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PulseEdit: Editing Physiological Signals in Facial
Videos for Privacy Protection

Mingliang Chen , Member, IEEE, Xin Liao , Senior Member, IEEE, and Min Wu , Fellow, IEEE

Abstract— Recent studies have shown that physiological
signals such as heart beat and breathing can be remotely
captured from human faces using a regular color camera
under ambient light. This technology, referred to as remote
photoplethysmography (rPPG), can be used to collect the
physiological status of users who are in front of a camera,
which may raise privacy concerns. To avoid the privacy abuse
of the rPPG technology, this paper develops PulseEdit, a novel
and efficient algorithm that can edit the physiological signals
in facial videos without affecting visual appearance and thus
protect the user’s physiological signal from disclosure. PulseEdit
can either remove the trace of the physiological signal in a video
or transform the video to contain a target physiological signal
chosen by a user. Experimental results show that PulseEdit can
effectively edit physiological signals in facial videos and prevent
heart rate measurement based on rPPG. It is possible to utilize
PulseEdit in adversarial scenarios against rPPG-based visual
security algorithms. We present analyses on the performance of
PulseEdit against rPPG-based liveness detection and rPPG-based
deepfake detection, and demonstrate its ability to circumvent
these visual security algorithms and its important role in
supporting the design of attack-resilient systems.

Index Terms— Remote photoplethysmography (rPPG), privacy
protection, visual security, video editing, video forgery.

I. INTRODUCTION

V IDEO-CAPTURING devices are ubiquitous in our daily
life. These devices help us share our experiences with

friends and communicate online with others. Yet have we
realized whenever a person appears in front of a camera,
not only can people recognize his/her identity based on the
facial appearance, but also monitor some aspects of his/her
physiological status such as cardiac activities?

Recent research has shown that contact-free measurement
of human physiological signals from facial videos is feasible

Manuscript received May 1, 2021; revised August 13, 2021 and
November 21, 2021; accepted December 20, 2021. Date of publication Jan-
uary 13, 2022; date of current version February 8, 2022. This work was
supported in part by United States National Science Foundation (U.S. NSF)
under Grant 2030502. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Emanuele Maiorana.
(Corresponding author: Min Wu.)

Mingliang Chen was with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD 20742 USA. He
is now with Meta Platform Inc., Menlo Park, CA 94025 USA (e-mail:
mchen126@terpmail.umd.edu).

Xin Liao is with the College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan 410082, China (e-mail: xinliao@
hnu.edu.cn).

Min Wu is with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD 20742 USA (e-mail:
minwu@umd.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIFS.2022.3142993, provided by the authors.

Digital Object Identifier 10.1109/TIFS.2022.3142993

Fig. 1. PulseEdit can edit the rPPG signal in a facial video to conceal a
person’s true physiological status, without visual distortion of his/her appear-
ance. We introduce negligible additive perturbations onto the facial region in
the video, and successfully modify the HR extracted by the rPPG algorithm.
In this example, HR is edited from 66 to 120 beats per minute (bpm) to avoid
the disclosure of the user’s true heart rate in the video.

through computer vision algorithms [1]–[4]. For instance,
remote photoplethysmography (rPPG) technology has attracted
a growing amount of interests in capturing the subtle color
changes of the skin caused by heartbeats in facial videos under
ambient light. We can further infer heart rate (HR) [5]–[10],
respiration rate (RR) [11], [12], and heart rate variability
(HRV) [13] from the extracted rPPG signals. This promising
technology can facilitate remote monitoring stress and fatigue
during computer tasks [14] and sports training [15].

Recalling the question raised at the very beginning of the
paper, we recognize that this emerging technology may cause
concerns about physiological privacy. With such a technology,
video-capturing devices can record both a person’s appearance
and his/her physiological status such as cardiac activities
simultaneously. This kind of physiological information that is
intrinsically present in facial videos may subject to abuse, such
as secretly collecting and analyzing a person’s physiological
features with ulterior motives. For example, opponents can
read one’s physiological status and analyze his/her conditions
to gain an advantage in mission-critical negotiations. In daily
life, a person’s certain health conditions may be revealed
without his/her explicit consent from a video taken by a party.

