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Abstract—Blood oxygen saturation (SpO2) is an important in-
dicator for pulmonary and respiratory functionalities. Clinical
findings on COVID-19 show that many patients had dangerously
low blood oxygen levels not long before conditions worsened. It is
therefore recommended, especially for the vulnerable population,
to regularly monitor the blood oxygen level for precaution. Recent
works have investigated how ubiquitous smartphone cameras can
be used to infer SpO2. Most of these works are contact-based,
requiring users to cover a phone’s camera and its nearby light
source with a finger to capture reemitted light from the illuminated
tissue. Contact-based methods may lead to skin irritation and
sanitary concerns, especially during a pandemic. In this paper,
we propose a noncontact method for SpO2 monitoring using hand
videos acquired by smartphones. Considering the optical broad-
band nature of the red (R), green (G), and blue (B) color channels
of the smartphone cameras, we exploit all three channels of RGB
sensing to distill the SpO2 information beyond the traditional
ratio-of-ratios (RoR) method that uses only two wavelengths. To
further facilitate an accurate SpO2 prediction, we design adaptive
narrow bandpass filters based on accurately estimated heart rate
to obtain the most cardiac-related AC component for each color
channel. Experimental results show that our proposed blood oxy-
gen estimation method can reach a mean absolute error of 1.26%
when a pulse oximeter is used as a reference, outperforming the
traditional RoR method by 25%.

Index Terms—Blood oxygen saturation, contact-free, hand
videos, ratio-of-ratios model, smartphone.
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I. INTRODUCTION

P ERIPHERAL blood oxygen saturation (SpO2) shows the
ratio of oxygenated hemoglobin to total hemoglobin in the

blood, which serves as a vital health signal for the operational
functions of organs and tissues [1]. It has become increasingly
important in the COVID-19 pandemic, where many patients
have experienced “silent hypoxia,” a low level of SpO2 even
before obvious breathing difficulty is observed [2]–[4]. The
vulnerable population with a high possibility of infection is
recommended to monitor their oxygen status continuously for
early COVID-19 detection [2], [5].

Pulse oximeters have been widely used for SpO2 measure-
ment at home and in hospitals in the form of a finger-clip [6],
[7], which adopts the ratio-of-ratios (RoR) principle. The RoR
principle is based on the different optical absorption rates of the
oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin
(Hb) at 660 nm (red) and 940 nm (infrared) wavelengths. By
illuminating red and infrared lights on the fingertip, the intensity
of the transmitted light on the receiver end of the pulse oximeter
contains pulsatile information to derive SpO2. The gold standard
for measuring the blood oxygen saturation is blood gas analysis,
which is invasive and painful and requires well-trained health-
care providers to perform the test. In contrast, the pulse oximeter
is noninvasive and provides readings in nearly real time, and
is therefore more tolerated and convenient for daily use. The
pulse oximeter is known to have a deviation of ±2% from the
gold standard when the blood oxygen saturation is in the range
of 70% to 99% [8], which is well-known and accepted in the
clinical use.

With the ubiquity of smartphones and the growing market
of smart fitness devices, the RoR principle has been applied to
new nonclinical settings for SpO2 measurement. Apple Watch
Series 6 has blood oxygen measurement functionality, and it
requires skin contact with the watch neither too tight nor too
loose for the best results [9]. The recent scientific literature
also explored methods for SpO2 estimation using a smartphone.
These methods require a user to use his/her fingertip to cover an
optical sensor and a nearby light source to capture the reemitted
light from the illuminated tissue [10]–[14]. The aforementioned
SpO2 estimation methods based on smartphone and smartwatch
are contact-based. It can easily spread germs or diseases if shared
among multiple persons, and may irritate sensitive skin or cause

1932-4553 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Min Wu. Downloaded on September 29,2022 at 07:41:26 UTC from IEEE Xplore.  Restrictions apply.



198 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 2, FEBRUARY 2022

a sense of burning from the heat built up if a fingertip is in contact
with the flashlight for an extended period of time.

Researchers have recently investigated measuring the
saturation of blood oxygen by means of contactless tech-
niques [15]–[18]. These methods typically acquire a user’s
face video under ambient light with CCD cameras to esti-
mate SpO2 from pulsatile information of monochromatic wave-
lengths. Shao et al. [19] also use a facial video-based method
to monitor SpO2 that is implemented using a CMOS camera
with a light source alternating at two different wavelengths.
Tsai et al. [20] acquire hand images with CCD cameras under
two monochromatic lights to analyze SpO2 from the reflective
intensity of the shallow skin tissue. These contactless methods
can provide alternatives of contact-based SpO2 measurements
for individuals with finger injuries or nail polish [21], [22],
for whom the traditional pulse oximeters may be inaccurate.
However, the setups used in the abovementioned studies are
expensive and not common for daily use.

More economical camera devices, low-cost webcams [23]–
[26] and smartphones [27] have also been applied for contactless
SpO2 estimation. Unlike pulse oximeters, all three color chan-
nels in these economical RGB cameras capture a wide range
of wavelengths from the ambient light. Most works using RGB
cameras [23]–[27] directly apply the conventional narrowband
red–infrared RoR principle to the red and blue (or green) chan-
nels of RGB videos without addressing the broadband nature of
the color channels.

