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Abstract— A common challenge in myoelectric control is to 

create reliable human-machine interfaces. The aim of our study 

is to apply classifiers and adaptable features to 

electromyography (EMG) signals obtained from subjects who 

are trained to perform cursor-control tasks. We have developed 

a robust surface EMG command system that relies on training 

the human rather than training a classifier, thereby enabling the 

human to correct for signal changes. The purpose of the current 

study was to understand whether adding an adaptive timing 

feature and classifiers to our EMG interface could improve the 

performance of trained human subjects. Forty-eight subjects 

participated in the experiment, where they learned four different 

commands to control a cursor to select fixed targets on a 

computer screen, where each command was composed of a 

combination of short and long muscle contractions. A Command 

Accuracy Test assessed subject proficiency at producing 

commands when prompted. The command classification 

accuracy was calculated for a control condition and two 

conditions that reflected possible adaptive features: the timing 

between EMG signal inputs and a subject-specific classifier. The 

overall results showed significant improvements in command 

classification accuracy for both adaptive components (p < 

0.0001) compared to the control. However, some initially high 

performing subjects did not receive as much benefit. These 

results suggest that customizing the sEMG command system for 

individual subjects could improve their performance. Future 

work should investigate the effect of customizing the system for 

performance and co-adaptation, as well as using the adaptive 

features as a training tool to further improve command accuracy 

and efficiency. 

I. INTRODUCTION 

Myoelectric control, or the use of electromyographic 
(EMG) signals to convey a command, has been used in 
prosthetics and human-computer interfaces, with various 
strategies employed to create a reliable communication 
interface. However, EMG can suffer from signal non-
stationarities due to subject fatigue, shifting electrodes, and 
postural changes [1]. Some researchers have mitigated signal 
non-stationarities by developing adaptive systems. These 
adaptive systems have been shown to improve pattern 
recognition classifier accuracy during increased signal noise 
[2], to augment performance with online co-adaptive learning 
[3][4], and to maintain repeatability over multiple sessions [5]. 
All of these research studies used surface EMG (sEMG) 
control with multiple sensors on the forearm, and most used 
pattern recognition [2] or regression-based methods [3][4]. 
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Adaptive sEMG systems can focus on mitigating signal 
non-stationarities and/or improving overall system accuracy 
and performance. Benchabane et al. [5] developed a system for 
simultaneous control of prosthetic fingers using an adaptive 
threshold to select one or more finger functions and 
demonstrated low accuracy loss, despite multiple sessions (-
4.8%) and subject fatigue (-2.4%). Similarly, Zhang et al. [2] 
tested their system with several noise levels to compare a 
Linear Discriminant Analysis (LDA) classifier with an 
adaptive LDA (ALDA) that periodically incorporated new 
training data to recalculate parameters online. The ALDA 
outperformed the LDA across conditions [2]. Hahne et al. [3] 
investigated different adaptation rates for a co-adaptation 
cursor-to-target task in a regression-based system to improve 
task performance. In a similar regression-based system, Yeung 
et al. [4] compared different methods of weighting new 
training data, tested several adaptation rates, and demonstrated 
improved performance compared to an unassisted user. Taken 
together, these selected studies demonstrate the promise of 
adaptive sEMG systems for novice users. Our work was 
motivated to investigate the benefits of adaptive systems for 
users after completing training and reaching a learning plateau 
to further enhance their performance. 

Previously, we had developed a single-site sEMG cursor 
control method that allowed the user to select among four 
cursor commands, using a coded sequence of short and long 
muscle contractions. This method may be less sensitive to 
signal non-stationarities due to the emphasis on user training. 
The user only needs to cross a threshold to communicate and 
can adjust their own actions to make corrections. However, 
this approach placed the burden of learning on user training, 
and we subsequently investigated the effects of various 
training strategies on performance, workload, and trust [6]. At 
the end of the training period, subjects across training 
strategies achieved an average completion rate of 0.86 and 
command classification accuracy of 66.15% for a cursor-to-
target task [6]. The purpose of the work presented here was to 
understand if adding an adaptive timing component and 
individually trained classifiers would improve the 
classification accuracy of trained subjects. 

