

1 **Liquefaction assessment of gravelly soils: the role of in situ and laboratory geotechnical tests**
2 **through the case study of the Sulmona basin (Central Italy)**

3 NADIA SALVATORE, ALBERTO PIZZI, KYLE M. ROLLINS, ALESSANDRO PAGLIAROLI, SARA AMOROSO
4 Nadia Salvatore - Department of Engineering and Geology, University. “G. d’Annunzio” of Chieti-
5 Pescara, via dei Vestini, 31, 66100 Chieti, Italy. ORCID: 0000-0002-9240-9270. Corresponding
6 author, e-mail: nadia.salvatore@unich.it

7 Alberto Pizzi – Associate Professor, Department of Engineering and Geology, University. “G.
8 d’Annunzio” of Chieti-Pescara, via dei Vestini, 31, 66100 Chieti, Italy. ORCID: 0000-0002-5196-
9 4956. e-mail: alberto.pizzi@unich.it

10 Kyle M. Rollins – Full Professor, Department of Civil and Environmental Engineering, Brigham
11 Young University, 368 CB, Provo, UT 84602. ORCID: 0000-0002-8977-6619. e-mail:
12 rollinsk@byu.edu

13 Alessandro Pagliaroli – Associate Professor, Department of Engineering and Geology, University.
14 “G. d’Annunzio” of Chieti-Pescara, viale Pindaro, 42, 65129 Pescara, Italy ORCID: 0000-0002-
15 7431-5094. e-mail: alessandro.pagliaroli@unich.it

16 Sara Amoroso – Assistant Professor, Department of Engineering and Geology, University. “G.
17 d’Annunzio” of Chieti-Pescara, viale Pindaro, 42, 65129 Pescara, Italy; Research Associate, Istituto
18 Nazionale di Geofisica e Vulcanologia, Italy ORCID: 0000-0001-5835-079X. e-mail:
19 sara.amoroso@unich.it

20 ABSTRACT

21 Even though liquefaction in gravelly soil is well documented in many earthquakes since 1891, most
22 of the “simplified procedures” and national buildings codes still consider only sandy soil liquefaction
23 in seismic hazard assessment. In this study, 109 sites of gravel liquefaction related to 27 historical
24 earthquakes from 1891 to 2020 are reported, with a wide range of moment magnitudes, M_W , (5.3 to
25 9.2) and focal depths (5.4 to 33 km), highlighting the potential for liquefaction of gravelly soils even

26 during moderate earthquakes. Although gravels are often thought to have hydraulic conductivities
27 high enough to preclude liquefaction, gravels that have liquefied are generally well-graded sandy
28 gravels. The sand content is typically 30% or more so that the hydraulic conductivity is governed by
29 the sand size making them clearly liquefiable. Even for gravels with lower sand contents, a low
30 permeability surface layer has often been observed that could restrict drainage and produce excess
31 pore pressure during strong shaking.

32 The epicentral distance calculated for every gravel liquefaction site plotted vs the magnitude of the
33 earthquake event shows a pattern which closely follows similar curves provided in the literature for
34 sandy soils. However, field observations of liquefaction in gravelly soils are less frequent in the
35 historical record.

36 In addition to examining gravel liquefaction sites in general, this paper provides a case history
37 illustrating the difficulties of liquefaction assessment in gravels at a site in Santa Rufina (Sulmona
38 basin, Central Italy). This site, characterised by high vertical and lateral stratigraphic variability, was
39 selected for gravel liquefaction assessment using a combination of *in-situ* tests, laboratory
40 geotechnical analysis, and geological studies. We found that, even if SPT- and DPT- based *in-situ*
41 methods provide conflicting results, the availability of a borehole log, along with standard laboratory
42 test results, proved to be fundamental to achieving a reliable assessment of the liquefaction hazard.

43 **KEY WORDS:** *Gravel liquefaction, dynamic cone penetration test, geotechnical laboratory tests,*
44 *Sulmona basin, Holocene alluvial deposits.*

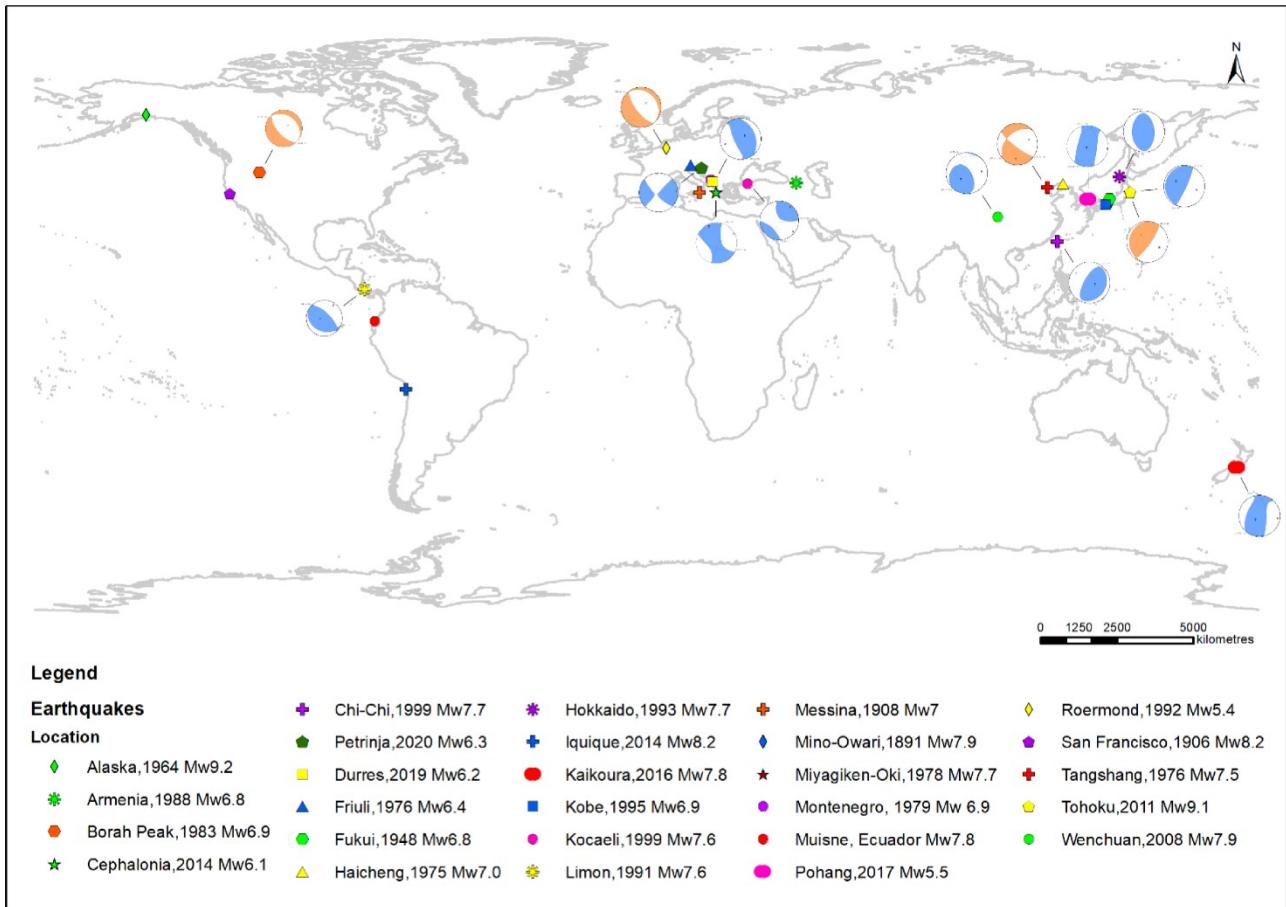
45 **INTRODUCTION**

46 During major earthquakes, the impact of soil liquefaction on social and economic losses is well
47 documented in historical records (e.g., Baratta, 1910). The reduction of stiffness and shear strength
48 following liquefaction of loose water-saturated cohesionless soils during earthquake shaking may
49 induce damage to buildings, infrastructure, or pipelines, and ignite fires due to gas line breaks.

50 Obermeier (1996) underlined the importance of combining geological and geotechnical approaches
51 to properly interpret liquefaction processes. This is still a key requirement for geologists and

52 engineers who try to develop effective techniques to predict the susceptibility of soils to this
53 phenomenon, even when focusing their attention mostly on sandy soils, e.g., Idriss & Boulanger
54 (2008), Boulanger & Idriss (2014).

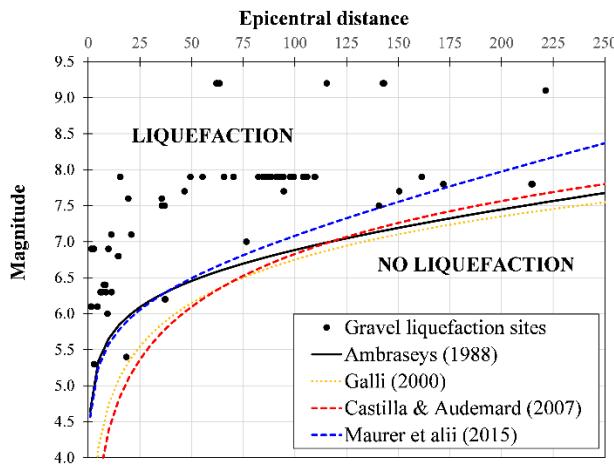
55 Tsuchida & Hayashi (1971) first proposed a relationship between grain size and susceptibility to
56 liquefaction, plotting the grain-size distribution soils at Japanese liquefaction sites and tracing the
57 grain-size boundaries of the most liquefiable and potentially liquefiable soils, in combination with
58 the uniformity coefficient, C_U . These grain-size boundaries for liquefiable soil are still widely used
59 and are included in national building codes, such as those for Italy (NTC, 2018). However, these
60 liquefaction susceptibility boundaries do not include gravelly soils that have been observed to liquefy
61 in well document cases all over the world, especially over the past 10 years (Salocchi *et alii*, 2020;
62 Rollins *et alii*, 2021).


63 This paper summarises knowledge gained from studies of gravel liquefaction case histories
64 throughout the world in a concise state-of-the-art section. It then highlights the importance of
65 liquefaction assessment in gravelly soils using a multidisciplinary approach that integrates geological
66 and geotechnical information. Emphasis is given to laboratory and in situ geotechnical tests that may
67 improve fundamental understanding of the liquefaction susceptibility of gravels, as illustrated by the
68 case study at Santa Rufina (Sulmona basin, Central Italy).

69 **LIQUEFACTION OF GRAVELLY SOILS: THE STATE-OF-ART**

70 While techniques for liquefaction assessment in sandy soils were developed in the second half of the
71 20th century (e.g., Seed & Idriss, 1971; Tsuchida & Hayashi, 1971; Amoroso *et alii*, 2017, 2020), the
72 liquefaction phenomena in gravelly soils were not evaluated with a probabilistic analysis until the
73 2008 Wenchuan (China) earthquake (Cao *et alii*, 2011).

