
1. Introduction
Plasma density irregularities in low-latitude and midlatitude F regions are normally understood in terms of 
equatorial plasma bubbles (EPBs) and traveling ionospheric disturbances (TIDs), respectively. Referring to the 
ground-based observations, such as total electron content (TEC) maps and all-sky airglow images, EPBs and 
TIDs can be distinguished by their propagation directions or alignments (Miller et al., 2009; Nishioka et al., 2008; 
Otsuka et al., 2012; Takahashi et al., 2018). As this information is not available from in situ satellite observations, 
EPBs and TIDs in the satellite observations are often distinguished by the occurrence latitudes and amplitude 
of electron density irregularities (Aa et al., 2020; Kil & Paxton, 2017; Kil et al., 2020; Lee et al., 2021; Park 
et al., 2010; Su et al., 2006). EPBs are mostly confined within ±25° magnetic latitudes during magnetically quiet 
conditions (Aa et al., 2020; Kil & Heelis, 1998a; Kil et al., 2020; Su et al., 2006), and EPBs produce more intense 
irregularities than do TIDs (Kil et al., 2020).

During geomagnetic storms, large amplitude irregularities occur at midlatitudes as well as in the equatorial 
region. As the storm time midlatitude irregularities often appear as plasma depletions (or bubbles), EPBs have 
been suspected as their source (Aa et al., 2018, 2019; Cherniak & Zakharenkova, 2016; Cherniak et al., 2019; 
Huang et al., 2007; Ma & Maruyama, 2006; Martinis et al., 2015; Zakharenkova & Cherniak, 2020). In addition 
to morphological similarity, the coincident occurrence of midlatitude plasma depletions and EPBs at the same 
longitudes is provided as supporting evidence of their connection. However, this interpretation is effective when 
EPBs act as a unique source of midlatitude plasma depletions. As severe plasma depletions can develop in associ-
ation with TIDs (Kil et al., 2016; Nishioka et al., 2009), the morphological similarity or the coincident occurrence 
of EPBs does not warrant the association of midlatitude plasma depletion with EPBs.

So far, the study on midlatitude plasma depletion has been focused on the demonstration of the role of EPBs. 
However, the growth of EPBs from the equator to midlatitudes is difficult to identify by observations due to 
sparse temporal and spatial coverage of observational data. Numerical simulations suggest that EPBs stop grow-
ing when the magnetic flux-tube-integrated ion mass density inside an EPB equals that of the EPB-embedded 
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background ionosphere (Krall et  al.,  2010; Mendillo et  al.,  2005). Based on the numerical calculation of the 
magnetic flux-tube integrated ion mass density, Mendillo et al. (2005) claimed that EPBs could grow beyond a 
magnetic apex height of 3,000 km, but, to the best of our knowledge, model simulations have not yet demonstrat-
ed the growth of EPBs to the magnetic apex height of several thousand kilometers. Because the upward motion 
of EPBs ceases when the ion mass density at the upper envelope of an EPB is approximately equal to that of the 
background ionosphere (Krall et al., 2010), EPBs would not grow indefinitely.

In addition to evaluating the relationship between midlatitude plasma depletions and EPBs, equal attention should 
be paid to local sources in the midlatitudes. The ionospheric observations during the geomagnetic storm on 26 
August 2018 pave the way for diagnosing the source of midlatitude plasma depletions. From the observations of 
the Defense Meteorological Satellite Program (DMSP) and Swarm satellites during the storm, we identified the 
development of midlatitude plasma depletions in the absence of EPBs in the equatorial region. We also detected 
a TEC depletion band which was not related to an EPB. Using these observations, we discuss the roles of EPBs 
and TIDs in generating plasma depletions at midlatitudes.

