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Abstract
Historical wildfire events in California have shown a tendency to occur every five to seven years
with a rapidly increasing tendency in recent decades. This oscillation is evident in multiple
historical climate records, some more than a century long, and appears to be continuing. Analysis
shows that this 5–7 year oscillation is linked to a sequence of anomalous large-scale climate
patterns with an eastward propagation in both the ocean and atmosphere. While warmer
temperature emerges from the northern central Pacific to the west coast of California, La Niña
pattern develops simultaneously, implying that the lifecycle of the El Niño-Southern Oscillation
that takes multiple years to form could be a trigger. The evolving patterns of the Pacific-to-North
America atmospheric teleconnection suggest the role of tropical and subtropical forcing embedded
in this lifecycle. These results highlight the semi-cyclical hydrological behavior as a climate driver
for wildfire variability in California.

1. Introduction

According to the California Department of Forestry
and Fire Protection (CAL FIRE), most of the top
20 fires in California occurred since the year 2000
(bars in figure 1(a)). On top of that, the complex
fire which occurred on August 2020 broke records
as one of the most severe fires in California (CNN6,
6 October 2020), and authorities are now concerned
of upcoming exceptional danger of drought and fire
in the US west (NOAA7, 29 April 2021). These series
of catastrophic events urge to identify sequential pat-
tern of fire related climate phenomena to restrict fire
damage ahead. Upon examining the burned area and
number of fire statistics from the Monitoring Trends
in Burning Severity (MTBS, lines in figure 1(a)),
it was observed that significant wildfire damages in

6 https://edition.cnn.com/2020/10/06/us/gigafire-california-
august-complex-trnd/index.html.
7 www.ncei.noaa.gov/news/us-drought-monitor-update-april-27-
2021.

California tend to occur every five to seven years since
the late 20th century (grey columns in figure 1(a)), a
feature that could be periodic in nature that is stu-
dided herein.

Fire is intimately tied to ecosystems through inter-
actions with vegetation and climate. As an ecosys-
tem process, fire regulates spatial distribution and
composition of vegetation (McLauchlan et al 2020).
Vegetation structure, in terms of fuel source, influ-
ences fire regimes by selecting particular traits and
species to survive within a given fire regime (Rogers
et al 2015) and therefore fire probability and sever-
ity. Climate also has a major influence on fire regimes
across diverse scales ranging from short-term fire
weather to seasonal and decadal variability. Particu-
larly in California, where the wet-dry season is dis-
tinct, climate variability plays a crucial role in fire
weather condition. Considering this interactive rela-
tionship, the apparent oscillation in California raises
a possible physical coupling between fire, vegetation
and climate.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Time-series of wildfire related indices in California. (a) Annual mean of burned area and number of fire occurrence
(MTBS, lines), and damage statistics of top 20 the largest and the deadliest fires in California history (CAL FIRE, bars), (b) VHI
and LFM, (c) KBDI, scPDSI and PMDI (only PMDI is for June–July–August). All indices are averaged only for California region.
The grey columns are marked for the years with catastrophic fire damages at 5–6 year intervals after the year 2000.

Due to the documented enhancement in fire
weather associated with the increasing temperature
(Jolly et al 2015), historical observation and climate
model experiments have indicated an aggravated risk
inwidespread fires under climate change (Abatzoglou
et al 2019; Liu et al 2010, Yoon et al 2015). Natural
climate variability that modulates California’s water
cycle extremes strongly modulates its fire potential
and occurrence (Yoon et al 2015). The underlying cli-
mate variations in California and their link with the
Pacific Ocean have been widely analyzed, and such
natural variability, with an important contribution
from the evolution cycle of the El Niño-Southern
Oscillation (ENSO), affects California’s precipita-
tion (Rajagopalan and Lall 1998), vegetation carbon
uptake (Keeling et al 1995) and groundwater (Wang
et al 2015). Here, we present observation-based cli-
mate diagnostics of the puzzling quasi-periodic vari-
ation of California’s fire occurrences (figure 1(a)) and
its connection with the recent drought cycle.