74 Nevertheless, gravel liquefaction during earthquakes has been observed all over the world, as
75 illustrated in Fig. 1, since the 1891 Mino-Owari (Japan) earthquake (Tokimatsu & Yoshimi, 1983).
76 Therefore, the evidence for gravel liquefaction is not so uncommon and is not only associated with
77 strong events.


78 Table S1 reports the gravel liquefaction dataset with the location of 109 sites where researchers have
79 identified gravel liquefaction phenomena related to 27 historical earthquakes from 1891 to 2020.
80 These liquefaction case histories sites are located at epicentral distances ranging from ~1.5 to ~215
81 km, and involve earthquakes with a wide range of moment magnitudes (M_W) (from 5.3 to 9.2), and
82 focal depths (from 5.4 to 33 km). Compared to Rollins *et alii*, 2021, the earthquake case history list
83 has been expanded with two more events (the M_W 6.3, 2020 Petrinja (Croatia – Amoroso *et alii*, 2021;
84 Baize *et alii*, 2022) and the M_W 5.5, 2017 Pohang (South Korea – Naik *et alii*, 2019) earthquakes)
85 and the liquefaction site database has been expanded with 29 more sites. In addition, accurate
86 geographical coordinates have been added for each site by bibliographic research. Furthermore,
87 magnitude values were standardized to M_W using databases from the United States Geological Survey
88 (USGS), the Istituto Nazionale di Geofisica e Vulcanologia (INGV), the Parametric Catalogue of
89 Italian Earthquakes (Rovida *et alii*, 2022), and the Geological hazard information for New Zealand
90 (GeoNet). The epicenters were identified by their coordinates, as reported by the abovementioned
91 databases. Where possible, we also characterised the seismic source by the fault plane solution (Fig.
92 1), as reported by USGS, INGV, and GeoNet, or by bibliographic research (Table S1).

93

94 Fig. 1 – World map of gravel liquefaction case histories. The beach balls represent the fault plane solution as moment
 95 tensor (blue), or focal mechanism (orange) as reported by the USGS. The magnitude values indicated are from USGS,
 96 INGV and GeoNet databases.

97 To compare the liquefaction susceptibility of sands and gravels, we have used the gravel case history
 98 database to develop magnitude vs. epicentral distance to liquefaction sites for gravels for a range of
 99 magnitudes around the world. We have then compared the resulting pattern with the magnitude vs
 100 epicentral distance to liquefaction curves proposed for sand by various authors. These gravel
 101 liquefaction data points have been plotted as black circles in the magnitude vs. epicentral distance
 102 plot in Fig. 2 along with curves showing the boundary curves for sand proposed by various
 103 researchers. A comparison of gravel data points and the boundary curves for sand, shows that: (a)
 104 gravel liquefaction is not only associated with strong events, and (b) that the boundary for the gravel
 105 liquefaction data is quite similar to the boundary curves for sand provided in the literature from four
 106 researchers.

107

108 Fig. 2 – Chart of magnitude vs. epicentral distance to gravel liquefaction sites
 109 (Ambraseys, 1988; Galli, 2000, Castilla & Audemard, 2007, Maurer *et alii*, 2015) based on sand liquefaction sites.

110 Regarding the first point, liquefaction in gravelly soils can be induced by moderate events, as
 111 illustrated by a M_W 5.3 aftershock of the 1976-1977 Friuli (Italy) seismic sequence (Sirovich, 1996;
 112 Rollins *et alii*, 2020) or by the M_W 5.5, 2017 Pohang earthquake (Naik *et alii*, 2019), although this
 113 contradicts with several previous studies (e.g., Obermeier, 1996; Rodriguez-Pascua *et alii*, 2000)
 114 which suggested that gravel liquefaction can only be triggered by strong seismic events (magnitude
 115 $M > 7$).

116 Regarding the second point, we observe that the magnitude/epicentral distance pattern for our
 117 gravelly soils dataset approximately follows the boundary curve proposed by Maurer *et alii* (2015).
 118 This suggests the possibility of liquefaction, at a given epicentral distance and for a given magnitude,
 119 is almost the same for both sandy and gravelly soils.

120 Grain-size distribution curves of liquefied gravels are available for some of the case histories reported
 121 in Table S1. A comparison between the grain-size boundaries defined by gravel liquefaction data
 122 (yellow bold lines in Fig. 3a) and for sand liquefaction by Tsuchida & Hayashi (1971) shows that
 123 there is a limited overlap for the liquefaction susceptibility ranges. Liquefied soils are classified
 124 mainly as well-graded gravel (GW) with a gravel content (> 4.75 mm) between 14 and 82% and fines
 125 content (FC) $\leq 22\%$, as reported in Table 1. It is important to note that the liquefied gravels are
 126 typically well-graded sandy gravels with $C_U > 3.5$ in all the analysed case histories. In addition, they

127 typically contain more than 30% sand. Gravels are often thought to have hydraulic conductivities
 128 high enough (>0.004 m/s) that excess pore pressures would dissipate as fast as they generate in an
 129 earthquake (Seed *et alii*, 1976). However, for gravels containing more than 30% sand size particles,
 130 the hydraulic conductivity would likely be controlled by the D_{10} (diameter in the grain size
 131 distribution corresponding to 10% finer) size of the sand, making the sandy gravel susceptible to
 132 liquefaction. Even for gravel sites with higher hydraulic conductivities, the presence of a low-
 133 permeability surface layer could impede drainage and make the gravel susceptible to liquefaction
 134 (Cao *et alii*, 2013).

135 *Table 1* – Grain size information of liquefied gravels at the available world case histories.

Earthquake	Sample	> 4.75 mm (%)	FC (%)	D_{60} (mm)	D_{30} (mm)	D_{10} (mm)	C_u (-)	C_c (-)	USCS classific.
1964 Alaska (USA)	Old Valdez	14	12.0	1.213	0.255	< 0.075	> 3.5	-	SW-SM
	Old Valdez	58	5.6	11.529	2.690	0.316	36.5	2.0	GW-GM
	Valdez	46	6.8	7.133	2.152	0.228	31.2	2.8	SW-SM
	Seward	74	1.7	20.221	3.149	0.427	47.4	1.1	GW
1976 Friuli (Italy)	Avasinis	21	13.0	1.949	0.466	< 0.075	> 3.5	-	SM-SC
	Avasinis	42	10.0	5.320	1.181	0.075	70.9	3.5	SW-SM
1985 Borah Peak, Idaho (USA)	Pence Ranch	51	4.0	8.033	1.791	0.293	27.3	1.4	GW
	Larter Ranch	66	4.0	16.184	3.570	0.478	33.8	1.6	GW
	Whiskey Springs	52	20.0	8.330	0.708	< 0.075	> 3.5	-	GM-GC
2008 Wenchuan (China)	China	23	12.0	1.182	0.221	< 0.075	> 3.5	-	SW-SM
	China	69	10.0	42.943	4.509	0.075	572.6	6.3	GW-GM
2016 Muisne (Ecuador)	Manta	82	5.7	15.600	5.303	0.226	68.9	8.0	GW-GM
	Manta	35	21.7	3.364	0.191	< 0.075	> 3.5	-	SM-SC
2016 Wellington (New Zealand)	Wellington	77	0.8	17.514	7.350	1.738	10.1	1.8	GW
	Wellington	34	22.0	3.414	0.154	< 0.075	> 3.5	-	SM-SC

136 Notes: FC is the fines content; D_{60} , D_{30} , and D_{10} are the 60th, 30th, and 10th percentiles of the grain size curve; C_u is the
 137 coefficient of uniformity; C_c is the coefficient of curvature; USCS is the Unified Soil Classification System according to
 138 ASTM D2487-11 (2011) (SW is clean well-graded sand; SM is silty sand; SC is clayey sand; GW is well-graded gravel;
 139 GM is silty gravel; GC is clayey gravel)

140 The geotechnical laboratory characterisation of gravelly soils has always been a challenge because of
 141 the difficulties in taking undisturbed or partly disturbed samples with a large enough diameter to
 142 provide a representative sample. In this respect the first attempts in liquefaction assessment of
 143 gravelly soils were made by performing the classical *in-situ* tests, such as the Standard Penetration
 144 Test (SPT).

145 Seed & Idriss (1971) defined the cyclic resistance ratio, ($CRR_{7.5}$), as the capacity of the soil to resist
 146 liquefaction for a magnitude 7.5 earthquake and developed correlations to define $CRR_{7.5}$ using *in-situ*

147 tests. They also defined the cyclic stress ratio (*CSR*), meaning the seismic demand on a soil layer by
148 an earthquake that can be normalised to a magnitude of 7.5, namely $CSR_{7.5}$, through the magnitude
149 scaling factor (*MSF*), used as a “proxy” for duration effects on triggering liquefaction. To consider
150 also high effective overburden stress, Youd *et alii* (2001) proposed the overburden correction factor
151 (K_σ), to further correct the cyclic stress ratio to $CSR_{7.5,1\ atm}$ at one atmosphere. This led to the
152 definition of the threshold value for liquefaction, namely the safety factor against liquefaction (FS_{liq})
153 as the ratio between $CRR_{7.5}$ and $CSR_{7.5,1\ atm}$.

154 Youd *et alii* (2001) proposed an SPT procedure for liquefaction assessment in sandy soils, using the
155 corrected SPT blow count, $(N_1)_{60}$, that is a normalized value of the SPT blow count (N_{SPT}). This
156 procedure was updated by Idriss & Boulanger (2008), and more recently by Boulanger & Idriss
157 (2014).

158 Although the use of the SPT-based approach correctly estimates the liquefaction potential in loose
159 gravel with low penetration resistance, after the application of a correction factor (e.g., Kokusho &
160 Yoshida, 1997), the results may be inaccurate when the penetration resistance increases. In this case
161 it is not always possible to discriminate if the increased blow count is due to the presence of large
162 coarse particles or to the increase in soil density (Daniel *et alii*, 2003; Cubrinovsky *et alii*, 2018;
163 Rollins *et alii*, 2021). This problem could be bypassed by correlating liquefaction resistance with the
164 shear wave velocity (V_S) as proposed by Andrus & Stokoe (2000) and Kayen *et alii* (2013) for sandy
165 soils. However, several studies have shown that (1) the V_S boundaries for liquefaction triggering may
166 be higher for gravels with respect to sands (e.g., Cao *et alii*, 2013), and that (2) the V_S measurements
167 are related to small strains while liquefaction occurs at medium-high strains that are better represented
168 by penetration tests (e.g., Mayne *et alii*, 2009). Nevertheless, Cao *et alii* (2011) and more recently
169 Rollins *et alii* (2022) have developed probabilistic liquefaction triggering curves based on V_S data
170 from the gravel liquefaction case history database.

171 New penetrometers with larger diameters are required to overcome problems associated with SPT
172 tests in the presence of large particles and to evaluate the *in-situ* liquefaction resistance of gravelly

173 soils. The Becker penetration test (BPT), developed in Canada in the 1950s, is the first and most
174 widely used equipment in the North America (Youd *et alii*, 2001) for liquefaction assessment of
175 gravelly soil. However, the test is expensive and not easily available, and the BPT results need to be
176 converted to an “equivalent” SPT blow count to assess liquefaction (e.g., Rollins *et alii*, 2021).