In this paper, we propose a multi-channel RoR method for
noncontact SpO2 monitoring using hand videos captured by
smartphone cameras under ambient light. The contributions of
our work include:
� We exploit all three RGB channels to extract features

for SpO2 prediction, instead of limiting to two wave-
lengths/color channels as in traditional RoR methods. Effi-
ciently utilizing three channels is nontrivial and is one of the
key research issues we shall address in this paper. We will
take into consideration the underlying optophysiological
model given the smartphone camera as the remote sensor
and the ambient light environment. Our proposed multi-
channel RoR based method can achieve a mean absolute
error of 1.26% in SpO2 estimation with the pulse oximeter
as the reference, which is 25% lower than that of the
traditional RoR model.

� We filter the RGB signals with a narrow adaptive bandpass
(ABP) filter centered at an accurately estimated heart rate
(HR) to obtain the most relevant cardiovascular-related AC
component. We systematically verify the important roles
of both the narrow ABP filter and the accurate HR tracking
for accurate SpO2 monitoring.

� We investigate the more favorable scenario for data col-
lection by using the hand as the signal source for the
period that the face-covering mandate is on. It has a few
practical advantages compared to facial videos, including
being applicable with masks on, less privacy concern, and
potentially being more tolerant to different skin tones than
the face. We analyze the impact of the sides of the hand
and skin tones on the SpO2 estimation performance.

II. BACKGROUND AND RELATED WORK

In this section, we review the ratio-of-ratios (RoR) model for
SpO2 measurement. Consider a light source with spectral dis-
tribution I(λ) illuminating the skin, and a remote color camera
with spectral responsivity r(λ) recording a video. The light from
the source travels through the tissue and part of the light in the
tissue is reemitted to be received by the color camera. During
each cardiac cycle, the heart muscle contracts and relaxes, so that
the blood is pumped to the body and travels back to the heart.
During this process, the blood volume increases and decreases
in the arterial vessels, causing increased and decreased light
absorption [28]. According to the skin-reflection model [29],
[30], the color camera will receive the specularly reflected light
from the skin surface and the diffusely reemitted light from the
tissue–light interaction that contains the cardiac-related pulsatile
information. Based on the verified assumption proposed in [17]
that the specular reflection components can be ignored if the
movement is minimized, the camera sensor response at time t
is:

Sc(t) =

∫
Λc

I(λ) · e−μd(λ,t) · rc(λ)dλ. (1)

where the λ is the wavelength, the integral range Λc captures the
responsive wavelength band of channel c of the camera, I(λ) is
the spectral intensity of the light source, μd(λ, t) is the diffusion
coefficient, and rc(λ) is the sensor response of channel c of the
camera.

According to the Beer-Lambert’s law [16], the diffusion co-
efficient μd(λ, t) can be expanded into:

μd(λ, t) = εt(λ)Ct lt

+ [εHb(λ)CHb + εHbO2
(λ)CHbO2

] l(t), (2)

where εHb, εHbO2
, and εt are the extinction coefficients of arterial

deoxyhemoglobin, arterial oxyhemoglobin, and other tissues
including the venous blood vessel, respectively; Ct, CHb, and
CHbO2

are the concentrations of the corresponding substances;
lt is the path length that the light travels in the tissue and is
assumed to be time-invariant; l(t) is the path length that the light
travels in the arterial blood vessels. Note that l(t) is time-varying
because the arteries will dilate with increased blood during
systole compared to diastole.

The integral range Λc can be simplified to a single value λi

when the camera is monochromatic, incoming light is filtered by
a narrowband optical filter, or alternatively, the light source is a
narrowband LED. Then the response of the camera sensor in (1)
can be written as:

Sc(t) = I(λi) · e−εt(λi)Ctlt · rc(λi)

· e−[εHb(λi)CHb+εHbO2
(λi)CHbO2

] l(t). (3)

Let Δl = lmax − lmin denote the difference of the light path of
the pulsatile arterial blood between diastole when l(t) = lmin

and systole when l(t) = lmax. The log-ratio of the response of
the cth channel of the camera sensor during diastole and systole
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can then be written as:

R(λi) = log

(Sc|l(t)=lmin

Sc|l(t)=lmax

)
(4a)

= [εHb(λi)CHb + εHbO2
(λi)CHbO2

] Δl. (4b)

For two different wavelengths λ1 and λ2, the ratio of ratios
(RoR) can then be defined as:

RoR(λ1, λ2)=
R(λ1)

R(λ2)
=

εHb(λ1)CHb+εHbO2
(λ1)CHbO2

εHb(λ2)CHb+εHbO2
(λ2)CHbO2

. (5)

Since SpO2 = CHbO2

/
(CHbO2

+ CHb), the relation between
RoR and SpO2 can be written as:

SpO2=
εHb(λ1)−εHb(λ2)·RoR

εHb(λ1)−εHbO2
(λ1)+[εHbO2

(λ2)−εHb(λ2)]·RoR
(6a)

≈ α·RoR+β. (6b)

where the linear approximation can be obtained by a Taylor
expansion.