To address these physiological privacy issues, it is important
to investigate how to effectively protect the physiological sig-
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nals from disclosure in facial videos. To this end, we propose
PulseEdit illustrated in Fig. 1, a novel method that edits rPPG
signals in facial videos by superimposing specifically designed
perturbation of small amplitude onto the input videos. Our
method outputs a video that is visually the same but has its
rPPG signal either removed completely or transformed to a
target HR based on the user’s choice. Processed by PulseEdit,
the users’ rPPG signals are protected from disclosure in the
facial videos.

To make PulseEdit effective in practical use, we consider
the following requirements when designing and evaluating the
algorithm:

• Invisibility: the editing on the face should be negligible
without obvious distortion in appearance.

• Universality: the protection should be valid on the face
globally and locally. The processed video should no
longer contain the user’s true rPPG signal, and the edited
rPPG signal can be detected from the whole face as well
as local skin regions.

• Generality: the protection should be able to conceal a
person’s true rPPG signal against various rPPG algo-
rithms in the literature. In other words, the edited rPPG
signal can be measured by various rPPG algorithms.

• Resistance: an advanced capability is to make the editing
on the face not detectable under visual forensic analysis.

In addition to privacy protection, PulseEdit can impact other
applications where rPPG is employed. More specifically, rPPG
signal has been demonstrated as a useful and discriminative
feature in various visual security tasks, such as liveness detec-
tion [16]–[18] and deepfake detection [19], because real/live
videos and fake/synthetic videos have different representations
in rPPG signals extracted from the facial regions. Empowered
by PulseEdit, we can edit the rPPG signals in facial videos and
circumvent the above rPPG-based visual security algorithms.
It is not difficult to see that PulseEdit is a potential threat
to invalidate these algorithms, providing a direction to revise
them and improve the confidence of their output decisions.

Our main contributions are summarized as follows:
• We develop PulseEdit, a novel algorithm that can edit

rPPG signals in a facial video to conceal a person’s
true cardiac activity and physiological status, without
introducing noticeable visual distortion in the video.

• We demonstrate that PulseEdit can provide effective
privacy protection under various rPPG extraction algo-
rithms in the literature and robustly edit rPPG signals
in global and local facial regions. We further investigate
the forensic detectability of PulseEdit against forensic
steganalysis.

• We analyze the effectiveness of PulseEdit in circum-
venting rPPG-based liveness detection and rPPG-based
deepfake detection. We show that PulseEdit is promising
in circumventing these rPPG-based algorithms, which
suggests that more research efforts are needed to improve
these rPPG-based visual security algorithms from this
adversarial perspective.

In the rest of the paper, we first introduce the prior work
related to rPPG technology and its application in visual
security tasks in Section II. Section III describes the proposed

PulseEdit to edit rPPG signals in facial videos. We carry out
comprehensive performance analysis on the PulseEdit algo-
rithm for removing/modifying rPPG signals in facial videos in
Section IV and explore its feasibility as a potential adversary
against rPPG-based liveness detection and deepfake detection
algorithms in Section V. Finally, Section VI discusses several
related issues and Section VII concludes the paper.

II. RELATED WORK

A. rPPG Technology

Monitoring cardiac activity is essential for understanding a
person’s health status and is actively used in clinical practices
and home care. Conventional methods require contact-based
sensors attached to the human skin, such as electrocardiogram
leads, a pulse oximeter, or a fitness tracker.

Recently, rPPG enables contact-free HR measurement using
color cameras. The principle of rPPG is that the blood volume
changes under the skin influence the intensity and color of the
reflected light from the skin, whose pattern is consistent with
heartbeat cycles. Although such subtle momentary changes
in the reflected light from the facial skin are not detectable
by the human eyes, they can be captured by a color cam-
era [1]. Eulerian video magnification [20] can amplify and
visualize the subtle color changes in a facial video caused by
the blood flow. Independent component analysis (ICA) [13],
chrominance mapping (CHROM) [2], and plane-orthogonal-
to-skin (POS) [4] were proposed to extract robust rPPG fea-
tures from three color channels. Li et al. [5] applied adaptive
filtering to handle environmental illumination and voluntary
motion issues in remote HR measurement. Tulyakov et al. [6]
proposed self-adaptive matrix completion to denoise rPPG
features and offer robust HR estimation. The challenging
fitness scenario [21], [22] has also been studied to improve
the robustness of the rPPG technology. End-to-end models [7],
[9] employing deep learning were also introduced to estimate
HR from videos.

