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Abstract

Heterogeneous Graph Neural Networks (HGNNs) have
drawn increasing attention in recent years and achieved out-
standing performance in many tasks. The success of the ex-
isting HGNNs relies on one fundamental assumption, i.e.,
the original heterogeneous graph structure is reliable. How-
ever, this assumption is usually unrealistic, since the hetero-
geneous graph in reality is inevitably noisy or incomplete.
Therefore, it is vital to learn the heterogeneous graph struc-
ture for HGNNs rather than rely only on the raw graph struc-
ture. In light of this, we make the first attempt towards learn-
ing an optimal heterogeneous graph structure for HGNNs and
propose a novel framework HGSL, which jointly performs
Heterogeneous Graph Structure Learning and GNN parame-
ter learning for classification. Different from traditional ho-
mogeneous graph structure learning, considering the hetero-
geneity of different relations in heterogeneous graph, HGSL
generates each relation subgraph separately. Specifically, in
each generated relation subgraph, HGSL not only considers
the feature similarity by generating feature similarity graph,
but also considers the complex heterogeneous interactions
in features and semantics by generating feature propagation
graph and semantic graph. Then, these graphs are fused to a
learned heterogeneous graph and optimized together with a
GNN towards classification objective. Extensive experiments
on real-world graphs demonstrate that the proposed frame-
work significantly outperforms the state-of-the-art methods.

Introduction
Many real-world data can be viewed as graphs, such as bib-
liographic graphs, citation graphs, and social media graphs.
Graph Neural Network (GNN), as a powerful deep repre-
sentation learning tool to deal with graph data, has drawn
increasing attention and is widely applied to node classifica-
tion (Kipf and Welling 2017; Velickovic et al. 2018; Xu et al.
2019), graph classification (Duvenaud et al. 2015; Lee, Lee,
and Kang 2019), and recommendation (Ying et al. 2018; Fan
et al. 2019b; Wang et al. 2019a). Recently, with the prolif-
eration of real-world applications on heterogeneous graphs,
which consist of multiple types of nodes and links (Shi et al.
2017), Heterogeneous Graph Neural Networks (HGNNs)
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are brought forward and have achieved remarkable improve-
ments on series of applications (Wang et al. 2020a; Hu et al.
2019b; Li et al. 2019; Hu et al. 2019a; Fan et al. 2019a;
Wang et al. 2020b).

Most HGNNs follow a message-passing scheme where
the node embedding is learned by aggregating and trans-
forming the embeddings of its original neighbors (Zhang
et al. 2019a; Zhao et al. 2020a; Hong et al. 2020) or
metapath-based neighbors (Wang et al. 2019b; Yun et al.
2019; Hu et al. 2020; Fu et al. 2020). These methods rely
on one fundamental assumption, i.e. the raw heterogeneous
graph structure is good. However, as heterogeneous graphs
are usually extracted from complex interaction systems by
some pre-defined rules, such assumption cannot be always
satisfied. One reason is that, these interaction systems in-
evitably contain some uncertain information or mistakes.
Taking a user-item graph built from recommendation as an
example, it is well accepted that users may misclick some
unwanted items, bringing noisy information to the graph.
The other reason is that, the heterogeneous graphs are often
extracted with data cleaning, feature extraction and feature
transformation by some pre-defined rules, which are usually
independent to the downstream tasks and lead to the gap be-
tween the extracted graph and the optimal graph structure for
the downstream tasks. Therefore, learning an optimal het-
erogeneous graph for GNN is a fundamental problem.

Recently, to adaptively learn graph structures for GNNs,
graph structure learning (GSL) methods (Franceschi et al.
2019; Jiang et al. 2019; Chen, Wu, and Zaki 2019; Jin et al.
2020) are proposed, most of which parameterize the adja-
cency matrix and optimize it along with the GNN parame-
ters toward downstream tasks. However, these methods are
all designed for homogeneous graphs, which can not be di-
rectly applied to heterogeneous graphs with the following
challenges: (1) The heterogeneity in heterogeneous graphs
When learning a homogeneous graph with only one type
of relation, we usually only need to parameterize one ad-
jacency matrix. However, a heterogeneous graph consists
of multiple relations, each of which reflects one aspect of
the heterogeneous graph. Since treating these heterogeneous
relations uniformly will inevitably restrict the capability of
graph structure learning. How to deal with this heterogene-
ity is a challenging problem. (2) The complex interactions
in heterogeneous graphs. Different relations and node fea-



tures have complex interactions, which drives the forma-
tion of different kinds of underlying graph structure (Zhang,
Swami, and Chawla 2019). Moreover, the combination of
different relations further forms a large number of high-
order relationships with diverse semantics, which also im-
plies distinct ways of graph generation. The heterogeneous
graph structure will be affected by all these factors, there-
fore, these complex interactions must be thoroughly consid-
ered in heterogeneous graph structure learning.

