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A B S T R A C T   

Mining and mineral processing continues to be a source of lasting environmental problems in many developing 
economies. Phytoremediation has proven to be a viable strategy to remediate contaminated lands and limit 
environmental damage, but it has not been widely implemented partially due to social and economic challenges. 
However, by encouraging phytoremediation with a focus on phytoextraction, it may be possible to rehabilitate 
contaminated lands while simultaneously providing economic support to local communities. This can be ach
ieved by the sale of phytoextracted metals to fund large-scale phytoremediation, particularly in Sub-Saharan 
Africa. To this end, this paper provides a conceptual approach for phytoremediation-based mineral recovery 
and explores the social and economic challenges related to large-scale deployment. The viability of the approach 
is explored and future work on phytoremediation implementation is defined with the goal of advancing research 
and collaboration.   

1. Introduction 

Phytoremediation, a bioremediation process that uses plants to 
remove pollutants from an environment, has proven to be a viable, low- 
cost strategy for rehabilitating mining-active regions (Elbehiry et al., 
2020; Favas et al., 2014; Festin et al., 2019; Gerhardt et al., 2009; Sarwar 
et al., 2017; Sinkala, 2018; Wiszniewska et al., 2016). The process, 
which involves extracting pollutants from soils using plant roots, has 
been efficiently tested and implemented in former mining communities 
around the world, including in Africa and South America (Elbehiry et al., 
2020; Gerhardt et al., 2009, 2017; Marrugo-Madrid et al., 2021; Odoh 
et al., 2019). It is widely accepted as a potentially cost-effective, envi
ronmentally friendly alternative to engineered solutions, as it does not 
require invasive remediation processes such as soil excavation or 
chemical use (Gerhardt et al., 2017; Yan et al., 2020). 

Over the last decade, research into phytoremediation has further 
advanced its viability as a remediation technique. Continuous studies on 
the effects that different chemical additives have on phytoremediation, 
the viability of genetically engineered plants, the uptake mechanisms of 
different plants, and general enhancements of phytoremediation 

processes, have increased phytoremediation’s efficiency (Ali et al., 
2013; Bauddh and Singh, 2012; Eapen and D’Souza, 2005; Elbehiry 
et al., 2020; Etim, 2012; Glick, 2010; Muthusaravanan et al., 2018; 
Tauqeer, Fatima et al., 2021; Tauqeer, Karczewska et al., 2021). How
ever, despite these advances, and the increased viability of phytor
emediation, it has not become a widely adopted strategy. This is 
partially because of the scale of remediation that is often required to 
clean up existing pollution sites (meaning lots of plants and mainte
nance), but also because many of the communities that would benefit 
from phytoremediation have other socioeconomic concerns. These 
concerns make large-scale remediation projects difficult and unappeal
ing, especially in mining active regions where resource governance is 
weak and many people are heavily impoverished (Gerhardt et al., 2017; 
Odoh et al., 2019; Salt et al., 2003; Sarwar et al., 2017). 

With increasing mineral demand, there is now the possibility to use 
phytoextraction — the use of pollutant-accumulating plants to directly 
recover metals from soils — to create a more economic phytor
emediation approach (Bloomberg, 2019; Church and Crawford, 2018; 
Giurco et al., 2019; Graedel et al., 2015; IRENA, 2019; Muthusaravanan 
et al., 2018; Raymond et al., 2011; World Bank, 2017; Lee et al., 2020). 
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To demonstrate the increased feasibility of phytoremediation, and to 
address the social limitations of phytoremediation adoption, this paper 
provides a conceptual outline for a phytoremediation-based mineral 
recovery and remediation in Sub-Saharan Africa. The social and po
tential economic benefits of phytoextraction and phytoremediation are 
outlined, as are the social limitations to current studies and how this 
research can be leveraged to advance adoption. Section 2 reviews the 
existing impacts of mining activities in Sub-Saharan Africa. Section 3 
explains the advanced remediation approach and its usefulness in 
solving presented issues. Section 4 provides conclusions and recom
mends for the next steps to be taken by subsequent researchers. 