2. Data Description
Three Swarm satellites, named Alpha (A), Bravo (B), and Charlie (C), were launched on 22 November 2013, into 
near-circular orbits. Swarm-A and Swarm-C are pair satellites that fly side-by-side, maintaining a longitudinal 
distance of approximately 1.5°. Their orbital inclinations and altitudes were 87.5° and 470  km, respectively. 
Swarm-B is a standalone satellite with a slightly different orbital inclination (88°) and altitude (520 km). We use 
the measurements of the electron density by the Langmuir Probe instruments onboard Swarm-B and Swarm-C. 
The data cadence of the electron density is 0.5 s. Because Swarm-A and Swarm-C orbits were relatively close, 
we use only the Swarm-C data.

DMSP satellites comprise sun-synchronous near-circular orbits at an altitude of 840 km. This study uses the 
measurements of the ion density by the Special Sensor-Ions, Electrons, and Scintillation instruments onboard 
the DMSP F15, F16, and F17 satellites. The DMSP satellite orbits slowly drift with time, and the solar local 
times (LTs) at the descending nodes of the F15, F16, and F17 orbits on 26 August 2018 were 2.9, 3.8, and 6.6 hr, 
respectively. The data cadence of DMSP satellites was 1 s.

We investigate the occurrence of TIDs in the Asian sector during the storm using detrended TEC maps over Ja-
pan produced with a 15-min running window. The detrended TEC maps are available at the National Institute of 
Information and Communications Technology in Japan (https://aer-nc-web.nict.go.jp/GPS/GEONET). The maps 
have a spatial resolution of 1.35° × 1.35° in longitude and latitude, and a temporal resolution of 10 min.

The TEC data over the United States are produced by the Massachusetts Institute of Technology Haystack Ob-
servatory (http://openmadrigal.org; Zhang et al., 2017). We use absolute TEC maps derived using the Madrigal 
line-of-sight data which come with a 15 s sampling rate and a 15° elevation cutoff for the investigation of the 
evolution of a TEC depletion band over the U.S. Detrended TEC maps with 1 min cadence are produced with a 
15-min running window to assess the development of TIDs.

3. Results and Discussion
The dynamic pressure of the solar wind and magnetic indices on 25–26 August 2018 are presented in Figure 1a. 
Time progresses from right to left in order to match the westward progression of the Swarm orbits shown in Fig-
ures 1b and 1c. Following the southward turning of the interplantery magnetic field (IMF), currents on the auroral 
oval and ring current increase as the SME (SuperMAG electrojet) index and SYM-H indices indicate. SME is the 
generalization of the traditional auroral electrojet index to include more than 100 magnetometer stations (Gjerlo-
ev, 2012; Newell & Gjerloev, 2011a, 2011b).

The observations of Swarm satellites provide an overview of the spatial distribution of irregularities during the 
storm. The orbits and observations of Swarm-B at 21.5 hr LT and of Swarm-C at 2.5 hr LT are illustrated in Fig-
ures 1b and 1c, respectively. The times of the descending node of Swarm-B and the ascending node of Swarm-C 
are indicated by the vertical blue and black lines, respectively, in the SYM-H plot in Figure 1a. The thick red 
lines in the Swarm orbits indicate the detection locations of irregularities in the plasma density. Longitudes can 

https://aer-nc-web.nict.go.jp/GPS/GEONET
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be demarcated into two sectors based on the occurrence of irregularities in the equatorial region. EPBs are de-
tected in the equatorial region of the Pacific sector (orbits 1–5), whereas they are absent in the equatorial region 
of the Asian sector (orbits 6 and 7). In the Asian sector, irregularities are absent from the equatorial region to 
midlatitudes at pre-midnight (Figure  1b). At post-midnight (Figure  1c), irregularities appear only at midlati-
tudes. Therefore, the midlatitude irregularities in the Asian sector are not related to EPBs. In the Pacific sector, 
Swarm-B observations reveal the development of intense EPBs in the equatorial region at pre-midnight. The 
comparison of the Swarm-B and Swarm-C observations in orbits 3–5 reveals the development of more intense 
plasma depletions at post-midnight than at pre-midnight in midlatitudes. The broad depletions near the magnetic 
equator in Swarm-B orbit 5 and Swarm-C orbit 4 are interpreted in terms of the uplift of the F peak height over 
the Swarm orbits. Midlatitude irregularities in the Pacific sector may be interpreted in terms of EPBs because 