In this paper, we make the first attempt to investigate
Heterogeneous Graph Structure Learning for graph neural
networks, and propose a novel framework HGSL. In HGSL,
the heterogeneous graph and the GNN parameters are jointly
learned towards better node classification performance. Par-
ticularly, in the graph learning part, aiming to capture the
heterogeneous metric of different relation generation, each
relation subgraph is separately learned. Specifically, for each
relation, three types of candidate graphs, i.e. the feature
similarity graph, feature propagation graphs and semantic
graphs, are generated by mining the complex correlations
from heterogeneous node features and graph structures. The
learned graphs are further fused to a heterogeneous graph
and fed to a GNN. The graph learning parameters and the
GNN parameters are jointly optimized towards classifica-
tion objective. Our major contributions are highlighted as
follows:

• A suitable heterogeneous graph structure is one basic
guarantee of a successful HGNN. To our best knowledge,
we make the first attempt to study how to learn an optimal
heterogeneous graph structure for GNN towards down-
stream task.

• We propose a novel heterogeneous graph neural network
with heterogeneous graph structure learning, where three
kinds of graph structures (feature similarity graph, feature
propagation graph, semantic graph) are generated, so as to
comprehensively fuse an optimal heterogeneous graph for
GNN.

• We conduct extensive experiments on three real-world
datasets to validate the effectiveness of HGSL against the
state-of-the-art methods.

Related Work
Graph Neural Network (GNN)
Most of current GNNs can be generally divided into two cat-
egories: spectral GNNs and spatial GNNs (Wu et al. 2019b).
Specifically, spectral GNNs learn node representation based
on graph spectral theory. For example, (Bruna et al. 2014)
designs the graph convolution operation in Fourier domain
by the graph Laplacian. Then, ChebNet (Defferrard, Bres-
son, and Vandergheynst 2016) utilizes Chebyshev polyno-
mials as the convolution filter to improve the efficiency.
GCN (Kipf and Welling 2017) simplifies ChebNet by us-
ing its first-order approximation. Further, SGC (Wu et al.
2019a) reduces the graph convolution to a linear model and
still achieves competitive performance. Spatial GNNs de-
fine convolution operations directly on the graph, utilizing
spatially close neighbors. For instance, GAT (Velickovic

et al. 2018) aggregates neighborhood representations with
attention mechanism. GraphSAGE (Hamilton, Ying, and
Leskovec 2017) performs inductive graph convolution by
aggregating information from sampled neighbors. For better
efficiency, FastGCN (Chen, Ma, and Xiao 2018) performs
importance sampling on each convolution layer. Readers
may refer to these elaborate surveys (Zhang, Cui, and Zhu
2018; Wu et al. 2019b) for a thorough review.

Heterogeneous Graph Neural Network (HGNN)
HGNNs are proposed to deal with the ubiquitous heteroge-
neous data. Some HGNNs perform graph convolution di-
rectly on the original heterogeneous graphs. HGAT (Hu
et al. 2019b) aggregates in node and type level information
with attention mechanism for short-text classification. Het-
GNN (Zhang et al. 2019a) samples heterogeneous neighbors
by random walk and then aggregates node and type infor-
mation. To solve the metapath selection conundrum, Het-
SANN (Hong et al. 2020) aggregates multi-relational in-
formation of projected nodes by means of attention mech-
anism. NSHE (Zhao et al. 2020a) preserves the pairwise
and network schema structure. HGT (Hu et al. 2020) adopts
the meta-relation based mutual attention to perform mes-
sage passing on heterogeneous graphs and learns the implicit
meta paths. Other HGNN methods use metapaths to generate
graphs and apply GNN afterwards. GraphInception (Zhang
et al. 2018) applies graph convolution on metapaths based
homogeneous graphs to perform collective classification.
HAN (Wang et al. 2019b) applies node-level and semantic-
level attention on metapath-based graphs. GTN (Yun et al.
2019) performs metapath generation via stacking multiple
graph transformer layers and perform graph convolution af-
terwards. MAGNN (Fu et al. 2020) applies intra-metapath
and inter-metapath aggregation on metapath instances.