2. The challenges and impacts of mining in underdeveloped 
regions 

In many parts of Sub-Saharan Africa, the need for phytoremediation 
is shown through the numerous mining activities that have altered the 
natural landscape and are the source of many environmental hazards 
(Festin et al., 2019; Sikaundi, 2008; Sinkala, 2009). Many regions also 
lack the proper governance to clean up pollution or ensure that envi
ronmental issues do not worsen. 

2.1. Mining as a source of pollution 

Areas where large-scale, industrial mine sites were poorly managed 
have resulted in the pollution of great tracts of land, the effects of which 
can potentially be limited by phytoremediation (Festin et al., 2019; 
Sinkala, 2009, 2018). Metalliferous mine environments are usually 
polluted with toxic heavy metals, such as lead, arsenic, cadmium, zinc, 
nickel, copper, and mercury (Bortey-Sam et al., 2015; Tchounwou et al., 
2012). These heavy metals can be ingested by local populations through 
a variety of channels, leading to serious health hazards in human beings, 
plants, and animals. As the metals are non-biodegradable, their impacts 
can be long-lasting and multi-generational (Fig. 1), especially in 
Sub-Saharan Africa (Sovacool et al., 2020; Tembo et al., 2006). 

In the Democratic Republic of Congo (DRC), investigations into 
working conditions have found an estimated 255,000 artisanal miners, 
35,000 of whom are children, working in “exceedingly harsh, hazard
ous, and toxic conditions” (Kara, 2018; The United Nations, 2001; 
Togoh, 2019; Walt and Meyer, 2018). Due to these conditions and a lack 
of preventative strategies, such as drilling with water and proper 

ventilation, many miners have extremely high levels of toxic metals in 
their bodies and are at risk of developing respiratory illnesses, heart 
diseases, and cancer (Sovacool et al., 2020). 

People living in nearby regions within the Katanga Copperbelt 
(covering Zambia and the DRC) have also exhibited high concentrations 
of metals within their systems relative to nearby control areas (Banza 
Lubaba Nkulu et al., 2018). These differences were most pronounced 
among children, where there was evidence of exposure-related oxidative 
DNA damage that could lead to lifelong health problems (Banza Lubaba 
Nkulu et al., 2018). Even without new and developing mining projects, 
the area is already part of one of the ten most polluted places on Earth 
due to its role in industrial extraction and processing, as illustrated in 
Fig. 1 (Dominish et al., 2019). 

Studies undertaken on the Zambian Copperbelt Province also indi
cate that mining pollutants often disperse to much wider areas (50 km 
by 150 km) than the permitted mining and processing zones from where 
they emanated (Fig. 2) (Kříbek et al., 2013). Heavy metals in food crops 
growing on contaminated soils, such as cassava and sweet potatoes, have 
exhibited much higher levels of lead, zinc, nickel, and copper — with 
lead being a particularly prominent health risk (Bortey-Sam et al., 2015; 
Kříbek et al., 2013; The World Bank, 2016; Uchida et al., 2017). For 
many Sub-Saharan countries, such as Zambia, cassava is the main 
food-security crop after maize, and its pollution or non-availability can 
exacerbate existing food security and malnutrition issues (Alamu et al., 
2019; Kříbek et al., 2013). 

2.2. Governance shortcomings 

While it is clear that mining and processing of minerals and metals 
have created long-lasting environmental problems, environmental 
governance is also lacking. This makes it difficult to correct environ
mental problems or ensure that they don’t happen again. Both of these 
shortcomings support the deployment of phytoremediation as a self- 
sufficient strategy. 

For a mining company, environmental impacts are often assessed in 
separate processes and by separate institutions from financial revenues, 
often making them secondary considerations (Woodroffe and Grice, 
2019). Because of this, many mitigation efforts rely heavily on civil 
society groups, the private sector, and governments acting as “watch
dogs” to hold mining entities accountable or create actionable plans (Lee 
et al., 2020). This is inefficient because the direct impact of mining 

Fig. 1. The multi-dimensional environmental impacts of cobalt mining in the Democratic Republic of the Congo (Sovacool et al., 2020; Lee et al., 2020).  
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activities is often difficult to immediately gauge (Boiral, 2013; Lee et al., 
2020). Even among third-party evaluated sustainability reports, envi
ronmental disclosures by mining companies were found to be discon
nected from reality and fundamentally misleading (Boiral, 2013). An 
emphasis on a mining firm’s positive achievements, virtuous commit
ments, and use of inaccurate pictures (that showed pristine nature), only 
served to advance misrepresentation ( Boiral, 2013; Lee at al, 2020). 
This misrepresentation can undermine efforts to create remediation 
projects. 

