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Abstract

Graph representation learning has attracted tremen-
dous attention due to its remarkable performance
in many real-world applications. However, prevail-
ing supervised graph representation learning mod-
els for specific tasks often suffer from label sparsity
issue as data labeling is always time and resource
consuming. In light of this, few-shot learning on
graphs (FSLG), which combines the strengths of
graph representation learning and few-shot learn-
ing together, has been proposed to tackle the perfor-
mance degradation in face of limited annotated data
challenge. There have been many studies working
on FSLG recently. In this paper, we comprehen-
sively survey these work in the form of a series
of methods and applications. Specifically, we first
introduce FSLG challenges and bases, then cate-
gorize and summarize existing work of FSLG in
terms of three major graph mining tasks at differ-
ent granularity levels, i.e., node, edge, and graph.
Finally, we share our thoughts on some future re-
search directions of FSLG. The authors of this sur-
vey have contributed significantly to the AI litera-
ture on FSLG over the last few years.

1 Introduction
Many real-world systems can be modeled as graphs, repre-
senting nodes (entities) interconnected by edges (relations)
as well as attributes in nodes and edges. Traditional graph
mining algorithms usually require both domain understand-
ing and exploratory search when doing feature engineering
of a specific task. Accordingly, graph representation learn-
ing techniques (GRL) [Zhang et al., 2020c], e.g., graph neu-
ral networks, have been proposed to automatically gener-
ate graph representation for various downstream applications
across different domains, such as social/information sys-
tems [Perozzi et al., 2014; Grover and Leskovec, 2016; Kipf
and Welling, 2017], bioinformatics/cheminformatics [Jin et
al., 2017; Hao et al., 2020], and recommender systems [Ying
et al., 2018a; Fan et al., 2019].

FSLG Bases FSLG Methods & Applications
Node-Level FSL

App.: node classification, anomaly detection, etc.dGraph Representation Learning

Few-Shot Learning on Graphs (FSLG)
Challenges: problem uniqueness , methodology complexity, application diversity

dFew-Shot Learning

dFSLG Problems

collaborative
Edge-Level FSL

App.: relation prediction, recommendation, etc.

Graph-Level FSL
App.: graph classification, molecule classification, etc.

Future Research Directions of FSLG

Figure 1: The framework of this survey.

Developing a powerful supervised GRL model for a spe-
cific downstream task often requires abundant annotated sam-
ples. However, lacking labeled data is common in real situ-
ations due to the expensive labeling cost [Ding et al., 2022].
For example, molecular property testing for therapeutic activ-
ity spends a lot of money on human-laboring and experimen-
tal resource [Guo et al., 2021]; recommender systems face
cold-start problem for new users (items) coming to the sys-
tem [Lu et al., 2020]. This calls for a new GRL paradigm
that can effectively learn graph representation for various
graph mining tasks with the limited labeled data constraint.
Fortunately, few-shot learning (FSL) [Wang et al., 2020b]
has emerged to alleviate the dependence on labeled data and
learn effective data representation for image/vision [Vinyals
et al., 2016; Snell et al., 2017], language/text [Yu et al., 2018;
Hu et al., 2019], and robotics [Finn et al., 2017; Duan et al.,
2017], using a small amount of labels.

Therefore, few-shot learning on graphs (FSLG), which
generally combines the advantages of GRL and FSL, has be-
come a promising research topic and attracted increasing at-
tention from the AI community. Consequently, there have
been many FSLG studies that span a variety of methods and
applications in recent years. In this paper, we provide a
comprehensive and systematic review of FSLG. Figure 1 il-
lustrates the framework of this survey. To be specific, we
first analyze the key challenges of FSLG. Then we present
FSLG bases consisting of two collaborative machine learn-
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ing techniques: graph representation learning and few-shot
learning, and introduce three typical FSLG problems. Next,
we summarize existing FSLG methods and applications that
are categorized into three parts corresponding to three typical
graph mining tasks at different granularity levels: node-level
FSL, edge-level FSL, and graph-level FSL. For each part, we
cover two major lines of work: metric-based methods and
optimization-based methods, and further discuss related ap-
plications. We also provide a comprehensive summary ta-
ble that lists the representative FSLG work with their open-
source codes/datasets. Finally, we discuss open problems
and pressing issues as future research directions of FSLG. To
summarize, our contributions of this work are:

• We analyze the key challenges of FSLG from perspectives
of problem, methodology, and applications.

