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Dynamic signatures of electronically nonadiabatic
coupling in sodium hydride: a rigorous test for
the symmetric quasi-classical model applied to
realistic, ab initio electronic states in the adiabatic
representation†

Justin J. Talbot, *a Martin Head-Gordon, ab William H. Millera and
Stephen J. Cotton a

Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a

potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both

computational and experimental standpoints. The single vibrational degree of freedom, as well as the

strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic

character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model

population dynamics where the results are directly comparable against quantum mechanical

benchmarks. Using a simulated pump–probe type experiment, this work presents computational

predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical

Meyer–Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy

surfaces. The main driving force for population transfer arises from the ground vibrational level of the

D1S+ adiabatic state that is embedded in the manifold of near-dissociation C1S+ vibrational states. When

coupled through a sharply localized first-order derivative coupling most of the population transfers

between t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While quantum

mechanical effects are expected due to the reduced mass of NaH, predictions of the population

dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum

dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled

regime is presented using a variational eigensolver methodology.

1 Introduction

Electronically nonadiabatic processes are ubiquitous throughout
many important areas of chemistry.1–6 From a computational
standpoint, dynamic predictions of these processes require a set
of potential energy surfaces, nuclear gradients, and nonadiabatic
coupling vectors, as well as a time propagation model for the
electronic and nuclear degrees-of-freedom (DOF). One typically
prefers analytic gradients for the calculation of nuclear forces

and nonadiabatic couplings which provide the greatest accuracy
when compared with finite-difference approximations; however,
for realistically-sized molecular systems computing analytic
gradients and nonadiabatic couplings collectively can amount
to by far the dominant computational expense. Over the last
decade, ab initio electronic structure theory has seen substantial
progress in the efficient and accurate calculation of nonadiabatic
couplings either through diabatization models7–11 or directly as
a first-order derivative coupling vector in the adiabatic
representation.12–16 However, providing meaningful estimates
of nonadiabatic coupling often results in a trade-off between
accurate wavefunction-based electronic structure approaches,
which can include electron correlation but create a substantial
computational cost, or more approximate electronic structure
theories which allow for the study of larger systems with higher
complexity.

Many dynamics methods have been developed already
which can, in principle, utilize an ab initio treatment of the
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electronic structure when propagating the electronic and
nuclear DOF. Some of these methods include FSSH,17–19

Ehrenfest,20–24 AIMS,25–28 and SQC/MM,29,30 which all involve
different approximations and cost trade-offs.31,32 Ideally, one
would choose a quantum mechanical-based method for both
the electronic and nuclear dynamics which generally offers the
greatest accuracy. However, as these methods scale exponentially
with system size they are typically prohibitively expensive for all
but the lowest-dimensional chemical systems.33–35 When true
quantum mechanical effects, e.g., tunneling, are not too
important treating the electronic and/or nuclear DOF with
classical mechanics offers an appealing low cost alternative with
easily parallelizable trajectories that are directly amenable to
electronic structure calculations.

The symmetric quasi-classical Meyer-Miller (SQC/MM)
approach is in essence a simple quantization model used in
conjunction with the classical electronic + nuclear dynamics
arising from the Meyer-Miller (MM) Hamiltonian. While
maintaining a foundation that is based entirely in classical
mechanics, SQC/MM has predicted with reasonable accuracy a
wide range of electronically nonadiabatic processes for many
model systems including site-exciton and spin-boson
models,36–41 simple Tully models,42–44 and, related to the present
study, a Morse potential model of dissociation dynamics.45 While
the treatment of model chemical systems with SQC/MM have
oftentimes been demonstrated in the diabatic representation, for
ab initio simulations the natural representation is in terms of the
adiabatic electronic states arising from the Born–Oppenheimer
approximation. Recent years have seen significant progress in
the development and application of SQC/MM to study general
molecular systems in the adiabatic basis where potential energy
surfaces, nuclear gradients, and nonadiabatic coupling vectors
are calculated ‘‘on-the-fly’’ using available electronic structure
theories.46–50 Pushing these ideas further, demonstrative calculations
of the SQC/MM model where the results are readily comparable
against experimental measurements and/or quantum mechanical
benchmarks, represents another step towards the development
of a sufficiently accurate ‘‘black box’’ approach for predicting
the nonadiabatic dynamics of general molecular systems.

