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Abstract— A common challenge in myoelectric control is to
create reliable human-machine interfaces. The aim of our study
is to apply classifiers and adaptable features to
electromyography (EMG) signals obtained from subjects who
are trained to perform cursor-control tasks. We have developed
a robust surface EMG command system that relies on training
the human rather than training a classifier, thereby enabling the
human to correct for signal changes. The purpose of the current
study was to understand whether adding an adaptive timing
feature and classifiers to our EMG interface could improve the
performance of trained human subjects. Forty-eight subjects
participated in the experiment, where they learned four different
commands to control a cursor to select fixed targets on a
computer screen, where each command was composed of a
combination of short and long muscle contractions. A Command
Accuracy Test assessed subject proficiency at producing
commands when prompted. The command classification
accuracy was calculated for a control condition and two
conditions that reflected possible adaptive features: the timing
between EMG signal inputs and a subject-specific classifier. The
overall results showed significant improvements in command
classification accuracy for both adaptive components (p <
0.0001) compared to the control. However, some initially high
performing subjects did not receive as much benefit. These
results suggest that customizing the SEMG command system for
individual subjects could improve their performance. Future
work should investigate the effect of customizing the system for
performance and co-adaptation, as well as using the adaptive
features as a training tool to further improve command accuracy
and efficiency.

I. INTRODUCTION

Myoelectric control, or the use of electromyographic
(EMG) signals to convey a command, has been used in
prosthetics and human-computer interfaces, with various
strategies employed to create a reliable communication
interface. However, EMG can suffer from signal non-
stationarities due to subject fatigue, shifting electrodes, and
postural changes [1]. Some researchers have mitigated signal
non-stationarities by developing adaptive systems. These
adaptive systems have been shown to improve pattern
recognition classifier accuracy during increased signal noise
[2], to augment performance with online co-adaptive learning
[3][4], and to maintain repeatability over multiple sessions [5].
All of these research studies used surface EMG (SEMG)
control with multiple sensors on the forearm, and most used
pattern recognition [2] or regression-based methods [3][4].
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Adaptive SEMG systems can focus on mitigating signal
non-stationarities and/or improving overall system accuracy
and performance. Benchabane et al. [5] developed a system for
simultaneous control of prosthetic fingers using an adaptive
threshold to select one or more finger functions and
demonstrated low accuracy loss, despite multiple sessions (-
4.8%) and subject fatigue (-2.4%). Similarly, Zhang et al. [2]
tested their system with several noise levels to compare a
Linear Discriminant Analysis (LDA) classifier with an
adaptive LDA (ALDA) that periodically incorporated new
training data to recalculate parameters online. The ALDA
outperformed the LDA across conditions [2]. Hahne et al. [3]
investigated different adaptation rates for a co-adaptation
cursor-to-target task in a regression-based system to improve
task performance. In a similar regression-based system, Yeung
et al. [4] compared different methods of weighting new
training data, tested several adaptation rates, and demonstrated
improved performance compared to an unassisted user. Taken
together, these selected studies demonstrate the promise of
adaptive sSEMG systems for novice users. Our work was
motivated to investigate the benefits of adaptive systems for
users after completing training and reaching a learning plateau
to further enhance their performance.

Previously, we had developed a single-site SEMG cursor
control method that allowed the user to select among four
cursor commands, using a coded sequence of short and long
muscle contractions. This method may be less sensitive to
signal non-stationarities due to the emphasis on user training.
The user only needs to cross a threshold to communicate and
can adjust their own actions to make corrections. However,
this approach placed the burden of learning on user training,
and we subsequently investigated the effects of various
training strategies on performance, workload, and trust [6]. At
the end of the training period, subjects across training
strategies achieved an average completion rate of 0.86 and
command classification accuracy of 66.15% for a cursor-to-
target task [6]. The purpose of the work presented here was to
understand if adding an adaptive timing component and
individually trained classifiers would improve the
classification accuracy of trained subjects.