When combined with poor or weak resource governance, the 
inability to assign and identify environmental impacts can be perilous 
for surrounding communities. Many Sub-Saharan countries have un
satisfactory governance scores (Table 1), which means that mining can 
help societies, but it is unlikely they will gain long-term benefits related 
to increased quality of life (Natural Resource Governance Institute 
(NRGI), 2019). Poor scores also imply that regions are limited in their 
ability to stop environmental degradation before it happens. These ef
fects are especially problematic in the context of growing material 
needs, as projected increases in demand will make projects near envi
ronmentally vulnerable sites (coastlines, rivers, communities) more 
attractive (Ali et al., 2017; Bloomberg, 2019; Church and Crawford, 
2018; DNV GL’s Energy Transition Outlook, 2018; Giurco et al., 2019; 
Graedel et al., 2015; IRENA, 2019; Raymond et al., 2011; World Bank, 
2017). 

With mining companies not reporting on their impacts, the industry 
already having a history of polluting the region, and no clear path for
ward for remediation, it is clear that many Sub-Saharan African coun
tries should not rely on local governance as a safety net. The 
environmental impacts across Sub-Saharan Africa need to be addressed 
from a technological perspective, and it is possible to start the process 
with phytoremediation. 

3. Phytoremediation 

Phytoremediation is the use of plants to remove or degrade pollut
ants from the environment and is a viable option for Sub-Saharan Africa. 
The process involves the accumulation of pollutants, including heavy 
metals, into the plant through its root structure from the surrounding 
soil. The uptake of these pollutants, and the effects on the plant are 

variable, and can further be modified using chemicals, genetically 
engineered plants, agricultural techniques, plant microbes, and post- 
treatment of phytoremediation biomass (Bagga and Peterson, 2001; 
Bañuelos et al., 2015; Bauddh and Singh, 2012; Conner et al., 2003; 
Eapen and D’Souza, 2005; Ho et al., 2013; Huang and Cunningham, 
1996; Shahbaz et al., 2019; Shahid et al., 2014; Song et al., 2001; 
Tauqeer, Fatima et al., 2021; Turan, 2019). 

For Sub-Saharan Africa specifically, there are more than 30 known 
hyperaccumulator plant species in the Central African Copperbelt, and 
the use of these plants for phytoremediation could allow for agricultural 
development, successful remediation of surrounding lands, and poten
tially serve as a source of valuable minerals and metals. This is further 
made possible through phytoextraction (Fig. 3), which is a subset of 
phytoremediation that involves the absorption of pollutants through the 
roots followed by transportation to aerial parts of the plant to be har
vested. The cornerstone of this approach comes from the plants that 
accumulate heavy metals in high concentrations without toxicity or 
agricultural concerns, which can then be harvested or processed to 
remove the metals (phytoextraction). These metals can be recovered and 
sold for profit, while the biomass value addition at appropriate stages 
can also present further economic opportunities in the form of biofuels 
and bioenergy (Fig. 3) (Favas et al., 2014; Sinkala, 2018; van der Ent 
et al., 2015; Muthusaravanan et al., 2018; Sinkala, 2021). 