The linear RoR model in (6b) has been applied under differ-
ent SpO2 measurement scenarios. For pulse oximeters, λ1 =
660 nm and λ2 = 940 nm are used to leverage the optical
absorption difference of Hb and HbO2 at the two wavelengths. In
some prior art using narrowband light sources or monochromatic
camera sensors [15], [19] for contactless SpO2 monitoring,
different combinations of (λ1, λ2) have been explored. In the
prior art using consumer-grade RGB cameras [23]–[27], only
two out of the three available RGB channels were used for the
linear RoR model.

Among the abovementioned SpO2 estimation methods us-
ing consumer-grade RGB cameras, the SpO2 data collected
in [23], [24] only cover a small dynamic range (mostly above
95%), which is not very meaningful. Bal et al. [25] and
Tarassenko et al. [26] show a fitted linear relation between
RoR and SpO2 for data that last for merely several minutes.
These limitations can be attributed to that, unlike the signals
captured in the narrowband setting that is modeled precisely
by (3) and (4), all three RGB color channels capture a wide range
of wavelengths from the ambient light, as is described in (1). The
aggregation of the broad range of wavelengths lowers the optical
difference between Hb and HbO2 and makes it less optically
selective than narrowband sensors used in oximeters. To address
this issue, we disentangle the aggregation through a careful
combination of the pulsatile signals from all three channels of
RGB videos to efficiently distill the SpO2 information.

III. PROPOSED MULTI-CHANNEL ROR METHOD

Fig. 1 illustrates the proposed procedure for the SpO2 esti-
mation from the smartphone captured hand videos. First, the
hand is detected as the region of interest (ROI) for each frame.
Second, the spatial average from the ROI is calculated to obtain
three time-varying signals of RGB channels. The averaged RGB
signals are extracted for two purposes: i) to estimate the heart
rate (HR), and ii) to acquire the filtered cardio-related AC
components using an HR-based adaptive bandpass filter. Third,

Fig. 1. System illustration for the SpO2 prediction using the smartphone
captured hand videos. The pixels from the hand region are utilized for prediction,
and an rPPG signal is extracted for heart rate (HR) estimation. Multi-channel
RoR features are derived from the spatially combined RGB signals with the
help of the HR-guided filters. The extracted features are then used for SpO2

prediction.

the ratio between the AC and the DC components for each color
channel and the pairwise ratios of the resulting three ratios are
computed as the features for a regression model where SpO2

is treated as the label. The details of each step are provided as
follows.

A. ROI Generation via Thresholding and Spatial Combining

To facilitate the data collection with good quality, we use a
rectangle to enclose the target hand region. We use an inter-
active user interface for this step, which can be replaced by
an automated hand detection algorithm [31] if desired. The
pixels in this region are converted from the RGB color space
to the YCrCb color space, and the Cr channel is used [32] to
determine a threshold that best differentiates the skin pixels
from the background using the Otsu algorithm [33]. We apply
morphological erosion and dilation operations with a median
filter to exclude noise pixels outside the region of the binary
hand mask. The final hand-shaped mask is considered as the
ROI, and an example is shown in the second picture in Fig. 1. We
conducted the ROI segmentation independently for each video
frame to capture any unintended tiny hand movement rather than
using a fixed hand mask for all frames. For all n frames in the
video, we calculate the spatial average values of the red, green,
and blue channels in the ROI and denote them as r̄, ḡ, b̄ ∈ R1×n,
and arrange them into a matrix A = [̄r; ḡ; b̄] ∈ R3×n.

B. rPPG Extraction and HR Estimation

In a typical RoR method, after matrix A is calculated, the AC
component for each channel ofA is quantified by either the stan-
dard deviation [10] or the peak-to-valley amplitude [19]. Since
the signal-to-noise ratio (SNR) is lower for the video captured
by a smartphone in a contactless manner, we propose to use an
adaptive bandpass filter centered at the HR frequency to clean
the RGB channel signals so as to extract the AC components
more precisely.

The HR can be measured contact-free by capturing the
pulse-induced subtle color variations of the skin. The pulse
signal, referred to as remote photoplethysmogram (rPPG), can
be obtained by applying the plane-orthogonal-to-skin (POS)
algorithm [29], which defines a plane orthogonal to the skin
tone in the RGB space for robust rPPG extraction. The HR is
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Fig. 2. (a) Spectrogram of an rPPG signal. (b) Reference HR signal and HR
signals estimated by the peak-finding method, the weighted energy frequency
estimation algorithm, and AMTC algorithm, respectively. The mean absolute
error (MAE) of the HR estimation algorithms are 6.00, 4.94, and 2.50 bpm,
respectively.

then tracked from the rPPG signal via a state-of-the-art adaptive
multi-trace carving (AMTC) [34] algorithm that tracks the HR
from the spectrogram of rPPG by dynamic programming and
adaptive trace compensation.

To study the role of accurate HR tracking for feature extrac-
tion, we also implemented a peak-finding method and a weighted
energy method for frequency estimation [35] to compare with
AMTC. The peak-finding method takes the peaks of the squared
magnitude of the Fourier transform of rPPG as the estimated HR
values, which was used in [16] and [17]. The weighted energy
method finds the heart rate by weighing the frequency bins in the
corresponding frame of the spectrogram of rPPG. Compared to
the peak-finding method, the weighted energy method is more
robust to outliers in frequency. Fig. 2 illustrates an example of the
HR estimation results by the peak-finding method, the weighted
energy algorithm, and AMTC, respectively.