Figure 1. Overview of ionospheric disturbances in low and midlatitudes during the geomagnetic storm on 26 August 2018. (a) Solar wind dynamic pressure, 
interplanetary magnetic field (IMF) Bz component, SuperMAG electrojet (SME) index, and SYM-H index from the top to the bottom. The times of the descending 
nodes of Swarm-B and ascending nodes of Swarm-C orbits are indicated by blue and black lines, respectively, in the SYM-H plot. (b) Orbits of Swarm-B and 
measurements of the electron density along the orbits. (c) Orbits of Swarm-C and measurements of the electron density along the orbits. The red thick lines in Swarm 
orbits indicate the detection locations of irregularities. The local times (LTs) of Swarm-B and Swarm-C orbits are 21.5 and 2.5 hr, respectively.
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severe plasma depletions occur in the equatorial region. However, as revealed by observations in the Asian sector, 
the development of midlatitude depletions is not contingent with the occurrence of EPBs.

Ionospheric perturbations in low and midlatitudes during geomagnetic storms are closely related to the external 
energy deposition into the polar atmosphere. The heating of the atmosphere over the auroral oval by intense elec-
tric fields, energetic particle precipitation, and ion–neutral collisions modifies the global wind circulation pattern, 
produces neutral composition disturbances, and launches large-scale traveling atmospheric disturbances. In ad-
dition, the effect of external electric fields driven by solar winds or magnetospheric plasma convection extends 
to equatorial latitudes (Huang, 2008; Jaggi & Wolf, 1973; Kelley et al., 1979; Kikuchi, 2021; Nishida, 1968; 
Nopper & Carovillano, 1978). Ionospheric disturbances during geomagnetic storms result from the combination 
of these and other complex physical processes in the magnetosphere–thermosphere–ionosphere system. Severe 
ionospheric uplift is often observed in the equatorial region, in association with penetration electric fields during 
the main phase of geomagnetic storms (Kil et al., 2007). Midlatitude depletions detected on 26 August 2018 can 
be attributed to the development of large EPBs by the severe uplift. However, traveling atmospheric disturbanc-
es launched from the auroral region also promote the development of intense TIDs in midlatitudes (Nishioka 
et al., 2009; Tsugawa et al., 2004; Zhang et al., 2019), and midlatitude depletions can be produced by polarization 
electric fields in TIDs. In the following sections, we further examine ionospheric conditions using DMSP obser-
vations and TEC maps.

3.1. Observations in the Asian Sector

The Swarm observations in the Asian sector indicate that plasma depletions can develop locally in midlatitudes 
in the absence of EPBs. We further support this interpretation by using the observations of the DMSP and 
TEC maps over Japan. The orbits and observations of DMSP F15 and F16 in the Asian sector are presented in 
Figure 2a. The LTs of F15 and F16 at the descending nodes are 2.9 and 3.8 hr, respectively. Irregularities were 
detected at the locations indicated by thick green lines. The morphologies of the midlatitude irregularities in the 
four DMSP orbits are similar, and the DMSP observations are similar to the Swarm-C observations depicted in 
Figure 1c. Many irregularities in midlatitudes appear as plasma depletions and can be interpreted as EPBs. The 
formation of the equatorial ionization trough at the altitude of the DMSP indicates the occurrence of ionospheric 
uplift in the region. Despite the ionosphere uplift, EPBs were not observed throughout the night.

The Swarm-C and DMSP observations in the Asian sector reveal the development of similar irregularities at the 
magnetic conjugate locations. These observations are consistent with the conjugate property of medium-scale 
TIDs (MSTIDs; Martinis et al., 2011, 2019; Otsuka et al., 2004; Shiokawa et al., 2005). Figure 2b illustrates the 
detrended TEC maps over Japan around the occurrence of DMSP orbits 3 and 4. The detrended TEC maps were 
produced by subtracting the background TEC using a 15-min running window. Although TEC perturbations 
reveal complex variations, the alignment of TEC perturbations in the northwest–southeast direction is dominant. 
This is a typical characteristic of MSTIDs in the Northern Hemisphere (Garcia et al., 2000; Martinis et al., 2010; 
Mendillo et al., 1997; Saito et al., 1998; Shiokawa et al., 2003). The TEC maps along with the Swarm and DMSP 
observations confirm the local development of plasma depletions at midlatitudes in association with TIDs.

