in Fig. 1(b) and Fig. 1(c) belong to
CO(K).

(©) G2

Fig. 1: System G: X = {o1,02,a}, Xo = {01,02}, and Xyns =
{6}. Dashed lines in G1 and G2 are events disabled by a supervisor.

We complete this section by defining useful notation for strings.
The transition function d¢ is extended to set of states X C X as
da(X,e) = Uzex{dc(x,e)} where dc(x,e) = 0 if 5 (z,e) is not
defined. The unobservable reach of a set of states X C X under
the subset of events v C I' is given by:

UR,(X)= |

SE(XuoNy)*

6a(X,s) €y

Given L C L(G), the set of all possible states in G reachable from
its initial state via a string with the same projection as s € L is given
by:

Rea(s,L)= | {da(zoa,t)} (@)
teL:
Po(s)=Po(t)
Lastly, for any string s € X", |s| denotes the length of s. We define

s' to be the i™ prefix of s where s° = e.

III. PROPERTY-ENFORCING PROBLEM

In general, a language-based property over events X is defined as
a function ¢ : 2% — {0,1}, where L C X* satisfies the property

if (L) = 1. Safety is a classical property example that can be
specified as a language-based property. Given a specification language
K C ¥, the safety property is defined as ¢(L) = 1 if and only if
LCK.

Although language-based properties encompass a large class of
properties in DES, it may not be possible to bound a priori the
memory needed for their verification. To simplify our problem
formulation, we investigate a particular class of properties called
state-based properties. State-based properties are not as general as
language-based ones. However, many important properties in the DES
literature can be expressed as state-based properties provided that
state space refinement of the system may be needed [14]. Safety,
diagnosability, and opacity are expressible as state-based properties
as described in [14]. Formally, state-based properties are defined as
follows.

Definition IIL.1. (Def. II1.2 in [14]) A state-based property ¢ w.r.t. G
is a function ¢ : 2X¢ — {0,1}. A sublanguage L C £(G) satisfies
¢ if Vs € L: ¢(Rea(s,L)) = 1.

Example I11.2. In Example II.1, the supervisor must enforce a safety
property over the supervised system, i.e., to not reach state 6. The
property ¢ defined for X C X¢ as ¢(X) = 1 if and only if {6} N
X = captures this safety property. In general, a safety property
over G is defined as ¢(X) = 1 if and only if Xyuns N X =), where
X C X and X,,s € X is a set of unsafe states that must not be
reached.

We are now ready to present the maximally permissive state-based
property-enforcement problem (MPSEP).

Problem IIL.1. Given system (G and state-based property ¢ with
respect to (7, synthesize a supervisor S € S such that

(1) L(S/G) satisfies ¢;

(2) For any S’ € S satisfying (1), we have L(S/G) ¢ L(S'/G)

Remark 111.1. In [14], the MPSEP includes an additional liveness
constraint in the problem formulation. For simplicity and without loss
of generality, we relax this constraint from our problem formulation
since our method can be easily extended to include this constraint.

IV. ALL ENFORCEMENT STRUCTURE

In [14], a uniform approach for synthesizing state-based property-
enforcing supervisors for partially-observed DES is presented. Their
method constructs a finite bipartite transition system (BTS), called
All Enforcement Structure (AES), which embeds all admissible
supervisors that enforce a desired state-based property. We review
the concept of BTS and the construction of the AES as in [14].

Intuitively, a BTS is a bipartite graph where its nodes are divided
into two disjoint sets. In a BTS, node types represent the two entities
in the supervisory control framework, i.e., one node type represents
a supervisor S while the other node type represents the plant G.

Definition IV.2. Given the system G and a set of control patterns
C C T, the bipartite transition system B is defined by B =
(QlB7 Q2B7 h1B7 h2B7 E? C7 qOB)z’ Where

. QlB - 2%¢ ig the set of player 1 states;

e QF C 2%¢ x (C is the set of player 2 states, I(g) and
I'(¢) denote, respectively, the projection to the first and second
components of ¢ € Q3 ;

e hP: QP xC — QF is a partial transition function over C' that
satisfies:

h (q,7)! = 1t (g,7) = (UR4(q),7) 3)

2We drop the superscript B whenever B is clear from the context.

e W2 QF x ¥, — QF is the transition function defined as:

hB(ge) = { dcUla)e) if e € lg) N Ena(I(g))
2\% undefined otherwise

“

o ¢F = {z0c} € QP is the initial state;
The BTS B is the largest BTS with respect to C' if h¥ is complete
at every reachable state in Q. We use 7 to denote the largest BTS
with respect to C'. By convention, the sets Q¥ and QZ are defined to
be the accessible states from the initial state and following Eqgs. (3-4).