3.1. Challenges of phytoremediation 

Despite poor governance and growing environmental drawbacks 
leading to cascading problems caused by mining in Sub-Saharan Africa, 
phytoremediation has not been widely adopted. When reviewing phy
toremediation efforts, issues have primarily arisen from a lack of social 
understanding and interest, particularly around costs. Odoh et al. (2019) 
examined the “status, progress and challenges of phytoremediation” on 
the African continent and ascribed limited adoption to minuscule 
funding from African governments, a lack of consistency across envi
ronments, and no continent-wide initiatives or policy frameworks. 
Similarly, Gerhardt et al. (2017) found limitations in adoption stemming 
from the lack of proper conveyance of analysis and findings — the better 
understanding of which would help incentivize the policy frameworks 
needed to support phytoremediation deployment (Gerhardt et al., 2009, 

Fig. 2. Location of the soil profiles in the Mufulira copper smelter area. The spatial distribution of Cu as a major contaminant in topsoil and mineral soils (depth: 
80 cm) (Ettler et al., 2014, Kříbek et al., 2013). 
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Table 1 
Governance Scores for Sub-Saharan Africa, adapted from the National Resource Governance Index (NRGI) (2019).  
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2017). 
To this end, educating the public and private sectors on the benefits 

provided by phytoremediation is an achievable task, but academic 
studies often fall short in building confidence because they do not 
adequately translate the concepts for public consumption (Gerhardt 
et al., 2017). Furthermore, few studies provide financial analysis with 
realistic cost estimates, which are an important direct requirement for 
governments and communities in determining the viability of phytor
emediation implementation. 

These cost studies are especially important in Sub-Saharan Africa, 
where estimates are crucial for evaluating feasibility in communities 
that often lack the funds for traditional remediation approaches. 
Because of this disparity between the researchers and the individuals 
who actually attempt to utilize phytoremediation, the efforts are often 
run by people with low agronomic and chemical expertise, ultimately 
causing failures in their implementation. These problems are then made 
worse by a misunderstanding of phytoremediation and its limitations 
(Odoh et al., 2019). 

3.2. The solution of advanced phytoremediation: a conceptual approach 

As a way to elevate interest, and potentially generate revenue while 
maximizing remediation efforts, phytoextraction, combined with phy
toremediation, could be a solution to some of Sub-Saharan Africa’s 
environmental and economic concerns. It is possible to use phytor
emediation and phytoextraction to mine heavy metals from polluted 
land and sell them for a profit to advance phytoremediation adoption 
(Fig. 4). This is possible due to extreme hyperaccumulator plants, which 
can be burned to economically extract metals. 

This can best be demonstrated with two hyperaccumulating, phy
toremediation plants: Haumaniastrum robertii and Aeolanthus 

biformifolius. The most extreme cobalt hyperaccumulator, Haumanias
trum robertii, is able to accumulate up to 1 wt% cobalt, whereas the most 
extreme copper hyperaccumulator, Aeolanthus biformifolius, can accu
mulate up to 1 wt% copper (van der Ent et al., 2015). Through this 
accumulation, large-scale use of Haumaniastrum robertii can translate 
to 200 kg of cobalt for 20 tonnes of dry biomass per hectare per annum. 
At 100% cobalt recovery, and $31,374 price per tonne, this can poten
tially translate to $6275 per hectare per annum for the surrounding 

Fig. 3. Phytoextraction and phytomining. 
Adapted from Favas et al. (2014) (Favas et al., 2014; Sinkala, 2021). 

Fig. 4. Phyto mining approach.  

Table 2 
Yield and revenue from phyto-mining.   

Tonnes/ 
Hectare/Year 

Price/ 
Tonne 

Land used 
(Hectares) 

Annual yield 

Haumaniastrum robertii (Cobalt) 
Conservative 

Scenario  0.2 
$31,374 10,000 $62,748,000 

Low-Yield 
Scenario  0.2 

$25,465 3000 $15,279,000 

High-Yield 
Scenario  0.2 

$60,680 30,000 $364,080,000 

Aeolanthus biformifolius (Copper) 
Conservative 

Scenario  0.2 
$6650 10,000 $13,300,000 

Low-Yield 
Scenario  0.2 

$4974 3000 $2,984,400 

High-Yield 
Scenario  0.2 

$8246 30,000 $49,476,000 

Yields with three estimates: conservative scenario estimate (10-year median 
price with 33% land use), Low-Yield scenario estimate (10-year P10 price with 
10% land use), and High-Yield scenario estimate: (10-year P90 price with 100% 
land use). 
Source: Authors’ calculations. 
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community (Table 2). 
Aeolanthus biformifolius, with its ability to accumulate up to 1 wt% 

copper, similarly translates to 200 kg of copper for 20 tonnes of dry 
biomass per hectare per annum. At 100% copper recovery, and $6650 
copper price per tonne, this quantity can translate to $1330 per hectare 
per annum for the surrounding community. 