3.2. Observations in the Pacific Sector

As EPBs are absent in the equatorial region and TIDs are present at midlatitudes, the sources of midlatitude 
irregularities in the Asian sector can be easily assessed. In the Pacific sector, we cannot determine the sources 
of midlatitude irregularities because TID information is not available for the area over the ocean. Even if we 
identify the development of TIDs in this region, midlatitude irregularities associated with EPBs and TIDs are not 
distinguishable from satellite data. Although we cannot clarify the identity of midlatitude irregularities with our 
data set, we highlight certain aspects that may provide clues for the role of EPBs. By comparing the Swarm-B, 
Swarm-C, F16, and F17 observations at different LTs, we infer the temporal evolution of irregularities. In Fig-
ure 3, the observations around (a) 210°E and (b) 185°E are compared. The density plots are ordered from left 
to right following the order of LTs of satellites: Swarm-B (21.5 hr), Swarm-C (2.5 hr), DMSP-F16 (3.8 hr), and 
DMSP-F17 (6.6 hr).

Large density holes and deep ionization troughs occur in the equatorial region along different satellite orbits. 
These observations indicate the occurrence of severe ionospheric uplift over the Pacific Ocean. The difference 
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in the magnitudes of the density holes in various orbits reflects the variability of the uplift with longitude. 
In pre-midnight Swarm-B observations (Figures 3a and 3b), several intense plasma depletions appear within 
±20° latitudes, whereas only a few small depletions appear beyond ±20° latitudes, wherein depletions are more 
pronounced in Swarm-C and F16 observations (post-midnight) than in Swarm-B observations (pre-midnight). 
Although the F16 observations were made 1.3 hr later in LT and 300 km higher altitude compared with the 
Swarm-C observations, the amplitudes of midlatitude plasma depletions in F16 observations are comparable or 
even greater than those in Swarm-C observations. F17 observations at 6.6 hr LT reveal the persistence of irreg-
ularities outside the equatorial region even after sunrise. A similar behavior of irregularities in the two longitu-
dinal regions indicates the development of more intense midlatitude plasma depletions at post-midnight than at 
pre-midnight in the Pacific sector.

We can consider three scenarios to explain the behavior of midlatitude plasma depletions in the Pacific sector. 
First, the EPBs developed at pre-midnight may grow throughout the night and produce intense depletions at later 
LTs in midlatitudes. In general, EPBs rapidly grow within a few hours at pre-midnight as model simulations 
(Huba et al., 2008; Krall et al., 2010; Retterer, 2010; Zalesak & Ossakow, 1980) and the LT distribution of EPBs 
(Aa et al., 2020; Kil & Heelis, 1998b; Su et al., 2006) show. Compared to this typical behavior of pre-midnight 
EPBs, the growth of pre-midnight EPBs throughout the night is an anomalous behavior. Second, we can consider 
the development of new EPBs after midnight. However, this is also an anomalous behavior because no study has 
reported the development of new EPBs at post-midnight at the locations where EPBs were already developed 
at pre-midnight. The occurrence of these two scenarios under storm conditions cannot be ruled out, but, as a 
third scenario, we can consider the generation of midlatitude depletions by other sources. The morphology of 
midlatitude irregularities in the Pacific sector does not differ much from that associated with TIDs in the Asian 
sector. Therefore, midlatitude irregularities in the Pacific sector can be associated with the development of TIDs 
at post-midnight.