177 At the same time, Chinese engineers developed the dynamic cone penetration test (DPT), that consists
178 of a 74 mm cone driven continuously by a 120 kg hammer dropped from one metre, using a drilling
179 rig or a simple SPT tripod system (Chinese Design Code, 2001). As with the SPT, the DPT requires
180 the measurement of the hammer efficiency by determining the energy transfer ratio (ER), defined as
181 the ratio of the energy transferred from the hammer to the rods relative to the theoretical free-fall
182 energy, in order to correct the raw DPT blow counts. Moreover, DPT blow counts are normalised to
183 include a correction for the overburden stress using the equation:

$$184 \quad N'_{120} = N_{120} (100/\sigma'_v)^{0.5} \quad (1)$$

185 where N'_{120} is the corrected DPT resistance in blows per 30 cm, N_{120} is the measured DPT resistance
186 in blows per 30 cm multiplied by ER, 100 is the atmospheric pressure in kPa and σ'_v is the effective
187 overburden stress in kPa.

188 DPT tests have been carried out at gravel liquefaction sites related to the M_W 7.9 Wenchuan
189 earthquake to develop a probabilistic DPT-based procedure to assess liquefaction (Cao *et alii*, 2013).
190 The authors use the same $CSR_{7.5}$ definition proposed by Youd *et alii* (2001), although it is not
191 established if the MSF correction is appropriate also for gravelly soils (Rollins *et alii*, 2021). To
192 define the $CRR_{7.5}$, DPT blow count data were analysed using the logistic regression procedure by
193 Liao *et al* (1988), and obtained the probability function for liquefaction (P_L):

$$194 \quad \ln[P_L/(1 - P_L)] = -8.40 + 0.35N'_{120} - 2.12 \ln(CRR_{7.5}) \quad (2)$$

195 Substituting the P_L value (85%, 70%, 50%, 30%, 15%) in equation (2) makes it possible to evaluate
196 the capacity of the soil to resist liquefaction through the $CRR_{7.5}$.

197 Rollins *et alii* (2021) expanded the DPT database considering 137 sites (80 liquefaction site and 57
198 no-liquefaction sites) referred to 10 seismic events with a magnitude range from 5.8 to 9.2 from seven

199 countries, including those from Cao *et alii* (2013), and recalculated the triggering curves of the
200 liquefaction probability function.

201 As in Cao *et alii* (2013), the N_{120} is defined as the measured DPT resistance in blows every 0.3 m
202 multiplied by ER, while the N'_{120} was calculated by adding a threshold value of 1.7 to make the
203 equation proposed by Cao *et alii* (2013) consistent with the C_N value from Youd *et alii* (2001), as
204 follows:

$$205 \quad N'_{120} = N_{120}C_N \quad (3)$$

206 where:

$$207 \quad C_N = (100/\sigma'_{v0})^{0.5} \leq 1.7 \quad (4)$$


208 where σ'_{v0} is the effective overburden stress in kPa. The CSR was defined according to the
209 formulation proposed by the “simplified procedure” (Seed & Idriss, 1971), including the dependency
210 of the r_d value with magnitude according to the Idriss & Boulanger (2008) formulation. To reduce
211 the various M_W to the standard CSR value of 7.5, $CSR_{7.5}$, Rollins *et alii* (2021) proposed a new MSF
212 correction factor:

$$213 \quad MSF = 7.258 \exp(-0.264M_w) \quad (5)$$

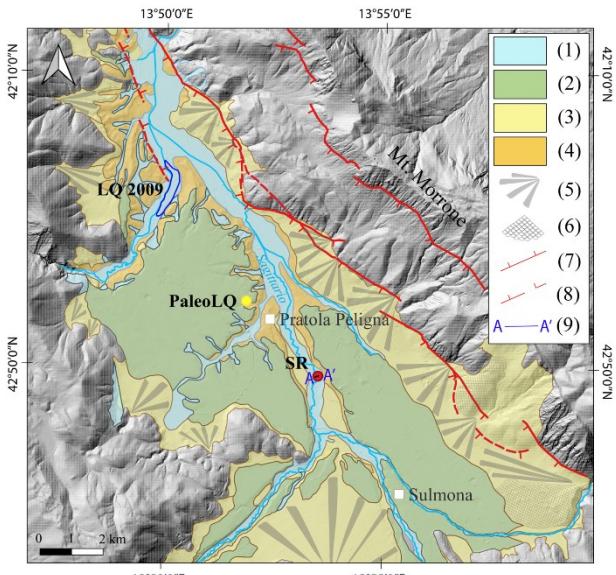
214 For the $CRR_{7.5}$ a logistic regression analysis was performed, to define the probability of liquefaction
215 occurring P_L :

$$216 \quad P_L = \frac{1}{1 + \exp[0.0008N'_{120}^3 - 1.32M_w - 5.2 \ln(CRR_{7.5})]} \quad (6)$$

217 Fig. 3b provides a comparison of the DPT-based gravel liquefaction triggering curves proposed by
218 Cao *et alii* (2013) and Rollins *et alii* (2021). As may be observed in Fig. 3b, the probabilistic
219 triggering curves from Rollins *et alii* (2021), intercept the $CSR_{7.5}$ axis at values in the range 0.1 - 0.2,
220 providing compatibility with the results obtaining with the SPT; moreover, the use of both additional
221 liquefaction and no-liquefaction data points has reduced the spread between the triggering curves
222 compared to those by Cao *et alii* (2013), thereby decreasing the uncertainty in determination of
liquefaction potential of gravelly soils (Rollins *et alii*, 2021).

223

224 Fig. 3 – a) Gradation curves of liquefied gravelly soils (dashed yellow lines, modified after Rollins *et alii*, 2021). The
 225 chart proposes grain size boundaries for gravel liquefaction in comparison with the grain size ranges proposed by Tsuchida
 226 & Hayashi (1971) for the most susceptible soils to liquefaction and potentially susceptible soils to liquefaction using a
 227 coefficient of uniformity $C_U > 3.5$. b) DPT-based gravel liquefaction chart by Rollins *et alii* (2021) and Cao *et alii* (2013)
 228 at different liquefaction probability (P_L).


229 THE CASE STUDY OF THE SULMONA BASIN

230 GEOLOGICAL AND SEISMOLOGICAL SETTING

231 The Sulmona basin (Fig. 4) is an intramountain tectonic depression caused by the Quaternary activity
 232 of a normal fault system affecting the western slope of Mt. Morrone (Miccadei *et alii*, 1998; Galli *et
 233 alii*, 2015). This system consists of two main sub-parallel faults striking northwest-southeast and
 234 dipping to the south-west. The western fault generally marks the boundary between the Meso-
 235 Cenozoic carbonate bedrock at its footwall and the Quaternary slope consisting of alluvial and
 236 lacustrine deposits on the hanging wall block (Gori *et alii*, 2011; Galli *et alii*, 2015). The occurrence
 237 of minor, north-east dipping, antithetic faults is limited only to the northern sector of the basin, which
 238 for this reason can essentially be defined as a half-graben.

239 The historical seismogenic nature of the Mt. Morrone fault system was first suggested by Ceccaroni
 240 *et alii* (2009) who, based on archeoseismological studies, hypothesised that it was the probable source
 241 of the historical 2nd century A.D strong seismic event. Galli *et alii* (2015) also provided evidence for
 242 this contention from a paleoseismological study. Based on an empirical relationship, the seismogenic

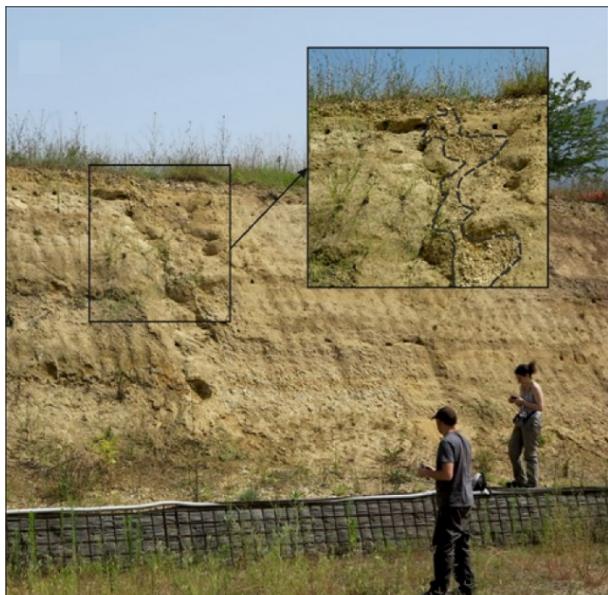
243 potential attributed to this source has been estimated to be M_W 6.5-6.7 (Gori *et alii*, 2011; Pizzi *et*
244 *alii*, 2002; Valentini *et alii*, 2019), with a recurrence time of 2.4 ± 0.2 ka (Galli *et alii*, 2015).

245
246 Fig. 4 – Simplified geological map of the Sulmona Quaternary basin, modified from Galli *et alii* (2015), draped on the
247 10 m resolution DTM by Regione Abruzzo
248 (http://opendata.regione.abruzzo.it/opendata/Modello_digitale_del_terreno_risoluzione_10x10_metri); (1) post-36 ka
249 Upper Pleistocene - Holocene alluvial deposit; (2) ?Middle - Upper Pleistocene (Upper Sulmona Terrace: UST) alluvial
250 and colluvial deposit; (3) Upper Pleistocene (pre-36 ka) fluvial-alluvial, slope fan and landslide deposit; (4) Lower-early
251 Upper Pleistocene lacustrine deposit; (5) alluvial fan; (6) landslide; (7) active normal fault; (8) inferred active normal
252 fault splay; (9) trace of geological cross section; LQ 2009 (blue line) is the area of sand liquefaction near Vittorito village
253 during the M_W 6.1 L'Aquila earthquake (Monaco *et alii*, 2011); PaleoLQ (yellow dot) indicates the site of the presumed
254 gravel paleoliquefaction in Pratola Peligna (AQ); SR (red dot) indicates the DPT test site of Santa Rufina (AQ), grey
255 areas are mainly characterised by outcrops of the pre-Quaternary bedrock.

256 According to Miccadei *et alii* (1998) the Sulmona basin is mainly filled by lacustrine deposits and
257 subordinately alluvial and slope deposits dating back to the Lower Pleistocene, although the entire
258 sequence of the Quaternary filling has never been observed in either an outcrop or in a borehole to
259 define its thickness.

260 Recent studies dating the tephra layers within the Sulmona basin infill, based on $^{40}Ar/^{39}Ar$ methods
261 provided new constraints on the age of the boundary between the top of the fine-grained lacustrine
262 and the bottom of the coarse grained fluvial-alluvial sediments of the Upper Sulmona Terrace (UST)

263 at about 92-100 ka (Giaccio *et alii*, 2013, Galli *et alii*, 2015). The same authors also provided an age
264 of about 36 ka for the top of the UST deposit and the beginning of the intense erosional phase during
265 which the Aterno and Sagittario rivers deeply carved the Upper Sulmona Terrace and deposited the
266 post-36 ka Upper Pleistocene – Holocene alluvial and colluvial deposits in Fig. 4 (e.g., Miccadei *et*
267 *alii*, 1998).