Alkali hydrides are some of the simplest diatomic molecules
which may serve as realistic ab initio test systems for studying
the accuracy of the SQC/MM model. Their ground electronic
states (X1S+) are primarily single configurational with energies
well-separated from their excited electronic states. Likewise, their
deep potential wells lend themselves to small anharmonicity
constants where calculations of ground state properties qualita-
tively reproduce experimental observations even with crude
theoretical models.51–55 In their excited electronic states,
these seemingly simple systems gain substantial complexity as
their electronic structure at longer bond lengths takes on a
considerable amount of ionic character.56,57 This, in turn,
introduces a cascade of avoided crossings between the excited
Born–Oppenheimer potential energy surfaces. Since the low-lying
electronic states of these systems are generally well-described
with only single and double excitations, in a manageable active
space, they are also prime candidates for the use of accurate

wavefunction theories like equation-of-motion coupled cluster
theory with single and double excitations (EOM-EE-CCSD).
The benefit of using such a high level of electronic structure
theory for a such simple systems is that a realistic description of
the underlying potential energy surfaces may be obtained along
with analytic gradients for the calculation of nuclear forces and
nonadiabatic derivative-coupling vectors.58–60

While to some degree all of the alkali hydrides exhibit
this series of avoided crossings, a prime example is seen
in the excited potential energy surfaces of sodium hydride
(see Fig. 1).61,62 The relatively low-energy ion-pair dissociation
limit, Na+(2p6) + H�(1s2), introduces significant anharmonicity
along the A, C, and D1S+ potential energy surfaces as their outer
wells take on a substantial amount of ionic character.62 For the
A electronic state, the ionic contribution extends the outer well
to long bond lengths, in effect, forming a shallow potential well
that dissociates at the Na(3p) + H(1s) limit. As the ion-pair
dissociation limit is approached by the C and D potential
energy surfaces however, the ionic character becomes more

Fig. 1 A comparison between the EOM-EE-CCSD singlet potential
energy surfaces of sodium hydride and the ion-pair interaction energy.
The dashed line at 6.303 eV is the calculated ion-pair dissociation limit
(top). The calculated bond length dependence of the first-order derivative
couplings between the excited singlet states (bottom). There are two
avoided crossings between the C–D potential energy surfaces (blue).
The first avoided crossing (R = 2.72 Å) has the strongest, but most
localized, first-order derivative coupling. The second avoided crossing
(R E 12 Å) is weaker in comparison but causes the C state to dissociate
at the Na(4s) + H(1s) limit. The first-order derivative coupling between A–C
(green) and the A–D potential energy surfaces (brown) is also shown.
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pronounced forming outer wells of the C and D electronic
states that are purely ionic. The result, for the C and D states,
is two double-well potential energy surfaces with two avoided
crossings (R = 2.72 Å, RE 12 Å). While the C state dissociates at
the Na(4s) + H(1s) asymptote, the D state continues to follow
the ion-pair interaction energy until dissociation at the Na(3d) +
H(1s) limit (ESI†). Additionally, the displacement of the C

surfaces outer well introduces a far weaker avoided crossing
with the A surface (see bottom panel of Fig. 1).

Recent studies of sodium hydride have utilized available
experimental and theoretical data to fit accurate ground and
excited state potential energy surfaces. On the theoretical front,
a study by Aymar, Deiglmayr, and Dulieu found that static
polarizabilities, transition, and permanent dipole moments
could be accurately predicted by modelling the electronic
structure of sodium hydride as an effective two-electron system
in the full configuration interaction limit—solidifying the use
of double excitation methods for an accurate description of
electronic properties (ESI†).61 Later, using these calculations as
well as available experimental data, Walji, Sentjens, and Le Roy
went on to fit highly accurate potential energy surfaces for the
X and A states capable of producing vibrational lines that are
directly comparable to experimental measurements.62,63 From
experiments, a study from Chu et al. found the double-well
potential of the C state could be accessed using optical-optical
double resonance fluorescence spectroscopy.64,65 After a
potential fit analysis, the highest experimentally accessible
vibrational level of the C state was determined which notably
lies directly in the region of strong first-order derivative coupling
between the C and D potential energy surfaces.

The aims of the present study are two-fold. First, electronic
structure and vibronic energy levels of the low-lying singlet
electronic states of sodium hydride are presented with the hope
that these benchmarks could be confirmed through a properly
constructed experiment. These predictions were based from
EOM-EE-CCSD quality potential energy surfaces, analytic
nuclear gradients and first-order derivative couplings, as well
as the vibronic eigenstates which were calculated using a
variational eigensolver. Second, using these calculations, the
accuracy of SQC/MM to model the population dynamics
through this series of avoided crossings is evaluated and
compared against Ehrenfest predictions and quantum wave-
packet benchmarks.