• We comprehensively survey existing studies of FSLG by
systematically categorizing them into three parts according
to different granularity levels of graph mining tasks.

• We discuss some future research directions of FSLG, which
may shed light on the development of the AI community.

2 FSLG Challenges and Bases
FSLG, as a new and promising research topic in the AI com-
munity, is non-trivial and faces the following key challenges:

• The uniqueness of FSLG problem. Unlike the general
GRL problem, FSLG faces the challenge of limited labels.
Besides, FSLG is different from FSL on image or text as
graph lies in a non-Euclidean space and has more complex
characteristics. Therefore, the uniqueness of FSLG prob-
lem requires handling both graph data complexity (e.g., ir-
regularity, heterogeneity) and few-shot task difficulty (e.g.,
task diversity, inductive bias).

• The complexity of methodology. Before FSLG emerges,
there are extensive studies targeting GRL and FSL chal-
lenges independently while none of them are able to ad-
dress both of them jointly. Thus, it is essential yet diffi-
cult to develop FSLG methods that consist of both GRL
and FSL modules, and combine them for solving the FSLG
problem in a collaborative and effective manner.

• The diversity of graph mining applications. Graph min-
ing tasks regarding different applications are diverse, rang-
ing from node-level to edge-level to graph-level tasks. They
require different settings, objectives, constraints, and do-
main knowledge. Hence, it is not easy to develop a cus-
tomized FSLG method for the target application.

FSLG methods and applications reviewed in Section 3 aim
to tackle at least one of the above three challenges. In the
following of this section, we introduce FSLG bases that in-
clude two learning techniques collaboratively used in FSLG,
and three FSLG problems that share the same setting.

2.1 Graph Representation Learning
The purpose of graph representation learning (GRL) [Zhang
et al., 2020c] is to automate the discovery of meaningful vec-
tor representation of nodes, edges, or the whole graph for var-
ious downstream graph mining applications. Existing GRL

approaches generally fall into three groups: (1) network em-
bedding models [Perozzi et al., 2014; Grover and Leskovec,
2016; Dong et al., 2017] that capture graph structure infor-
mation by preserving proximities among contextual nodes;
(2) graph neural networks (GNNs) [Kipf and Welling, 2017;
Veličković et al., 2018; Zhang et al., 2019] that learn node
embedding by aggregating neighbors’ feature information;
and (3) knowledge graph embedding methods [Bordes et al.,
2013; Socher et al., 2013; Dettmers et al., 2018] that con-
struct graph as a collection of fact triplets and learn node and
edge (a.k.a. entity and relation) embedding through modeling
the acceptability score of each fact triplet.

GNNs, as the current state-of-the-art in GRL, are most
commonly utilized to build the GRL backbone of a FSLG
method. Specifically, a graph is represented as G =
(V,E,X), where V is the set of nodes, E ⊆ V ×V is the set
of edges, and X is the set of node (and edge) attributes. GNNs
learn node embedding via message-passing framework:

h(l+1)
v = COM

(
h(l)
v ,

[
AGG

({
h(l)
u | ∀u ∈ Nv

})])
, (1)

where h
(l)
v denotes embedding of node v at l-th GNN layer;

Nv is the neighbor set of node v; AGG(·) and COM(·)
are neighbor aggregation and combination functions, respec-
tively; h(0)

v is initialized with node attribute Xv . Furthermore,
the whole graph embedding can be computed as:

h
(l)
G = READOUT

{
h(l)
v | ∀v ∈ V

}
, (2)

where the READOUT function can be a simple permutation
invariant function such as summation or a more sophisticated
graph-level pooling function [Ying et al., 2018b].