Each element in ()1 represents the current state estimate of G. In
state ¢ € Q1, player 1 selects a control decision in C' and transitions
to a state in (2. In state ¢ € @2, player 2 selects an observable event
to occur within the set of enabled events I'(¢) and transitions back to
a ()1 state. Therefore, the BTS B exactly simulates the supervisory
control framework.

Remark IV.2. For convenience, the transition function hT is com-
plete with respect to C' in the definition of 7'. Such definition
improves the clarity of our proofs. However, the definition of A7 can
be further constrained based on the active events of the state estimate
q € QT i.e., complete only for v € C such that v C Eng(q)UZe.

To formalize that 1" enumerates all possible interactions between
supervisors and corresponding event observations of G, we extend
hP as HE to be a transition function from QF to QF states. The
function HEZ : QF x C x £, — Q¥ is defined as:

HP(q,7,€) = h5 (hi(q,7),€))

This function can be extended to string se € X33, and control deci-
sions 7o .. .7|s| in a recursive manner, i.e., HP(¢,7 ... Vsl 5€) =
HlB(HlB(qyfyo < Ys|—1s 8)77\3\7 6). Next, we define CB(q) = {’Y €
I' | hP(q,7)!} to be the set of control decisions defined at ¢ € QF.

Definition IV.3. A supervisor S € S is said to be included in B
if for any string s € P,(L(S/G)), its control decision S(s) is
defined at the state ¢ € Q¥ reached by string s and control decisions
S(s°)...S(s*1=1). Formally,

S(s) € Co(H (a5, S(s°) ... S(s"*I71), s))

Vs € P,(L(S/G))). S(B) denotes the set of all supervisors included
in B.

Definition IV.3 states that for every string in the supervised system,
its control decision is defined at the QP state reached via this
string and its intermediate control decisions. Based on Def. IV.3,
we can state that any supervisor for system (, control patterns C
and observable events X, is included in 7.

Lemma IV.1. Any supervisor S : Po(L£(G)) — C is included in
S(T).

The result of Lemma IV.1 is intuitive since Cr(q) = C for any
state ¢ € QT and hZ is defined for every feasible observable event.
Nonetheless, it is based on Lemma IV.1 that the following results are
possible.

In [14], the construction of the AES for a given property
¢ is done in two steps [Alg. 1 in [14]]. First, the largest
BTS T is constructed with respect to C' = T. Let 7™ =
(QT™, Q"™ A", hy'™* X, T, ¢5'™*) denote the largest BTS with
respect to I'. The second step is to prune 7™ in order to only
obtain control decisions that satisfy ¢, i.e., we remove supervisors
that violate property . This pruning process can be posed as a fully
observed supervisory control problem over 7™, where 7™ is
considered as an automaton.

Definition IV.4. Consider 7™ with E,. = X, U {3} as the set
of uncontrollable events. Let K = L(Ac(T™**, M)) where M =
{a € QT | wla) = 0} U{q € Q" | ¢(I(q)) = 0} be the
specification over T™*. The All Enforcement Structure AES, is
defined as the subautomaton of 7™ representation of the supremal
controllable sublanguage of K w.r.t. E,. and T™*.

We consider 7™ as a meta-system with all control decisions,
with the exception of control decision X, to be controllable events.
The control decision ¥, is considered to be uncontrollable since the
supervisor should always be able to enable the uncontrollable events.
The specification is given based on ¢ since it removes states in 7"
that violate the property ¢. It follows that AES,, is a subautomaton
of T™**, which implies that AES, is also a BTS.

Example IV.3. We return to system G in Fig. 1(a) with the state-
based property defined in Example IIL.2. The BTS 7™ is depicted
in Fig. 2. For convenience, we omit the deadlock states ({5},), for
~ € T, reached by the gray transitions defined in state {5}. AES,
is obtained by removing states marked by a red cross and the dashed
transitions.