II. METHODS

A. Experiment Design and Setup

In this study, we utilized the data collected in [6] to explore
the possibility of integrating an adaptive feature or classifier to
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our SEMG control method. (The detailed experiment design
and protocol can be found in [6].) The forty-eight subjects that
completed the experiment ranged in age from 18 to 23 years
with two left-hand dominant subjects and an equal
participation of men and women. Subjects were able-bodied
university students who reported no history of neuromuscular
disorders or myoelectric control experience. The University of
California Davis Institutional Review Board approved the
experimental protocol.

The experimental setup included two electrodes (ConMed
1620 Ag/AgCl center snap) placed approximately 2.5 cm apart
near the extensor digitorum proximal attachment on the
dominant side. The reference electrode was fixed close to the
lateral epicondyle of the humerus. The signal acquisition
followed [7] and was processed as in [8], where the signal was
sampled at 4096 Hz for 256-sample windows with a
Butterworth filter (4™ order, bandpass at 10 Hz and 500 Hz).
The rms value for the window was normalized by each
subject’s calibration value and put in a moving average filter
(length 0.5 s) for a processed signal update rate of 16 Hz.

B. Cursor Control and Training Methods

The sEMG method consisted of four cursor-control
commands—up, down, left, right—that the subjects selected
through a serial pattern akin to Morse code. The commands
consisted of two consecutive signal inputs with a rest between
each input; if the rest exceeded the timeout (0.5 s), the pattern
reset (see Fig. 1 A). An input started when the processed signal
exceeded a threshold, /;, and ended when the processed signal
returned to below the threshold. Inputs less than 0.5 s were
categorized as “short” and inputs greater than 0.5 s were
“long”. The combined pair of short and long inputs (a.k.a.
muscle contractions) defined a command; for example, two
short inputs selected the “up” command (see Fig. 1B). A third
input moved the cursor forward in the selected direction while
the processed signal remained above the threshold.

During the training portion of the experiment, the subjects
learned to control a cursor on a computer screen to select
targets in a Fitts’s law style task. There were 120 training trials
and 40 evaluation trials, where a trial was a single cursor-to-
target attempt. The training strategy was in effect during the
training trials and removed during evaluation. Subjects were
assigned to one of four groups that determined the training
strategy: Repetition, Concurrent Feedback, Terminal
Feedback, and Adaptive Threshold.
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The Repetition group learned only by repeatedly
performing the cursor-to-target task.

The Concurrent Feedback group received an additional
visual feedback element, where the cursor body changed
color when the processed signal exceeded the threshold
shown in Fig. 1A.

The Terminal Feedback group’s additional visual
feedback element indicated the selected command at the
end of Input 2 (see Fig. 1A).

The Adaptive Threshold group saw the same interface as
the Repetition group, but the threshold varied trial-by-trial
({;=0.10,0.15, 0.20, 0.25, 0.30). The threshold was set to
0.20 for other groups (threshold shown in Fig. 1A).

C. Analysis

To assess the subjects’ proficiencies in selecting
commands, a Command Accuracy Test was administered
before training, after training (Test 2), and after evaluation
(Test 3). Subjects were prompted to produce each command 5
times for a total of 20 attempts per test. Subjects were only
allowed one try within an attempt. Command classification
accuracy was calculated as the number of successfully selected
commands out of the total for each test. The data from the
Command Accuracy Tests 2 and 3 were combined and used
for the analysis presented here. From the previous study, there
were no significant differences after the training period
between Tests 2 and 3 [6]. A larger dataset would have been
ideal, but this analysis was developed under research
limitations imposed by the Coronavirus pandemic, and so our
previously existing data from [6] was used.

Successfully selected commands met the input duration
requirements (short < 0.5 s, long > 0.5 s) and the rest between
inputs did not exceed a timeout (> 0.5 s). These values were
selected from pilot studies and may not be optimal in general
or for individuals. The classification accuracy calculated with
these predetermined values was considered the Control. We
then recalculated the classification accuracy for two additional
conditions that included certain unsuccessful commands: 1)
No Timeout and 2) Individual Classification. For the No
Timeout condition, the first two inputs were classified
according to the original input duration requirements, but
without regard to the timeout (rest > 0.5 s, rest shown in Fig.
1A). The Individual Classification used the first two inputs as
features for supervised machine learning and did not exclude
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Figure 1. Overview of the coded sequence used in the SEMG method. A) An illustration of a processed EMG signal is shown here. The coded sequence
requires two inputs above a threshold to select the command and the third input results in continuous, forward motion until the signal drops below the
threshold. Subjects must rest (i.e., drop below the threshold) between inputs, but a rest greater than 0.5 s resets the sequence. B) The commands are defined
by the combination of short (< 0.5 s) and long (> 0.5 s) inputs. For example, the “down” command is two long inputs.
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any observations that exceeded the original timing
requirements. (Refer to Table 1 for a summary of the
Conditions with respect to the timing requirements.)