B. Biometric Privacy Protection

Biometric privacy protection [23], [24] aims to conceal a
person’s privacy in biometric data and prevent possible thefts
and misuses of this information. Traditional biometric privacy
protection algorithms were proposed to de-identify a person’s
identity from these biometric features, including face [25],
[26], iris [27], and fingerprint [28]. Deep learning has been
introduced to protect privacy in multimodal biometrics [29].

In spite of privacy protection at the image perception level,
several researches studied the privacy protection approaches at
the feature representation level. Several facial representation
methods were proposed to eliminate facial expressions [30]
or selected biometric attributes (e.g., age and gender) [31]
in facial feature level. SensitiveNets [32] generates a learned
embedding space that eliminates specific sensitive biomet-
ric information from the existing representation subspace.
Terhorst et al. [33] proposed a privacy-preserving solution to
suppress biometric attributes in an unsupervised manner. The
privacy-preserving feature representations can improve the
robustness of training models and benefit the fairness in model
inference across biometric attributes.
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Fig. 2. Pipeline of PulseEdit system. We first extract skin intensity signals from multiple facial subregions in the video. Then, we compute the perturbation
signal that can change the rPPG signals in the video to the target rPPG signal. Finally, we edit the skin pixels in the video, and the rPPG signal extracted
from the video processed by PulseEdit is successfully transformed to the target signal.

As many methods have been proposed in the recent decade
to extract physiological signals from facial videos, concerns
are raised concurrently on the privacy issues of physiological
information in videos. This information may be misused to
collect and analyze a person’s physiological features with
ulterior motives. Chen et al. [34] applied motion elimination
in facial videos to subtract the pulse-induced pixel intensity
variation on the subjects’ faces to avoid the disclosure of
the rPPG signal. The experimental results show that the
rPPG signals are successfully removed without appearance
distortion. As the work only studied the steady case in the
research, it is unclear whether Chen’s method can deal with
the subjects’ voluntary motion (e.g., talking, head translation,
and rotation) in video recording.

In this paper, we propose to edit the rPPG signals that are
intrinsically presented in facial videos by perturbing the skin
pixels on the face and conduct experiments on motion cases
as well as steady cases. Compared with the prior art, not only
is our work capable of removing the rPPG signal in a facial
video, but also transforming it to a target rPPG signal of the
user’s choice.

C. rPPG Feature in Visual Security Tasks
rPPG signal has been employed as a discriminative feature

to tackle several visual security tasks involving face videos,
such as liveness detection against spoofing and deepfake
detection. Liveness detection is crucial to protect face recog-
nition systems from spoofing attacks, including printing a
face on paper, replaying a facial video on a digital device,
wearing a 3D face mask, and other approaches by adver-
saries. Liu et al. [16], [17] used the cross-correlation of rPPG
features in multiple facial regions to classify live faces vs.
spoofed faces. Hernandez et al. [18] proposed to analyze the
signal quality of rPPG extracted from faces to discriminate
live faces and spoofed faces.

“Deepfake” refers to a family of computer technologies to
transform a person’s face to another’s in images or videos.
Since deepfake videos circulated in social media have brought
serious concerns such as through celebrity pornographic
videos, fake news, hoaxes, and financial fraud, which largely
impairs the integrity of social media, deepfake detection has
attracted a lot of attention in the recent computer vision
research. For example, FakeCatcher [19] explored the discrim-
inative features of rPPG signals extracted from facial videos
and utilized them for deepfake detection.