Fig. 2: Example of the construction of 7™ and AFES,. In the
diagram, rectangular states correspond to states in Q7'** and oval
states correspond to states in QQ5'**. For simplicity, A and B represent
state estimates, i.e., A = {0,1,3} and B = {0, 1,2, 3,4}; and we
omit all uncontrollable events in the control decisions, e.g., decision
{} represents {b, c}.

To conclude this section, we restate a theorem from [14] that states
that AE'S, contains all supervisors that satisfy property ¢.

Theorem IV.1. (Theorem V.1. [14]) A supervisor S € S enforces
a state-based property ¢ with respect to GG if and only if S €
S(AES,).

V. COMPACT ALL ENFORCEMENT STRUCTURE

To obtain AES,, we must construct 7™ which takes into
account all possible control decisions in I'. The set I' grows expo-
nentially in the number of controllable events, i.e., |I'| = |2¥¢|. This
exponential growth implies that the number of player 2 states in 7™
grows exponentially in the number of controllable events. Therefore,
the construction and the manipulation of 7" is computationally
expensive.

In this section, we provide a sound, complete and computationally
more efficient method for synthesizing property-enforcing supervisors
for partially-observed DES. Namely, we construct a compact AES,,
from which every supervisor that enforces property ¢ can be ex-
tracted. Our method is based on the original AES,, but it eliminates
recoverable information in its construction method.

A. Control decision equivalence classes
In the largest BTS 7', the transition function hf is defined for

every control decision in C. In the case of 7%, h"** is defined
for every control decision in I'. Once player 1 selects a control

max

decision v € I' in state ¢ € Q7"™, it transitions to a player 2
state by performing an unobservable reach computation based on
the selected control decision and recording this control decision, i.e.,
h1'*(q,7) = (UR-(q),7)-

The unobservable reach function depends on the set of unobserv-
able events in the selected v € I'. For this reason, we define an
equivalence relation on I' based on X,,. Formally, R C I' x I' is
defined as:

R = {(’Y1772) | 71 N Z’MO =2 n z:uo} (6)

It can be shown that R is indeed an equivalence relation. For any
v € T, let [7] denote the equivalence class of v, i.e., [v] = {7 €
I'|(v,7) € R}.

Since the unobservable reach depends on the set of enabled
unobservable events, we can state a property of the unobservable
reach operation based on the equivalence classes of I'. For a given
set of G states X C X, control decisions in the same equivalence
class produce the same unobservable reach of X. Formally, we have
the following proposition.

Proposition V.1. Let v € T" and X C Xg, for any v* € [y] we
have that UR-(X) = URy+ (X) = URsns,, (X).

Proof. The proof follows from the definition of the unobservable
reach. O

Proposition V.1 hints that there exists recoverable information in
max

the construction of 7"**. Namely, there might be states in Q3

that hold information that can be retrieved from other Q35'®* states.

B. Compact bipartite transition system

Proposition V.1 is the key property used to obtain a BTS that is a
compact version of 7"**. In order to construct this compact BTS, we
restrict the set of control decisions based on the equivalence classes
of I'.

Using 7™ of Example IV.3, we illustrate the above discussion.
Figure 3 shows part of 7" of our running example. Starting from
g = {0}, player 1 can select one of the three defined control
decisions. Since these three control decisions belong to the same
equivalence class, Proposition V.1 guarantees that URy,, o1(q) =
UR{027¢1}(q) = UR{01,02,¢1} (Q) =B = {07 1,2,3, 4}'

Fig. 3: States with recoverable information in 7™**

Next, player 2 selects one observable event allowed by the current
control decision from each of the Q3™ states defined in Fig. 3.
Since there are only two observable events and the unobservable
reaches are identical, the (3" states can only transition to two
distinct Q7™ states. The possible states are states {5} and {5,6}
as depicted in Fig. 3. If we remove player 2 state (B, {o1,02,a})
from @Q3'**, we would not remove any state-based information since
B =1{0,1,2,3,4} and both {5}, {5,6} would remain in the struc-
ture. Therefore, the information about player 2 state (B, {o1,02,a})
can be retrieved from the remaining states. This implies that h; can
be defined for control decisions {01, a} and {02, a} in state {0}.