268 Borehole data in the Pratola Peligna and Sulmona areas (e.g., seismic microzonation studies, Pizzi *et*
269 *alii*, 2014), show the first 20 m of the post-36 ka Upper Pleistocene – Holocene alluvial plain
270 consisting of alternating sandy gravel and silt (or sandy silt) layers, sometimes with the presence of
271 soils rich in organic matter. However, there is also significant lateral and vertical variations, as might
272 be expected considering the changes over time in sediment-transport capacity and the path of the
273 riverbed.

274 LIQUEFACTION SUSCEPTIBILITY BASED ON PRE-EXISTING INFORMATION

275 During the 6th of April 2009 L'Aquila earthquake (M_W 6.1) the Sulmona basin was affected by
276 liquefaction in an area near the town of Vittorito (LQ2009, Fig. 4), at a distance of about 45 km from
277 the epicenter. In this event, some small sand volcanoes, sand boils and soil cracks with sand ejecta
278 were documented (Monaco *et alii*, 2011). This liquefaction site is near the Aterno riverbed and
279 presents a relatively flat morphology over the Holocene plain deposits. The area was investigated by
280 Monaco *et alii* (2011), who sampled the subsoil by means of two boreholes about 5 m deep and
281 performed three Seismic Dilatometer Tests (SDMT) and one Cone Penetration Test (CPT), to
282 characterise the liquefaction site. The stratigraphic profile consists of a topsoil of about 1 m, followed
283 by a sandy silt layer 2-m thick underlain by a thick sandy layer with some interbedded gravels. The
284 ground water table was detected at about 1.0 m below the ground surface, and the grain-size
285 distribution curves typically plot within the ranges proposed by Tsuchida & Hayashi (1971) for soils
286 most susceptible to liquefaction (Monaco *et alii*, 2011).

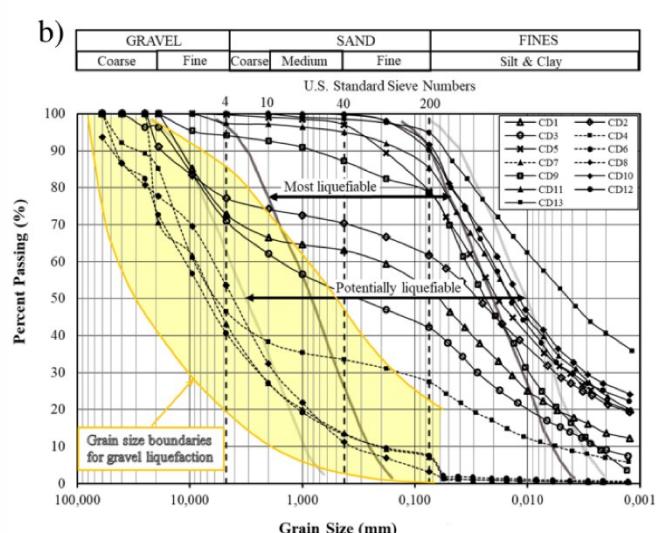
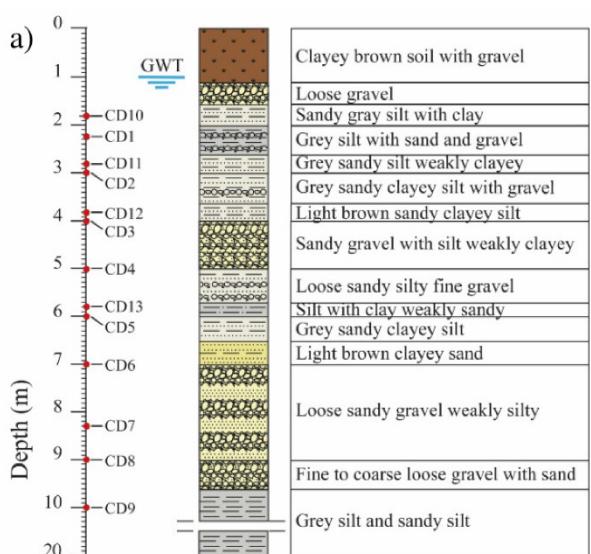
287 At the Pratola Peligna site (Fig. 4) an interesting probable example of gravel paleoliquefaction (Fig.
288 5) is shown on a recent excavation wall for the construction of an industrial building. The slope face

289 exposes what appears to be a fissure filled by coarse material, that appears to be derived from a
290 gravelly sand layer at its base. The fissure is about 2 m high and 30 cm in width and gravel clasts
291 seem to be distributed along the fracture walls. According to Obermeier (1996), this seems to be
292 comparable with a paleoliquefaction feature related to a seismic event. The origin of the features
293 observable in trenches and outcrops is not easy to determine, as they may originate from various
294 processes, e.g., tectonic fracturing or densification of sediments with the ejection of water and the
295 fluidisation of granular sediments. Further studies are required to exclude syn-depositional processes.

296

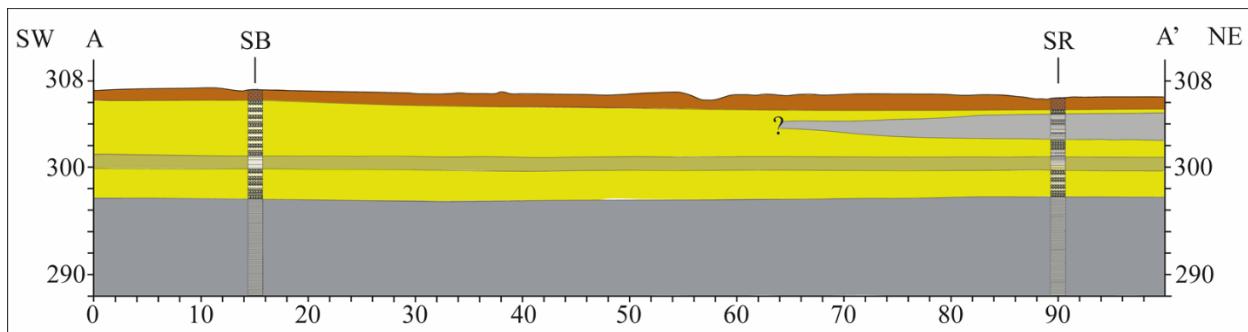
297 *Fig. 5* – Photos from the supposed paleoliquefaction site at Pratola Peligna. The anthropic excavation exposes an
298 alternation of decimetric tabular layers of fluvial – alluvial sands and gravels of the Upper Sulmona Terrace (UST), the
299 black rectangle delimits the part in which a vertical gravelly dike, crossing the entire section, has been recognized. The
300 clasts within the dike are often verticalized and arranged approximately parallel to the dike wall (see the inset). Note that
301 the orientation of the dike surface is at a low angle respect to the excavation wall.

302 SITE INVESTIGATION AT THE SANTA RUFINA TEST SITE



303 Considering the liquefaction evidence from the Vittorito and Pratola Peligna sites, the stratigraphic
304 setting of the Pratola Peligna area (Giaccio *et alii*, 2013; Galli *et alii*, 2015), and the possibility of a
305 seismic event of M_W 6.5 in the Sulmona basin (Gori *et alii*, 2011; Pizzi *et alii*, 2002; Valentini *et alii*,
306 2019), the site in Santa Rufina (SR in Fig. 4) was selected to assess the gravel liquefaction hazard.

307 This selection was also supported by the availability of a borehole (SB) in the proximity of the study
308 area.

309 To investigate the potential for gravel liquefaction, a comprehensive geotechnical investigation was
310 performed at the Santa Rufina site, including two DPTs (DPT1, DPT2) and nine SPTs along with a
311 borehole (SR), extending to a depth of 20 m from the ground surface. To better constrain the analysis,
312 13 disturbed soil samples (CD1 - CD13) were also collected.


313 BOREHOLE LOG AND LABORATORY TESTS

314 The borehole stratigraphic log (Fig. 6a) confirmed the variability in sediments within the first few
315 meters of the Holocene alluvial plain, showing, under the present topsoil, only a 0.5-m thick layer
316 composed of loose gravel, while the following 3.5 m are mainly composed of silty layers. At 4 m
317 depth, a 1-m thick layer of sandy gravel is encountered, followed by a series of thin layers composed
318 of loose sandy silty fine gravels, sandy clayey silts, and clayey sands down to a depth of 7 m. Then a
319 2-m thick layer of loose sandy gravel and a 0.6 m layer of fine to coarse loose gravel with sand are
320 detected before reaching a thick layer of grey silt at 9.6 m. Considering the prevalent cohesive nature
321 of the lacustrine sediments below approximately 10 m in depth (Fig. 6a), DPTs and SPTs were limited
322 to the upper 10 m of alluvial sediments. The ground water table (GWT) was intercepted at a depth of
323 1 m below the ground surface.

325 Fig. 6: (a) Stratigraphic log of Santa Rufina (SR) test site: red dots depict samples depth; (b) gradation curves of samples
326 from borehole SR overlaid with the Tsuchida & Hayashi (1971) grain-size charts and with the range of gravel liquefaction
327 susceptibility detected by Rollins *et alii* (2021).

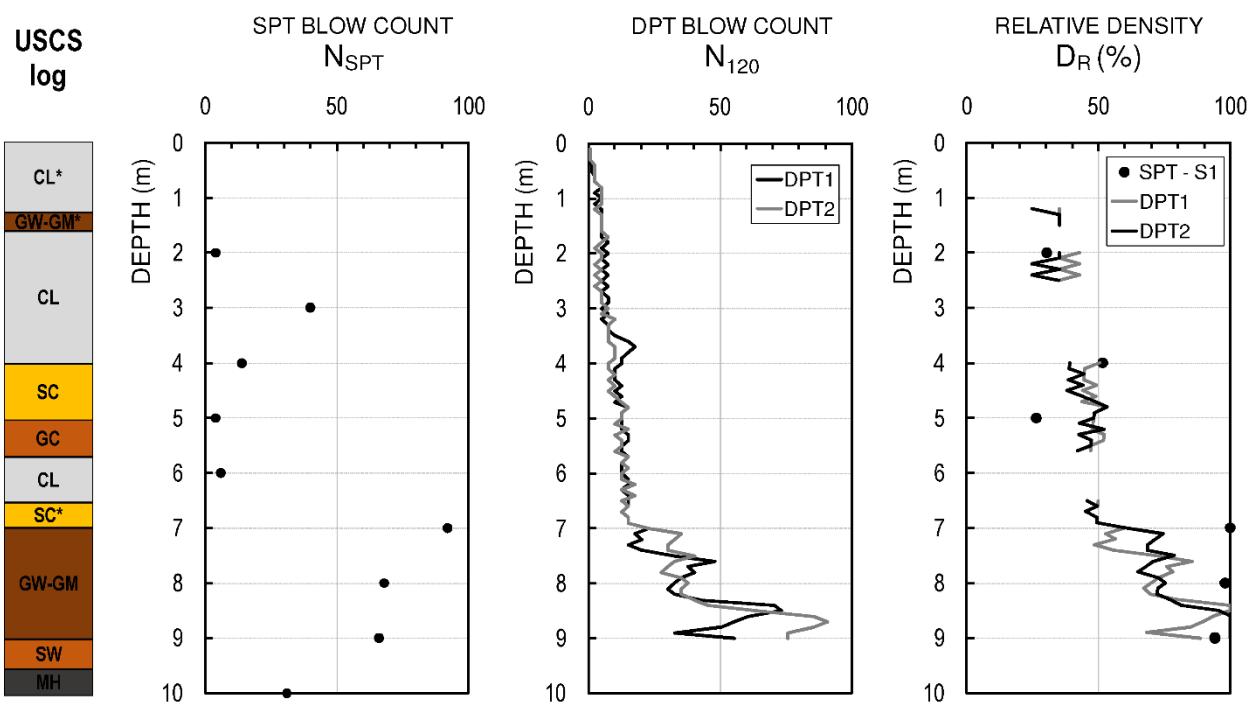
328 A SW-NE geological section 100 m long and 20 m deep (Fig. 7) was constructed combining
329 subsurface data from boreholes SB and SR with surface geological data from the Geological Map of
330 Italy 1:50.000 (CARG, sheet 369 Sulmona, available on-line at
331 https://www.isprambiente.gov.it/Media/carg/369_SULMONA/Foglio.html) and lithotechnical map
332 available from level 1 Seismic Microzonation studies of Pratola Peligna and Sulmona municipalities
333 (Pizzi *et alii*, 2014). The section at borehole SB shows a surficial 5.5-m thick layer composed of
334 gravelly sand and sandy gravel, followed by 1.5 m of silty sand and then by about 2 m of gravel with
335 clayey sand, 1 m of sand with gravel, 5.5 m of silty clayey sand and 4 m of silty sand and silt.