Graph Structure Learning (GSL)
To alleviate the limitation that GNNs rely on the good qual-
ity of raw graph structure, several efforts have been made
(Zhang et al. 2019b; Zheng et al. 2020; Ye and Ji 2019;
Zhao et al. 2020b; Wang et al. 2020c; Pei et al. 2020). Be-
sides these efforts, very recently, graph structure learning
was proposed. GSL methods aim to learn the graph structure
and GNN parameters jointly. To illustrate, LDS (Franceschi
et al. 2019) models each edge inside the adjacency matrix
as a parameter and learns them along with GNN parame-
ters in a bi-level fashion. GLCN (Jiang et al. 2019) gen-
erates similarity-based graph structure from node features.
IDGL (Chen, Wu, and Zaki 2019) iteratively learns the met-
rics to generate graph structure from node features and GNN
embeddings. ProGNN (Jin et al. 2020) jointly learns GNN
parameters and a robust graph structure with graph proper-
ties. However, these aforementioned GSL methods are all
designed for homogeneous graphs.

Preliminaries
In this section, we introduce some basic concepts and for-
malize the problem of heterogeneous graph structure learn-
ing.



Definition 1. Heterogeneous Graph A Heterogeneous
graph G = (V,E,F) is composed of a node set V , an edge
setE, and a feature setF , along with the node type mapping
function φ : V → T , and the edge type mapping function
ψ : E → R, where T and R denotes the node and edge
types, |T | + |R| > 2. Let Vτ denote the node set of type
τ ∈ T , the feature set F is composed of |T | feature matrix,
F = {Fτ , τ ∈ T }, Fτ ∈ R|Vτ |×dτ , where Vτ stands for all
the node with τ type, dτ stands for the feature dimension of
τ nodes.

Definition 2. Metapath A metapath P is defined as a path
in the form of v1

r1−→ v2
r2−→ · · · rl−→ vl+1, which describes

a composite relation r1 ◦ r2 ◦ · · · ◦ rl between two nodes
v1 and vl+1, where ◦ denotes the composition operator on
relations.

Definition 3. Node Relation Triple A node relation triple
〈vi, r, vj〉, describes that two nodes vi (head node) and vj
(tail node) are connected by relation r ∈ R. We further de-
fine the type mapping functions φh, φt : R → T that map
the relation to its head node type and tail node type respec-
tively.
Example: In a user-item heterogeneous graph, say r =
“UI” (a user buys an item), then we have φh(r) = “User”
and φt(r) = “Item”.

Definition 4. Relation Subgraph Given a heterogeneous
graph G = (V,E,F), a relation subgraph Gr is a subgraph
of G that contains all node-relation triples with relation r.
The adjacency matrix of Gr is Ar ∈ R|Vφh(r)|×|Vφt(r)|,
where Ar[i, j] = 1 if 〈vi, r, vj〉 exists in Gr, otherwise
Ar[i, j] = 0. A denotes the relation subgraph set of all the
relation subgraphs in G, i.e. A = {Ar, r ∈ R}.
Definition 5. Heterogeneous Graph Structure Learning
(HGSL). Given a heterogeneous graph G, the task of het-
erogeneous graph structure learning is to jointly learn a het-
erogeneous graph structure, i.e. a new relational subgraph
set A′, and the parameters of GNN for downstream tasks.

The Proposed Method
Model Framework
Figure 1 (a) illustrates the framework of the proposed
HGSL. As we can see, given a heterogeneous graph, HGSL
firstly constructs the semantic embedding matrices Z by
metapath-based node embeddings from M metapaths. Af-
terwards, the heterogeneous graph structure and GNN pa-
rameters are trained jointly. For the graph learning part,
HGSL takes the information from the original relation sub-
graph, the node features, and the semantic embeddings as
input and generates relation subgraphs separately. Specifi-
cally, taking relation r1 as an example, HGSL learns a fea-
ture graph SFeatr1 and a semantic graph SSemr1 and fuse them
with the original graph Ar1 to obtain the learned relation
subgraph A′r1 . Then, the learned subgraphs are fed into a
GNN and a regularizer to perform node classification with
regularization. By minimizing the regularized classification
loss, HGSL optimizes the graph structure and the GNN pa-
rameters jointly.