C. Feature Extraction

We use a processing window of 10 seconds with a step size
of 1 s to segment the whole video into L windows. Within each
window, the DC and AC components of the RGB channels are
calculated to build a feature vector f .

DC component We use a second-order lowpass Butterworth
filter with a cutoff frequency of 0.1 Hz. The DC component is
estimated using the median of the lowpass filtered signal of each
window.

AC component The estimated heart rate values from Sec-
tion III-B are used as the center frequencies for the adaptive
bandpass (ABP) filters to extract the AC components of the
RGB channels, which eliminates all frequency components that
are unrelated to the cardiac pulse. We adopt an 8th-order Butter-
worth bandpass filter with±0.1Hz (±6 bpm) bandwidth, center-
ing at the estimated HR of the current window. The magnitude of
the AC component is estimated using the average peak-to-valley

amplitudes of the filtered signals within the current processing
window.

We define the normalized AC components at the ith win-
dow as R(i, c) = AC(i,c)

DC(i,c) , where c ∈ {r, g, b} represents color
channel and i ∈ {1, 2, . . ., L}. We define the multi-channel
ratio-of-ratios based feature vector of the ith window as fi =
[R(i, r), R(i, g), R(i, b), R(i,r)

R(i,g) ,
R(i,r)
R(i,b) ,

R(i,g)
R(i,b) ] ∈ R1×6.

D. Regression and Prediction

In this first proof-of-concept work leveraging multi-channel
ratio features, we use linear regression (LR) and support vector
regression (SVR) to learn the mapping between the features
and the SpO2 level. Since LR captures only the linear rela-
tionship, it has limited learning capability and will serve as
a baseline. The objective function is min

w
‖y−Fw‖2+λ‖w‖22,

where y = [y1, . . ., yL]
T ∈ RL×1 contains the target SpO2 val-

ues, F = [f1; . . .; fL] ∈ RL×6 is the feature/data matrix de-
rived from the input, and w ∈ R6×1 contains the weights.
An �2-regularization term is added to the objective function
to avoid rank deficiency caused by the collinearity among
features. To select the optimal regularization parameter λ,
we use a 5-fold cross-validation. In addition to LR, we
use the SVR to better capture the nonlinearity of the fea-
tures. The Libsvm library [36] is used for training the ε-
SVR, min

w,b

1
2‖w‖2+C

∑L
i=1 Lε(yi,w

Tφ(fi)+b), where Lε is

the linear ε-insensitive loss function [37]. Our implemen-
tation uses the radial basis function (RBF) kernel to cap-
ture the nonlinearity. The hyperparameters, including the
penalty cost C and the kernel parameter γ of kernel func-
tion K(fi, fj) = φ(fi)

Tφ(fj) = exp(−γ‖fi − fj‖2), are se-
lected via a grid search over a 5-fold cross-validation loss.

Once an estimated weight vector ŵ is learned from the linear
or support vector regression, ŵ is then used to predict a prelimi-
nary SpO2 signal. Finally, a 10-second moving average window
is applied to smooth out the preliminarily predicted signal to
obtain the final predicted SpO2 signal.

IV. EXPERIMENTAL RESULTS

A. Data Collection

Fourteen volunteers, including eight females and six males,
were enrolled in our study under protocol #1376735 approved by
the University of Maryland Institutional Review Board (IRB),
with age range between 21 and 30, and Fitzpatrick skin types
II–V [38]. There are two, eight, one, and three participants
having skin types II, III, IV, and V, respectively. None of the
participants had any known cardiovascular or respiratory dis-
eases. During the data collection, participants were asked to hold
their breath to induce a wide dynamic range of SpO2 levels. The
typical SpO2 range for a healthy person is from 95%to100%.
By holding breath, the SpO2 level can drop below 90%. Once
the participant resumes normal breathing, the SpO2 will return
to the level before the breath-holding.

Each participant was recorded for two sessions. During the
recording, the participant sat comfortably in an upright position
and put both hands on a clean dark foam sheet placed on a
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Fig. 3. Experimental setup for data collection of hand videos and reference
signals using an oximeter. The left index finger was placed in a CMS-50E pulse
oximeter to record the reference HR and SpO2 signals. The smartphone camera
is recording the video of both hands.

table. As shown in Fig. 3, the palm side of the right hand and
the back side of the left hand were facing the camera. These
two hand-video capturing positions are defined as palm up (PU)
and palm down (PD), respectively. The participant was asked
to place his/her hands still on the table to avoid hand motion.
Simultaneously, a Contec CMS-50E pulse oximeter was clipped
to the left index finger to measure the participant’s SpO2 level.
As we have reviewed earlier, the oximeter is adopted clinically
as to be within a±2% deviation from the invasive, gold standard
for SpO2 [8], so we use the oximeter measurement results as the
reference in our experiments. An iPhone 7 Plus camera was
fixed by a smartphone stand mounted on a tripod for video
recording. The video started 30 seconds before the oximeter
started, and stopped immediately after the oximeter ended to
allow for proper time synchronization. The participants were
asked to hold their breath for generally 30–40 seconds to lower
the SpO2 level, as long as they were comfortable and able
to do so. Then the participants resumed normal breathing for
generally 30–40 seconds until they recovered and felt ready for
the next breath-holding. The recovery period was long enough
for the participants’ SpO2 to return to the levels before the
breath-holding. The aforementioned process is defined as one
breath-holding cycle. In each session, the breath-holding cycles
were repeated three times. After the first session, the participants
were asked to relax for at least 15 minutes before attending
the second session for data collection. From our data collection
protocol using breath-holding, we were able to obtain the SpO2