Figure 2. Defense Meteorological Satellite Program (DMSP) F15 and F16 observations in the Asian sector. The detection locations of irregularities are indicated by 
green thick lines in the orbits. The LTs at the descending nodes of F15 and F16 orbits are 2.9 and 3.8 hr, respectively. (b) Detrended total electron content (TEC) maps 
over Japan near the time periods of the DMSP orbits 3 and 4. The detrended TEC maps are derived using 15-min running window.
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Figure 3a illustrates an interesting feature of the F17 observations in formation of a flat density in the equatorial 
region. A smaller size of this phenomenon also appears in the F17 observations in Figure 3b. The formation of flat 
density in the equatorial region can be explained by the combined effect of ionospheric uplift and photoioniza-
tion. As revealed by F16 observations, large ionization troughs are formed in the equatorial region before sunrise. 
Because the equatorial ionization trough, including EPBs, is quickly refilled in the morning by photoionization, 
the equatorial ionosphere reveals a latitudinally smooth density profile. The plasma refilling by photoionization 
is time consuming in the region with larger background plasma density. The persistence of irregularities outside 
the equatorial region in the F17 observations is attributed to the larger background density.

3.3. TEC Depletion Band in the U.S.

In this section, we discuss the identity of a TEC depletion band detected near the west coast of the U.S. TEC 
depletion in this structure is significant, as it is clearly visible from absolute TEC maps. Figure 4 illustrates the 
absolute TEC maps produced using TEC data for 5 min. The TEC depletion band is indicated by red arrows. 
This structure emerges around 04:30 UT, intensifies with time, and moves westward. Because the severity of 
TEC depletion within the TEC depletion band varies with time and as TEC data present gaps over the ocean, it 
is difficult to determine the movement of the TEC depletion band in the north–south direction. In the present 
study, we investigate whether the TEC depletion band is a local midlatitude phenomenon or is associated with an 
EPB. If the TEC depletion band was produced by an EPB, it would be extended to low latitudes. However, the 
equatorward extension of the TEC depletion band is not evident in the TEC maps.

We further assess the evolution of the TEC depletion band using the keograms illustrated in Figure 5. Two keo-
grams at 35°N and 30°N are produced using the absolute TEC data in 35°–35.5°N and 30°–30.5°N, respectively, 

Figure 3. Comparison of Swarm and DMSP observations in the Pacific sector. The observations are divided into two regions near (a) 210°E and (b) 185°E longitudes. 
The LTs at the descending nodes of Swarm-B and DMSP and the ascending node of Swarm-C are Swarm-B (21.5 hr), Swarm-C (2.5 hr), DMSP-F16 (3.8 hr), and 
DMSP-F17 (6.6 hr). The density plots are ordered from left to right following the increasing order of the LTs.
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Figure 4. Evolution of a TEC depletion band at west coast of the U.S. Absolute TEC maps are produced using the TEC data 
for 5 min. The TEC depletion band is indicated by red arrows.

Figure 5. Keograms of absolute TEC at 35°N and 30°N latitudes. The TEC data along the black lines in the keograms are 
depicted at the bottom of the keograms.
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and by binning the data in 0.5° × 5 min longitude and UT bins. The red arrows indicate the direction of TEC 
depletion band movement. The westward velocity of the TEC depletion band estimated from the keograms was 
approximately 240 m/s. The TEC values along the black lines are depicted at the bottom of the keograms. Ap-
proximately 5 TEC units (1 TECU = 1016 m−2) depletion is observed in the TEC depletion band. The keograms 
reveal different temporal variations of the TEC depletion band at 35°N and 30°N. TEC depletion intensifies with 
time at 35°N, whereas TEC depletion reduces with time at 30°N (Figure 4). The duration of TEC depletion at 
both latitudes is approximately 2 hr. If the TEC depletion band is the signature of an EPB, then the keograms 
indicate the growth of the EPB with time at higher latitudes (altitudes) and its decay at lower latitudes (altitudes). 
This behavior is inconsistent to the normal morphology of EPBs identified by other observations. In radar ob-
servations, EPBs appear as plumes by the vertical extension of plasma depletion from the bottomside of the F
region to the upper bound of EPBs (Kelley et al., 1981; Woodman & La Hoz, 1976). In optical observations from 
space, EPBs appear as reversed C-shaped bands (Kelley et al., 2003; Kil et al., 2004, 2009). If EPBs decay faster 
at lower altitudes (latitudes), then they would appear as isolated structures instead of plume structures or reversed 
C-shaped bands. Based on the keograms and TEC maps in Figure 4, the TEC depletion band is interpreted as a 
local structure at midlatitudes.