Figure 1: Overview of the HGSL framework. (a) Model
framework. (b) Feature graph generator. (c) Semantic graph
generator.

Feature Graph Generator
Since the original graph may not be optimal for downstream
task, a natural idea would be to augment the original graph
structure via fully utilizing the rich information inside het-
erogeneous node features. Usually, there are two factors
that affect the formation of graph structure based on fea-
tures. One is the similarity between node features, and the
other is the relationship between node feature and relation
in HIN (Wang et al. 2020c). As shown in Figure 1 (b), we
first propose to generate a feature similarity graph that cap-
tures the potential relationship generated by node features
via heterogeneous feature projection and metric learning.
Then we propose to generate the feature propagation graph,
by propagating feature similarity matrices through topology
structure. Finally, the generated feature similarity graph and
feature propagation graph are aggregated to a final feature
graph through a channel attention layer.

Feature Similarity Graph The feature similarity graph
SFSr determines the possibility of an edge with type r ∈
R between two nodes based on node features. Specifi-
cally, for each node vi of type φ(vi) with feature vector
fi ∈ R1×dφ(vi) , we adopt a type-specific mapping layer to
project the feature fi to a dc-dimensional common feature
f ′i ∈ R1×dc :

f ′i = σ
(
fi ·Wφ(vi) + bφ(vi)

)
, (1)

where σ(·) denotes a non-linear activation function, Wτ ∈
Rdφ(vi)×dc and bτ ∈ R1×dc denote the mapping matrix and
the bias vector of type φ(vi), respectively. Then, for a re-
lation r, we perform metric learning on the common fea-
tures and obtain the learned feature similarity graph SFSr ∈
R|Vφh(r)||×|Vφt(r)|, where the edge between nodes vi and vj
is obtained by:

SFSr [i, j] =

{
ΓFSr (f ′i , f

′
j) ΓFSr (f ′i , f

′
j) ≥ εFS

0 otherwise, (2)

where εFS ∈ [0, 1] is the threshold that controls the sparsity
of feature similarity graph, and larger εFS implies a more



sparse feature similarity graph. ΓFSr is a K-head weighted
cosine similarity function defined as:

ΓFSr (f ′i , f
′
j) =

1

K

K∑
k

cos
(
wFS
k,r � f ′i ,w

FS
k,r � f ′j

)
, (3)

where � denotes the Hadamard product, and WFS
r =

[wFS
k,r ] is the learnable parameter matrix of ΓFSr that weights

the importance of different dimensions of the feature vec-
tors. By performing metric learning as in Equation 3 and rul-
ing out edges with little feature similarity by threshold εFS ,
HGSL learns the candidate feature similarity graph SFSr .

Feature Propagation Graph The feature propagation
graph is the underlying graph structure generated by the in-
teraction between node features and topology structure. The
key insight is that two nodes with similar features may have
similar neighbors. Therefore, the process of generating fea-
ture propagation graph is two-fold: Firstly, generate the fea-
ture similarity graphs, i.e. find the similar nodes; secondly,
propagate the feature similarity graph by topological struc-
ture to generate new edges, i.e. find the neighbors of the
nodes with similar features.

Specifically, for each relation r, assume that we have two
types of nodes Vφh(r) and Vφt(r) and the topology structure
between them is Ar ∈ R|Vφh(r)|×|Vφt(r)| . For the nodes
vi, vj ∈ Vφh(r) with the same type φh(r) , we can obtain
the feature similarity:

SFHr [i, j] =

{
ΓFHr (fi, fj) ΓFHr (fi, fj) ≥ εFP
0 otherwise, (4)

where the threshold εFP controls the sparsity of feature
similarity graph SFHr . ΓFHr is the metric learning function
in the framework of Equation 3 with different parameters
WFH

r . Then we can model the head feature propagation
graph SFPHr ∈ R|Vφh(r)|×|Vφt(r)| using SFHr and Ar as fol-
lows:

SFPHr = SFHr Ar. (5)
As we can see, the feature similarity is propagated through
the original graph topological structure and further generates
the potential feature propagation graph structure. As for the
nodes Vφt(r) with the same type φt(r) , similar to Eq. 4, we
can obtain the corresponding feature similarity graph SFTr
with parameters WFT

r . Therefore, the corresponding feature
propagation graph SFPTr can be obtained as follows:

SFPTr = ArS
FT
r . (6)

Now, we have generated one feature similarity graph SFSr
and two feature propagation graphs SFPHr and SFPTr . The
overall feature graph for relation r, denoted as SFeatr ∈
R|Vφh(r)|×|Vφt(r)|, can be obtained by fusing these graphs
through a channel attention layer (Yun et al. 2019):

SFeatr = ΨFeat
r ([SFSr ,SFPHr ,SFPTr ]), (7)

where [SFSr ,SFPHr ,SFPTr ] ∈ R|Vφh(r)|×|Vφt(r)|×3 is the
stacked matrix of the feature candidate graphs, and ΨFeat

r
denotes a channel attention layer with parameters WFeat

Ψ,r ∈

R1×1×3 which performs 1 × 1 convolution on the input us-
ing softmax(WFeat

Ψ,r ). In this way, HGSL balances the im-
portance of each candidate feature graph for each relation r
by learning different weights respectively.

Semantic Graph Generator
The semantic graph is generated depending on the high-
order topology structure in HIN, describing the multi-hop
structural interactions between two nodes. Notably, in het-
erogeneous graphs, these high-order relationships differ
from each other with different semantics determined by
metapaths. In light of this, we propose to learn semantic
graph structures from different semantics.

Given a metapath P with the corresponding relations
r1 ◦ r2 ◦ · · · ◦ rl, a straightforward way to generate se-
mantic graph would be fusing the adjacency matrices, i.e.
Ar1 ·Ar2 · · · · ·Arl (Yun et al. 2019). However, this method
not only costs large memory with the computation of stack-
ing multiple layers of adjacency matrices, but also discards
the intermediate nodes which leads to information loss (Fu
et al. 2020).

Alternatively, we propose a semantic graph generator
shown in Figure 1 (c). The semantic graph generator gener-
ates the potential semantic graph structure by metric learn-
ing on trained metapath-based node embeddings. Specifi-
cally, for an interested metapath set P = {P1, P2, ..., PM}
with M metapaths, HGSL uses trained MP2Vec (Dong,
Chawla, and Swami 2017) embeddings, denoted as Z =
{ZP1

,ZP2
, · · · ,ZPM ∈ R|V |×d} , to generate semantic

graphs. Since the training process of semantic embeddings
is off-line, the computation cost and model complexity is
largely reduced. Moreover, thanks to the mechanism of
heterogeneous skip-gram, the information of intermediate
nodes is well preserved.

After obtaining the semantic embeddings Z , for each
metapath Pm , we generate a candidate semantic subgraph
adjacency matrix SMP

r,m ∈ R|Vφh(r)|×|Vφt(r)|, where each
edge is calculated by:

SMP
r,m [i, j] =

{
ΓMP
r,m (zmi , z

m
j ) ΓMP

r,m (zmi , z
m
j ) ≥ εMP

0 otherwise,
(8)

where zmi stands for the i th row of ZPm , and ΓMP
r,m is the

metric learning function with parameters WMP
r,m . We can see

that a relation r will generate M candidate semantic sub-
graphs, so the overall semantic subgraph for relation r, de-
noted as SSemr , can be obtained by aggregating them:

SSemr = ΨMP
r ([SMP

r,1 ,SMP
r,2 , ...,SMP

r,M ]) (9)

where [SMP
r,1 ,SMP

r,2 , ...,SMP
r,M ] is the stacked matrix of M

candidate semantic graphs. ΨMP
r denotes a channel atten-

tion layer whose weight matrix WMP
Ψ,r ∈ R1×1×M rep-

resents the importance of different metapath-based candi-
date graphs. After we obtain the aggregated semantic graph
SSemr , the overall generated graph structure A′r for relation
r can be obtained by aggregating the learned feature graph
and semantic graph along with the original graph structure:



A′r = Ψr([S
Feat
r ,SSemr ,Ar]), (10)

where [SFeatr ,SSemr ,Ar] ∈ R|Vφh(r)|×|Vφt(r)|×3 is the
stacked matrix of the candidate graphs. Ψr is the channel at-
tention layer whose weight matrix WΨ,r ∈ R1×1×3 denotes
the importance of candidate graphs in fusing the overall re-
lation subgraph A′r. With a new relation adjacency matrix
A′r for each relation r, a new heterogeneous graph structure
is generated, i.e. A′ = {A′r, r ∈ R}.