2 Methods
2.1 Electronic structure

The potential energy surfaces, analytic nuclear gradients,
and first-order derivative couplings were calculated using the
EOM-EE-CCSD method with the core–valence polarized aug-cc-
pCVQZ basis set. The EOM-EE-CCSD excitation energies of NaH,
as well as four Rydberg states of the sodium atom were used to
assess convergence with respect to basis set. The number of
occupied orbitals included in the correlated calculations was
determined from convergence tests of the excitation energies

evaluated at the ground state equilibrium bond length.
Correlation consistency was obtained after omitting the sodium
atom’s 1s electrons from the correlated calculations. Likewise,
core–valence polarized basis functions were required to obtain a
reasonable agreement with available experimental data for
the Rydberg states of the sodium atom. The coupled-cluster
expansion was truncated at double excitations as it was found
that including a perturbative triples correction to the energy
introduced only a slight improvement to the correlation energy
of the X electronic state at the equilibrium bond length.
The results of the convergence tests are provided in the ESI.†
All potential energy surfaces, analytic nuclear gradients, and
first-order derivative couplings were calculated using a release
version of the Q-Chem 5.3 software package.66

All electronic properties (energies, gradients, and first-order
derivative couplings) were calculated on an evenly spaced grid
along a normalized Cartesian displacement vector (Q). The
grid spacing was chosen as 0.026 Å. All first-order derivative
coupling vectors were deduced from analytic gradients using
Szalay’s approach which is the standard method for calculating
EOM-EE-CCSD first-order derivative couplings in Q-Chem
5.3.58,59 While the grid spacing was fine enough to not require
analytic gradients for the calculation of nuclear forces, the use
of analytic gradients greatly simplifies the calculation of first-
order derivative couplings using EOM-EE-CCSD.58 For a few
significantly displaced bond lengths the coupled-cluster
equations were non-convergent, and these points were removed
from the data set. While there is substantial first-order deriva-
tive coupling between the C and D potential energy surfaces
near R E 12 Å, the grid was truncated as convergence was
particularly problematic in this region. With the converged
scan, all interior points were evaluated by interpolation using
a linear spline with a 0.015 Å grid spacing. Additional conver-
gence tests with respect to grid size, as well as the bond length
and Q dependence of the potential energy surfaces, nuclear
gradients, first-order derivative couplings, and select
vibrational wavefunctions are provided in the ESI.†

2.2 Time-independent eigensolver

In order to include the effects of first-order derivative coupling
on the vibrational energy levels, the vibronic Schrödinger
equation4 was solved numerically using a modified Fourier-
grid67 variational eigensolver and the Hamiltonian shown in
eqn (1):

Ĥij ¼
1

2l
P̂� i�hdðQÞ
� �

ij
2 þ EiðQÞdij (1)

where l is the reduced mass, P̂ij ¼ �i�hdij~rQ;Q0 is the momen-
tum operator expressed in the position representation, d(Q) is a
skew-symmetric matrix of first-order derivative coupling vectors,
and Ei(Q) is the potential energy surface corresponding to
adiabatic state i. The vector-matrix d(Q) has elements dij(Q) �
hFi|=QFji which are defined as the elements of the first-order
derivative coupling vector between adiabatic Born–Oppenheimer
electronic states Fi and Fj after projection onto the normalized
displacement coordinate Q. The momentum operator (P̂ij) was
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transformed from its diagonal momentum representation to the
position representation using a forward and reverse Fourier
transform accordingly.67 Solutions to the vibronic Schrödinger
equation were computed variationally by expanding the eigen-
states in the direct-product adiabatic basis shown in eqn (2):

Cðr;QÞ ¼
X

i

Fiðr;QÞwiðQÞ (2)

where wi(Q) is the nuclear contribution to the adiabatic Born–
Oppenheimer electronic state Fi(r,Q). The A, C, and D potential
energy surfaces, and all corresponding first-order derivative
couplings (see bottom panel of Fig. 1), were included in the
eigensolver calculation since coupling to the B1P state is
symmetry forbidden. Due to the substantial grid size, integration
of the potential energy surfaces and first-order derivative couplings
required in total 2103 basis functions with 701 basis functions
attributed directly to each adiabatic state. For reference, the ground
vibronic energy (X,0) was calculated separately. The Hamiltonian
matrix was built and diagonalized using in-house code outside of
Q-Chem. Adiabatic only calculations were performed using the
same code by setting all matrix-vector elements dij(Q) = 0.

2.3 SQC/MM nonadiabatic dynamics

The SQC/MM approach to simulating nonadiabatic dynamics
combines the classical Hamiltonian of Meyer and Miller (MM)
with a simple symmetrical quasi-classical (SQC) quantization
procedure for defining the electronic state occupations and
other observables.