In the Individual Classification, we made several decisions
to accommodate the limited number of observations per
subject. The K Nearest Neighbors (KNN) algorithm was
selected due to its straightforward implementation without the
need to tune many parameters. The Python package scikit-
learn [9] was used and the parameters for k and weights were
set to 4 and “distance” (voting weighted by distance),
respectively. The number of neighbors, &, was selected based
on the number of observations per class and similar to the

general rule (Vobservations ~ 5-6). We assumed that subjects
would perform command selection with precision, therefore
we assigned more weight to closer neighbors. Typically, a 5-
or 10-fold cross-validation strategy is used but based on the
number of observations per class and the decision to use
stratified folds, we implemented a 4-fold cross-validation with
3 iterations. Each fold was unique, and we used a train/test split
0f'80/20. The number of observations in the training set ranged
from 29-32, but the testing set remained constant at 8
observations (2 per class). One subject had a total of 24 useable
observations, which resulted in a 2-fold cross-validation with
6 iterations and 4 neighbors. Unusable observations occurred
when the subjects’ attempts contained one or no inputs and
accounted for 1.51% of the total.

We compared the average classification accuracy across
the Control, No Timeout, and Individual Classification
conditions and hypothesized that removing the predetermined
timing requirements would yield better accuracy. We also
calculated the average increase in accuracy from the Control
to No Timeout, and the No Timeout to Individual
Classification. The reserved test dataset was used for another
Individual Classification accuracy estimate. Results are
reported as (1 £ o) unless shown otherwise.

III. RESULTS

We ran a two-factor mixed model with a between-subjects
factor of Group and a within-subjects factor of Condition.
Significant effects (p < 0.05) were analyzed with the Tukey
Honest Significant Difference test with the Satterthwaite
method to calculate the degrees of freedom. The main effect
of Condition was significant (F(2,88) =31.40, p <0.0001), but
not Group (F(3,44) = 1.86, p = 0.15) nor the interaction
between Group and Condition (F(6,88) = 0.83, p = 0.55). The
Tukey test for Condition showed significant differences for
each pairwise comparison. Classification accuracy improved
from the Control to No Timeout (p < 0.0001), Control to
Individual Classification (p < 0.0001), and from the No
Timeout to Individual Classification (p = 0.04). The
Conditions achieved average classifications accuracies of
66.15 £ 26.31% for the Control, 76.56 + 21.52% for No
Timeout, and 81.58 + 20.30% for Individual Classification.

TABLE L. TIMING REQUIREMENTS PER CONDITION
Condition Timeout Input Duration
Control Yes Yes
No Timeout No Yes
Individual Classification No No
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Classification accuracy results varied as some subjects
scored 100% accuracy in the Control and did not benefit from
the other Conditions, whereas other subjects had large
performance gains with loosened timing requirements. For No
Timeout, the increase in percentage points ranged from 0.00 to
50.00 points with an average increase of 10.42 + 13.71 points.
The Individual Classification inherently included the No
Timeout consideration. The change in classification accuracy
percentage points from No Timeout to Individual
Classification ranged from -12.29 to 36.46 points with an
average increase of 5.02 + 10.29 points. For the cases where
the accuracies decreased from No Timeout (N = 17), the
Individual Classification accuracies were either worse (N = 8),
better (N =8), or the same (N = 1) as compared to the Control.

The reserved test dataset provided another classification
accuracy estimate. The resulting accuracy across groups was
85.00 £ 18.36%. These results were similar to the accuracy
estimated from the training dataset and cross-validation.