Optimization
In this section, we show how HGSL jointly optimizes the
graph structureA′ and the GNN parameters for downstream
task. Here we focus on GCN (Kipf and Welling 2017) and
node classification. Please note that, with the learned graph
structure A′, our model can be applied to other homoge-
neous or heterogeneous GNN methods and other tasks. A
two layer GCN with parameters θ = (W1,W2) on the
learned graph structure A′, can be described as:

fθ(X,A
′) = softmax

(
Âσ

(
ÂXW1

)
W2

)
, (11)

where X is the original node feature matrix, i.e. X[i, :] = fTi
if the dimensions of all features are identical; otherwise, we
use the common feature to construct X, i.e. X[i, :] = f ′Ti .
The adjacency matrix A′ is constructed from the learned
heterogeneous graph A′ by considering all nodes as one
type. Â = D̃−1/2(A′+I)D̃−1/2, where D̃ii = 1+

∑
j A
′
ij .

Thus, the classification loss of GNN, i.e. LGNN , on the
learned graph can be obtained by:

LGNN =
∑
vi∈VL

` (fθ(X,A
′)i, yi) , (12)

where fθ(X,A′)i is the predicted label of node vi ∈ VL
and `(·, ·) measures the difference between prediction and
the true label yi such as cross entropy.

Since graph structure learning methods enable the origi-
nal GNN with stronger ability to fit the downstream task, it
would be easier for them to over-fit. Thus, we apply regular-
ization term Lreg to the learned graph as follows:

Lreg = α‖A′‖1. (13)

This term encourages the learned graph to be sparse. The
overall loss L can be obtained by:

L = LGNN + Lreg. (14)

By minimizing L, HGSL optimizes heterogeneous graph
structure and the GNN parameters θ jointly towards better
downstream task performance.

Experiments
Datasets
We employ the following real-world datasets to evaluate our
proposed model. The statistics of these datasets are shown
in Table 1:

• DBLP (Yun et al. 2019): This is a subset of DBLP which
contains 4,328 papers (P), 2,957 authors (A), and 20 con-
ferences (C). The authors are divided into four areas:
database, data mining, machine learning, and information
retrieval. The node features are the terms related to pa-
pers, authors and conferences respectively.

• ACM (Yun et al. 2019): We use the identical datasets and
the experimental setting of GTN’s. This dataset contains
3,025 papers (P), 5,912 authors (A), and 57 conference
subjects (S). Papers are labeled according to their confer-
ences. Node features are constructed by the keywords.

• Yelp (Lu et al. 2019): The Yelp dataset contains 2,614
businesses (B), 1,286 users (U), 4 services (S), and 9 rat-
ing levels (L). The business nodes are labeled by their
category. The node features are constructed by the bag-
of-words representation of the related keywords.

Baselines
We compare HGSL with eleven state-of-the-art embed-
ding methods including four homogeneous graph em-
bedding methods, i.e., DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), GCN (Kipf and Welling 2017), GAT (Velick-
ovic et al. 2018), and GraphSAGE (Hamilton, Ying, and
Leskovec 2017), four heterogeneous graph embedding
methods, i.e., MP2Vec (Dong, Chawla, and Swami 2017),
HAN (Wang et al. 2019b), HeGAN (Hu, Fang, and Shi
2019), and GTN (Yun et al. 2019), and three graph structure
learning related methods, i.e. LDS (Franceschi et al. 2019),
Pro-GNN (Jin et al. 2020), and Geom-GCN (Pei et al. 2020).

Experimental Settings
For all GNN-related models, the number of layers are set
as 2 for a fair comparison. The feature dimension in com-
mon space dc and the embedding dimension d for all meth-
ods are set as 16 and 64 respectively. We choose the pop-
ular metapaths adopted in previous methods (Wang et al.
2019b; Dong, Chawla, and Swami 2017; Lu et al. 2019) for
metapath based models and report the best result. For our
proposed model, we use 2-head cosine similarity function
defined in Equation 3, i.e. K=2. We set learning rate and
weight decay as 0.01 and 0.0005 respectively. Other hyper-
parameters, namely εFS , εFP , εMP , and α, are tuned by
grid search. The code and datasets are publicly available on
Github1.