In the above illustrative discussion, since the state-based informa-
tion about {01, 02,a} is retrievable from {o1,a} and {02, a}, defin-
ing h1 only for control decisions {01, a} and {02, a} is sufficient. We

ext

define the function C'g*" that finds all retrievable control decisions
of a player 1 state in BTS B. Formally,

CE'q)={yer|@ICPhnCs@)h= U} O
y*el

In words, v belongs to Cg"*(q) if it can be reconstructed via the

union of control decisions in the same equivalence class defined in
state g.

Remark V.3. In Figure 3, defining hq only for {01, 02, a} also obtains
the entire state-based information for this example, i.e., states B =
{0,1,2,3,4}, {5}, {5,6} are going to be defined. However, it is
difficult to retrieve the information about {o1,a} and {o02,a} from
{01, 02,a}. Namely, it is simpler to assess the safety of the union of
two safe control decisions in the same equivalence class.

If we construct a BTS 7°°™? such that it is possible to retrieve
every possible control decision from each Q7’7" state, then this
constructed 7°°™? will have the same information as 7"™**. In other
words, we must have C§%5mp (q) = T for any ¢ € Q5°™". To obtain
this result, we define the set of all control decisions with at most one
controllable and observable event as:

Ccomp — {,Y = T | |fy @l Eo M EC| S {07 1}} (8)

Let 7°°™P denote the largest BTS constructed based on C“°™P.
Based on the above discussion, we have the following proposition.

Proposition V.2. Given T™** and T°°™?, then:

(1) (Vg € QY"™)[Ceoms (q) =T:
(2) ernax _ ;omp;
(3) (Vg € Q3™)(3q" € Q3"")[I(a) = 1(¢")].

Proof. (1) Let v € I" and let obs = v N 3, N X.. By definition of
Ce™P_ for any o € obs there exists 7, € C°°P N [v] such that
0 € 7. It follows that v = Upcobsyo. By definition of CF** and of
RSO™P |y € C5Ebmp () for any ¢ € Q7P

(2) By the definition of 7', it is clear that Q7°™" C QT*** since
Cce™P C T. The second inclusion follows from (1) and the
construction of C'“°™P.

(3) It follows from (2) and C°°"P, O

Proposition V.2 states that 7°°™"? has the same state-based infor-
mation as 7%, It remains to be proven that 7°°""? also has the
same set of included supervisors as 7.

Example V4. We return to our running example to show 7°°™?
and compare it with 7""**. First, we obtain the set C“°"P
{{},{a},{o1},{02},{01,a},{o02,a}} as our compact control de-
cision set. Based on C°°™P T™P is constructed and is de-
picted in Fig. 4. As we expected, T°°"? has fewer states than
T ie., states (A, {o1,02}), (B, {o1,02,a}), ({5}, {o1,02}), and
({5},{01,02,a}) are not defined in 7°°"*P. For convenience, we
omit the deadlock states ({5}, ~), for v € C°™P, reached by the
gray transitions defined in state {5}.

{01»0\}\\

{02} o9, a} 0'1

Fig. 4: Example of the construction of 7°°*” and AESZ’™”. For
simplicity, A and B represent state estimates, i.e., A = {0,1,3}
and B = {0,1,2,3,4}. AESZ™? is obtained by removing states
marked by a red cross and dashed transitions.

According to Lemma IV.1, every supervisor for GG is included
in S(T™*). Although every supervisor S : P,(L(G)) — C™P
is included in S(T°°°™P), it is not true that every supervisor S :
P,(L(G)) — T is included in S(T°°°™?). This issue is resolved by
extending the definition of supervisor inclusion in B based on the

ext

definition of C3™".

Definition V.5. A supervisor S € S is said to be included-by-
extension in B if (Vs € Po(L(S/G)))3v: € [S(sH]) (Vi €
{0,....1s| — 1D[S(s) € CF(HF (g0, e-1,9))]- Let
S°“*(B) be the set of all supervisors included-by-extension in B.

Definition V.5 states that a supervisor is included-by-extension in
B if for every string in the supervised system, its control decision
is retrievable in the state reached via this string and intermediate
equivalent control decisions. It follows that every supervisor for G is
included-by-extension in 7°°""P. This statement is formally written
in the following lemma.