2. Data andmethods

2.1. Meteorological data
The Vegetation Health Index (VHI) (Kogan 1995)
is a combined estimation of moisture and thermal
condition using the Normalized Difference Veget-
ation Index (NDVI) and the brightness temper-
atures provided from Blended Vegetation Health

Products. The live fuel moisture (LFM) (Pollet and
Brown 2007), which is a ratio of weight between
the fresh and dry vegetation, represents the amount
of water content and the flammability of vegeta-
tion (Dimitrakopoulos and Papaioannou 2001). The
LFM database is in-situ measured and maintained
by the U.S Forest Service—Wildland Fire Assess-
ment System. For the risks of wildfire and drought,
we use the Keetch-Byram Drought Index (KBDI)
(Keetch and Byram 1968) provided from ERA5
(Hersbach et al 2020) (0.25◦ × 0.25◦, 1979–present)
and self-calibrating Palmer Drought Severity Index
(scPDSI) (Wells et al 2004) from NCAR (Dai et al
2004) (2.5◦ × 2.5◦, 1950–2014). To access long-
term drought data, summer averaged Palmer Modi-
fied Drought Index (PMDI) (Palmer 1965, Karl 1986,
Heddinghaus and Sabol 1991), reconstructed by tree-
ring, from Living Blended Drought Atlas (Cook et al
2010) is also used for 1500–2017. Climatic Research
Unit (CRU) also provides long-term land domain
temperature and precipitation (0.5◦ × 0.5◦) for time
since year 1901 (Harris et al 2020). Also, we use a pre-
cipitation dataset from the Japanese 55 year Reana-
lysis (Kobayashi et al 2015) (JRA55, 1.25◦ × 1.25◦,
1958–present) to look at the ocean domain. For other
climate factors, sea surface temperature (SST) is from
the Extended Reconstructed SST version 5 (Huang
et al 2017) (ERSSTv5, 2.0◦× 2.0◦, 1854–present), and
geopotential height is from JRA55. The soil moisture
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content at 100 cm depth is compared with three dif-
ferent land surface models from the North American
Land Data Assimilation System (NLDAS-2): Mosaic
(Koster and Suarez 1992), Noah (Chen et al 1996) and
VIC (Liang et al 1994).

2.2. Multiple-taper spectrum estimationmethod
with singular value decomposition (MTM-SVD)
analysis
An important part of the proposed analysis is to
identify the shared frequency in the coupling between
fire, vegetation, and climate. The frequency domain
SVD provides coherent climate structure across a
multivariate dataset. Before a set of climate vari-
able series are decomposed into orthogonal modes,
each component is standardized by removing clima-
tological seasonal cycle and dividing by the stand-
ard deviation. The constituent series are transformed
the spectrum domain using multitaper spectral ana-
lysis (Thomson 1982, Park et al 1987, Mann and Lees
1996). With these series x, the orthogonal sequences
of K data tapers are calculated at each frequency f,

Y(m)
k (f) =

N∑
t=1

w(k)
t xne

i2πft∆t, (1)

where ∆t is the sampling interval (1 month), M is
the number of grid points and N is the time dimen-

sion.
{
w(k)
t

}N

t=1
is the kth member in orthogonal

sequence ofK data tapers. Each taper is based on a fre-
quency band of half-bandwidth of pfR about a given
frequency f, where fR = (N∆t)−1 is the Rayleigh fre-
quency. Here, we choose p= 2,K = 3, which provides
reasonable frequency resolution and sufficient spec-
tral degrees of freedom (Mann and Park 1994, 1996).
The K eigenspectras at the M grid points are organ-
ized asM ×N matrix A(f ),
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where the w is latitude weightings in proportion to
grid point area. The matrix A(f ) is decomposed by
means of a complex SVD as

A(f) =
K∑
k=l

λk (f)uk (f)⊗ vk (f) (3)

into orthogonal modes, where λk represent the rel-
ative fraction of total variance explained by the
kth mode, left-eigenvectors uk represents empir-
ical orthogonal functions in the spatial domain,
and right-eigenvectors vk represents in the spectral
domain.