2.2 Few-Shot Learning
Few-shot learning (FSL) [Wang et al., 2020b] aims to learn
generalized experiences from existing tasks to form transfer-
able prior knowledge for new tasks with limited labeled data.
It commonly adopts a meta-learning framework [Hospedales
et al., 2020] which performs episodic learning to train and
optimize the model. Specifically, given a set of tasks T and
their data, in the meta-training phase, the objective is to learn
parameters θ∗ that work effectively across all tasks in T :

θ∗ = argmin
θ

∑
Ti∼p(T )

L (DTi , θ) , (3)

where p(T ) denotes task distribution; DTi
is the data of task

Ti; L is the loss function for a downstream application. In the
meta-testing phase, θ∗ is taken as the initialized parameters
(meta-knowledge) that are further quickly adapted to a new
task Tj :

θ∗∗ = L
(
DTj

, θ∗
)
. (4)

Note that, DTj only contains limited labeled data. Notable
FSL methods used in FSLG models generally fall into two
categories: (1) metric-based methods [Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018] that learn task-specific
similarity metric between query data and support set data; and
(2) optimization-based methods [Ravi and Larochelle, 2016;
Finn et al., 2017; Finn et al., 2018] that learn well initialized
base-learner which can quickly adapt to a new few-shot task
with gradient computation.
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2.3 FSLG Problems
Different FSLG problems share the same setting of FSL.
In specific, let C denote the entire classes set of the whole
dataset, which can be further divided into two categories:
base classes set Cbase of the training data and new (novel)
classes set Cnovel of the testing data, where C = Cbase∪Cnovel
and Cbase ∩ Cnovel = ∅. Generally, the number of labels is
abundant in Cbase while scarce in Cnovel. Here, we introduce
three typical FSLG problems corresponding to three graph
mining tasks.
Problem 1. Few-Shot Node Classification. Given a graph,
the problem is to develop a machine learning model such that
after training on labeled nodes in Cbase, the model can accu-
rately predict labels for nodes (query set) in Cnovel with only
a limited number of labeled nodes (support set).
Problem 2. Few-Shot Relation Prediction. Given a graph,
the problem is to develop a machine learning model such
that after training on node pairs of relations in Cbase, the
model can accurately predict unknown node pairs for re-
lations (query set) in Cnovel with only a limited number of
known node pairs (support set).
Problem 3. Few-Shot Graph Classification. Given a set of
graphs, the problem is to develop a machine learning model
such that after training on labeled graphs in Cbase, the model
can accurately predict labels for graphs (query set) in Cnovel
with only a limited number of labeled graphs (support set).

The FSL setting is applied to different FSLG problems
by setting the class meaning. Specifically, each class cor-
responds to a node label for the node classification prob-
lem, a relation type for the relation prediction problem, and
a graph label for the graph classification problem. Note that,
if the support set contains exactly K nodes for each of N
classes from Cnovel and the query set is sampled from these
N classes, the problem is called N -way K-shot problem. Be-
sides the above three typical problems, there are other FSLG
problems, such as few-shot anomaly detection and few-shot
recommendation on graphs.

3 FSLG Methods and Applications
In general, FSLG combines the strengths of GRL (Sec-
tion 2.1) and FSL (Section 2.2) together for various appli-
cations. In this section, we comprehensively review current
methods and applications of FSLG by systematically catego-
rizing them into three parts corresponding to three problems
in Section 2.3: node-level FSL, edge-level FSL, and graph-
level FSL. Note that, most of FSLG methods adopt two typi-
cal FSL techniques: metric-based methods and optimization-
based methods. Accordingly, methods of each part are sum-
marized into two groups, depending on which FSL technique
they rely on, followed by the discussion of related applica-
tions. At the end, a list of representative FSLG studies with
their open-source codes/datasets are shown in Table 1.