337 Fig. 7 – Geological section across the Santa Rufina test site; SB is the stratigraphic log of the borehole from pre-existing
338 unpublished studies; SR is the stratigraphic log in Fig. 6a; brown = topsoil; yellow = alluvial deposits composed of sand,
339 gravelly sand, sandy gravel (?Upper Pleistocene - Holocene); dark yellow = alluvial deposits composed of silt and sandy
340 silt (?Upper Pleistocene - Holocene); light grey = alluvial deposits composed of sandy silt sometimes with gravel (?Upper
341 Pleistocene – Holocene); grey = lacustrine deposits composed of sandy silt, clayey silt, silt (Middle Pleistocene).
342 Both SB and SR intercept lacustrine deposits of Middle Pleistocene age at about 10 m, overlaid by
343 ?Upper Pleistocene – Holocene alluvial deposits consisting mostly of sand, sandy gravel, and gravel,
344 with an interbedded thin silty layer. Borehole SR intercepts a 2-m thick layer of sandy silt, not
345 detected in SB, 74 m westward from SR, highlighting the high lateral variability in ?Upper
346 Pleistocene – Holocene alluvial sediments.

347 The gradation curves resulting from the geotechnical laboratory analyses of 13 samples (Fig. 6b),
 348 show a wide variability in grain size; however, all samples are characterised by a $C_U > 3.5$ (Table 2).
 349 Gradation curves for the sandy gravel soil samples plot within the range of liquefaction susceptibility
 350 identified by Rollins *et alii* (2021) for gravelly soils.

351 *Table 2 – Geotechnical parameters from laboratory tests for Santa Rufina samples.*

Sample	Depth (m)	> 4.75 mm (%)	FC (%)	< 2 μ m (%)	LL (%)	PL (%)	PI (%)	D_{60} (mm)	D_{30} (mm)	D_{10} (mm)	C_U (-)	C_c (-)	USCS classif.	k (m/s)
CD10	1.90	0.0	91.6	26.7	37	17	20	0.018	-	< 0.0012	> 3.5	-	CL	-
CD1	2.35	27.1	52.5	13.6	30	16	14	0.207	0.014	< 0.0012	> 3.5	-	CL	3.87E-09
CD11	2.90	2.5	85.4	23.8	38	18	20	0.022	0.003	< 0.0012	> 3.5	-	CL	2.40E-10
CD2	3.10	22.8	61.7	21.6	38	18	20	0.063	0.006	< 0.0012	> 3.5	-	CL	-
CD12	3.90	0.0	90.1	24.8	36	17	19	0.021	0.004	< 0.0012	> 3.5	-	CL	-
CD3	4.10	29.0	42.2	9.1	32	17	15	1.519	0.028	0.002	638	0.2	SC	1.88E-09
CD4	5.10	53.5	29.4	7.3	31	18	13	9.044	0.088	0.005	1962	0.2	GC	3.13E-08
CD13	5.90	0.0	94.9	40.7	49	20	29	0.008	-	< 0.0012	> 3.5	-	CL	-
CD5	6.10	0.3	79.0	22.3	37	20	17	0.029	0.004	< 0.0012	> 3.5	-	CL	-
CD6	7.10	59.4	7.2	0.0	-	-	NP	10.99	2.39	0.20	55.7	2.6	GW-GM	-
CD7	8.45	56.8	7.2	0.0	-	-	NP	8.92	2.33	0.20	44.20	3.0	GW-GM	-
CD8	9.15	46.4	3.2	0.0	-	-	NP	6.26	1.71	0.33	19.0	1.4	SW	-
CD9	10.00	5.8	78.8	7.8	50	32	18	0.035	0.010	0.0025	14.3	1.1	MH	3.69E-10


352 Notes: The sample length is approximately 0.2 m, and the indicated depth represents its average depth. FC is the fines content; LL is
 353 the liquid limit, LP is the plastic limit; PI is the plasticity index (NP indicates non-plastic soils); D_{60} , D_{30} , and D_{10} are the 60th, 30th, and
 354 10th percentiles of the grain size curve; C_U is the coefficient of uniformity; C_c is the coefficient of curvature; USCS is the Unified Soil
 355 Classification System according to ASTM D2487-11 (2011) (CL is clean clay; MH is elastic silt; SW is clean well-graded sand;
 356 SC is clayey sand; GW is well-graded gravel; GM is silty gravel; GC is clayey gravel); k is the coefficient of permeability.
 357

358 These grain-size distribution curves also highlight the high fines content (FC) of most samples (only
 359 the gravelly layers between 7 and 9.6 m in depth are excluded). Furthermore, laboratory analyses
 360 show a low permeability value (i.e., $k = 2.40E - 10$) for the layers from 1.6 to 2 m, 2.6 to 4 m, and
 361 5.7 to 6.5 m, which classified as CL according to USCS and which present a plasticity index (PI)
 362 between 17 and 29%. In addition, low permeabilities would be expected for the layers from 4 to 5 m
 363 and from 5 to 5.7, which classified respectively as SC and GC, with a FC of 42.2 and 29.4% and a PI
 364 of 15 and 13%, respectively. It can therefore be assumed that the fines content affects the hydraulic
 365 behaviour. The permeability tests in a triaxial cell at constant load were performed on disturbed
 366 samples and therefore the k values of Table 2 can be assumed as first order magnitude values. Layers
 367 with $FC > 50\%$ were not considered in the liquefaction analyses, except for those “borderline” layers
 368 which present FC values near this limit and this will be discussed in the next section.

369 *IN SITU TESTS*

370 To complement the characterisation of the deposits at the Santa Rufina site, the interpreted USCS log
 371 is shown in Fig. 8, together with the SPT and DPT blow count profiles in terms of N_{SPT} and N_{120} .
 372 The USCS log is derived from laboratory information and visual-manual observations (ASTM
 373 D2487-11, 2011; ASTM D2488-09, 2009), while SPTs were performed using a cone tip in the first 9
 374 m, due to the grain size variability from sand to gravel, while a Raymond sampler was used only in
 375 the last SPT at 10 m considering the absence of gravels.

376 The SPT and DPT profiles agree in identifying the presence in the upper 7 m of CL, SC, GC, and
 377 GW-GM layers with low resistance to penetration, overlaying a 2 m-thick layer with a higher
 378 resistance, corresponding, as can be seen in the USCS log, to the well-graded gravels – silty gravels
 379 (GW-GM).

380 Fig. 8 – Geotechnical stratigraphic log with USCS classification, SPT and DPT blow counts and related relative densities.
 381 The star indicates the use of visual-manual procedure for the USCS classification.
 382 Moreover, Fig. 8 includes the relative density (D_R) profiles calculated using the equation proposed
 383 by Kulhawy & Mayne (1990) for SPT:

$$385 \quad D_R = [(N_1)_{60}/60]^{0.5} \quad (7)$$

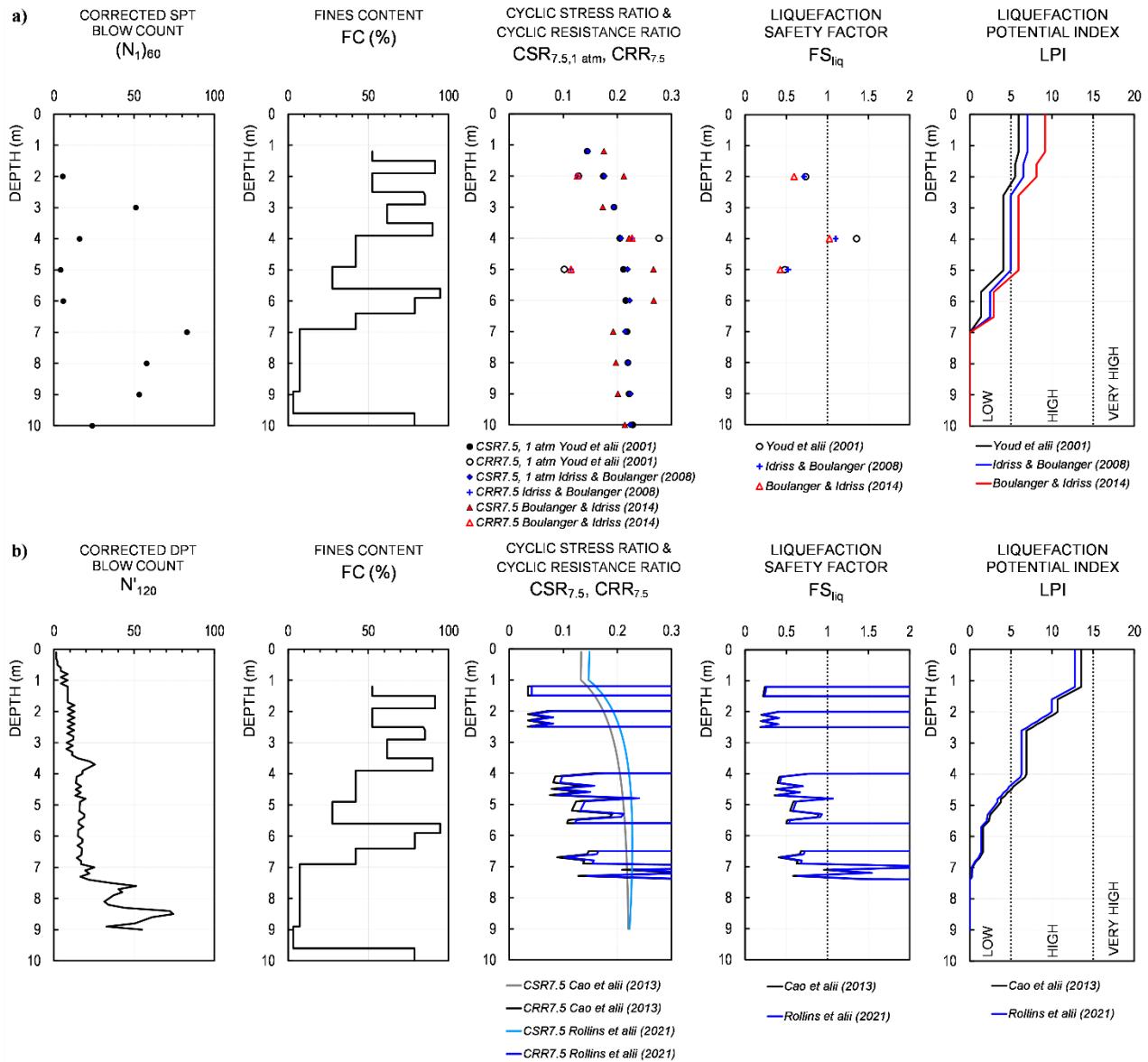
386 and by Rollins *et alii* (2021) for DPT:

387
$$D_R = [N'_{120}/70]^{0.5} \quad (8)$$

388 Following the geotechnical stratigraphic log in Fig. 8 and the FC values in Table 2, the D_R was
 389 calculated only for sandy or gravelly layers. Because of these “border line” values, its thickness, and
 390 its position close to the surface, this layer was added to the list of those considered as potentially
 391 liquefiable.