3. Results

3.1. Signs of recurring pattern over the recent
40 years
The recurring pattern is shown in various wildfire-
related observations over California, including veget-
ation indices. The VHI in figure 1(b) (black line)
appears to fluctuate similarly yet opposite with
burned areas in figure 1(a). The trend of decline in
VHI for the last 20 years is consistent with the increase
of major fire damages (r = −0.45, since year 1987).
These results describe that a drier state of vegetation
provides more combustible fuel loads and a higher
potential for large wildfires. Given that VHI includes
greenness, it may merely reflect losses of vegetation
by the wildfire occurrences rather than its flammab-
ility. However, we found consistent results from the
LFM (r = 0.67 with VHI and −0.33 with burned
area, since year 1987), which was manually collected
from hundreds of sites in California to measure the
water content in vegetation. As shown in figure 1(b),
LFM supports that the aridity is closely associated
with the danger of extreme wildfires and both vari-
ables depict a 5–7 year frequency (see the spectral
analysis next). The implication from this correspond-
ence between the burned area data and the vegeta-
tion growth factors is twofold: (a) fires tend to occur
at low-moisture/drier years and (b) large fires trail
high-growth years by 1–2 years withmore fuel. A sim-
ilar oscillating pattern also appears in three drought
indices (figure 1(c)): KBDI, scPDSI and PMDI. These
‘drought cycles’ are in agreement with the previ-
ous indices in that more (less) vegetation grows in
less (more) dry/drier years, which corresponds to the
trailing enhancement (suppression) of fires, and these
appear to occur in a cyclic manner.

To examine the correspondence among fire,
vegetation and climate, we further conducted the
cross-spectral analysis. Figure 2 shows that the cross-
spectral power of VHI with all other indices of envir-
onmental conditions, including soil moisture (figure
S1 (available online at stacks.iop.org/ERL/16/094031/
mmedia)), reveals commonperiodicities that are con-
sistently within the 5–7 year frequency band. This
finding supports the inference made from figure 1
that the apparent oscillatory feature of fire intensity
(burned areas) is potentially driven by a predominant
intra-decadal climate oscillation. One of the promin-
ent climate drivers of this oscillatory feature in Cali-
fornia can be linked to the ENSO lifecycle, including
its precursor and decay phase, that appears to have
amplified since the late 20th century in the warming
climate (Yoon et al 2015).

The power spectral analysis of the aforemen-
tioned variables (figures S2(a)–(d) shows a common
spectral peak within the 5–7 year frequency band.
The 5–7 year spectral power is significant at p < 0.05
among all the variables regardless of their period of
record, suggesting that a 5–7 year ‘climate oscillation’
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Figure 2. Cross spectrum with VHI. (a) LFM, (b) KBDI, (c) precipitation and (d) surface temperature from August 1981 to
December 2018, except LFM fromMarch 1987. The time range of 4–7 years is marked by grey. All data are considered only for
California region. Linear trend is removed and 12 months moving average is applied in advance.

is a persistent feature. Among the climate factors that
affect fire weather in California, precipitation exhib-
its a more energized 5–7 year oscillation than sur-
face air temperature (figures S2(e) and (f)), echo-
ing a previous observation (Los et al 2001) that the
NDVI has a closer link with precipitation than tem-
perature. In terms of soil moisture (figures S2(g)–
(i)), the power in the 5–7 year frequency band is even
more pronounced, ecohing the previous observation
(Wang et al 2016) that the land surface processes
damp atmospheric signals of higher frequencies, and
the longer-term variability of precipitation remains
subsequently 2015. Additional frequency analysis of
the longer-term data is shown next, in section 3.2.