3.1 Node-level FSL
Node is the fundamental unit of which graphs are formed.
Node-level learning not only facilitates a variety of node-
based applications (e.g., node classification and anomaly de-
tection), but also lays the groundwork for further edge-level

and graph-level applications. However, it is often difficult to
collect node labels in real practice. For example, obtaining
function labels for proteins in the interactome (i.e., protein-
protein network) is a time and labor-consuming task even for
experienced experts [Wang et al., 2020a]; a significant num-
ber of research venues (labels) in DBLP data (i.e., academic
network) have few labeled publications [Ding et al., 2020].
In light of this, there have been many methods proposed to
solve node-level problems with limited labeled data. We re-
view existing studies of node-level FSL in this part.
Metric-based Method. Basically, Metric-based Node-level
FSL (MN-FSL) adopts the idea of Prototypical Network
(ProNet) [Snell et al., 2017] which is a simple yet effective
FSL framework. Specifically, MN-FSL first applies a GNN
encoder to learn node embedding, and then generates the pro-
totype of each node class by computing the mean of support
nodes’ embeddings. Finally, MN-FSL classifies query nodes
by calculating their Euclidean distances of embeddings to dif-
ferent class prototypes. By incorporating node embedding
generated by GNN into ProNet, MN-FSL is able to tackle
the challenges of few-shot node classification problem. Built
on the basic model, a number of variants of MN-FSL have
been proposed. Specifically, GFL [Yao et al., 2020] de-
signs graph-structured prototype to capture the relation struc-
ture of support samples, which is further tailored by a graph
representation gate to include the whole graph information.
Considering the fact that each node has a different signifi-
cance in graph, GPN [Ding et al., 2020] introduces node im-
portance with self-attention mechanism, then computes the
weighted summation of support nodes’ embeddings as the re-
fined prototype of each class. In addition, MetaTNE [Lan et
al., 2020] leverages an embedding transformation function to
map the task-agnostic node representation to the task-specific
ones, exploiting the complex and multifaceted relationships
between nodes. More recently, HAG-Meta [Tan et al., 2021]
leverages both node-level attention and task-level attention to
improve class prototype computation, which is further trained
by an incremental learning paradigm.
Optimization-based Method. In general, Optimization-
based Node-level FSL (ON-FSL) is developed based on
model-agnostic meta-learning (MAML) [Finn et al., 2017].
To be specific, ON-FSL utilizes a GNN encoder to learn
node embedding for node classification. In the optimization
stage, ON-FSL first updates task-specific parameters for each
node class, and then accumulates all task-specific classifica-
tion losses to update task-agnostic parameters. Finally, the
optimized task-agnostic parameters shared by base classes
are further quickly adapted to predict labels of nodes in new
classes by gradient updates over a few labeled nodes. By
optimizing GNN with MAML, ON-FSL learns prior expe-
riences (meta-knowledge) across base classes for fast adap-
tion over new classes and addresses the challenge of few-shot
node classification problem. In particular, Meta-GNN [Zhou
et al., 2019] is the first work that combines GNN and MAML
for node classification. Since then, there have been some
improved work. Considering that feature distribution may
vary across different sampled tasks, AMM-GNN [Wang et
al., 2020a] introduces an attribute-level attention mechanism
to better capture the unique property of each meta-learning
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task. In addition, G-META [Huang and Zitnik, 2020] theoret-
ically justifies that the evidence for a prediction can be found
in the local subgraph surrounding the target node and lever-
ages subgraph to learn node embedding. It further combines
both ProNet and MAML for model optimization. Moreover,
RALE [Liu et al., 2021a] captures both task-level and graph-
level dependencies to improve meta-knowledge transfer pro-
cess by assigning node locations on the graph.