392 The D_R plots in Fig. 8 generally provide consistent results when comparing DPT1 and DPT2;
 393 however, they show a clear discrepancy between SPT and DPT estimations in the gravelly layer
 394 between 7 and 9 m in depth, probably due to the effect of the particle size that artificially increases
 395 the SPT blow counts.

396 **LIQUEFACTION ASSESSMENT AT THE SANTA RUFINA TEST SITE**


397 To evaluate the CSR profile according to the “simplified procedure”, the peak ground acceleration at
 398 the ground surface (a_{max}) has been determined starting from the value at outcropping rock conditions
 399 (a_g) equal to $0.255g$ as proposed by Valentini *et alii* (2019) in the Sulmona area for a return period
 400 of 475 years based on a fault based PSHA study. Amplification effects due to local soil conditions
 401 have been then estimated approximately by considering the stratigraphic amplification factor Ss (as
 402 a function of a_g) for the B subsoil class of the Italian building code (NTC, 2018). For $a_{max} = 0.255g$
 403 an Ss value of 1.16 can be estimated leading to a peak ground acceleration at the ground surface
 404 $a_{max} = 0.296g$.

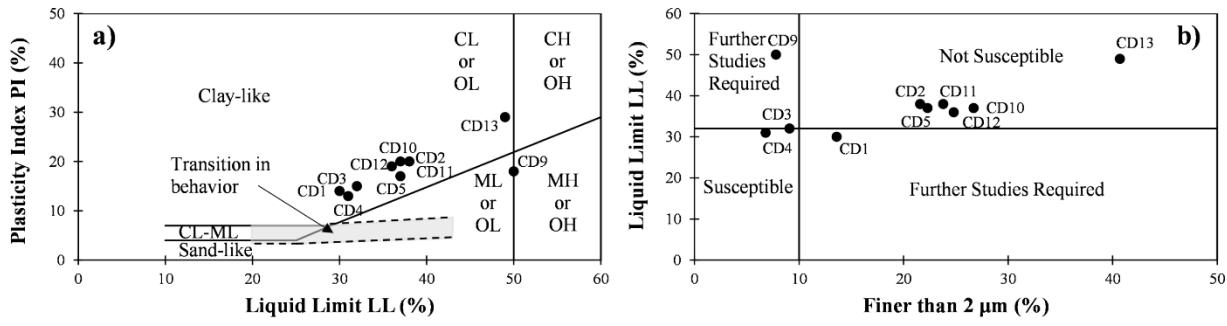
405 To evaluate the $CRR_{7.5}$ based on the SPT, the N_{SPT} values have been corrected following the
 406 procedure of Youd *et alii* (2001), considering a measured hammer energy efficiency equal to 65%, a
 407 borehole diameter of 101 mm, a rod length of 1.5 m and a standard sampler, to obtain the normalised
 408 (N_1)₆₀, profile as shown in Fig. 9a. In this respect, it can be noted that the (N_1)₆₀ profile presents the
 409 minimum values at 2, 4, 5, 6 and 10 m, while it is greater than 50 at 3, 7, 8 and 9 m in depth. To better
 410 constrain the results, simplified methods for liquefaction assessment using SPT proposed by Youd *et*
 411 *alii* (2001), Idriss & Boulanger (2008) and Boulanger & Idriss (2014) were used.

412 As can be seen in Fig. 9a, the $CSR_{7.5,1\ atm}$ data points plotted at approximately one metre depth
413 intervals, using the three different equations gives comparable results for the Youd *et alii* (2001) and
414 Idriss & Boulanger (2008) methods, while the Boulanger & Idriss (2014) method appears
415 substantially different. The $CRR_{7.5}$ values calculated for the SPT values obtained in the layer with a
416 FC of approximately 50% presents an anomalously lower value considering the equation proposed
417 by Idriss & Boulanger (2008). This is also reflected in terms of FS_{liq} , as can be seen in Fig. 9a.

418 Lastly, the SPT assessment also includes the liquefaction potential index (LPI), calculated as
419 suggested by Iwasaki *et alii* (1978). In this respect, to have an integral measurement in the upper 10
420 m of depth (assuming that the cohesive soils between 10 and 20 m is not liquefiable), N_{SPT} values
421 were assigned also to those layers potentially liquefiable, but not tested with the SPT because of their
422 limited thickness and position relative to the one-metre test range.

423 Therefore, considering the stratigraphy and the characteristics of the layers, to the loose gravel from
424 1.2 to 1.6 m a value of N_{SPT} equal to 4 was associated, according to the SPT tested layer at 2 m in
425 depth, and to the clayey sand from 6.5 to 7 m the N_{SPT} value of 6 was assigned, consistent with the
426 SPT tested layer at 6 m in depth. These attributions were made using the layers identified by the DPT
427 and picking comparable N_{SPT} values based on the correlation with the layers from the DPT and SPT.
428 This artifice makes it possible to partially overcome the limitation of only having SPT values at one
429 metre intervals. This process identified four potentially liquefiable layers (from 1.2 to 1.6 m, from 2
430 to 2.6 m, from 5 to 5.7 m and from 6.5 to 7 m in depth) to provide reasonable LPI estimations, all in
431 the range of high liquefaction potential, with higher values computed using the method proposed by
432 Boulanger & Idriss (2014), $LPI = 8.9$, compared to that by Youd *et alii* (2001), $LPI = 5.9$.

433


434 Fig. 9 – (a) Liquefaction assessment results based on SPT methods by Youd *et alii* (2001), Idriss and Boulanger (2008),
435 and Boulanger and Idriss (2014) at Santa Rufina test site; (b) – Liquefaction assessment results based on DPT methods
436 by Cao *et alii* (2013) and Rollins *et alii* (2021) at Santa Rufina test site. Data refers to DPT1.
437 For the liquefaction assessment using DPT data, both the methods proposed by Cao *et alii* (2013) and
438 that by Rollins *et alii* (2021) are presented, with reference to only DPT1, considering the similarity
439 of the two DPT profiles (see Fig. 8). In making these assessments, the $P_L = 15\%$ curves were used
440 to obtain $CRR_{7.5}$ using formulas given by Eqs. 2 and 6, respectively.

441 Fig. 9b shows that the profiles of the corrected DPT blow counts (N'_{120}) result in the same values for
442 Cao *et alii* (2013) and Rollins *et alii* (2021), despite the minor differences in formulation (see Eqs. 1
443 and 3). The factors of safety computed by both methods were also very similar for this site. Gravelly

444 and sandy layers with the lowest DPT resistance below the GWT are considered the most critical
445 liquefaction zones. Using $P_L = 15\%$ in the CRR_{7.5} formulas (see Eqs. 2 and 6) the *LPI* profiles in
446 Fig. 9b were obtained. The two DPT methods appear to be providing similar $LPI \approx 13$, in the range
447 of high liquefaction potential.

448 Cubrinovsky *et alii* (2018) observed the effects of the 2016 $M_W 7.8$ Kaikoura earthquake on 32 sites
449 where simplified methods predicted liquefaction; however, only 15 showed signs of surface effects
450 of liquefaction, while the other 17 did not. In that study, they highlight that the penetration resistance
451 profile did not properly discriminate between the sites where liquefaction did or did not manifest. The
452 17 sites that did not produce surface effects of liquefaction exhibited a stratigraphy of interbedded
453 liquefiable and non-liquefiable layers, with the presence of separate liquefiable layers located from 7
454 to 10 m, much below the “critical layer”. Liquefaction of these deeper layers likely reduced the
455 potential of pore pressure generation in the critical zone (Cubrinovsky *et alii*, 2018) and reduced
456 permeability in the interbedded zone may have impeded ejecta flow to the surface. On the other hand,
457 the 15 sites that manifested surface liquefaction were characterised by more continuous, thicker, and
458 uniform liquefiable layers. The stratigraphic profile with interbedded liquefiable and non-liquefiable
459 layers may be clearly identified at the Santa Rufina site.

460 Further observations can be made using laboratory “screening” liquefaction criteria proposed by
461 Idriss & Boulanger (2008) and Andrews & Martin (2000), who respectively plot the PI versus the
462 Liquid Limit (LL) and the LL versus the percentage of particles finer than 2 μm to identify layers
463 susceptible to liquefaction. Figs. 10a and 10b show the plot of the 13 samples from the Santa Rufina
464 test site according to the Idriss & Boulanger (2008) and Andrews & Martin (2000) charts,
465 respectively. For the PI vs LL chart, all samples fall in the clay-like behaviour area, therefore
466 indicating that they are not susceptible to liquefaction. In the LL vs finer than 2 μm chart, most of the
467 samples also fall in the zone indicating no susceptibility to liquefaction, except CD1 and CD9, for
468 which further studies are required, and for samples CD3 and CD4, that are very close to the boundary
469 indicating susceptibility to liquefaction.

470

471 Fig. 10 – Santa Rufina test site: liquefaction screening criteria according to the charts by (a) – Idriss and Boulanger (2008)
 472 and (b) – Andrews & Martin (2000).

473 Based on these considerations, the liquefaction assessment by *in-situ* tests was revised by identifying
 474 as non-liquefiable: (1) thin liquefiable layers interbedded within non-liquefiable layers and (2)
 475 potentially liquefiable layers classified with a “clay-like” behaviour. As reported in Table 3, this
 476 means that the liquefaction potential for this site passes from high (case “A”) to low (case “B”) for
 477 all simplified methods, radically changing the prediction of liquefaction occurrence. The only
 478 remaining liquefiable layer is at depth between 7 and 9 m.