3.2. Validation of the frequency in the long term
records
To examine whether the modern-era intra-decadal
climate oscillation is similarly robust before the 21st
century, we conducted the wavelet spectral analysis
(Torrence and Compo 1998) for the available data-
sets that have longer than 100 years of record. As
shown in figures 3(a) and (b), both precipitation and
surface temperature show significant oscillatory char-
acteristics in the 5–7 year frequency band through-
out the 20th century. Despite their episodic occur-
rence, each period with an active 5–7 year oscillation
in precipitation lasts around 15 years and recurs every
30 years, corresponding to the post-2000 condition.
The episodes of increased 5–7 year power are even
more pronounced in scPDSI in its 150 years of data
(figure 3(c)), with a recurrence interval of∼30 years.

To put the apparent oscillation into the pre-
instrumental perspective, we further examined a
drought proxy established from tree rings (Keen et al
2020) ofmore than 500 years, the PMDI (figure 3(d)).
The wavelet spectrum of the PMDI reveals repeated
occurrences of the amplified 5–7 year powers from
the year 1500–2000. Nonetheless, the common sig-
nificant results in the 5–7 year band suggest that the
recurring wet-dry pattern is not a new phenomenon
due to climate change, but rather is a part of nat-
ural variability due to a clear signal of 5–7 year power
in precipitation rather than temperature (figure S3).
However, climate change and human factors have
apparently amplified this climate oscillation’s impact
on droughts (Diffenbaugh et al 2015) and wildfires

(Williams et al 2019), which can be clearly seen
in increasing temperature and associated fire risk
(Yoon et al 2015, Son et al 2021) indicated by KBDI
(figure 1(c)).

3.3. Climate forcing of the oscillation
To examine possible sources of the 5–7 year recurs-
ive fire weather conditions, the first line of analysis
was conducted using regression (figures S4–S6). We
find that the recurring aridity in California is asso-
ciated with atmospheric-ocean coupled patterns over
the subtropical North Pacific. Anomalously high SST
appears in the Central North Pacific and propagates
during about two-year period over the mid-latitudes
adjacent to Western North America (figures S4(e)
and (f)). This oceanic transport is closely matched by
the track of land-approaching precipitation deficits
from the Central North Pacific to California (figures
S5(d)–(f)), along with anomalously high pressures
in 850 hPa (figures S6(d)–(f)). These results reflect
the relationship in SST forcing and atmospheric vari-
ability that induced the previous extreme droughts
in California (Wang and Schubert 2014, Seager et al
2015).

To provide a more concise depiction of these res-
ults, we perform the MTM-SVD on major climate
components on a global scale. The regression and the
MTM spectral analysis are calculated between VHI
in California and all other variables, while the illus-
tration of the MTM analysis (figure 4) is focused on
the 4–8 year frequency range to account for trunca-
tion. In figure 4, the amplitude and phase of theMTM
coherence are visualized as the length and direction
of vectors, respectively, following previous studies
(Mann and Park 1994, Wang et al 2012). The MTM-
SVD spectral coherence summarizes the lead-lag rela-
tionship as phase vectors in figure 4(a). The 0◦ vec-
tor indicating the north represents concurrent phase
with the trough of VHI in California. The degree
of angle describes phase difference with VHI, for
instance, the 180◦ vector directing the south means
the opposite phase with VHI. In the coast of Cali-
fornia, the vectors show about 90◦ directing the east
(a quarter-phase shift) implying warmer SST appears
roughly 1.5 years earlier than the aridity in Califor-
nia, while the middle of the Pacific at mid-latitude is
270◦ (opposite phase relative to coastal California).
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Figure 3.Wavelet spectrum. (a) precipitation, (b) surface temperature, (c) scPDSI, (d) PMDI. All data are considered only for
California region. Linear trend is removed and 12 months moving average is applied in advance. Wavelet spectrum is based on
Morlet parameter-6 approach and contour black line is for 95% confidence level (CI, p < 0.05). The red noise in 95% CI are
hatched.