In addition to the above mentioned work, there are some
other studies [Zhao et al., 2021; Zhuang et al., 2021; Liu et
al., 2021b; Zhang et al., 2022a] related to node-level FSL.
For example, HG-Meta [Zhang et al., 2022a] proposes to ad-
dress few-shot node classification on heterogeneous graphs
by modeling both graph structure heterogeneity and task di-
versity. In addition, unlike the aforementioned work that fo-
cus on predicting labels of nodes in new classes using few la-
beled samples, models that target classifying nodes with few
links (tail nodes) have also been developed [Liu et al., 2021b].
Application. Besides node classification on various types of
graphs (e.g., social network, academic graph, and biologi-
cal network), node-level FSL has been applied to some other
applications. Due to the scarcity of outlier data, it is natu-
ral to develop FSLG methods to detect anomalies on graphs.
In particular, Meta-GDN [Ding et al., 2021] detects network
anomaly through the FSL framework augmented with a graph
deviation network. Furthermore, FSLG models that incor-
porate domain knowledge to solve domain-specific anomaly
detection problems have also been proposed. For exam-
ple, Meta-AHIN [Qian et al., 2021a] incorporates malware-
related attributes and information into GNN and MAML for
malicious repository detection on social coding platforms
(e.g., Github). Similarly, MetaHG [Qian et al., 2021b] lever-
ages drug-related features and knowledge to the joint model
of GNN and MAML for illicit drug trafficker detection on
social media (e.g., Instagram).

3.2 Edge-level FSL
Edges explicitly interconnect nodes on a graph and many ap-
plications such as relation prediction and recommendation
are relied on edge-level graph learning. However, scarcity
issue of relation is prevalent in different real situations: a
large portion of semantic relations only appear a few times
in knowledge bases [Xiong et al., 2018]; E-commerce online
platforms face cold-start problem from both user and item
sides [Lu et al., 2020]; relationships in biological interac-
tion networks can be noisy and sparse [Bose et al., 2019].
Therefore, researchers have been motivated to propose exten-
sive work to solve edge-level problems with limited labels, as
summarized below.
Metric-based Method. In general, existing Metric-based
Edge-level FSL (ME-FSL) models rely on on either Matching
Network (MatchNet) [Vinyals et al., 2016] - a popular frame-
work of FSL, or Translation Network (TransNet) - a typical
knowledge graph embedding method [Bordes et al., 2013].
For ME-FSL built on MatchNet, it first applies a GNN en-
coder to learn node (entity) embedding, then computes ag-
gregated embedding of each relation by aggregating embed-
dings of node pairs in reference data (support set). Finally,
the matching score between embeddings of relation and query

data is used to determine the acceptability of each query sam-
ple. Based on this idea, GMatching [Xiong et al., 2018] is
firstly proposed to solve one-shot relation prediction prob-
lem on knowledge graphs. Later, FSRL [Zhang et al., 2020a]
extends GMatching to few-shot scenario by attentively ag-
gregating all support samples of each relation and improving
node embedding formulation with a heterogeneous neighbor
aggregator. FAAN [Sheng et al., 2020] obtains further im-
provement over FSRL by designing an adaptive attentional
network to learn adaptive node and reference representations.
Furthermore, GEN [Baek et al., 2020] investigates a more
challenging out-of-graph scenario for relation prediction be-
tween unseen nodes or between seen and unseen nodes. More
recently, REFORM [Wang et al., 2021a] designs an error mit-
igation module to alleviate the negative impact of errors in-
corporated into knowledge graph construction. For ME-FSL
built on TransNet, it first computes relation meta by aggre-
gating embeddings of support node pairs, and then leverages
the relation meta to model correlation of query pairs using
the objective loss of TransE [Bordes et al., 2013]. Two recent
models that adopt this idea are MetaR [Chen et al., 2019]
and GANA [Niu et al., 2021]. MetaR computes relation
meta by averaging all node pair-specific relation meta and
performs rapid update on it for relation prediction on knowl-
edge graphs. Furthermore, GANA extends MetaR by refin-
ing node embedding and relation meta computation with an
attention mechanism and a LSTM aggregator, respectively.
In summary, by incorporating node embedding encoded by
GNN into MatchNet or TransNet, ME-FSL is able to address
the challenges of few-shot relation prediction problem.
Optimization-based Method. Similar to ON-FSL,
Optimization-based Edge-level FSL (OE-FSL) relies on
MAML for model optimization. In other words, OE-FSL
tackles the challenge of few-shot relation prediction prob-
lem by optimizing GNN with MAML. In particular, Meta-
KGR [Lv et al., 2019] is the first work for few-shot multi-
hop relation prediction on knowledge graphs. Specifically,
Meta-KGR introduces a reinforcement learning framework to
model multi-hop reasoning process, where the search path is
encoded by a recurrent neural network. It then adopts MAML
to learn effective meta parameters from high-frequency rela-
tions that could quickly adapt to few-shot relations. Later,
FIRE [Zhang et al., 2020a] extends Meta-KGR with a het-
erogeneous neighbor aggregator and a search space pruning
strategy. More recently, ADK-KG [Zhang et al., 2022b] fur-
ther improves FIRE by enhancing neighbor aggregator with
node text content and augmenting MAML with task weight.