Node Classification
In this section, we evaluate the performance of HGSL on
node classification task. Macro-F1 and Micro-F1 are se-
lected as the metrics for evaluation. The mean and standard
deviation of percentage of the metric values are shown in Ta-
ble 2, from which we have following observations: (1) With
the capability to adaptively learn the heterogeneous graph
structure, HGSL consistently outperforms all the baselines.
It demonstrates the effectiveness of our proposed model. (2)
Graph structure learning methods generally outperform the
original GCN since it enables GCN to aggregate feature

1https://github.com/Andy-Border/HGSL



Dataset # Nodes # Edges # Edge Type # Features # Training # Validation # Test
DBLP 7305 19816 4 334 600 300 2057
ACM 8994 25922 4 1902 600 300 2125
Yelp 3913 77176 6 82 300 300 2014

Table 1: Statistics of the datasets.

DBLP ACM Yelp
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

DeepWalk 88.00 ± 0.47 89.13 ± 0.41 80.65 ± 0.60 80.32 ± 0.61 68.68 ± 0.83 73.16 ± 0.96
GCN 83.38 ± 0.67 84.40 ± 0.64 91.32 ± 0.61 91.22 ± 0.64 82.95 ± 0.43 85.22 ± 0.55
GAT 77.59 ± 0.72 78.63 ± 0.72 92.96 ± 0.28 92.86 ± 0.29 84.35 ± 0.74 86.22 ± 0.56

GraphSage 78.37 ± 1.17 79.39 ± 1.17 91.19 ± 0.36 91.12 ± 0.36 93.06 ± 0.35 92.08 ± 0.31
MP2Vec 88.86 ± 0.19 89.98 ± 0.17 78.63 ± 1.11 78.27 ± 1.14 59.47 ± 0.57 65.11 ± 0.53

HAN 90.53 ± 0.24 91.47 ± 0.22 91.67 ± 0.39 91.57 ± 0.38 88.49 ± 1.73 88.78 ± 1.40
HeGAN 87.02 ± 0.37 88.34 ± 0.38 82.04 ± 0.77 81.80 ± 0.79 62.41 ± 0.76 68.17 ± 0.79

GTN 90.42 ± 1.29 91.41 ± 1.09 91.91 ± 0.58 91.78 ± 0.59 92.84 ± 0.28 92.19 ± 0.29
LDS 75.65 ± 0.20 76.63 ± 0.18 92.14 ± 0.16 92.07 ± 0.15 85.05 ± 0.16 86.05 ± 0.50

Pro-GNN 89.20 ± 0.15 90.28 ± 0.16 91.62 ± 1.28 91.55 ± 1.31 74.12 ± 2.03 77.45 ± 2.12
Geom-GCN 79.43 ± 1.01 80.94 ± 1.06 70.20 ± 1.23 70.00 ± 1.06 84.28 ± 0.70 85.36 ± 0.60

HGSL 91.92 ± 0.11 92.77 ± 0.11 93.48 ± 0.59 93.37 ± 0.59 93.55 ± 0.52 92.76 ± 0.60

Table 2: Performance evaluation of node classification (mean in percentage ± standard deviation).

Yelp ACM DBLP
0.75

0.8

0.85

0.9

0.95

M
ac

ro
-F

1

HGSL-w/o-FSG
HGSL-w/o-FPG
HGSL-w/o-SG

HGSL-avg
HGSL

(a) Macro-F1

Yelp ACM DBLP
0.75

0.8

0.85

0.9

0.95

M
ic

ro
-F

1

HGSL-w/o-FSG
HGSL-w/o-FPG
HGSL-w/o-SG

HGSL-avg
HGSL

(b) Micro-F1

Figure 2: Performance evaluation of variants of HGSL.

from the learned structure. (3) HGNN methods, i.e. HAN,
GTN, and HGSL achieve better performance compared to
GNNs since the heterogeneity is addressed. (4) GNN-based
methods mostly outperform random walk-based graph em-
bedding methods since the node features are utilized. This
phenomenon becomes more obvious when it comes to Yelp
dataset, since the node features, i.e. keywords, are helpful in
classifying business categories.

Ablation Study
In order to verify the effectiveness of different parts of
HGSL, we design four variants of HGSL and compare their
classification performance against HGSL. The results in
terms of Macro-F1 and Micro-F1 are shown in Figure 2 (a)
and Figure 2 (b) respectively.