In brief, the classical MM Hamiltonian24 maps the electronic
DOF in a nonadiabatic process to a collection of classical
harmonic oscillators, one for each of the electronic states. In a
diabatic representation, it is given by

Hðx; p;Q;PÞ ¼
1

2l
P2 þ

X

F

i

1

2
pi
2 þ

1

2
xi

2 � gi

� �

HiiðQÞ

þ
X

F

io j

ðpipj þ xixjÞHijðQÞ;

(3)

where {xi,pi} are the coordinates and momenta of the ‘‘electronic
oscillators’’ corresponding to a set of F electronic states, Q, P are
the coordinates and momenta of the nuclear DOF having
reduced masses l, {Hij(Q)} is an F � F nuclear coordinate-
dependent electronic matrix (diabatic in eqn (3)), and {gi} are a
set of zero point energy (ZPE) parameters which are initially
adjusted per DOF as noted below. The evolution of the F classical
oscillators in eqn (3) thus describes the electronic configuration
in the MM model and, in particular, the classical actions
associated with each oscillator

ni �
1

2
pi
2 þ

1

2
xi

2 � gi; (4)

represent the electronic occupations. The actions {ni} are speci-
fically what are quantized via the SQC windowing protocol,29,30

by multiplicatively weighting the potential energy surfaces,
{Hii(Q)} in eqn (3), they determine the effective forces on the
nuclei.

In realistic simulations employing rigorous ab initio electronic
structure theory, the resulting electronic states are adiabatic and,
in the adiabatic representation, the MM Hamiltonian is given by

Hðx; p;Q;PÞ ¼
1

2l
Pþ DPðx; p;QÞð Þ2þVeffðx; p;QÞ; (5)

where P is still a vector of canonical nuclear momenta but now
arises in combination with a nonadiabatic coupling vector
potential given by

DPðx; p;QÞ ¼
X

F

io j

ðxipj � xjpiÞ dijðQÞ; (6)

which depends explicitly on the standard first-derivative non-
adiabatic coupling vector dij(Q) � hFi|=QFji between adiabatic
Born–Oppenheimer electronic states Fi and Fj (the electronic
oscillator variables {xi,pi} now corresponding to adiabatic
electronic states). Eqn (5) also expresses the adiabatic MM
Hamiltonian in terms of a symmetrized, occupation-weighted
potential

Veffðx; p;QÞ ¼
1

F

X

F

i

EiðQÞ þ
1

F

X

F

io j

ni � nj
� �

EiðQÞ � EjðQÞ
� �

;

(7)

which is commonly employed in both adiabatic and diabatic
calculations and guarantees the electronic dynamics are inde-
pendent of energy scale. Of course, eqn (7) only references the
diagonal elements of the electronic matrix {Ei(Q) � Hii(Q)}
because it is diagonal in the adiabatic representation.

Applying Hamilton’s equations to eqn (5)–(7) yields
dynamically-consistent classical EOM for both nuclear and
electronic DOF in terms of the canonical coordinates and
momenta appearing in eqn (5) but, unfortunately, will explicitly
require the use of second-derivative nonadiabatic coupling
matrices which are extremely impractical to calculate in a
simulation employing realistic quantum chemistry for the
electronic states (and not readily available in standard codes).
The simple cure46 is to re-write the canonical EOM in terms of a
kinematic momentum, which results in kinematic EOM
which contain only the first-derivative couplings dij but are
nevertheless exactly equivalent; these kinematic EOM therefore
represent the operational formulation employed exclusively in
this work:

_xi ¼ pi
1

F

X

F

j

ðEiðQÞ � EjðQÞÞ þ
X

F

j

xjdjiðQÞ �
Pkin

m
; (8a)

_pi ¼ �xi
1

F

X

F

j

ðEiðQÞ � EjðQÞÞ þ
X

F

j

pjdjiðQÞ �
Pkin

m
; (8b)

_Q ¼
Pkin

m
; (8c)
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_Pkin ¼ �
@Veff

@Q
�
X

ij

1

2
pipj þ

1

2
xixj

� �

ðEjðQÞ � EiðQÞÞdijðQÞ:

(8d)

In the SQC/MM approach, quantization of the classical
Hamiltonian dynamics produced by eqn (8) is accomplished,
initially and finally, by Monte Carlo sampling initial actions
from a ‘‘windowing’’ function defined by the SQC model and,
after running the dynamics for a prescribed time interval (via
eqn (8)), ‘‘binning’’ the final actions by a symmetric windowing
function. In this work, the triangle windowing model was
chosen in combination with the g-adjustment procedure,
exactly as described in ref. 45, except that here the adiabatic
version of the MM Hamiltonian is employed through the EOM
of eqn (8). The key point of the g-adjustment procedure is to set
the {gi} in eqn (4) (and therefore in eqn (7)), per DOF (and per
trajectory), so that, for each trajectory, the initial force on the
nuclei is that of the initial pure quantum state—i.e., the single-
surface force. With this prescription, the {gi} still give the
ensemble of trajectories an average ZPE of 1

3 over the window
function which, as described in the SQC/MM papers, is optimal in
thismodel and somewhat less than the quantum value of 12. Again,
an important consequence of the SQCmodel in combination with
the g-adjustment protocol is that the nuclei are subject to ZPE
fluctuations (in the forces from the electronic DOF) but that the
dynamics is initiated with exactly single-surface pure state forces
corresponding to the initially excited adiabatic quantum state.