In addition to the studies discussed above, there have been
considerable advances [Mirtaheri et al., 2021; Qin et al.,
2020; Jambor et al., 2021; Jiang et al., 2021] related to edge-
level FSL. For example, ZSGAN [Qin et al., 2020] studies
zero-shot relation prediction by establishing the connection
between text and knowledge graph with generative adversar-
ial networks. Unlike node pair matching, P-INT [Xu et al.,
2021] calculates the interactions of paths for relation predic-
tion on knowledge graphs. Moreover, a recent study [Jambor
et al., 2021] explores the limits of existing models for few-
shot link prediction on knowledge graphs.
Application. Edge-level FSL methods have been applied to
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Method Learning Task Learning Approach Characteristic Venue Code/Data Link

Node-level FSL

GFL[1] Node classification ProNet Graph structured prototype AAAI’20 https://shorturl.at/jquCS

GPN[2] Node classification ProNet Node importance CIKM’20 https://shorturl.at/cxG16

MetaTNE[3] Node classification ProNet Embedding transformation NeurIPS’20 https://shorturl.at/oK245

Meta-GNN[4] Node classification MAML Basic model CIKM’19 https://shorturl.at/hxLP2

G-META[5] Node classification ProNet+MAML Local subgraph NeurIPS’20 https://shorturl.at/zDJKL

RALE[6] Node classification MAML Task dependency AAAI’21 https://shorturl.at/bsvDQ

Meta-GDN[7] Anomaly detection MAML Graph deviation network WWW’21 https://shorturl.at/izQ79

MetaHG[8] Anomaly detection MAML Domain knowledge NeurIPS’21 https://shorturl.at/rJV28

Edge-level FSL

GMatching[9] Relation prediction MatchNet LSTM matching processor EMNLP’18 https://shorturl.at/vDH13

FSRL[10] Relation prediction MatchNet Support data aggregation AAAI’20 https://shorturl.at/otAI4

FAAN[11] Relation prediction MatchNet Adaptive matching EMNLP’20 https://shorturl.at/iAGW3

GEN[12] Relation prediction MatchNet Inductive prediction NeurIPS’20 https://shorturl.at/esN17

REFORM[13] Relation prediction MatchNet Error mitigation CIKM’21 https://shorturl.at/mpO67

MetaR[14] Relation prediction TransNet Relation meta EMNLP’19 https://shorturl.at/wAGIJ

GANA[15] Relation prediction TransNet Refined relation meta SIGIR’21 https://shorturl.at/mpvB3

Meta-KGR[16] Multi-hop relation prediction MAML Basic model EMNLP’19 https://shorturl.at/bmrFP

FIRE[17] Multi-hop relation prediction MAML Space pruning EMNLP’20 https://shorturl.at/suwB6

ADK-KG[18] Multi-hop relation prediction MAML Text-enhanced embedding SDM’22 https://shorturl.at/imzJK

Graph-level FSL

SuperClass[19] Graph classification ProNet Super classes ICLR’20 https://shorturl.at/yPV07

AS-MAML[20] Graph classification MAML Adaptation Controller CIKM’20 https://shorturl.at/svE49

Meta-MGNN[21] Molecule classification MAML Task weight WWW’21 https://shorturl.at/stxAP

Pre-PAR[22] Molecule classification MAML Property-aware embedding NeurIPS’21 https://shorturl.at/sAST4