Proposition V.3. S € S if and only if S € S« (T°°™P).
Proof. Tt follows from Prop. V.2 and the definition of S°**. O

C. Compact all enforcement structure

As in the definition of AES,, denoted hereafter as the original
AES, we must prune 7°°™" in order to eliminate states that violate
a given property ¢. The pruning process is exactly the same as the
one in Definition IV.4 since the state spaces of 7°°""P and T™**
are equivalent. Nevertheless, we repeat Definition IV.4 to explicitly

differentiate the AES obtained via 7™ from the one obtained from
eomp.

Definition V.6. Consider 7°°™? with E,. = ¥, U {Xuc} as the
set of controllable events. Let K = L(Ac(T™?, M)) where M =
{g€ Q™ | wlg) = 0} U{g € Q™ | ¢(I(g)) = 0} be the
specification. The Compact All Enforcement Structure AESZ™? is
defined as the subautomaton of 7°°°"*? representation of the supremal
controllable sublanguage of K w.r.t. F,. and T°°™P.

Similarly to Definition IV.4, we consider T°°""? as a meta-system
with all control decisions, with the exception of control decision X,
to be controllable events.

Example V.5. Back to our running example, Figure 4 depicts
T°°™P for system G. Considering the state-based property defined
in Example IV.3, we obtain AESZ"™" following Definition V.6.
The pruning procedure starts with 7°°*? and eliminates state {5, 6}
since it violates ¢. Next, it prunes state (B, {o1,a}) since it violates
controllability. The procedure converges and AESZ’™P is depicted
in Fig. 4 by states not marked by a red cross and the solid transitions.
Note that, AESZ™?P has three fewer states than AES,,.

Intuitively, AESZ™?P includes(-by-extension) the same supervi-
sors as AES, since every state-based information in 7™ is in
T°°™P and every control decision in I' is retrievable in every player
1 state of T°°""P. Therefore, the pruning of 7°°"*? only prunes the
control decisions that violate the desired property. This statement is
formally presented in the following theorem.

Theorem V.2. A supervisor S € S enforces a state-based property
¢ with respect to G if and only if S € S“'(AESL™P).

Proof. For notational purposes, we use C(q) := Cags,(q) and
C'(q) = CZmEtS;omp(q). Intuitively, the proof shows that every
control decision defined in any player 1 state of AE'S,, is retrievable

from the same state in AESS™?, ie., C(q) = C**(g) for any

AES AESZoMP
qgeQ, *=Q, * .

Firstc,miLtp follows from Prop. V.2, and Defs. IV.4 and V.6 that

?Es”’ = QfES“’. Thus, we just need to show that C(q) =
C***(q) for any ¢ € QfES*’. After that the result follows from
Theorem IV.1.

We show that C(q) = C***(q) in four steps.

Step 0: If v € C(q), then v' € C(q) for any v' C v and +' €
[Y] N €™, This follows from the pruning process of 7""**. Any
Q1 state reached from g after v and e € yN 3, is also reached via a
~" and e in T™**. Since ~ survives the pruning, then +' also remains
in AES,, since the future Q1 states reached from ¢ after o' are a
subset of the future states reached after ~.

Step 1: Given two control decisions 71, 72 in the same equivalence
class. If v1,72 € C(q), then v1 U~2 € C(g). This can be proven
similarly as Step 0. Every future state reached after 1 or 2 can
also be reached after 1 U 2. Since both v, and 2 remained after
the pruning, then 1 U 72 is not pruned.

Step 2: A control decision 7 in C°°™? is in C(q) if and only if ~
is in C°**(q). It follows from T°°™*” being a subautomaton of 7™**
and the pruning process.

Step 3: A control decision « belongs to C(q) if and only if ~
is in C““*(q). From Step 2, we only need to show this result for
yel\Comr,

Only if: Assume v € C(q). From Step 0, it follows that 31 €
[v] N €™ such that I C C(g) and v = U.s<~'. From Step 2, we
have that I C C***(¢) and v € C*"*(q).

If: Assume v € C**(gq). By definition of C***(gq), 31 € [y] N
C™ such that I C C*'(q) and v = U,r¢;7'. From Step 2,
I C C(q). Finally, Step 1 provides that the union of the elements of
I is also an element of C(q), i.e., v € C(q).

This concludes our proof. O

Theorem V.2 states that AESZ”™" has the same information as
AES,, i.e., it encodes all property enforcing supervisors. Therefore,
our methodology of obtaining all property-enforcing supervisors for
system G is sound and complete. Moreover, it is more efficient than
the methodology presented in [14]. In Section VI, we compare the
scalability of the two methods.