III. PROPOSED METHOD

PulseEdit has three main steps as shown in Fig. 2. We first
detect the facial region in the video and extract skin intensity
signals from multiple subregions on the face. We then obtain
the perturbation signal via an optimization problem that trans-
forms the rPPG signal in the video to a target signal. Finally,
we manipulate the skin pixels in the video according to the
perturbation signal, so that the PulseEdit video successfully
removes the rPPG signal or transforms the rPPG signal to a
target rPPG signal of the user’s choice. We refer to the two
modes as “removal” and “modification”, respectively, in short.
In the removal mode, the target signal can be white Gaussian
noise; and in the modification mode, the target signal can be
a simulated sinusoid with the frequency of a target HR or the
rPPG signal extracted from a reference video of the user’s
choice.

A. rPPG Extraction
Similar to the prior art in the rPPG research, we first

track the subject’s face in the video to extract rPPG signal.
We apply the facial landmark detector by Dlib [35] to locate
and track 68 facial landmarks, from which we define the
facial region of interest (ROI) shown with the green dots
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in the video frame in Fig. 2. To facilitate rPPG extraction
from multiple subregions [6], the ROI is normalized to a
rectangle using piecewise linear geometric transformation, and
skin color pixels are masked by a Gaussian skin color model
in the chrominance space [36]:

p(x) = exp
( − 1

2
(x − m)T �−1(x − m)

) skin
≷

non-skin
pt , (1)

where x = [cb, cr ]T , and m and � are the mean and
covariance matrix of the Gaussian skin color model. Within the
masked rectangle facial ROI, we use a rectangle of a quarter
size to uniformly select M subregions (subregions can have
overlap with their neighbors). We compute the spatial average
of the skin pixels in each subregion to form the skin intensity
signal R ∈ R

M×3×N , for M subregions, 3 color channels, and
N frames in the video. In the subsequent discussions, we refer
to the subscripts i and c as subregion i and color channel c,
respectively. For example, Ri,c denotes the skin intensity signal
in subregion i and color channel c.

B. rPPG Editing

In this module, our goal is to find a suitable perturbation on
the skin intensity signals to change the rPPG in videos to the
target signal given by users. We first detrend the skin intensity
signal Ri,c,∀i, c, to eliminate the illumination interference in
the environment. In the detrending process, we use l1 trend
filtering [37] to obtain the signal trend and subtract it from the
skin intensity signal. The detrending process can be solved by
the optimization problem as

min
Si,c

1

2
||Si,c||22 + μ||D(Ri,c − Si,c)||1,∀i, c, (2)

where S ∈ R
M×3×N denotes the corresponding detrended sig-

nal, the subscripts i and c denote the subregion and the color
channel, and D ∈ R

(N−2)×N is the second-order difference
matrix

D =

⎡
⎢⎢⎢⎢⎢⎣

−1 2 −1
−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1
−1 2 −1

⎤
⎥⎥⎥⎥⎥⎦

. (3)

We denote δ ∈ R
3×N as the additive RGB perturbation

imposed onto the detrended signal S, which gives rise to the
edited signal S̃ ∈ R

M×3×N , i.e. S̃i,c = Si,c + δc,∀i, c, where
δc denotes the perturbation in the color channel c.

Next, we generate the target rPPG signal T ∈ R
3×N .

To ensure the output video contains the target rPPG signal T ,
we maximize the similarity between the edited signals S̃ and
the target signal T using the Pearson correlation coefficient:

P = 1

M

∑
i,c

ρ(S̃i,c, Tc) = 1

M

∑
i,c

ρ(Si,c + δc, Tc). (4)

For the edited facial video, we require that the person in the
video has negligible perceptual distortion. Thus, we regularize

Algorithm 1 Skin Pixel Adjustment
Input: Original video I containing N frames, I =
[I1,I2, . . . ,IN ], (frame dimension h × w × 3); perturbation
signal δ (dimension 3 × N).
Output: PulseEdit video Ĩ.
1: � ← ZEROLIKE(I) � memory allocation
2: for n = 1 → N do
3: R f ace ← FACESKINPIXEL(In) � detect skin pixels
4: for c = 1 → 3 do � each color channel
5: for all (x, y) ∈ R f ace do � each skin pixel
6: p ← RAND(0, 1)
7: if p < �δc(n)� − δc(n) then
8: �n(x, y, c) ← 	δc(n)