2.4 Population dynamics simulations

The quantum/quasi-classical population dynamics on the
coupled A, C, and D states were simulated assuming a pump–
probe type experiment. The simulated experimental setup is as
follows. At time t = 0, a pump laser promotes the X ground
vibronic state (X, w = 0), calculated either from the vibronic
Schrödinger equation (quantum) or as the harmonic oscillator
ground vibrational state (quasi-classical) to the A potential
energy surface which is then allowed to propagate for a delay
time d. At select pump–probe time delays, between 0�250 fs,
the pumped quantum wavepacket or classical particle moving
on the A potential energy surface is promoted with a probe laser
to either the C or D potential energy surfaces and allowed to
further propagate. Finally, quantum and quasi-classical popula-
tion dynamics are recorded as the wavepacket or classical
particle moves through the avoided crossing region between
the C and D adiabatic states. Although the electronic transition
dipole moments between the A - C and A - D transitions
depend on bond length,61 the population dynamics were simu-
lated assuming both excitations are equally possible—for all
pump–probe time delays—in order to better illustrate the
strengths and limitations of the Ehrenfest and SQC/MMmodels.

Using the computed vibronic energy levels, obtained by
diagonalization of the Hamiltonian in eqn (1), quantum wave-
packet dynamics were simulated by expanding the probed
wavepacket as a linear combination of the nonadiabatically
coupled eigenstates and this basis was propagated analytically
by solving the time-dependent Schrödinger equation. Quantum

dynamics were performed, at each pump–probe delay time, for
t = 60 fs with a 0.1 fs time step. Since the normalization of
the wavepacket is a conserved quantity, the electronic state
populations as a function of time were evaluated as the
summed contribution to the total norm from each adiabatic
basis function Fi.

The Ehrenfest and SQC/MM dynamics were simulated by
initially sampling 25 000 nuclear positions and momentum
directly from a 0 K harmonic oscillator Wigner distribution.
The reduced mass (m = 1.050 amu) and harmonic frequency
(o = 1162.88 cm�1) were calculated from the equilibrium bond
length of the ground electronic state of NaH. Coupled-cluster
with single and double excitations and the aug-cc-pCVQZ basis
set was used to calculate the harmonic frequency, reduced
mass, and displacement vector Q. The Wigner sampled
positions and momenta were allowed to propagate classically
on the A potential energy surface, with a 0.1 fs time step for a
time delay d, before being instantaneously promoted to the C or
D potential energy surfaces where the particle was allowed to
further propagate via Meyer-Miller multi-surface dynamics for
t = 60 fs with the same 0.1 fs time step. The nuclear equations of
motion were integrated numerically with a traditional velocity-
Verlet integrator and a semi-analytic, direct diagonalization
scheme was used to integrate the equations of motion for the
electronic action variables. All dynamic simulations were per-
formed using in-house code outside of Q-Chem. The Ehrenfest
simulations were performed with the same code by setting g = 0.

3 Results & discussion
3.1 Vibronic level structure

The effect of first-order derivative coupling on the adiabatic
vibrational energy levels is shown, for a few selected eigenvalues,
in Table 1. The eigenstates were assigned to a single vibrational
level wi on the X, A, C, or D electronic states by taking the
maximum squared projection onto the adiabatic basis functions
Fi, wi. The energy zero is set at the bottom of the well of the X

potential energy surface allowing for direct comparison with
Fig. 1. As shown in the table, vibronic states with primarily A

character maintain their adiabaticity—at least for low-lying
vibrational levels—while the adiabatic character of the highly-
excited vibrational levels of the C state progressively decreases
until the dissociation limit of the C potential energy surface is
reached (ESI†).

The first-order derivative coupling between the A and C

potential energy surfaces peaks at RE 7 Å in bond length with
a delocalized spread of nearly �2 Å (see bottom panel of Fig. 1).
This relatively weak coupling, in addition to the even weaker
coupling between the A–D states, introduces minimal mixing
with adiabatic states from the C and D manifolds. As the outer
well of the A potential energy surfaces takes on substantial ionic
character however, the resulting anharmonicity creates a
potential where the energetic splitting between vibrational levels
slightly increases with vibrational excitation (see Table 1).62 As a
result, the low-lying vibrational eigenstates of the A state are
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delocalized over a wide range of bond lengths. For example, the
average bond length of the w = 8 vibrational level is hRi = 3.41 Å
which is significantly longer than the X (w = 0) ground state
which only has an average bond length of hRi = 1.92 Å.