D. Synthesis of maximally permissive supervisors

Given a state-based property, Theorem V.2 provides a solution
space from where property-enforcing supervisors can be extracted.
Here, we present a synthesis algorithm for constructing a supervisor S
realized with finite memory that solves Problem IIL.1. This algorithm
is based on the MAX-SYNT algorithm presented in [14]. However,
we modify the algorithm in order to retrieve control decisions that are
not defined in AESZ™?, ie., cext comp. This algorithm starts from

AES
g\ “"" and in a Depth-First Search manner traverses player 1

and player 2 states. In player 1 states it selects a locally maximal
control decision while in player 2 states it explores all possible
observations. Both player 1 and player 2 states are only visited once.
This procedure is described in Algorithm 1. The correctness of this
algorithm follows from the correctness of the Algorithm MAX-SYNT
in [14]. For notational purposes, we use C*“*(q) := Cfcbfséomp(q).

Remark V.4. The worst-case running time of the entire procedure
is O(221Xc1+2=eNZuol) The methodology presented in [14] has a
worst-case running time of O(221%X¢|+2I=<ly " Although this exponen-
tial complexity in the number of states of GG seems to be unavoidable
[3], the exponential complexity in the number of events might be
reducible. In this paper, we were able to reduce this complexity from
2l=el o 2IFeM=uol by exploiting the classes of equivalent control
decisions. Note that, if ¥. C ¥,, then our methodology has the

Algorithm 1 MAX-SYNT-COMPACT [[ZenZuwl | 4 3 2 [1 [o]
T e

1: Xg + {q(')qucomp}, 0s <+ 0, To,s = q(')qucomp;

2 Expand(S, AES;OMP, qéEscomP); AECS;fn 51718 22168 6217 1508 127

3. return S AES, P 40503 13017 2650 471 39

4: function EXPAND(S, AESZ"™?, q) TABLE I: Average number of states of each structure based on 100
5: select v € C**(q) s.t. VY € C™(q) : v £ '3 DFAs generated.

6: for all e € v do

7: if e € ¥, then .

’ com /

8 S?leCt ,YA%S[[ZLE'L HfES (@7, ¢)! , since the number of states in 7T°°"*" is proportional to 2/>¢M>uel,

o a <,_ i (2,7'5€). 0s = ds U{g,e.0'}: We compare the empirical reduction rate between the number of
10: if ¢’ ¢ Xs then , states in 7°°""? and T™** against the theoretical reduction rate. The
H: Xs = Xg U {qc}o;mp , theoretical maximum reduction is defined based on the difference of
12: Expand(S, AESZ™, ') T and C°°™? since in the worst case both 7™ and T°°""? could
13: else reach the 26 possible state estimates. In this manner, the theoretical
14: s + 6s U{q,e,q}; normalized reduction ratio is given by:

same worst case complexity as in [14]. Moreover, if 3. C 3, then
our methodology is only exponential in the number of states in G.

VI. EXPERIMENTAL RESULTS
A. Methodology

We implemented and compared both the original and the compact
AES methods. Moreover, we also compared the compact AES method
to the VLP-PO algorithm [6] and a standard algorithm to compute
the supremal controllable and normal sublanguage [5]. All methods
were explicitly implemented in the MDESops tool®.

We evaluated these methods based on randomly generated deter-
ministic finite automata, which were generated based on the REGAL
tool [15]. The REGAL tool generates DFAs based on parameters
n,m € Ny that represent the number of states and the number of
events, respectively. We further selected parameters ¢, o0 € [m] and
randomly select ¢ controllable events and o observable events. Finally,
we randomly selected one unsafe z.,s € X¢g. Although the REGAL
tool generates a representative set of DFAs, we leave to future work
studying industrial or large scale case studies to complement the set
of experiments provided in this section.

All experiments were performed on an Intel Xeon CPU at 3.50GHz
with 64GB of RAM running Ubuntu 18.04 LTS OS and a single core
was used. Our objective is to compare our method against the original
AES methodology and other algorithms that solve Problem IIL1.

B. AES, versus AESZ™?

We start by comparing the original AE'S construction versus the
compact one. First, we fix all parameters involved to generate the
random DFAs but we vary the intersection between controllable and
unobservable events, i.e., we vary 2. N X,,. This demonstrates the
potential of the compact method over the original one since the
compact method takes advantage of the equivalence classes over the
set of control decisions.