479 Table 3 – Santa Rufina test site: comparison of LPI results obtained using only in situ tests and FC measurements (case
 480 “A”), and using in situ tests, FC and PI measurements, excluding interbedded layers (case “B”).

<i>In situ</i> test	Method	LPI (case “A”)	LPI (case “B”)
SPT	Youd <i>et alii</i> (2001)	5.9	0.0
	Idriss and Boulanger (2008)	7.0	0.0
	Boulanger and Idriss (2014)	8.9	0.0
DPT	Cao <i>et alii</i> (2013)	13.5	0.3
	Rollins <i>et alii</i> (2021)	12.8	0.2

481

482 CONCLUSIONS

483 The case history database of gravel liquefaction from around the world clearly indicates the gravelly
 484 soils can liquefy and this possibility should be considered in seismic hazard investigations. The data
 485 collected and reported in this study also highlight the fact that liquefaction in gravelly soils can be
 486 triggered not only by strong/major earthquakes, but also by moderate ($M_W < 6$) seismic events. This
 487 point is illustrated by gravel liquefaction after the M_W 5.3 aftershock of the 1976-1977 Friuli (Italy)
 488 seismic sequence and by gravel liquefaction in the M_W 5.5 2017 Pohang (South Korea) earthquake.

489 Liquefied soils typically include well-graded sandy gravel (GW), containing between 14 and 82%
490 gravel with fines content no greater than 22%. In addition, the sand content was typically greater than
491 about 30%. Although the typical gradation curves for liquefiable gravels fall outside the typical range
492 for liquefiable sands sometime used in national codes, this discrepancy should not be used to preclude
493 liquefaction assessments in these soils.

494 Gravels are often thought to have permeabilities high enough ($> 0.004 \text{ m/s}$) that excess pore pressures
495 would dissipate as fast as they generate in an earthquake (Seed *et alii*, 1976). However, for gravels
496 containing more than 30% sand size particles, the permeability would likely be controlled by the D_{10}
497 size of the sand, making the sandy gravel susceptible to liquefaction. Even for gravel sites with higher
498 hydraulic conductivities, the presence of a low-permeability surface layer could impede drainage and
499 make the gravel susceptible to liquefaction (Cao *et alii*, 2013).

500 The magnitude versus epicentral distance for gravel liquefaction sites is generally in good agreement
501 with boundaries based on the liquefaction of sandy soil. Although this database is limited to 27
502 historical events and should be expanded, also with paleoseismological data, it is reasonable to
503 consider that the maximum epicentral distance at which gravel liquefaction may occur will be about
504 the same as sand for a given magnitude, M_W .

505 The site of Santa Rufina, within the Sulmona basin which experienced both sand liquefaction (during
506 the $M_W 6.1$, 2019 L'Aquila earthquake) and gravel liquefaction (based on paleoseismological
507 evidence, although more detailed analyses are required), provided a good case study, since it is
508 characterised by an alluvial Upper Pleistocene – Holocene profile that consists both of sandy-silty
509 and gravelly-sand alternating layers, with high vertical and lateral variability. This variability in
510 stratigraphy, typical of many sedimentary basins, introduce relevant uncertainties in the regional
511 extensions of the liquefaction risk assessment at discrete vertical profiles with simplified methods.
512 This highlights the need for more detailed geotechnical and geological studies in liquefaction
513 assessment at regional scale (e.g., microzonation studies).

514 Furthermore, the case study highlighted that the SPT-based liquefaction triggering procedure applied
515 to a site with vertically alternating thin layers composed of fine and coarse particles has three major
516 limitations with the respect to the DPT-based analyses: (1) as SPT sounding is not generally
517 continuous, it may not provide important information about thin layers; (2) due to the penetrometer
518 diameter, the SPT may overestimate the D_R in layers containing coarse particles; and (3) the DPT
519 approach is directly based on field performance of gravels whereas other methods assess gravel
520 liquefaction based on methods developed for sand. Considering these shortcomings, the SPT-based
521 procedure may underestimate the liquefaction potential at such sites. In conclusion, SPT and DPT
522 based methods may provide conflicting results in alternating soil stratigraphy, such as the Santa
523 Rufina site. The exclusion of liquefiable layers between interbedded cohesive layers (e.g., layers
524 characterised by a “clay-like” behaviour according to well-known screening criteria) can refine the
525 *in-situ* assessment, shifting the *LPI* values to approximately zero. In this respect, the availability of a
526 borehole log and standard geotechnical laboratory information provides fundamental and
527 complementary data critical to achieving a reliable assessment of the liquefaction hazard at such
528 complex sites.

529 Our results suggest how liquefaction hazard analyses in active seismic regions should be carried out
530 considering gravel as potentially liquefiable. However, further studies are required to better constrain
531 these results and to investigate the role of the geological context in liquefaction phenomena.

532 SUPPLEMENTAL MATERIAL

533 The online version contains supplemental material (Table S1).

534 ACKNOWLEDGEMENTS

535 This study was carried out in the framework of the ReLUIS-DPC 2019–2021 research project under funding of the Italian
536 Civil Protection Department (Task 16.1 Site Response and Liquefaction). Additional funding by Regione Abruzzo is also
537 acknowledged. The Authors thank Nicola Sciarra and Gabriele Toro for their support in the geotechnical analyses at the
538 Laboratory of University of Chieti-Pescara and Marco Francescone and Ylenia Zaccagnini for their precious help during
539 the *situ* surveys. Domenico Trotta is also thanked for providing data of SB borehole.

540 Partial funding provided by grant CMMI-1663546 from the U.S. National Science Foundation. This funding is gratefully
541 acknowledged. However, the opinions, conclusions and recommendations in this paper do not necessarily represent those
542 of the sponsors.

543 REFERENCES

544 AMBRASEYS N.N. (1988) – *Engineering seismology*. Earthquake Engineering & Structural Dynamics, **17** (1), 1-105.
545 <https://doi.org/10.1002/eqe.4290170101>

546 AMOROSO S., MILANA G., ROLLINS K.M., COMINA C., MINARELLI L., MANUEL M.R., MONACO P., FRANCESCHINI M.,
547 ANZIDEI M., LUSVARDI C., CANTORE L., CARPENA A., CASADEI S., CINTI F.R., CIVICO R., COX B.R., DE MARTINI
548 P.M., DI GIULIO G., DI NACCIO D., DI STEFANO G., FACCIORUSSO J., FAMIANI D., FIORELLI F., FONTANA D., FOTI S.,
549 MADIAI C., MARANGONI V., MARCHETTI D., MARCHETTI S.L., MARTELLI L., MARIOTTI M., MUSCOLINO E., PANCALDI
550 D., PANTOSTI D., PASSERI F., PESCI A., ROMEO G., SAPIA V., SMEDILE A., STEFANI M., TARABUSI G., TEZA G.,
551 VASSALLO M., VILLANI F. (2017) – *The first Italian blast-induced liquefaction test (Mirabello, Emilia-Romagna,
552 Italy): description of the experiment and preliminary results*. Ann. Geophys., **60** (5), S0556.
553 <https://doi.org/10.4401/ag-7415>

544 AMOROSO S., ROLLINS K.M., ANDERSEN P., GOTTALEI G., TONNI L., GARCÍA MARTÍNEZ M.F., WISSMANN K.J.,
545 MINARELLI L., COMINA C., FONTANA D., DE MARTINI P.M., MONACO P., PESCI A., SAPIA V., VASSALLO M., ANZIDEI
546 M., CARPENA A., CINTI F., CIVICO R., COCO I., CONFORTI D., DOUMAZ F., GIANNATTASIO F., DI GIULIO G., FOTI S.,
547 LODDO F., LUGLI S., MANUEL M.R., MARCHETTI D., MARIOTTI M., MATERNI V., METCALFE B., MILANA G., PANTOSTI
548 D., PESCE A., SALOCCHI A.C., SMEDILE A., STEFANI M., TARABUSI G., TEZA G. (2020) – *Blast-induced liquefaction
549 in silty sands for full-scale testing of ground improvement methods: insights from a multidisciplinary study*. Eng Geol,
550 265: 105437. <https://doi.org/10.1016/j.enggeo.2019.105437>

561 ANDREWS D.C.A., MARTIN G.R. (2000) – *Criteria for liquefaction of silty soils*. Proceedings, 12th World Conference in
562 Earthquake Engineering, Auckland, New Zealand.

563 ANDRUS R.D., STOKOE K.H. (2000) – *Liquefaction resistance of soils from shear-wave velocity*. J. Geotech. Geoenviron.
564 Eng., **126** (11), 1015-1025. [https://doi.org/10.1061/\(ASCE\)1090-0241\(2000\)126:11\(1015\)](https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(1015))

565 A.S.T.M. D2488-09 (2009) – *Standard practice for classification of soils for engineering purposes (Visual-Manual
566 Procedure)*. ASTM International, West Conshohocken, PA, 12 p.p.

567 A.S.T.M. D2487-11 (2011) – *Standard practice for description and identification of soils (Unified Soil Classification
568 System)*. ASTM International, West Conshohocken, PA, 12 p.p.

569 BARATTA M. (1910) – *La catastrofe sismica Calabro-Messinese (28 dicembre 1908)*. Società Geografica Italiana, Roma.
570 [In Italian]

571 BOULANGER R.W., IDRISI I.M. (2014) – *CPT and SPT based liquefaction triggering procedure*. Report No. UCD/CGM-
572 14/01, Center for Geotechnical Modelling, Department of Civil and Environmentally Engineering, Univ. California,
573 California, 134 p.p. [https://doi.org/10.1061/\(ASCE\)GT.1973-5606.0001388](https://doi.org/10.1061/(ASCE)GT.1973-5606.0001388)

574 CAO Z., YOUD T.L., YUAN X. (2011) - *Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, $M_s=8$* .
575 Soil Dyn. Earthq. Eng., **31**, 1132-1143. <https://doi.org/10.1016/j.soildyn.2011.04.001>

576 CAO Z., YOUD T.L., YUAN X. (2013) – *Chinese dynamic penetration test for liquefaction evaluation in gravelly soils*. J.
577 Geotech. Geoenviron. Eng., **139** (8), 1320-1333. [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0000857](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000857)

578 CASTILLA R.A., AUDEMARD F.A. (2007) – *Sand blows as a potential tool for magnitude estimation of pre-instrumental*
579 *earthquakes*. J. Seismol., **11**, 473-487. <https://doi.org/10.1007/s10950-007-9065-z>

580 CECCARONI E., AMERI G., CAPERA A.A.G., GALADINI F. (2009) – *The 2nd century AD earthquake in central Italy: archeoseismological data and seismotectonic implications*. Nat. Hazards, **50**, 335-359.
581 <https://doi.org/10.1007/s11069-009-9343-x>

582 CHINESE DESIGN CODE (2021) – *Design code for buildings foundation of Chengdu region*. DB51/T5026-2001,
583 Administration of Quality and Technology, Chengdu, China. [In Chinese]