measurements ranging from 89% to 99%.
The total length of recording time for all fourteen participants

is 138.9 minutes. In terms of each participant, the minimum
duration is 103 seconds and the maximum duration is 468 sec-
onds. The average duration is 298 seconds. The current data size
is relatively small for large-scale neural network training. This is
by a large part due to the restrictions for human subject related
data collection imposed during the COVID-19. The available
data, however, is adequate for our principled multi-channel
signal based approach to SpO2 monitoring, showing a benefit
of combining signal processing and biomedical knowledge and
modeling with data than the primarily data-driven approach.

Delay Estimation of Pulse Oximeter: When the CMS-50E
oximeter is turned on and ready for measurement, the first
reading is displayed a few seconds after the finger is inserted.
This delay may be due to the oximeter’s internal firmware startup
and algorithmic processing. Since we need to synchronize the
video and the oximeter readings using their precise starting time
stamps, the delay in the oximeter can introduce misalignment
errors in the reference data that we use to train the regression
model. To avoid the misalignment, we first estimate the delay
and then subtract it from the oximeter’s internal timestamp as the
corrected oximeter’s timestamp. To estimate the internal delay,
we asked one participant to repeatedly place the left index finger,
middle finger, and ring finger into the oximeter 50 times each
and obtained the average delay time of 1.8 s, 1.9 s, and 1.7 s,
respectively. Because the left index finger is used for reference
data collection in our setup, we take 1.8 s as the delay. To further
examine whether there exists any difference among the delays
from the three fingers, we conducted a one-way ANOVA test.
The p-value is 0.14, which shows no statistically significant
different delays among the three fingers.

B. Performance Metrics

The performance of the algorithm is evaluated using the mean
absolute error (MAE) (7a) and Pearson’s correlation coefficient
ρ (7b) given below:

MAE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi|, (7a)

ρ(y, ŷ) =
(y − ȳ)T(ŷ − ¯̂y)

‖y − ȳ‖2
∥∥ŷ − ¯̂y

∥∥
2

. (7b)

where y=[y1, . . ., yN ]T, ŷ=[ŷ1, . . ., ŷN ]T, ȳ, and ¯̂y denote the
reference SpO2 signal, the estimated SpO2 signal, the average
values of all coordinates of vectors y and ŷ, respectively. We
adopt the correlation metric to evaluate how well the trend of
the SpO2 signal is tracked.

C. Results From Proposed Algorithm

In this subsection, we use the training data from one par-
ticipant to train the regression model for the prediction of
his/her testing session recorded later. We call the aforementioned
training and testing procedure the participant-specific mode in
which the models are specifically learned for each participant.
We will discuss the leave-one-out mode of the performance of
the proposed algorithm in Section IV-E.

Fig. 4 presents the learning results for all the participants
using SVR for PU cases. Both training and testing sessions are
shown for each participant. The SpO2 curves in each session
contain three dips that are resulted from breath-holding, except
for participant #8 who had a shorter session due to limited
tolerance of breath-holding. For each participant, we provide
the skin-tone information in the subplot and show the accuracy
indicators, MAE and ρ, for SpO2 prediction. In all training
sessions, MAE is below 2.4% and ρ is above 0.6. From this
observation, we find that all the predicted SpO2 signals in the

Authorized licensed use limited to: Min Wu. Downloaded on September 29,2022 at 07:41:26 UTC from IEEE Xplore.  Restrictions apply.



202 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 16, NO. 2, FEBRUARY 2022

Fig. 4. Predicted SpO2 signals for all participants using SVR when the palm is facing the camera, i.e., the palm-up scenario. Prediction results of training and
testing sessions are shown for each participant with reference SpO2 in red dash lines and predicted SpO2 in solid black lines. The higher the correlation ρ and the
lower the MAE, the better the predicted SpO2 captures the trend of the reference signal.

training sessions are closely following the reference signals’
trends, despite the exact value differences between the predicted
and the reference signals, such as the differences around the last
dip for participant #13. Furthermore, all testing MAE values are
within 1.8%, suggesting that those trained models adapt well to
the testing data. While there are a few cycles that the predicted
signal does not fully follow the reference signal, such as the
second dip for participant #4 and participant #11, the trends are
consistent.

Table I summarizes the training and testing SpO2 estimation
performance of both LR and SVR based methods for both PU
and PD cases. The best performance is achieved using SVR
method in the PU case. We further examine the difference
between the two regression methods using boxplots in Fig. 5(a)
that show the distributions of the correlation ρ for testing by
LR and SVR, respectively. Each boxplot in Fig. 5(a) contains
both PU and PD cases from all participants. The results are com-
pared in terms of the median and the interquartile range (IQR).
IQR quantifies the spread of the distribution by measuring the
difference between the first quartile and the third quartile. The
boxplots in Fig. 5(a) reveal that the SVR method outperforms
LR with a higher median of 0.68 compared to 0.59 and with
a narrower IQR of 0.17 compared to 0.19. This suggests that

TABLE I
PERFORMANCE OF THE PROPOSED METHOD

Results using linear regression (LR) and support vector regression (SVR) for
both sides of the hand are quantified in terms of the sample mean and sample
standard deviation (in parentheses).

there may exist a nonlinear relationship between the extracted
features and the SpO2 values.