We fix the parameters as: n = 40, m = 10, ¢ = 6, o = 6.
We generate 5 sets of samples based on the constraint |X. N
Yuol € {0,1,2,3,4}, each of which consists of 100 DFAs. Table I
summarizes the results of this experiment where all AESZ** and
AESZ™P were obtained within 200 seconds. As expected, 17°“°™”
and AESS’™P have less states than 7 and AES,,. Moreover, the
compact structures exhibit a significant reduction in the number of
states for smaller values of |X. N Xy0|. Again, this result is expected

3https://gitlab.eecs.umich.edu/M-DES-tools/desops

_ 2‘20‘ _ (1 + |Zc N EO|)2‘EcﬁEuo‘
"= 21zcl

(C)]

Figure 5 compares the empirical reduction value against the theoret-
ical reduction value. Since the two curves are close to each other, it
shows that our methodology reduces the states of 7°°™" as expected.

.
=Theoretical
--Empirical
o
5075 B
c
S
°
3 05
o
e
[
N
®0.25
£
o
z
0 , , ,
0 1 2 3 4
blaN)
c uo

Fig. 5: Empirical and theoretical normalized reduction ratios.

The first experiment demonstrates differences between the compact
and the original method but it fails to show how our methodology
will scale in comparison to the original one. For this reason, we
introduce a second experiment to compare the two methods. In this
experiment, we fix the parameter values m = 12, ¢ = 6, o = 6 and
randomly generate 200 DFAs for n € {40,45,...,100}. We do not
add any constraint with respect to the intersection . N Xy, i.e.,
the two sets are uniformly randomly selected. We impose a runtime
limit of 120 seconds such that we can compare the completion
rates of each method. The 120 seconds value is selected based on
the runtime of our implementation. These rates are defined as the
ratio of completed AES construction under 120 seconds for each
n € {40,45,...,100}. These completion rates are summarized in
Fig. 6. As expected, the compact method outperforms the original
since it completes at least the same number of problem instances
as the original method. We reiterate that our tool is a prototype
implementation, and is not optimized for speed.

C. AESZ™P versus standard algorithms

In this section, we design an experiment to compare different
algorithms that compute solutions for Problem IIL.1 against our
compact AES method. As mentioned in Example II.1, Problem III.1
might admit several solutions. For this reason, we focus on the case
where the existence of a unique solution is guaranteed, i.e., we
assume that . C 3, which guarantees the existence of the supremal

e -~-Max. completion ratio
el e . Comp. completion ratio
20757 T T
8 S .
s T - -
S 05¢ aerer
° -
=3 .
E o5l T .
§o025 .
0 ‘ ‘ ‘ ‘ ‘ ‘
40 50 60 70 80 90 100
Xgl

Fig. 6: Completion rates for construction of AES™** and AES“™P
within 120 seconds

controllable and observable sublanguage of a given specification. We
compare the compact AES method against the VLP-PO algorithm
described in [6] and the algorithm to find the supremal controllable
and normal sublanguage (SupCN) described in [5]. This comparison
is possible since these three algorithms generate the same unique
solution. It is important to remark that while the VLP-PO algorithm
solves Problem III.1, the SupCN algorithm only solves Problem III.1
under the assumption that 3. C ¥,.

In this experiment, we fix the parameter values m = 12, c = 8,0 =
9, and randomly generate 200 DFAs for each n € {80, 90, ...,230}
such that . C X,. We impose a runtime limit of 30 seconds
such that we can compare the completion ratio of each method.
Again, this runtime limit is selected based on the time to run these
algorithms in the MDESops tool. These ratios are defined as the
ratio of successfully extracting a supervisor under 30 seconds for
each n € {80,90,...,230}, e.g., after running Algorithm 1 in the
case of the AES method. These ratios are summarized in Fig. 7.

As expected, the compact AES method is equivalent to the VLP-
PO algorithm since both have a worst-case runtime exponential
in the number of states when ¥. C X,. Their completion rate
difference in Fig. 7 is due to the different way each algorithm obtains
the solution. The SupCN algorithm performs badly since it has a
computationally expensive preprocessing phase. This preprocessing
involves the refinement of G so that it satisfies the State-Partition
property, see [5], [16]. Nevertheless, SupCN can be used with non-
blockingness properties while VLP-PO and the AES cannot.