These two opposite phases are smoothly connected
with anticlockwise rotation from the middle of the
Pacific to the coast of California, accompanying a pair
of negative-positive SST anomalies. These results por-
tray that the SST anomalies propagate eastward dur-
ing the few years leading up to the lowVHI or drought
year in California (figures S4(b) and (e)).

Similar with the SST, the precipitation shows
negative anomalies in the Western North America
(figure 4(b)) accompanied by a La Niña-like response
in the equatorial Pacific. The developing La Niña pat-
tern in SST and precipitation (figures S5 and S6(d)–
(f)) suggests that the ENSO cycle may serve as the
driver of this multi-year propagation (Wang S-Y et al

2015). However, the 0◦ vectors around California are
continued rotating not only to the tropical warm pool
region, but also to the NorthWestern Pacific, which is
discussed as an ENSOprecursor (Wei et al 2016). This
result, in turn, echoes the previous observation that
the extreme phasing of ENSO is not the only factor
responsible for the climate and vegetation variability
in California (Wang et al 2013, Capotondi et al 2019).

In terms of the atmospheric teleconnection, we
observe a consistent variation in the 850 hPa geopo-
tential height regression, which shows a significantly
amplified pattern (figure 4(c)) representing theNorth
American dipole with a broadened ridge in the west
and a deepened trough in the east (Wang et al 2015

5
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Figure 4. Regression and MTM-SVD spectral coherence based on VHI in California. Regression (shading) and maximum
coherence (vector, amplitude is for length and phase is for direction) between VHI in California and anomalies of (a) SST,
(b) precipitation, (c) geopotential height 850mb (zonal mean is removed). Only statistically significant (p < 0.01) regression and
coherences are visualized. Linear trend is removed and 12 months moving average is applied in advance.

and Singh et al 2016). The spectral coherence dis-
plays 180◦ shifts of phase between California (dir-
ecting north) and the north central Pacific (direct-
ing south), suggesting a wave train across the North
Pacific (figures S6(b) and (e)). Two years prior to the
lowest VHI, the geopotential height pattern reaching
western North America (figure S6(e)) resembles the
Pacific North American (PNA) (Renwick andWallace
1996) that is known to be associated with California’s
drought (Lin et al 2017) and wildfire (Trouet et al
2009) . The noticeable tropical phase vectors point-
ing 180◦ away in between the Dateline (270◦ to the
west and 90◦ to the east) suggest an ENSO pattern
about two years before the driest state of vegetation
in California.

3.4. Putting all together
To examine California’s VHI connection with prom-
inent climate modes, we provide the correlation mat-
rix in figure S7. VHI has the correlation coefficients of
above 0.3 with all ENSO-related indices, such as Niño
4 of the previous year, the Pacific Meridional Mode
(PMM) SST index (Chiang andVimont 2004) and the
Trans-Niño Index (Trenberth and Stepaniak 2000)

without lead (figures S7(a)–(c)). We additionally
compare other known atmosphere-based indices,
which have significant climatological effects in North
America, including the North Atlantic Oscillation
(NAO) and ‘ridge-trough dipole index’(Wang et al
2014) (figures S7(d)–(f)). Among them, the PNA
shows the highest correlation (0.4), three months
prior to the vegetation peak in California. It has
been known that the positive PNA in winter leads
to a warmer climate in California, a decline of the
snowpack and less soil moisture in the summer, res-
ulting in more aridity and wildfire risks (Abatzoglou
2011). However, our results are contradictory, show-
ing a significant positive correlation (0.56, p < 0.01)
between spring PNA and summer VHI (table S1).
When the spring PNA is regressed on the geopoten-
tial height in 850mb, the positive phase of PNA pat-
tern appears on the atmosphere (figure S8(a)). The
ocean reflects El Niño pattern in the previous sum-
mer in relation to the spring PNA (figure S8(b)),
being more pronounced through the comparison
of the time-series of Niño 4 and time lagged PNA
(figure S9). Considering these results, even though
there have been arguments that ENSO and PNA