Note: [1][Yao et al., 2020]; [2][Ding et al., 2020]; [3][Lan et al., 2020]; [4][Zhou et al., 2019]; [5][Huang and Zitnik, 2020]; [6][Liu et al.,
2021a]; [7][Ding et al., 2021]; [8][Qian et al., 2021b]; [9][Xiong et al., 2018]; [10][Zhang et al., 2020a]; [11][Sheng et al., 2020]; [12][Baek et
al., 2020]; [13][Wang et al., 2021a]; [14][Chen et al., 2019]; [15][Niu et al., 2021]; [16][Lv et al., 2019]; [17][Zhang et al., 2020b];[18][Zhang et
al., 2022b]; [19][Chauhan et al., 2019];[20][Ma et al., 2020]; [21][Guo et al., 2021];[22][Wang et al., 2021b].

Table 1: A list of representative FSLG methods with open-source code/data.

not only relation prediction problems on knowledge graphs,
but also many other applications. For example, Meta-
Graph [Bose et al., 2019] investigates few-shot link predic-
tion on different networks (e.g., biological network). SEA-
TLE [Li et al., 2020] and MetaHIN [Lu et al., 2020] aim to
tackle cold-start recommendation problems over graphs.

3.3 Graph-level FSL
Besides node-level and edge-level mining, graph-level learn-
ing is also significant to some application domains, such as
bioinformatics and social network. Similar to the former two
problems, the generation of labeled graph samples also in-
volves scarcity and difficulty issues. For example, the collec-
tion of molecular graph labels for therapeutic activity often
costs much money and resource [Guo et al., 2021]; some
communities in social network (e.g., Reddit) only have a
small number of sub-communities. In light of this, some stud-

ies have been proposed recently for solving graph-level prob-
lems with small labeled data. In this part, we summarize the
latest development of graph-level FSLG.
Metric-based Method. Similar to MN-FSL, Metric-based
Graph-level FSL (MG-FSL) focuses on computing distance
between graph class prototype and query graph to predict la-
bels of query graphs. That is, MG-FSL addresses the chal-
lenges of few-shot graph classification problem by comb-
ing graph-level GNN with ProNet. In particular, Super-
Class [Chauhan et al., 2019] is the first work of MG-FSL for
few-shot graph classification. Specifically, unlike the gen-
eral ProNet which computes the average of support samples’
embedding as class prototype, SuperClass employs a graph-
level GNN (i.e., GIN [Xu et al., 2018]) to learn graph em-
bedding, and then clusters graphs into different super-classes
by computing prototype graphs from each class, followed by
clustering the prototype graphs based on their spectral proper-
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ties. Finally, the model is optimized using joint classification
losses of both graph labels and super-class labels. More re-
cently, different from the typical few-shot graph classification
task performed on single domain data, MVG-Meta [Hassani,
2022] develops a multi-view enhanced GIN to learn graph
embedding for cross-domain few-shot graph classification,
i.e., transferring meta-knowledge learned from one domain
to another domain.
Optimization-based Method. Similar to ON-FSL and OE-
FSL, Optimization-based Graph-level FSL (OG-FSL) lever-
ages MAML to optimize few-shot graph classification model.
In this way, OG-FSL is able to solve the challenges of few-
shot graph classification problem. There are several stud-
ies of OG-FSL. Specifically, AS-MAML [Ma et al., 2020]
generates graph embedding by concatenating mean and max-
pooling of all node embeddings encoded by GNN, and further
leverages a reinforcement learning-based controller to adap-
tively control MAML for model optimization. More recently,
Meta-MGNN [Guo et al., 2021] and Pre-PAR [Wang et al.,
2021b] have been proposed to solve molecular property pre-
diction problem (i.e., molecular graph classification). Meta-
MGNN takes each molecule as a graph and learns its embed-
ding with graph-level GNN. It further introduces task weight
to make MAML be aware of molecular property differences
for better model optimization. Furthermore, Pre-PAR im-
proves Meta-MGNN by modeling relational structure among
different molecular properties, such that the limited labels can
be effectively propagated among similar molecules.
Application. As discussed above, besides general graph clas-
sification on different types of graphs (e.g., social network
and biological network), existing graph-level FSL models
have been applied to some other applications, such as molec-
ular property prediction.