9: else

10: �n(x, y, c) ← �δc(n)�
11: end if
12: end for
13: end for
14: end for
15: Ĩ ← I + �

the perturbation signal δ with L2 loss to control the perturba-
tion budget in the facial video:

E = 1

N
||δ||22. (5)

Combining the above two terms, we obtain the perturbation
signal δ by solving the optimization problem:

min
δ

− 1

M

∑
i,c

ρ(Si,c + δc, Tc) + λ
1

N
||δ||22. (6)

We can use a gradient-based solver, such as the Adam
solver [38], to solve the optimization problem in (6).

C. Skin Pixel Adjustment

The goal of this module is to map the perturbation signal
δ ∈ R

3×N in time series to the spatial-temporal perturbation
frames � ∈ R

h×w×3×N , where h and w refers to the height
and width of the frames in pixel count. We denote δc(n) as
the perturbation of the color channel c in the n-th frame. One
simple and intuitive approach to edit the pixels on the face is to
directly add δ(n) to every skin pixel on the facial region in the
n-th frame of the input video. Due to the integer quantization
of pixel values in video frames, the decimal part of δ(n) needs
special consideration in order to ensure the pixel values are
collectively changed by the expected amount.

We adopt randomized dithering to skin pixels to achieve
decimal perturbation in a statistical sense. Specifically, for the
color channel c in the n-th frame, we adjust the skin pixels
in an amount of either 	δc(n)
 with probability p or �δc(n)�
with probability 1 − p, where p should be chosen so that

δc(n) = 	δc(n)
p + �δc(n)�(1 − p). (7)

Equation (7) yields p = �δc(n)�−δc(n). Algorithm 1 presents
the detailed procedure of skin pixel adjustment to generate the
final PulseEdit video.
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Fig. 3. Performance of PulseEdit on the PURE dataset with different λ: (a) HR estimation error in the rPPG removal mode with respect to the reference
HR from pulse oximeter, (b) HR estimation error in the rPPG modification mode with respect to the target HR, and (c) average frame-level PSNR.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on the
PURE dataset [39] to demonstrate the effectiveness and robust-
ness of PulseEdit in editing rPPG signals in facial videos.
To further validate the forensic undetectability of PulseEdit
when being used as a potential attack, we test the PulseEdit
videos against digital forensic analysis. Lastly, we compare
PulseEdit with the prior art of rPPG removal method [34]
and study the influence of different subject motion settings
in video recordings on the performance of rPPG removal.
In the paper, we set M = 6 × 6 = 36 and use Adam [38]
to solve (6) with the learning rate 0.1 and the number of
iterations 200.

A. Performance on PURE Dataset
The PURE dataset [39] contains 60 facial video recordings

of 640 × 480 pixel resolution and 30 frames per second (fps)
in well-lit rooms from 10 subjects. Each subject was recorded
in 6 different setups: steady, talking, slow translation, fast
translation, small rotation, and medium rotation. The videos
were stored without lossy compression. To validate the effec-
tiveness of PulseEdit in editing rPPG signals in facial videos,
we analyzed the PulseEdit outputs of the PURE videos with
five representative rPPG algorithms: ICA [13], CHROM [2],
POS [4], HR-CNN [7], and DeeprPPG [9]. The first three
methods are classical signal processing methods and the last
two are deep learning methods. For the HR-CNN method,
we used the model provided by the authors,1 which was
trained on the PURE dataset. For the DeeprPPG method,
we re-implemented the rPPG extraction model and trained on
the PURE dataset with an 80/20 split for training and testing.

We extracted rPPG signal from the whole facial region in
this part of the experiments to estimate HR, and evaluated the
performance using mean absolute error (MAE). For the rPPG
removal mode, we computed the error between the estimated
HR from the video and the reference HR from pulse oximeter
provided by the dataset. For the rPPG modification mode,
we computed the error between the estimated HR from the
video and the target HR.