IV. DiscussION

The results supported our hypothesis and indicated that the
majority of subjects could potentially benefit from customized
adaptation in our SEMG command system. The main effect of
Group was found to be not significant; therefore the training
history did not appear to be a factor in the outcome of the
conditions, and was consistent with our prior results of no
significant performance differences after training [6].

The No Timeout condition either benefited (N = 33) or did
not affect (N = 15) the classification accuracy. Within the
combined Test 2 and 3 dataset across groups, the timeouts
accounted for 16.98% of the total attempts. It was interesting
to note that by Group timeouts occurred in 15.63%, 5.42%,
17.92%, and 28.96% of the attempts for the Repetition,
Concurrent Feedback, Terminal Feedback, and Adaptive
Threshold groups, respectively. The Concurrent Feedback
group may have been more attuned to the timing because the
visual aid inherently gave information about the timing
between inputs. The Adaptive Threshold group may have
struggled learning the timing with the changing threshold. The
timeouts had a mean of 0.41 s and median of 0.31 s. For an
online implementation, the timeout could be modified to the
subject’s maximum timeout or 95" percentile from the
Command Accuracy Test.

The Individual Classification improved the estimated
classification accuracy for most subjects. Figs. 2 through 4
display the input durations performed for the target
commands, which have a similar layout to Fig. 1B with lines
indicating the predetermined input duration. The subject’s data
shown in Fig. 2 demonstrates the benefit of Individual
Classification when command inputs are precise but stray from
the prescribed timing. In contrast, some subjects’ estimated
classification accuracies remained low or decreased. One
possible explanation may be that some lower performing
subjects inconsistently produced inputs, such that the classes
are not easily separable, and the nearest neighbors mostly
belong to other classes (see Fig. 3). Alternatively, high
performers may produce inputs within the prescribed timing,
but occur close to other classes (see Fig. 4).

In our study, the original classification accuracy ranged
from 5.00% to 100.00% with low and high performers within
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Figure 2. Example of a higher performing subject with classification
accuracies of 95% (Control), 95% (No Timeout), and 100% (Individual
Classification). Encircled points show attempts that did not have the correct
input duration but remained close to their classes.
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Figure 3. Example of a lower performing subject with classification
accuracies of 30% (Control), 35% (No Timeout), and 41.67% (Individual
Classification). Encircled points show attempts that did not have the correct
input duration and/or were surrounded by other classes.
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Figure 4. Example of a higher performing subject with classification
accuracies of 100% (Control), 100% (No Timeout), and 96.88% (Individual
Classification). Encircled point had the correct input durations but was
closer in distance to the Up class causing a misclassification.

the subjects. Classifiers and adaptive features may improve the
average performance but should target individuals that would
benefit from customized timing requirements. For example,
the subject whose data were depicted in Fig. 2 did not benefit
from removing the timeout restriction but improved with
Individual Classification. For Individual Classification, the
average classification accuracy of 81.58% was comparable to
Benchabane et al. [5] (87.8% average accuracy). Also, eleven
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of our subjects achieved classification accuracies of greater
than 95%, similar to the LDA (average accuracy of 95.12%)
and ALDA (95.45% to 100.00%) classifiers [2]. The results
suggest that a customized approach to implementing
classifiers and adaptive features could improve performance of
already trained subjects. This customization could occur after
a training period using the data from a Command Accuracy
Test to determine the best approach for the subsequent online
implementation.

This work used data already collected from subjects in an
experiment not designed to test this hypothesis. The two main
limitations of this study were the small dataset and post-data
collection analysis. The maximum of 40 total observations was
smaller than suggested by other researchers, who recommend
starting with 75 observations per class [10]. The limited
dataset for individuals also prevented a robust model selection
step, but analysis done at the group level indicated a preference
for KNN and selected parameters. Overall, the classification
accuracy estimates indicated the potential benefits for
individual subjects.

These are potential benefits. It is unclear whether an online
adaptive sSEMG command system that allows for custom
timing would yield improved accuracy. How the subject would
adapt in real-time is also unknown. Another possibility would
be to use the adaptive component to train the subjects to
become more efficient (e.g., smaller command time). Overall,
these results are encouraging to pursue a future study to
address these questions.
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