584 CUBRINOVSKY M., BRAY J.D., DE LA TORRE C., OLSEN M., BRADLEY B., CHIARO G., STOCKS E., WOTHERSPOON L.,
585 KRALL T. (2018) – *Liquefaction-induced damage and CPT characterization of the reclamations at CentrePort,*
586 *Wellington*. Bull. Seismol. Soc. Am., **108** (3B), 1695-1708. <https://doi.org/10.1785/0120170246>

587 DANIEL C.R., HOWIE J.A., SY A. (2003) – *A method for correlating large penetration test (LPT) to standard penetration*
588 *test (SPT) blow counts*. Can. Geotech. J., **40**, 66-77. <https://doi.org/10.1139/t02-094> GALLI P. (2000) – *New empirical*
589 *relationship between magnitude and distance for liquefaction*. Tectonophysics, **324**, 169-187.
590 [https://doi.org/10.1016/S0040-1951\(00\)00118-9](https://doi.org/10.1016/S0040-1951(00)00118-9)

591 GALLI P., GIACCIO B., PERONACE E., MESSINA P. (2015) – *Holocene paleoearthquakes and Early-Late Pleistocene slip*
592 *rate on the Sulmona Fault (Central Apennines, Italy)*. Bull. Seismol. Soc. Am., **105** (1), 1-13.
593 <https://doi.org/10.1785/0120140029>

594 GIACCIO B., CASTORINA F., NOMADE S., SCARDIA G., VOLTAGGIO M., SAGNOTTI L. (2013) – *Revised chronology of the*
595 *Sulmona lacustrine succession, central Italy*. J. Quat. Sci., **28** (6), 545-551. <https://doi.org/10.1002/jqs.2647>

596 GORI, S., GIACCIO, B., GALADINI, F., FALCUCCI, E., MESSINA, P., SPOSATO, A., DRAMIS, F. (2011) - *Active normal faulting*
597 *along the Mt. Morrone south-western slopes (central Apennines, Italy)*. International journal of earth sciences, 100(1),
598 157-171. <https://doi.org/10.1007/s00531-009-0505-6>

599 IDRISI I.M., BOULANGER R.W. (2008) – *Soil liquefaction during earthquakes*. Earthquake Engineering Research Institute,
600 Oakland, CA, 237 p.p.

602 IWASAKI T., TATSUOKA F., TOKIDA K., YASUDA S. (1978) – *A practical method for assessing soil liquefaction potential*
603 *based on case studies at various sites in Japan*. 2nd International Conference on Microzonation for Safer Construction
604 Research and Application, 885-896. [https://doi.org/10.1016/0261-7277\(84\)90027-5](https://doi.org/10.1016/0261-7277(84)90027-5)

605 KAYEN R., MOSS R.E.S., THOMPSON E.M., SEED R.B., CETIN K.O., KIUREGHIAN A.D., TANAKA Y., TOKIMATSU K. (2013)
606 – *Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential*. J.
607 Geotech. Geoenviron. Eng., **139** (3), 407-419. [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0000743](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743)

608 KOKUSHO T., YOSHIDA Y. (1997) – *SPT N-value and S-wave velocity for gravelly soils with different grain size*
609 *distribution*. Soils Found. **37** (4), 105-113. https://doi.org/10.3208/sandf.37.4_105

610 KULHAWY F.H., MAYNE P.W. (1990) – *Manual on estimating soil properties for foundation design*. EPRI Report EL-
611 6800, 306 p.p.

612 LIAO S.S.C., VENAZIANO D., WHITMAN R.V. (1988) - *Regression models for evaluating liquefaction probability*. J.
613 Geotech. Eng., **114** (4), 389-411. [https://doi.org/10.1061/\(ASCE\)0733-9410\(1988\)114:4\(389\)](https://doi.org/10.1061/(ASCE)0733-9410(1988)114:4(389))

614 MAURER B.W., GREEN R.A., QUIGLEY M.C., BASTIN S. (2015) – *Developed of magnitude-bound relations for*
615 *paleoliquefaction analyses: New Zealand case study*. Eng. Geology, **197**, 253-266.
616 <https://doi.org/10.1016/j.enggeo.2015.08.023>

617 MAYNE P.W., COOP M.R., SPRINGMAN S.M., HUANG A., ZORNBERG J.G. (2009) – *Geomaterial behavior and testing*.
618 Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2777-2873.

619 MICCADEI E., BARBERI R., CAVINATO G.P. (1998) – *La geologia quaternaria della conca di Sulmona (Abruzzo, Italia*
620 *centrale)*. Geologica Romana, **34**, 59-86. [In Italian]

621 MONACO P., SANTUCCI DE MAGISTRIS F., GRASSO S., MARCHETTI S., MAUGERI M., TOTANI G. (2011) – *Analysis of the*
622 *liquefaction phenomena in the village of Vittorito (L'Aquila)*. Bull. Earthq. Eng., **9**, 231-261.
623 <https://doi.org/10.1007/s10518-010-9228-0>

624 NAIK S.P., KIM Y.S., KIM T., SU-HO J. (2019) – *Geological and structural control on localized basin during the Pohang*
625 *earthquake (M_W 5.4, 15th November 2017), South Korea*. Geosciences, **9** (4),
626 <https://doi.org/10.3390/geosciences9040173>

627 NTC (2018) – *Aggiornamento delle “Norme tecniche per le costruzioni”*. D.M. 17 gennaio 2018, pubblicato sul
628 Supplemento ordinario alla Gazzetta Ufficiale, n.42 del 20 febbraio 2018, Serie generale. [In Italian]

629 OBERMEIER S.F. (1996) - *Use of liquefaction-induced features for paleoseismic analysis – An overview of how seismic*
630 *liquefaction features can be distinguished from other features and how their regional distribution and properties of*
631 *source sediment can be used to infer the location and strength of Holocene paleo-earthquakes*. Engineering Geology,
632 **44**, 1-76. [https://doi.org/10.1016/S0013-7952\(96\)00040-3](https://doi.org/10.1016/S0013-7952(96)00040-3)

633 PIZZI, A., MICCADEI, E., PIACENTINI, T., PIPPONZI, G., GALADINI, F., LUZI, L. (2014) - *Microzonazione sismica di Livello 1*
634 *del Comune di Sulmona (AQ), Relazione illustrativa con carte e sezioni allegate*. Regione Abruzzo – Dip. Protezione
635 Civile, <https://protezionecivile.regione.abruzzo.it/index.php/microzonazione>.

636 PIZZI A., CALAMITA F., COLTORTI M., PIERUCCINI P. (2002) – *Quaternary normal faults, intramontane basins and*
637 *seismicity in the Umbria-Marche-Abruzzi Apennine Ridge (Italy): contribution of neotectonic analysis to seismic*
638 *hazard assessment*. Boll. Soc. Geol. It., Special Issue 1, 923-929.

639 RODRIGUEZ-PASCUA M.A., CALVO J.P., DE VICENTE G., GÓMEZ-GRAS D. (2020) – *Soft sediment deformation structures*
640 *interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators*
641 *of earthquake magnitudes during the Late Miocene*. Sediment. Geol., **135**, 117-135. [https://doi.org/10.1016/S0037-0738\(00\)00067-1](https://doi.org/10.1016/S0037-0738(00)00067-1)

642 ROLLINS K.M., AMOROSO S., MILANA G., MINARELLI L., VASSALLO M., DI GIULIO G. (2020) – *Gravel liquefaction*
643 *assessment using the dynamic cone penetration test based on field performance from the 1976 Friuli Earthquake*. J.
644 Geotech. Geoenviron. Eng., **146** (6). [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002252](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002252)

645 ROLLINS K.M., ROY J., ATHANASOPOULOS-ZEKKOS A., ZEKKOS D., AMOROSO S., CAO Z. (2021) – *A new dynamic cone*
646 *penetration test-based procedure for liquefaction triggering assessment of gravelly soils*. J. Geotech. Geoenviron.
647 Eng., **147** (12). [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002686](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002686)

648 ROLLINS K.M., ROY J., ATHANASOPOULOS-ZEKKOS A., ZEKKOS D., AMOROSO S., CAO Z., MILANA G., VASSALLO M., DI
649 GIULIO G. (2022) – *A new V_s -based liquefaction triggering procedure for gravelly soils*. J. Geotech. Geoenviron. Eng.,
650 **148** (6). [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002784](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002784)

651 ROVIDA A., LOCATI M., CAMASSI R., LOLLI B., GASPERINI P., ANTONUCCI A. (2022) – *Catalogo parametrico dei terremoti*
652 *italiani (CPTI15), versione 4.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV)*.
653 <https://doi.org/10.13127/CPTI/CPTI15.4>

654 SALOCCHI A.C., MINARELLI L., LUGLI S., AMOROSO S., ROLLINS K.M., FONTANA D. (2020) – *Liquefaction source layer*
655 *for sand blows induced by the 2016 megathrust earthquake (M_w 7.8) in Ecuador (Boca de Briceño)*. J. South Am.
656 Earth Sci., **103**. <https://doi.org/10.1016/j.jsames.2020.102737>

657 SEED H.B., IDRISI I.M. (1971) – *Simplified procedure for evaluating soil liquefaction potential*. J. Soil Mech. Found.
658 Div., **97** (9), 1249-1273. <https://doi.org/10.1061/JSFEAQ.0001662>

660 SEED, H. B., MARTIN, P. P. AND LYSMER, J. (1976) – *The generation and dissipation of pore water pressure changes*
661 *during soil liquefaction*. Journal of the Geotechnical Engineering Division, **102** (4), 323-346.

662 SIROVICH L. (1996a) – *In-situ testing of repeatedly liquefied gravels and liquefied overconsolidated sands*. Soil Found.,
663 **36** (4), 35-44.

664 TOKIMATSU K., YOSHIMI Y. (1983) - *Empirical correlation of soil liquefaction based on SPT N-value and fines content.*

665 Soils Found., **23** (4), 56-74. https://doi.org/10.3208/sandf1972.23.4_56

666 TSUCHIDA H., HAYASHI S. (1971) - *Estimation of liquefaction potential of sandy soils.* Proceedings of the 3rd Joint

667 Meeting, US-Japan Panel on Wind and Seismic Effects, May 1971. UJNR, Tokyo, 91-109.

668 VALENTINI A., PACE B., BONCIO P., VISINI F., PAGLIAROLI A., PERGALANI F. (2019) – *Definition of seismic input from*

669 *fault-based PSHA: remarks after the 2016 central Italy earthquake sequence.* Tectonics, **38**, 595-620.

670 <https://doi.org/10.1029/2018TC005086>

671 YOUD T.L., IDRISI I.M., ANDRUS R.D., ARANGO I., CASTRO G., CHRISTIAN J.T., DOBRY R., FINN W.D.L., HARDER L.F.,

672 HYNES M.E., ISHIHARA K., KOESTER J.P., LIAO S.S.C., MARCUSON W.F., MARTIN G.R., MITCHELL J.K., MORIWARI

673 YOSHIHARU, POWER M.S., ROBERTSON P.K., SEED R.B., STOKOE K.H. (2001) – *Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of*

674 *soils.* J. Geotech. and Geoenviron. Eng., **127** (10), 817-833. [https://doi.org/10.1061/\(ASCE\)1090-0241\(2001\)127:10\(817\)](https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817))