To examine the impact of the side of a hand and the skin
tone on the performance of SpO2 estimation, we analyze the
following two research questions: i) whether the side of the hand
makes a difference in lighter skin (type II and III) or darker skin
(type IV and V) or mixed skins (all participants), and ii) whether
the different skin tones matter in PU or PD case.

To answer question (i), we first focus on the distributions from
PU and PD cases in Fig. 5(b) with each boxplot representing

Authorized licensed use limited to: Min Wu. Downloaded on September 29,2022 at 07:41:26 UTC from IEEE Xplore.  Restrictions apply.



TIAN et al.: MULTI-CHANNEL RATIO-OF-RATIOS METHOD FOR NONCONTACT HAND VIDEO BASED SPO2 MONITORING 203

Fig. 5. Boxplots of testing correlation coefficient ρ for all participants when
grouped using different criteria. (a) Distributions contrasting linear and sup-
port vector regressions. (b) Distributions of palm-up and palm-down cases.
(c) A detailed breakdown of (b) in terms of skin-tone subgroups.

the correlation ρ in testing for all participants. We observe that
the PU case outperforms the PD case with a higher median of
0.64 compared to 0.60 and a narrower IQR of 0.15 compared
to 0.25. We then zoom into each subgroup of skin tones shown
in Fig. 5(c). For the lighter skin group, even though the median
of PD case is 0.71, which is 9% better than that of PU, the
IQR of PD case is 0.24, which is worse than the IQR of 0.17
of PU case. This suggests that the distributions are comparable
between PU and PD cases for the lighter skin group. For the
darker skin group, the PU case outperforms the PD case with
a higher median of 0.62 compared to 0.54 and a narrower IQR
of 0.07 compared to 0.15. In summary, there is no substantial
difference between PU and PD cases in the lighter skin group,
whereas for the darker skin group and overall participants, the
PU case is better than the PD case.

To answer question (ii), we first focus on the left two boxplots
of Fig. 5(c). In the PD case, the median of the lighter skin
group is significantly larger than that of the darker skin group by
31%, however, the lighter skin group also has a larger IQR. This
makes it difficult to make a conclusion from the median–IQR
analysis, hence we apply the t-test to complement our analysis.
We note that the p-value is 0.037 < 0.05, showing that there is a
significant difference between these two groups. In the PU case
shown in the right half of Fig. 5(c), the medians of the lighter
skin group and darker skin group are 0.65 and 0.62, with IQR
being 0.17 and 0.07, respectively. Thus, in our current dataset, no
substantial performance difference is observed between lighter
and darker skin tones in the PU case.

D. Ablation Study of Proposed Pipeline

In Sections III-B and III-C, we have proposed three key de-
signs in our algorithm, including a) the feature vector f contain-
ing pulsatile information from all RGB channels, b) the narrow
ABP filter, and c) the passband of ABP filter centered at precise
HR frequency tracked by AMTC. To study the importance of
each component, we conducted three controlled experiments by
removing one factor at a time and the configurations of methods
corresponding to the experiments are listed in Table II. The
results for the methods are illustrated in Fig. 6. The height of
each bin shows the average of correlation coefficient ρ or the
MAE of SpO2 estimation results from testing sessions (SVR,

TABLE II
CONFIGURATIONS FOR THE ABLATION STUDY OF THE PROPOSED PIPELINE

The controlled experiments are conducted by replacing or removing one component at a
time.

Fig. 6. Ablation study of the proposed method. The bar plots are from testing
sessions (SVR, PU case) of all participants. The error bars correspond to the
95% confidence intervals.

PU case) of all participants. Each pair of error bars corresponds
to the 95% confidence interval that is calculated as±1.96σ̂/

√
N ,

where σ̂ is the sample standard deviation and N is the sample
size/number of participants.

1) Advantage of the Proposed Multi-Channel RoR Over Two-
Channel RoR: In this part, we compare our proposed algorithm
with “Method (I): RoR with nABP (AMTC).” Method (I)
follows the feature extraction method proposed in Section III-C,
including the narrow adaptive bandpass filter (nABP) centered
at AMTC-tracked HR. The only exception is that, instead of us-
ing the feature vector f that contains multi-channel information,
only the ratio of ratios between the red and blue channels as in
traditional RoR methods is used.

Fig. 6 reveals that our proposed method outperforms
method (I) by a big margin. More specifically, our proposed
method improves the correlation coefficient from 0.22 to 0.68
and the MAE from 1.67% to 1.26%. This improvement confirms
that our proposed multi-channel feature set helps with the more
accurate SpO2 monitoring.

2) Contribution of Narrowband ABP Filter for Feature Ex-
traction: Here we compare with the following two methods to
show the necessity of using a narrowband HR-guided bandpass
filter:
� Method (II): Feature vector without ABP uses a non-

adaptive, generic bandpass filter with the passband over
[1, 2] Hz, covering the normal range of heart rate in seden-
tary mode to replace the HR-based narrow ABP filter
proposed in Section III-C for feature extraction.