The Zambian Copperbelt alone bears more than 30,000 ha of land 
occupied by mine dumps. Assuming 10,000 ha are used for phytor
emediation, cobalt yield at the example recovery rate given would be 
$62 million per annum, while copper yield would be $13 million per 
annum. This calculation assumes perfect yield and perfect recovery but 
still serves as an indication of scale for recovering what is traditionally 
considered “waste” from phytoremediation and the use of toxic lands. 

The phyto-mined metal grades would progressively reduce and 
eventually become uneconomic to extract, but compared to traditional 
mining the cutoff grades in phytoextraction are likely to be much lower. 
This is because phytoremediation has relatively low costs, and many of 
the phytoremediation plants can also potentially be used for biobased 
products until the soils become food-grade once again. Furthermore, the 
continued advancement of research regarding the ability of soil bacteria 
to facilitate phytoremediation, the genetic engineering of plants, the 
increased understanding of phytoremediation mechanisms, and other 
enhancements of the phytoremediation process will further extend the 
economic feasibility of phyto-mined metals and the overall remediation 
process (Ali et al., 2013; Bauddh and Singh, 2012; Eapen and D’Souza, 
2005; Favas et al., 2014; Glick, 2010; Muthusaravanan et al., 2018; 
Wiszniewska et al., 2016; Yan et al., 2020). 

Once phyto-mined metals become uneconomic to extract, the land 
can return to “perpetual” status for use in agriculture. The immobiliza
tion of pollutants through additives (e.g., organic amendments or non- 
health/environmental threatening chemicals), and enhanced phytor
emediation (e.g., bacteria aided) without a phyto-mining focus can help 
address any remaining pollution concerns (Elbehiry et al., 2020; Tauq
eer, Fatima et al., 2021; Turan, 2021). This will then conclude the 
phytoremediation process, which will potentially have served as an 
economic boon for surrounding communities that were struggling with 
environmental waste. In summary, this approach suggests that 
communities:  

1. Examine the feasibility and suitability of hyperaccumulator plants.  
2. Plant and cultivate phytoremediation plants.  
3. Collect and process the waste from bioproduction to sell entrapped 

minerals and metals.  
4. Use the associated economic benefits from phytoremediation to 

further work with surrounding communities, return the land to food- 
grade levels, and continue to benefit from land development. 

4. Conclusion and future work 

The failure of existing environmental safeguards and a lack of 
accountability from the mining industry demonstrates a growing need 
for new approaches to remediation. With phytoremediation, the heavy 
metals in soils and water could be brought down to acceptable levels for 
food-grade agricultural activities. The selling of recovered metals and 
biobased products derived from the remediation biomass could create 
economic opportunities for nearby communities without having to rely 
on mining governance or external funds. More importantly, these ap
proaches might help improve the health status of communities in areas 
with mines, assure livelihoods for host communities, and reclaim land 
for food production and activities. This paper demonstrates that all of 
these changes are economically feasible and could potentially change 
and save the lives of millions of people living in Sub-Saharan Africa. 

More work is needed for development and validation of this 
approach, especially in regard to coordinating with local communities. 
With this in mind, and to stimulate further research, areas of future focus 
include:  

• Developing a better understanding of current pollution issues from 
past mining activities.  

• Engaging communities in both active and abandoned mine areas to 
further understand the feasibility of phytoremediation and 
phytoextraction. 

Creating a fund for initiating local phytoremediation programs as a 
way of minimizing communal burdens during feasibility studies.  

• Engaging with African learning institutions to bring in expertise on 
reducing environmental risks to host communities through 
phytoremediation. 

As a novel approach, phytoremediation with mineral extraction can 
help to reinvigorate a currently stagnating environment. Current ap
proaches are not working, existing mining practices are making things 
worse, and the mining companies are not being held accountable. It is 
time to examine new pathways towards better practices to ensure 
environmental and economic stability for Sub-Saharan African 
communities. 
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