6



Environ. Res. Lett. 16 (2021) 094031 R Son et al

Figure 5. Diagram of the teleconnection hypothesis for hydrological oscillation in California. The lower/upper bound of wildfire
risk in California is divided into blue/red. The premature state (∼2 years before) for each phase is represented by light blue/red,
the early warning state (3∼6 months before) is by blue/red and the peak state is by dark blue/red. Each progress is marked with a
colored inverted triangle on the cycle line and climatological features are summarized on the tables.

are independent of each other (Straus and Shukla
2002), we infer that the positive PNA pattern in
spring, which plays a role of precursor of vigorous
stage of vegetation inCalifornia summer, is associated
with ENSO dynamics. Table S1 summaries statist-
ically significant relationship with time differences
between ENSO related atmospheric-ocean circula-
tion and hydrological components, such as precipit-
ation and snowpack. Only the spring PNA and the
snow depth, however, are not significantly correlated.
This is probably obvious because high pressure is
enhanced over the western US in the positive PNA
phase, inducing warmer and drier state in California
(Ault et al 2011). Instead, the negative phase of NAO,
which is shown in figure S7(e), is known for the spring
snowmelt to be delayed in the negative NAO phase
(Myoung et al 2015, 2017). A combination with the
North Pacific Oscillation is also suggested to explain
the drought process in California (Lin et al 2017).

Even though there is no consensus yet onwhat cli-
matemodes govern the variability of vegetation phen-
ology in California, several combinations between
oceanic and atmospheric oscillations are suggested
for the better depiction of the climate variability (Lin
et al 2017, Liu et al 2018). In our study, the res-
ults of the MTM-SVD showed that all the variables
have similar phase differences with roughly 180◦ rota-
tion from the common starting point in the tropical
warm pool to California and to the Peruvian coast
(figure 4). Also, the pattern of the eastward propagat-
ing wave train originated from the western Pacific
(figure S6(b)) is also of interest and deserves further
exploration. Based on these results, we assume that
the PNA-associated patterns occurring in the mid-
latitude may share the same source with the full life-
cycle of ENSO, which with emphasis in the western
Pacific, which has been suggested as a trigger for the
PNA (Straus and Shukla 2002, Soulard et al 2019).

4. Conclusions

Wildfire has been one of the major natural dis-
asters damaging California. Unusually large wildfires
in the early wildfire season with the driest winter

has raised concerns on this year’s fire season. In
recent years, the episodic catastrophes lead us to
detect the 5–7 year frequency in agreement with mul-
tiple fire-related climate and vegetation components.
Furthermore, this frequency is attested with several
long-term records of more than 100 years, proving
that they are not a coincidence, nor will they stop
occurring in the future. We have shown a potential
linkage between the frequency and teleconnections,
such as ENSO and PNA. The ENSO pattern and its
lifecycle are divided into two types: zonal and meri-
dional modes. The meridional mode has a greater
influence on the growth stage of El Niño (Di Lorenzo
et al 2015). The PMM, which is more likely to trig-
ger the Central Pacific type of ENSO, forms positive
SST anomalies in the central-eastern North Pacific,
1.5 years prior to the maturing of La Niña. The simil-
arities between the contrasting SST pair with a two-
year lead (figure S4(e)) and the meridional mode
strongly suggest a connection with the developing
phase of ENSO and California’s vegetation growth,
i.e. one that includes the transition or precursor of
ENSO.

Figure 5 summarizes the time flow for the 5–
7 year oscillation of fire-related climate anomalies in
California. In the early stages of La Niña (El Niño),
atmospheric high (low) pressure propagates from the
northern central Pacific. Once the high (low) pres-
sure reaches the west coast, 3–6 months prior to
the dry season in California, there are less (high)
winter precipitation and snow. This is followed by
negative (positive) PNA in the next spring. By the
upcoming summer, the high (low) pressure will mark
more (less) distress the vegetation with increasing
(decreasing) temperature, eventually providing more
(less) vulnerability hydroclimate environment to the
extreme wildfires in California. The dynamical link-
age of these empirically revealed processes requires
further modeling studies to verify.
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