� Method (III): Feature vector with wide ABP (AMTC)
applies a wider ABP filter with ±0.5 Hz bandwidth than
the ±0.1 Hz one used in our proposed method. This wider
ABP filter’s center frequency is provided by the AMTC
tracking algorithm of the HR described in Section III-B.
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The bandpass filters used for methods (II) and (III) have the
same bandwidth, 1 Hz. In terms of center frequency, method (II)
used a fixed setting at 1.5 Hz, while method (III) is adaptively
centered at the estimated HR value. Compared to method (II),
method (III) has an improved testing MAE by 18%. Further-
more, compared to method (III), our proposed method with
a narrow ABP filter improves the correlation coefficient ρ for
testing by 13% and MAE by 9%, suggesting the contribution of
the narrow HR-based ABP filter strategy for AC computation.

3) Importance of Accurate HR Tracking on SpO2 Monitor-
ing: We consider the following two methods to compare with
our proposed method:
� Method (IV): Feature vector with narrow ABP (peak-

finding) applies a narrow ABP filter of bandwidth±0.1Hz
for extracting the feature vector f . The center frequency of
the ABP filter is the HR estimated from the peak-finding
algorithm described in Section III-B.

� Method (V): Feature vector with narrow ABP
(weighted) is similar to method (IV), except that the fre-
quency estimation algorithm is replaced by the weighted
energy in Section III-B.

The averaged MAE of the HR estimation for all partici-
pants by the peak-finding algorithm, weighted frequency esti-
mation algorithm, and AMTC algorithm are 7.11(±3.66) bpm,
6.42(±3.02) bpm, and 4.14(±1.72) bpm, respectively.

Fig. 6 shows that methods (IV) and (V) perform similarly
with 0.56 vs. 0.57 for correlation ρ and 1.43% vs. 1.40% for
MAE, respectively. Our proposed method guided by the AMTC
tracked HR outperforms methods (IV) and (V) by 21% and 19%
in correlation, and by 12% and 10% in MAE, respectively. These
results suggest that the accurate HR estimation for ABP filter
design improves the quality of the AC magnitude by preserving
the most cardiac-related signal from RGB channels, which in
turn helps with accurate SpO2 monitoring.

E. Leave-One-Out Experiments

As a proof of concept and considering the currently limited
amount of the available data, we have so far discussed the SpO2

estimation under the participant-specific (PS) scenario in Sec-
tion IV where the models are calibrated for each individual. This
PS mode corresponds well to the trending “precision telehealth”
that tailors the healthcare service to individuals.

In this subsection, we consider a more practical scenario
where the test participant’s data are never seen or only form
a limited portion of the training data. In this scenario, we
can develop a group-based model based on skin tone or other
determinants of health, and for each subgroup, the model is
“universal” and participant-independent. We will examine this
group-based model through the following two modes of leave-
one-out experiments:
� Leave-one-session-out (LOSessO): when testing on a given

participant, we include his/her training session data to-
gether with other participants’ data for training.

� Leave-one-participant-out (LOPartO): when testing on a
given participant, we only use other people’s data for
training and leave out the data from this test participant.

TABLE III
TESTING RESULTS OF LEAVE-ONE-PARTICIPANT-OUT (LOPARTO) AND

LEAVE-ONE-SESSION-OUT (LOSESSO) EXPERIMENTS, MEASURED IN THE

SAMPLE MEAN AND THE SAMPLE STANDARD DEVIATION (IN PARENTHESES)

TABLE IV
COMPARISON OF THE PROPOSED ALGORITHM IN BOTH CONTACT AND

CONTACT-FREE SPO2 ESTIMATION SETTINGS

The testing results are measured in the average MAE and correlation coefficient ρ.

We group the participants by the skin type into lighter skin
color (skin types II and III) and darker skin color (skin types IV
and V) groups. We conduct LOSessO and LOPartO experiments
on each subgroup and obtain the SVR generated testing results
from all participants in Table III. The MAE and correlation
coefficient ρ improve from LOPartO to LOSessO to PS for
both PU and PD cases. This result suggests that the precision
telehealth inspired PS mode is the most accurate approach to
monitoring SpO2 for an individual. Based on the overall results
shown in Table III, most participants demonstrate a consistent
trend of the accuracy of SpO2 estimation from LOPartO to
LOSessO to PS case. The correlation ρ of participant #12 is
less than −0.5 in both leave-one-out modes, suggesting that
this participant may have some uncommon relation compared
to others between the extracted features and SpO2 values.

V. DISCUSSION

A. Performance on Contact SpO2 Monitoring

In addition to contact-free SpO2 monitoring, we evaluate
whether our proposed algorithm can be applied to a contact-
based smartphone setup. To collect data, the left index finger
covers the smartphone’s illuminating flashlight and the nearby
built-in camera, and the camera captures a pulse video at the
fingertip. Another smartphone is used to simultaneously record
a top view video of the back side of the right hand whose
index finger is placed in the oximeter for SpO2 reference data
collection. One participant took part in this extended experiment
where one training session with three breath-holding cycles was
recorded, and three testing sessions were recorded 30 minutes
after the training session.