Although energetically well separated from higher quanta
electronic states,61 the D potential energy surface reaches a
maximum at R = 5.30 Å forming a sufficiently high barrier that
localizes low-lying vibrational states at either short or long
bond lengths (ESI†). As a result, the vibronic state with primarily
D,0 character, localized around shorter bond lengths, actually
lies below the dissociation threshold of the C potential energy
surface. This embedding in the manifold of C states, mediated
by the strong C–D first-order derivative coupling, results in a
substantial degradation of adiabatic character where the
maximum squared projection onto the adiabatic basis function
is only 0.382. While adiabatically the D potential energy surface
supports many higher-energy bound states, when first-derivative
coupling is accounted for these states unbind as they mix with
continuum states from the C manifold.

3.2 A1
R
+ Quantum/classical dynamics

The time dependence of the initially excited quantum wave-
packet (X, w = 0), propagating along the A potential energy
surface, is shown in the left panel of Fig. 2. The dashed line
indicates the bond length where the first-order derivative
coupling between the C and D states is maximum—which
occurs along the repulsive wall of the A potential energy
surfaces. After initial promotion from the X state, there is a

spreading that results from anharmonicity as the wavepacket
approaches the bottom of the A potential well. This spread
maximizes between R = 4 Å and R = 6 Å as the wavepacket nears
the classical turning point of the outer well (dE 50 fs). Then, as
the inner well is approached from longer bond lengths, a sharp
contraction of the wavepacket is observed as it moves up the
repulsive wall. For pump–probe delay times longer than 90 fs,
the spatial extent of the wavepacket remains mostly intact
although nodes are introduced due to further spreading.
Throughout the 250 fs pump–probe delay range the wave-
packet, moving on the A potential energy surface, passes
through the avoided crossing region a total of five times—three
from the left (shorter bond lengths) and two from the right
(longer bond lengths).

Remarkably similar dynamics are seen when the motion on
the A potential energy surface is purely classical and sampled
from the 0 K harmonic oscillator Wigner distribution as shown
in the right panel of Fig. 2. The classical motion on the A

potential energy surface has a comparable spreading to the
quantum wavepacket near the outer well, between R = 4 Å and
R = 6 Å, as well as a similar contraction as the particle
approaches the repulsive wall near RE 2 Å. While both quantum
and classical dynamics have a comparable period, wavelength,
and general form across all pump–probe delay times, the
primary distinction between the two approaches is that the
quantum wavepacket develops nodes at pump–probe delay times
d 4 100 fs which aren’t observed in the classical motion.

To investigate the near classical motion of the quantum
wavepacket further, comparisons between the classical force
averaged over the quantum wavepacket and the classical force
evaluated at the quantum wavepacket’s average position as a
function of pump–probe time delay are provided in Fig. 3. The
average force calculations suggest that since the initially excited
quantum wavepacket is compact, due to the near-harmonic
potential energy surface of the X electronic state, quantum
motion on the A potential energy surface can be approximated,
to a reasonable accuracy across all pump–probe delay times,
with classical mechanics by Ehrenfest’s theorem.

3.3 Nonadiabatic dynamics

Comparisons between quantum and SQC/MM population
dynamics, when the wavepacket is promoted to the C state,
are shown in the left and middle panels of Fig. 4. The contour
lines represent a 0.2 population decrease of the C state.
Over the 250 fs pump–probe delay range, there are three
regions that incur substantial population change (d = 0–20,
d = 70–120, and d = 160–210). For pump–probe delay times
d o 20 fs the population transfer is rapid, between t = 10 and
t = 25 fs, ending with less than 0.2 population remaining in the
C state. There are regions of pump–probe delay times where
there is no population change as the wavepacket leaves the
nonadiabatically coupled region and approaches the outer well
of the A potential energy surface. As the wavepacket approaches
the avoided crossing from the right, which occurs first near
d = 70 fs, the population transfer is again rapid with most of the
population transferring before t = 10 fs. Finally, for d 4 160 fs,

Table 1 A comparison between select adiabatic (dij(Q) = 0) and non-
adiabatically coupled vibronic energy levels and their assignments. Each
nonadiabatically coupled eigenstate was assigned to a single vibrational
level (wi) on a single adiabatic potential energy surface (Fi) by taking the
maximum squared projection

State (Fi,wi) Adiabatic (eV) Nonadiabatic (eV) Character

X1S+

X,0 0.072 0.072 1.000

A1S+

A,0 2.850 2.850 1.000
A,1 2.888 2.888 1.000
A,2 2.928 2.928 1.000
A,3 2.969 2.969 1.000
A,4 3.011 3.011 1.000
A,5 3.054 3.054 1.000
A,6 3.097 3.097 1.000
A,7 3.141 3.141 1.000
A,8 3.184 3.184 1.000

C1S+

C,34 5.037 5.038 0.981
C,35 5.051 5.053 0.935
C,36 5.061 5.063 0.846
C,37 5.071 5.069 0.882
C,38 5.084 5.083 0.914
C,39 5.098 5.097 0.940
C,40 5.112 5.110 0.842
C,41 5.126 5.128 0.653
C,42 5.140 5.143 0.742

D1S+

D,0 5.116 5.116 0.382
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the introduction of nodes in the wavepacket and the increased
spread results in an overall loss of efficiency in population
transfer ending with less than 0.3 population remaining in the
C state after passing through the avoided crossing region.