II. METHODS 

A. Experiment Design and Setup 

In this study, we utilized the data collected in [6] to explore 
the possibility of integrating an adaptive feature or classifier to 
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our sEMG control method. (The detailed experiment design 
and protocol can be found in [6].) The forty-eight subjects that 
completed the experiment ranged in age from 18 to 23 years 
with two left-hand dominant subjects and an equal 
participation of men and women. Subjects were able-bodied 
university students who reported no history of neuromuscular 
disorders or myoelectric control experience. The University of 
California Davis Institutional Review Board approved the 
experimental protocol. 

The experimental setup included two electrodes (ConMed 
1620 Ag/AgCl center snap) placed approximately 2.5 cm apart 
near the extensor digitorum proximal attachment on the 
dominant side. The reference electrode was fixed close to the 
lateral epicondyle of the humerus. The signal acquisition 
followed [7] and was processed as in [8], where the signal was 
sampled at 4096 Hz for 256-sample windows with a 
Butterworth filter (4th order, bandpass at 10 Hz and 500 Hz). 
The rms value for the window was normalized by each 
subject’s calibration value and put in a moving average filter 
(length 0.5 s) for a processed signal update rate of 16 Hz. 

B. Cursor Control and Training Methods 

The sEMG method consisted of four cursor-control 
commands—up, down, left, right—that the subjects selected 
through a serial pattern akin to Morse code. The commands 
consisted of two consecutive signal inputs with a rest between 
each input; if the rest exceeded the timeout (0.5 s), the pattern 
reset (see Fig. 1A). An input started when the processed signal 
exceeded a threshold, l1, and ended when the processed signal 
returned to below the threshold. Inputs less than 0.5 s were 
categorized as “short” and inputs greater than 0.5 s were 
“long”. The combined pair of short and long inputs (a.k.a. 
muscle contractions) defined a command; for example, two 
short inputs selected the “up” command (see Fig. 1B). A third 
input moved the cursor forward in the selected direction while 
the processed signal remained above the threshold. 

During the training portion of the experiment, the subjects 
learned to control a cursor on a computer screen to select 
targets in a Fitts’s law style task. There were 120 training trials 
and 40 evaluation trials, where a trial was a single cursor-to-
target attempt. The training strategy was in effect during the 
training trials and removed during evaluation. Subjects were 
assigned to one of four groups that determined the training 
strategy: Repetition, Concurrent Feedback, Terminal 
Feedback, and Adaptive Threshold.  

 The Repetition group learned only by repeatedly 
performing the cursor-to-target task.  

 The Concurrent Feedback group received an additional 
visual feedback element, where the cursor body changed 
color when the processed signal exceeded the threshold 
shown in Fig. 1A.  

 The Terminal Feedback group’s additional visual 
feedback element indicated the selected command at the 
end of Input 2 (see Fig. 1A).  

 The Adaptive Threshold group saw the same interface as 
the Repetition group, but the threshold varied trial-by-trial 
(l1 = 0.10, 0.15, 0.20, 0.25, 0.30). The threshold was set to 
0.20 for other groups (threshold shown in Fig. 1A). 

C. Analysis 

To assess the subjects’ proficiencies in selecting 
commands, a Command Accuracy Test was administered 
before training, after training (Test 2), and after evaluation 
(Test 3). Subjects were prompted to produce each command 5 
times for a total of 20 attempts per test. Subjects were only 
allowed one try within an attempt. Command classification 
accuracy was calculated as the number of successfully selected 
commands out of the total for each test. The data from the 
Command Accuracy Tests 2 and 3 were combined and used 
for the analysis presented here. From the previous study, there 
were no significant differences after the training period 
between Tests 2 and 3 [6]. A larger dataset would have been 
ideal, but this analysis was developed under research 
limitations imposed by the Coronavirus pandemic, and so our 
previously existing data from [6] was used. 

Successfully selected commands met the input duration 

requirements (short  0.5 s, long > 0.5 s) and the rest between 
inputs did not exceed a timeout (> 0.5 s). These values were 
selected from pilot studies and may not be optimal in general 
or for individuals. The classification accuracy calculated with 
these predetermined values was considered the Control. We 
then recalculated the classification accuracy for two additional 
conditions that included certain unsuccessful commands: 1) 
No Timeout and 2) Individual Classification. For the No 
Timeout condition, the first two inputs were classified 
according to the original input duration requirements, but 
without regard to the timeout (rest > 0.5 s, rest shown in Fig. 
1A). The Individual Classification used the first two inputs as 
features for supervised machine learning and did not exclude 

 

 
Figure 1. Overview of the coded sequence used in the sEMG method. A) An illustration of a processed EMG signal is shown here. The coded sequence 
requires two inputs above a threshold to select the command and the third input results in continuous, forward motion until the signal drops below the 

threshold. Subjects must rest (i.e., drop below the threshold) between inputs, but a rest greater than 0.5 s resets the sequence. B) The commands are defined 

by the combination of short ( 0.5 s) and long (> 0.5 s) inputs. For example, the “down” command is two long inputs. 
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any observations that exceeded the original timing 
requirements. (Refer to Table 1 for a summary of the 
Conditions with respect to the timing requirements.) 