Regarding the case when ¥. ¢ 3,, we do not compare the
VLP-PO algorithm against the compact AES method since VLP-PO
greedily searches for one supervisor while the AES method obtains
all possible property-enforcing supervisors. Therefore, the VLP-PO
algorithm outperforms the compact AES method as the VLP-PO has
a better worst-case runtime than the compact AES when . & 3,

1
- AESCOMP
~-VLP-PO
o075 - SupCN
8
c
S 05
k5
[%
5
38 0.25
ol
80 100 120 140 160 180 200 220
Xgl

Fig. 7: Completion rates for supervisor construction with AFES“"P,
VLP-PO, and SupCN within 30 seconds

VII. CONCLUSION

We considered the problem of synthesizing state-based property-
enforcing supervisors for partially-observed discrete-event systems.
We introduced the compact AES which preserves the same prop-
erties as the original AES [14]. Moreover, the compact AES is, in
general, computationally more efficient than its original version. We
also presented an empirical comparison between both methods that
confirms the benefits of the compact AES. In the future, we would
like to investigate if the compact method can be used for properties
other than state-based properties, e.g., [17]-[19].

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp.
206-230, Jan. 1987.

R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory

control of discrete-event processes with partial observations,” IEEE

Transactions on Automatic Control, vol. 33, no. 3, pp. 249-260, March

1988.

J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”

in 26th IEEE Conference on Decision and Control, vol. 26, 1987, pp.

419-422.

F. Lin and W. Wonham, “On observability of discrete-event systems,”

Information Sciences, vol. 44, no. 3, pp. 173 — 198, 1988.

[5] H. Cho and S. I. Marcus, “On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with partial
observation,” Mathematics of Control, Signals and Systems, vol. 2, no. 1,
pp. 47-69, 1989.

[6] N. B. Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies
under partial observation,” Discrete Event Dynamic Systems, vol. 6,
no. 4, pp. 379-427, Oct 1996.

[7] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2008.

[8] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems. Springer International Publishing, 2018.

[91 M. Sampath, S. Lafortune, and D. Teneketzis, “Active diagnosis of
discrete-event systems,” [EEE Transactions on Automatic Control,
vol. 43, no. 7, pp. 908-929, 1998.

[10] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” Discrete Event Dynamic Systems,
vol. 17, no. 4, p. 425446, Dec. 2007.

[11] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089-1100, 2010.

[12] M. Ben-Kalefa and F. Lin, “Supervisory control for opacity of discrete
event systems,” in 2011 49th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), 2011, pp. 1113-1119.

[13] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Transactions on Automatic
Control, vol. 57, no. 5, pp. 1155-1165, 2012.

[14] X.Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,”
IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2140-2154,
Aug 2016.

[15] F. Bassino, J. David, and C. Nicaud, “Regal: A library to randomly and
exhaustively generate automata,” in Implementation and Application of
Automata, Berlin, Heidelberg, 2007, pp. 303-305.

[16] G. Jirdskova and T. Masopust, “On properties and state complexity of
deterministic state-partition automata,” in Theoretical Computer Science,
Berlin, Heidelberg, 2012, pp. 164-178.

[17] X.Yin and S. Lafortune, “Synthesis of maximally-permissive supervisors
for the range control problem,” IEEE Transactions on Automatic Control,
vol. 62, no. 8, pp. 3914-3929, 2017.

[18] Y. Ji, X. Yin, and S. Lafortune, “Supervisory control under local mean
payoff constraints,” in 2019 IEEE 58th Conference on Decision and
Control (CDC), 2019, pp. 1043-1049.

[19] R. Meira-Goes, S. Lafortune, and H. Marchand, “Synthesis of super-
visors robust against sensor deception attacks,” IEEE Transactions on
Automatic Control, 2021.

[2

—

[3

[ty

4

finar

	Introduction
	Preliminaries
	Property-enforcing problem
	All enforcement structure
	Compact all enforcement structure
	Control decision equivalence classes
	Compact bipartite transition system
	Compact all enforcement structure
	Synthesis of maximally permissive supervisors

	Experimental results
	Methodology
	AES versus AEScomp
	AEScomp versus standard algorithms

	Conclusion
	References