In general, the signed errors, which are simply defined as
the difference between the quantum and SQC/MM populations,

are around �0.2 for population transfer from the C adiabatic
state (see right panel of Fig. 4). The contour lines in the error
plot represent a change in signed error of �0.1 population
change. The errors are more pronounced for longer simulation
times (t 4 50 fs), as well as longer pump–probe delay times
(d 4 160 fs) with the largest errors occurring, in general, during
the final pass through the avoided crossing. While the population
transfer estimates with SQC/MM are slightly less efficient when
compared with the quantum mechanical simulations, the SQC/
MM dynamics do recover the same qualitative trend. For example,
there is no population transfer when the initially excited classical
particle is out of the nonadiabatically coupled region. Also con-
sistent with the quantummechanical simulations, the population
transfer begins very quickly when the wavepacket approaches the
avoided crossing from the left or the right (near d = 80, 110, 170,
and 200 fs) but is significantly slower when the wavepacket
is promoted directly onto the avoided crossing region (near d =
0, 90 and 185 fs).

Comparisons between population transfer calculated with
the Ehrenfest model and the quantum benchmark are provided
in Fig. 5. While the signed errors between SQC/MM and
Ehrenfest are similar across most pump–probe delay times d,
slightly lower errors are seen with Ehrenfest better estimating
population dynamics in the longer time limit (d 4 50 fs) across
all three regimes. In fact, for population transfer from the C

state, errors with the Ehrenfest model are only greater than

Fig. 2 The pump–probe delay time d and bond length dependence of the quantum wavepacket (left) and the classical trajectories (right) propagating
along the A potential energy surface. The dashed line in both plots is the position of maximum first-order derivative coupling between the C and D

potential energy surfaces.

Fig. 3 A comparison between the average force and the force evaluated at
the average position of the pumped quantum wavepacket propagating along
the A potential energy surface as a function of pump–probe delay time d.

PCCP Paper

P
u
b
li

sh
ed

 o
n
 0

4
 F

eb
ru

ar
y
 2

0
2
2
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 B
er

k
el

ey
 o

n
 9

/2
8
/2

0
2
2
 1

0
:3

5
:5

3
 P

M
. 

View Article Online



This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 4820–4831 |  4827

0.1 when the avoided crossing is approached from the right (d = 70,
160 fs). Interestingly, the errors in this region are positive where
Ehrenfest tends to systematically overestimate the amount of
population transfer compared with SQC/MM. For a clearer compar-
ison of the error, two single cuts through the 2D population maps
in Fig. 4 and 5 are shown, for d = 5 fs and d = 70 fs, in Fig. 6.

When the wavepacket, or classical particle, is promoted
to the D state, the population transfer is more efficient

overall and occurs over a longer range of pump–probe delay
times when compared with promotion to the C state. Com-
parisons between the quantum wavepacket and SQC/MM
population dynamics for this case are shown in left and
middle panels of Fig. 7. Again, the contour lines represent
0.2 decrease in population of the D state. Quantum
mechanically the population transfer is very rapid with
nearly eighty percent of the population transferring in

Fig. 4 SQC/MM dynamics. The population of the C adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with pump–
probe delay times (d) between 0–250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the SQC/MMmodel (middle). The
contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and SQC/MM results with contour
lines representing a signed error of �0.1 (right).

Fig. 5 Ehrenfest dynamics. The population of the C adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with pump–
probe delay times (d) between 0–250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the Ehrenfest model (middle). The
contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and Ehrenfest results with contour
lines representing a signed error of �0.1 (right).

Paper PCCP

P
u
b
li

sh
ed

 o
n
 0

4
 F

eb
ru

ar
y
 2

0
2
2
. 
D

o
w

n
lo

ad
ed

 b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 B
er

k
el

ey
 o

n
 9

/2
8
/2

0
2
2
 1

0
:3

5
:5

3
 P

M
. 

View Article Online



4828 |  Phys. Chem. Chem. Phys., 2022, 24, 4820–4831 This journal is © the Owner Societies 2022

t o 15 fs—substantially shorter than population transfer
from the C state which takes t E 30 fs. Also, when initially
promoted to the D state, ranges of pump–probe delay times
with no population transfer are shorter compared with
population transfer from the C state. For longer pump–
probe delay times (d 4 150 fs), the population transfer
is again less efficient overall when compared with popula-
tion transfer when d 4 50 fs and is more pronounced when
the wavepacket approaches the avoided crossing from
the right.