Excluding EPBs from the source, TID presumably acts as a source of the TEC depletion band. The alignment 
of the TEC depletion band in the northwest–southeast direction and westward movement are consistent with the 
characteristics of MSTIDs. We examine the development of TIDs using detrended TEC maps over North Amer-
ica. The detrended TEC maps in Figure 6 are produced using a 15-min running window. TEC perturbations are 
confined to the western U.S. during the storm. Individual TEC perturbations are difficult to trace due to rapid 

Figure 6. Detrended TEC maps at 03:00, 04:00, 05:00, and 06:00 UTs. The detrended TEC maps are produced using a 15-min running window. Day and night sides 
are distinguished by light and dark gray shadows, and black dotted lines demarcate midnight.
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variation in perturbations. This situation is similar to the detrended TEC maps in Japan. However, the common 
feature in the western U.S. is the alignment of perturbations in the northwest–southeast direction and their move-
ment toward the west. Therefore, the TEC depletion band is considered to be a component of the TIDs in this 
region. Storm-induced electric fields, for example, the polarward electric field associated with the subauroral 
polarization stream often observed over the continental US (Zhang et al., 2019) and penetration eastward electric 
field causing ionospheric uplift (Nishioka et al., 2009), and/or disturbance neutral wind dynamo may intensify 
the Perkins instability (Perkins, 1973) and locally produce deep plasma depletion. This interpretation needs to be 
validated by model simulations.

4. Conclusions
We investigate the ionospheric disturbances at low and midlatitudes during the geomagnetic storm on 26 August 
2018, thereby focusing on the identity of plasma depletions at midlatitudes. In the Asian sector, Swarm and 
DMSP satellites detected plasma depletions at midlatitudes in the absence of EPBs in the equatorial region. The 
MSTID features over Japan in TEC maps support the association of midlatitude plasma depletions in the Asian 
sector with TIDs. The TEC depletion band observed on the west coast of the U.S. is also interpreted in association 
with TIDs. These observations provide strong evidence that plasma depletion can be produced by local sources 
at midlatitudes. Because EPB is not a unique source of midlatitude plasma depletion, the morphology of midlat-
itude irregularities and their cooccurrence with EPBs do not provide strong evidence of the role of EPBs in the 
generation of midlatitude plasma depletions.

Data Availability Statement
The pressure, IMF Bz, and SYM-H data are from the OMNI Web Data Explorer system through the website 
(https://omniweb.gsfc.nasa.gov/form/omni_min.html). The SME index is available from the SuperMAG website 
(http://supermag.jhuapl.edu/indices). The DMSP F15, F16, and F17 data are available from the CEDAR Madri-
gal database website (http://cedar.openmadrigal.org/ftp/). Swarm data are available on the ESA website (https://
earth.esa.int/web/guest/missions/esa-operational-eo-missions/swarm). The detrended TEC maps in Figure  2b
are available on the NICT website (https://aer-nc-web.nict.go.jp/GPS/DRAWING-TEC/). The US TEC data are 
from the Madrigal database (http://cedar.openmadrigal.org/openmadrigal/). Original data for TEC processing are 
provided by the following organizations: UNAVCO, SOPAC, IGN (France), IGS, CDDIS, NGS, IBGE (Brazil), 
RAMSAC (Argentina), CORS (Panama), Arecibo Observatory, LISN, Topcon, CHAIN (Canada), CRS (Italy), 
SONEL, RENAG (New Zealand), GNSS Reference Networks, Finnish Meteorological Institute, and SWEPOS.
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