In the Individual Classification, we made several decisions 
to accommodate the limited number of observations per 
subject. The K Nearest Neighbors (KNN) algorithm was 
selected due to its straightforward implementation without the 
need to tune many parameters. The Python package scikit-
learn [9] was used and the parameters for k and weights were 
set to 4 and “distance” (voting weighted by distance), 
respectively. The number of neighbors, k, was selected based 
on the number of observations per class and similar to the 

general rule (√observations  5-6). We assumed that subjects 
would perform command selection with precision, therefore 
we assigned more weight to closer neighbors. Typically, a 5- 
or 10-fold cross-validation strategy is used but based on the 
number of observations per class and the decision to use 
stratified folds, we implemented a 4-fold cross-validation with 
3 iterations. Each fold was unique, and we used a train/test split 
of 80/20. The number of observations in the training set ranged 
from 29-32, but the testing set remained constant at 8 
observations (2 per class). One subject had a total of 24 useable 
observations, which resulted in a 2-fold cross-validation with 
6 iterations and 4 neighbors. Unusable observations occurred 
when the subjects’ attempts contained one or no inputs and 
accounted for 1.51% of the total. 

We compared the average classification accuracy across 
the Control, No Timeout, and Individual Classification 
conditions and hypothesized that removing the predetermined 
timing requirements would yield better accuracy. We also 
calculated the average increase in accuracy from the Control 
to No Timeout, and the No Timeout to Individual 
Classification. The reserved test dataset was used for another 
Individual Classification accuracy estimate. Results are 

reported as (  ) unless shown otherwise. 

III. RESULTS 

We ran a two-factor mixed model with a between-subjects 
factor of Group and a within-subjects factor of Condition. 
Significant effects (p < 0.05) were analyzed with the Tukey 
Honest Significant Difference test with the Satterthwaite 
method to calculate the degrees of freedom. The main effect 
of Condition was significant (F(2,88) = 31.40, p < 0.0001), but 
not Group (F(3,44) = 1.86, p = 0.15) nor the interaction 
between Group and Condition (F(6,88) = 0.83, p = 0.55). The 
Tukey test for Condition showed significant differences for 
each pairwise comparison. Classification accuracy improved 
from the Control to No Timeout (p < 0.0001), Control to 
Individual Classification (p < 0.0001), and from the No 
Timeout to Individual Classification (p = 0.04). The 
Conditions achieved average classifications accuracies of 

66.15  26.31% for the Control, 76.56  21.52% for No 

Timeout, and 81.58  20.30% for Individual Classification. 

Classification accuracy results varied as some subjects 
scored 100% accuracy in the Control and did not benefit from 
the other Conditions, whereas other subjects had large 
performance gains with loosened timing requirements. For No 
Timeout, the increase in percentage points ranged from 0.00 to 

50.00 points with an average increase of 10.42  13.71 points. 
The Individual Classification inherently included the No 
Timeout consideration. The change in classification accuracy 
percentage points from No Timeout to Individual 
Classification ranged from -12.29 to 36.46 points with an 

average increase of 5.02  10.29 points. For the cases where 
the accuracies decreased from No Timeout (N = 17), the 
Individual Classification accuracies were either worse (N = 8), 
better (N = 8), or the same (N = 1) as compared to the Control. 

The reserved test dataset provided another classification 
accuracy estimate. The resulting accuracy across groups was 

85.00  18.36%. These results were similar to the accuracy 
estimated from the training dataset and cross-validation. 

IV. DISCUSSION 

The results supported our hypothesis and indicated that the 
majority of subjects could potentially benefit from customized 
adaptation in our sEMG command system. The main effect of 
Group was found to be not significant; therefore the training 
history did not appear to be a factor in the outcome of the 
conditions, and was consistent with our prior results of no 
significant performance differences after training [6].  