A similar agreement between the quantum mechanical and
SQC/MM results is seen for population transfer from the D

state with SQC/MM predicting population dynamics that are
remarkably close to the quantum benchmark. Signed errors for
this case are shown in the right panel of Fig. 7. In general, the
errors are largest when the avoided crossing is approached
from the right but still remain low over all pump–probe delay
times. Comparable to the population transfer from the C state,
the errors progressively worsen at longer pump–probe delay
times with the largest errors occurring for d 4 150 fs. When
compared with the right panel of Fig. 4, where signed errors of
around �0.2 are predicted, signed errors of around �0.1 for
this case are observed for pump–probe delay times d 4 50 and
d 4 150 fs. Likewise for simulation times t 4 50 fs, the errors
are less than 0.1 across all three relevant ranges of pump–probe
delay times.

Comparisons between population transfer from the D

state calculated with the Ehrenfest model and the quantum
benchmark are provided in Fig. 8. The errors with Ehrenfest
compared with SQC/MM are remarkably similar for this case
with the signed errors less than 0.2 across all pump–probe
delay times.

Fig. 6 Population dynamics at select pump–probe delay times (d = 5 fs
(bottom) and d = 70 fs (top)) for population transfer from the C adiabatic
state. Comparisons are made between Ehrenfest predictions (red), SQC/
MM predictions (blue), and the quantum benchmark (black).

Fig. 7 SQC/MM dynamics. The population of the D adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with pump–
probe delay times (d) between 0–250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the SQC/MM model (middle).
The contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and SQC/MM results with
contour lines representing a signed error of �0.1 (right).
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4 Conclusions

In this work, potential energy surfaces and first-derivative couplings
calculated at the EOM-EE-CCSD level with a quadruple-zeta quality
core–valence polarized basis set were presented for the low-lying
singlet states of sodium hydride. The vibronic energy levels of the
ground and three excited electronic states were analyzed (X, A, C,
and D) using a variational eigensolver, directly in the adiabatic
basis—which included the effect of first-order derivative coupling.
As first-order derivative coupling between the A–C and A–D

adiabatic potential energy surfaces had a negligible effect on the
vibronic eigenstates, the nonadiabatic dynamics were effectively
reduced to a coupled electronic two-state problem involving only
the C and D adiabatic states.

To illustrate the coupled dynamics on the C and D electronic
states, as modulated by the nuclear DOF, a pump–probe type
experiment was assumed. In this simulated experiment, a quan-
tum/quasi-classical wavepacket, moving along the A potential
energy surface, was promoted to either the C or D adiabatic states
at selected pump–probe delay times and allowed to further propa-
gate. Using classical trajectories and a quantum wavepacket con-
structed from the corresponding nonadiabatically coupled vibronic
states, the population dynamics were recorded as the promoted
wavepacket propagated on the coupled C and D states. Predictions
of population transfer from approximate classical models (Ehrenf-
est and SQC/MM) were assessed and compared directly against the
quantum benchmark. While Ehrenfest had slightly less error
overall, signed errors of the population transfer from SQC/MM
compared against the quantum benchmark were still less than
0.1 over most pump–probe delay times with signed errors around
0.2 only when the avoided crossing was approached from the right.

While the success of the Ehrenfest model displayed here was
directly attributed to the quantum wavepacket maintaining

compactness while passing through the C–D avoided crossing,
The Ehrenfest model is only statistically exact for a fixed
nuclear trajectory—i.e., when the electronic and nuclear DOF
are dynamically-uncoupled. The SQC/MM approach employing
the triangle-shaped windowing methodology is statistically
exact in the same circumstances, but only for two electronic
states. Since the Ehrenfest model works well in the case of NaH,
one expects that SQC/MM would also provide a consistently
good result. Of course, both Ehrenfest and the SQC/MM
methods are approximations when the nuclear motion is
dynamically-coupled to the electronic DOF. There isn’t any
reason why one is going to always strictly outperform the other.
One expects, and it has been shown here, that when Ehrenfest
is adequate, SQC/MM will also be adequate because the
equations of motion are the same and the Ehrenfest trajectories
are a strict subset of the SQC ensemble. Of course, in other
situations, when Ehrenfest is seen to be quite inadequate, SQC/
MM can offer a significant improvement through the systematic
and consistent incorporation of an intermediate, but well-tested,
level of electronic ZPE.
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Fig. 8 Ehrenfest dynamics. The population of the D adiabatic state after initial excitation from the A adiabatic state simulated up to t = 60 fs with pump–
probe delay times (d) between 0–250 fs. The populations are calculated from quantum wavepacket dynamics (left) and the Ehrenfest model (middle). The
contour lines represent a decrease of 0.2 population in each plot. The calculated signed error between the quantum and Ehrenfest results with contour
lines representing a signed error of �0.1 (right).
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