Effectiveness of Candidate Graphs HGSL generates
new graph structure via fusing three kinds of candidate
graphs, i.e., feature similarity graphs, feature propagation
graphs, and semantic graphs. To understand their impact,

we design three variants by removing each of these type
of graphs from HGSL, denoted as HGSL-w/o-FSG, HGSL-
w/o-FPG, and HGSL-w/o-SG, respectively. We can observe
that HGSL outperforms these variants, indicating that it is
necessary to consider all these candidate graphs. Moreover,
compared to HGSL, the performance drop of these three
variants are different on different datasets, showing that the
importance of these candidate graphs differs in different
cases and should be carefully balanced.

Effectiveness of Weight Learning To evaluate whether
HGSL can effectively learn the importance of different
graphs, we replace each channel attention layer in HGSL
with an average aggregation layer, i.e. the graphs are ob-
tained by averaging all candidate graphs, denoted as HGSL-
avg. It is obvious that HGSL outperforms HGSL-avg sig-
nificantly, which demonstrates the effectiveness of weight
learning through channel attention layers. Notably, the per-
formance of HGSL-avg on Yelp drops significantly com-
pared to HGSL. This is because that the node features of
Yelp are very important, however, HGSL-avg equally fuses
three candidate graphs, where two graphs (the semantic
graph and the original graph) are both generated from topol-
ogy. Therefore, the impact of node features in Yelp is largely
weakened, hindering the performance.

Importance Analysis of Candidate Graphs
In order to investigate whether HGSL can distinguish the
importance of candidate graphs, we analyze the weight dis-
tribution of the channel attention layer for fusing each re-
lation subgraphs, i.e. the weights of Ψr in Equation 10,
on three datasets. We train HGSL 20 times and set all the
thresholds of HGSL as 0.2. The attention distributions are
shown in Figure 3. As we can observe, for relation sub-



P-S P-A
Relation Subgraphs

A
tt

en
tio

n 
V

al
ue

s
Feature Graph
Semantic Graph
Original Graph

(a) ACM

P-C P-A
Relation Subgraphs

A
tt

en
tio

n 
V

al
ue

s

Feature Graph
Semantic Graph
Original Graph

(b) DBLP

B-S B-L B-U
Relation Subgraphs

A
tt

en
tio

n 
V

al
ue

s

Feature Graph
Semantic Graph
Original Graph

(c) Yelp

Figure 3: Channel attention distributions of relation subgraphs.
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Figure 4: Parameter sensitivity of different thresholds.

graphs in ACM and DBLP, the original graph structure is
the most important structure for GNN-based classification.
However, as for Yelp, the channel attention values of differ-
ent relation subgraphs differ from each other. Specifically,
for B-U (business-user) and B-L (business-rating level) re-
lation subgraphs, the feature graphs are assigned with large
channel attention value in graph structure learning. This phe-
nomenon implies that the information in node features plays
a more important role than that of semantic embeddings
which agrees with the the previously discussed experiments
and further demonstrates the capability of HGSL in adap-
tively learning a larger channel attention value for more im-
portant information.

Parameter Analysis
In this section, we investigate the sensitivity of the important
parameters. The main parameters of HGSL are the similarity
thresholds, namely εFS , εFP , and εMP , defined in Equation
2, Equation 4, and Equation 8 respectively. These thresholds
control the sparsity of the generated graphs.

For better visualization, we set εFS = εFP and plot the
Macro-F1 value with respect to different εFS and εMP . The
results are shown in Figure 4, from which we can observe
that: For all datasets, while feature threshold (εFS = εFP )

and semantic threshold (εMP ) are set as 1, the performance
of HGSL drops sharply. This is because in this case, HGSL
utilizes the original graph structure only and the model is de-
generated into a vanilla GNN model. The significant perfor-
mance drop clearly demonstrates the effectiveness of graph
structure learning. What’s more, the performance trends for
different thresholds differ greatly, which indicates that the
importance of features and semantics varies in different
graphs and need to be carefully evaluated.

Conclusion
In this paper, we make the first attempt to study hetero-
geneous graph structure learning for GNNs and propose a
framework named HGSL which jointly learns the heteroge-
neous graph structure and the GNN parameters towards clas-
sification objective. Particularly, by utilizing the complex
interactions inside heterogeneous graphs, feature similarity
graphs, feature propagation graphs and semantic graphs are
generated and fused to learn an optimal heterogeneous graph
structure for classification. Extensive experiments including
node classification, ablation study, and model analysis are
conducted, which well demonstrate the effectiveness of the
proposed framework.
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