The No Timeout condition either benefited (N = 33) or did 
not affect (N = 15) the classification accuracy. Within the 
combined Test 2 and 3 dataset across groups, the timeouts 
accounted for 16.98% of the total attempts. It was interesting 
to note that by Group timeouts occurred in 15.63%, 5.42%, 
17.92%, and 28.96% of the attempts for the Repetition, 
Concurrent Feedback, Terminal Feedback, and Adaptive 
Threshold groups, respectively. The Concurrent Feedback 
group may have been more attuned to the timing because the 
visual aid inherently gave information about the timing 
between inputs. The Adaptive Threshold group may have 
struggled learning the timing with the changing threshold. The 
timeouts had a mean of 0.41 s and median of 0.31 s. For an 
online implementation, the timeout could be modified to the 
subject’s maximum timeout or 95th percentile from the 
Command Accuracy Test. 

The Individual Classification improved the estimated 
classification accuracy for most subjects. Figs. 2 through 4 
display the input durations performed for the target 
commands, which have a similar layout to Fig. 1B with lines 
indicating the predetermined input duration. The subject’s data 
shown in Fig. 2 demonstrates the benefit of Individual 
Classification when command inputs are precise but stray from 
the prescribed timing. In contrast, some subjects’ estimated 
classification accuracies remained low or decreased. One 
possible explanation may be that some lower performing 
subjects inconsistently produced inputs, such that the classes 
are not easily separable, and the nearest neighbors mostly 
belong to other classes (see Fig. 3). Alternatively, high 
performers may produce inputs within the prescribed timing, 
but occur close to other classes (see Fig. 4).  

In our study, the original classification accuracy ranged 
from 5.00% to 100.00% with low and high performers within 

TABLE I.  TIMING REQUIREMENTS PER CONDITION 

Condition Timeout Input Duration 

Control Yes Yes 

No Timeout No Yes 

Individual Classification No No 

 926



  

the subjects. Classifiers and adaptive features may improve the 
average performance but should target individuals that would 
benefit from customized timing requirements. For example, 
the subject whose data were depicted in Fig. 2 did not benefit 
from removing the timeout restriction but improved with 
Individual Classification. For Individual Classification, the 
average classification accuracy of 81.58% was  comparable to 
Benchabane et al. [5] (87.8% average accuracy). Also, eleven 

of our subjects achieved classification accuracies of greater 
than 95%, similar to the LDA (average accuracy of 95.12%) 
and ALDA (95.45% to 100.00%) classifiers [2]. The results 
suggest that a customized approach to implementing 
classifiers and adaptive features could improve performance of 
already trained subjects. This customization could occur after 
a training period using the data from a Command Accuracy 
Test to determine the best approach for the subsequent online 
implementation.  

This work used data already collected from subjects in an 
experiment not designed to test this hypothesis. The two main 
limitations of this study were the small dataset and post-data 
collection analysis. The maximum of 40 total observations was 
smaller than suggested by other researchers, who recommend 
starting with 75 observations per class [10]. The limited 
dataset for individuals also prevented a robust model selection 
step, but analysis done at the group level indicated a preference 
for KNN and selected parameters. Overall, the classification 
accuracy estimates indicated the potential benefits for 
individual subjects.  

These are potential benefits. It is unclear whether an online 
adaptive sEMG command system that allows for custom 
timing would yield improved accuracy. How the subject would 
adapt in real-time is also unknown. Another possibility would 
be to use the adaptive component to train the subjects to 
become more efficient (e.g., smaller command time). Overall, 
these results are encouraging to pursue a future study to 
address these questions. 
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Figure 2. Example of a higher performing subject with classification 
accuracies of 95% (Control), 95% (No Timeout), and 100% (Individual 

Classification). Encircled points show attempts that did not have the correct 

input duration but remained close to their classes. 

 

 
 

 

Figure 3. Example of a lower performing subject with classification 

accuracies of 30% (Control), 35% (No Timeout), and 41.67% (Individual 
Classification). Encircled points show attempts that did not have the correct 

input duration and/or were surrounded by other classes. 

 

 

 
 

Figure 4. Example of a higher performing subject with classification 
accuracies of 100% (Control), 100% (No Timeout), and 96.88% (Individual 

Classification). Encircled point had the correct input durations but was 

closer in distance to the Up class causing a misclassification. 
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