In Table IV, we compare the performance of our proposed
algorithm in both the contact-based and contact-free SpO2 mea-
surement settings. The conventional RoR models used in [10]
and [11] were implemented as baseline models for contact-based
SpO2 measurement. In [10], the mean and standard deviation
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Fig. 7. Illustration of blurring effects using different blurry levels σ on hand
videos. The wider the kernel is, the blurrier the videos are.

TABLE V
SIMULATION FOR GAUSSIAN BLURRING EFFECT ON HAND VIDEOS

SVR generated results for PU cases are listed for different σ and Gaussian kernel sizes.
The results are quantified in terms of the sample mean and sample standard deviation (in
parentheses).

of each window from the red and blue channels are calculated
as the DC and AC components. A linear model was built to
relate the ratio-of-ratios from the two color channels with SpO2.
In [11], the median of the pulsatile peak-to-valley amplitude
is regarded as the AC component. For the two RoR methods,
we implemented both LR and SVR. For contact-free SpO2

measurement, we take the traditional two-color channel RoR
method implemented in Section IV-D as the baseline to compare
with the proposed method.

Table IV reveals that our proposed algorithm outperforms
other conventional RoR models in the contact-based SpO2 mon-
itoring. Even in the contact-free case, our algorithm presents
a comparable performance to that of the contact-based cases,
despite that the SNR of the fingertip video is better than the
SNR from a remote hand video.

B. Resilience Against Blurring

In this subsection, we explore the robustness of our algorithm
to the blurring effect on hand images. In the current setup, the
hands are placed on a stable table with a cellphone camera ac-
quiring the skin color of both hands. Ideal laboratory conditions
are often not satisfied under practical scenarios, and the hand
images captured by the cellphone cameras may be blurred due
to being out of focus. The point spread function is modeled
as a 2D homogeneous Gaussian kernel. The finite support of
the kernel is defined manually to generate perceptually different
blurry effects and then the standard deviation σ is computed
based on the given support. To test different blurry effects, we
experimented with two different blurry levels σ = 1.1 (5× 5
pixels) and σ = 2.6 (15× 15 pixels), respectively. We show the
blurring effects in Fig. 7.

Table V presents the SVR generated results for PU cases with
different σ and kernel sizes. We use the SVR, PU scenario to
showcase here as it achieves the best SpO2 prediction perfor-
mance, which is verified in Section IV-C. From the table, we

find that our algorithm is robust to the Gaussian blurring effect.
After the σ = 1.1 blurring, the testing ρ remains the same, and
testing MAE is 6.3% higher than the no blurring case. After the
σ = 2.6 blurring, the testing ρ is 1.5% lower and MAE is 4.0%
higher than the no blurring case.

C. Limitations and Further Verification With Different
Hypoxia Protocols

From the recordings of our data collection protocol for vol-
untary breath-holding, we observed that HR and SpO2 are
correlated for many participants. That is, in one breath-holding
cycle, when the participant starts to hold breath, his/her HR
increases and SpO2 drops as the oxygen runs out. As he/she
resumes normal breathing, his/her HR and SpO2 recover to be
within the normal range. Due to individuals’ different physical
conditions, in some participants, the peak of the HR signal and
valley of the SpO2 signal happen in such a short time interval
that HR and SpO2 are significantly negatively correlated. This
observation is in line with the biological literature [39]. In the
literature, breath-holding exercises were found to be able to yield
significant changes in the cardiovascular system. In the central
circulation, they caused significant changes in heart rate, and
in the peripheral circulation, they caused significant changes in
arterial blood flow and oxygen saturation.

Based on the above observation that HR is correlated with
SpO2 during breath-holding, we are curious whether our method
also works for a different protocol where the HR remains rel-
atively constant compared to SpO2. An intermittent hypoxia
protocol used in the literature shows that by receiving hypoxic
air (inspired fraction of oxygen between 12% and 15%) intermit-
tently with normoxic air, the participant can have a much milder
HR change than breath-holding, while a significant decrease
in SpO2 can be achieved during the hypoxia [40], [41]. The
research restriction affecting human subject research in many
U.S. institutions limited our ability to carry out the abovemen-
tioned hypoxia protocol. Once the restriction is eased, we will
investigate the performance of our proposed algorithm when
applied to other hypoxia protocols.

VI. CONCLUSION AND FUTURE WORK

This paper presents a contact-free method of measuring blood
oxygen saturation from hand videos captured by smartphone
cameras. Our proposed method is a synergistic combination
of several key components, including the multi-channel ratio-
of-ratios feature set, the narrowband filtering that adaptively
centered at heart rates, and the accurately estimated heart rate.
We have seen encouraging results of a mean absolute error
of 1.26% with a commercial pulse oximeter as the reference,
outperforming the conventional ratio-of-ratios method by 25%.
We have also analyzed the impact of sides of the hand and
skin tones on the SpO2 estimation. We have found that, given
our collected dataset, the palm side performs well regardless of
the skin tone; for palm-up cases, we do not observe significant
performance differences between lighter and darker skin tones.

Future work includes verifying our methods with data col-
lected under different hypoxia protocols, enlarging the dataset
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with more variations in skin color, and applying large-scale
and interpretable neural networks with optophysiological in-
sights. Future development may also consider real-life scenarios
wherein participants walk toward the camera or have other
substantial movement and investigate how to achieve good SpO2

estimation from video in these cases.
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