4 FSLG Future Research Directions
FSLG is an emerging and fast-developing research topic. Al-
though substantial progresses have been achieved, many chal-
lenges still remain. This opens up a number of avenues for
future research directions. In this section, we identify and
briefly discuss some of them.

• Generalization and transferability. Most of FSLG mod-
els excessively rely on labeled data and attempt to in-
herit a strong inductive bias for new tasks in the test
phase. However, a distribution shift often exists between
non-overlapping meta-training data and meta-testing data.
Without supervision signals from ground-truth labels, the
model may not learn an effective GNN for new classes of
test data. This gap limits generalization and transferability
of the meta-trained GNN. Fortunately, contrastive learn-
ing [Chen et al., 2020; You et al., 2020] has emerged to
alleviate the dependence on labeled data and learn label-
irrelevant but transferable representation from unsuper-
vised pretext tasks. Therefore, we may leverage contrastive
learning to improve the generalization and transferability
capability of current FSLG methods.

• Explainability. The previous FSLG studies target devel-
oping better models in performance while none of them

has thought about model explanation. However, develop-
ing FSLG models with explainability is essential to im-
prove model reliability and end-user trust. For example, it
is worth investigating and explaining which part of FSLG
(e.g., GNN, meta-training, or meta-adaptation) is more sig-
nificant to model performance, such that we can have a bet-
ter guide for model design. In addition, we can develop
information-based method [Guan et al., 2019] to quantita-
tively explain FSLG model’s capability.

• Graph models for FSLG. Though FSLG has been widely
studied for certain types of graphs (e.g., plain graphs,
attributed graphs), many other types of graphs such as
signed graphs, multiplex graphs remain largely understud-
ied in this filed. Meanwhile, the underlying GNN mod-
els adopted by existing FSLG work commonly follow the
homophily principle, which cannot naturally adapt to het-
erophily graphs, where connected nodes are dissimilar.
Hence, how to design principled graph models for graphs
with different properties is also a promising research direc-
tion in the field of FSLG.

• Theoretical analysis of FSLG. A recent work [Jambor
et al., 2021] has empirically explored the limits of exist-
ing FSLG methods in relation prediction over knowledge
graphs and challenged the implicit assumptions and induc-
tive biases of prior work. To take a step further and un-
veil the profound foundation, theoretical analysis of FSLG,
which has not been explored before, is necessary and im-
portant for us to better understand FSLG methods. In
particular, a number of recent work [Cao et al., 2019;
Du et al., 2020; Tripuraneni et al., 2021] related to FSL
theory could serve as bases for this research direction.

• Broader applications. As discussed in this work, FSLG
have been applied to not only general graph mining tasks
at different granularity levels on various types of graphs
but also some domain-specific applications (e.g., malware
detection, illicit drug trafficker detection). Besides these
studies, it is worth exploring the potential of FSLG to other
application domains [Mandal et al., 2022], such as health-
care and social good. For example, we may develop FSLG
model to capture patients’ drug refill behavior (in which la-
bels are limited) over prescription dispensing and refill data
(modeled as graph), thus further performing early interven-
tion of patients’ abnormal behavior (e.g., opioid overdose),
which is essential to their health.

5 Conclusion
As two popular research topics in the AI community, graph
representation learning and few-shot learning have laid the
groundwork for a new promising research direction: few-shot
learning on graphs (FSLG), which has significance to various
application domains. In this work, we first introduce major
challenges and bases of FSLG. Then we comprehensively re-
view existing studies of FSLG by systematically categorizing
them into three parts for node-level, edge-level, and graph-
level problems, respectively. Finally, we discuss several crit-
ical issues that should be solved and share our thoughts of
future directions. We hope this review will serve as a useful
reference for researchers and advance future work of FSLG.
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