1Model is available at https://cmp.felk.cvut.cz/%7espetlrad/ecg-fitness/

We applied PulseEdit on the PURE videos for both the
removal and modification modes. In the removal mode,
we generated white Gaussian noise as the target rPPG signal
T to remove the intrinsic rPPG signal in the original video.
In the modification mode, we aimed at changing the rPPG
signal to HR = 120 bpm as an example. We generated a
sinusoid of frequency 120 bpm as the target rPPG signal T for
all the color channels. To simulate the noise condition of rPPG
signals, we added white Gaussian noise with −10 dB, 0 dB,
and −10 dB in red, green, and blue channels, respectively,
since the green channel generally contains the strongest level
of pulse signal among all three channels [1]. We used the
whole face region in rPPG analysis to estimate HR from facial
videos.

We study the effect of different λ = {0, 0.1, 0.5, 1, 2, 5} on
the performance of PulseEdit, which governs the perturbation
budget in the facial video. To investigate the robustness of
PulseEdit against video lossy compression, we compressed the
edited frames by MPEG-4 format at the average bitrate of
around 500 kbps. Fig. 4 shows the qualitative comparison of
the video frames and the corresponding rPPG spectrograms
with different λ. Fig. 3(a) and (b) present the performance of
HR estimation before and after PulseEdit in the removal and
modification modes, respectively.

In the removal mode, we aim to increase the error of HR
estimation with respect to the reference HR, and Fig. 3(a)
shows that the error increases as λ decreases. When λ is
less than 0.5, the rPPG-removed videos have a very large
estimation error (i.e., > 10 bpm), indicating the successful
removal of the intrinsic rPPG signal by PulseEdit. In the
modification mode, our goal is to reduce the error of HR
estimation with respect to the target HR, and Fig. 3(b) shows
that the error is reduced as λ decreases. When λ is less than
0.5, the rPPG-modified videos have HR estimations very close
to the target HR, with an error no more than 1 bpm for
uncompressed videos and 10 bpm for MPEG-4 videos. This
suggests that PulseEdit can effectively transform the rPPG
signal in a video to a target HR. From Fig. 4, we observe
that when λ increases from 0 to 5, the original rPPG signals
gradually appear in the spectrograms of the edited videos.
This indicates that we need to spend enough editing expense
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Fig. 4. Exemplary face crop from the videos and spectrograms of the rPPG extracted from the videos with two classical rPPG methods, ICA and POS, and
one deep learning method, HR-CNN. We set the target HR = 120 bpm in the rPPG modification mode. The x-axis and y-axis denote the time and heart rate
(30 bpm to 180 bpm), respectively. The red lines in the spectrograms of the original video indicate the reference HR from pulse oximeter and the black dash
lines in the spectrograms of the rPPG modified videos indicate the target HR = 120 bpm. The figure is best viewed in color.

(smaller λ) in the video to successfully conceal the original
rPPG signal.

Since lossy compression may attenuate the rPPG signal
on the face, it is expected that the HR error is larger in

MPEG-4 videos than in uncompressed videos. Specifically,
in the rPPG modification mode, the HR error with respect
to the target HR is larger in the MPEG-4 video than in the
uncompressed video. Nevertheless, the modified rPPG signal
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Fig. 5. HR estimation of PulseEdit videos with different λ via a motion-based method: (a) rPPG removal mode and (b) rPPG modificaton mode.

of the target HR can still be detected by the rPPG methods
within an acceptable error range, when we choose λ < 0.5.
In comparison, lossy compression has less impact on the rPPG
removal mode. Overall, these results indicate that although
lossy compression can weaken the manipulations introduced
by PulseEdit, the privacy protection of the intrinsic rPPG
signal remains effective when choosing a proper λ.

An important observation is that the five rPPG methods
have similar HR estimation performance on the PulseEdit
videos, indicating that PulseEdit is effective to various rPPG
algorithms, including the classical signal processing methods
and the deep learning methods as well. This satisfies the
“generality” requirement.

Fig. 3(c) shows the objective image quality assessment for
the PulseEdit videos within the facial ROI with a size of
300 × 300. Since λ governs the editing strength in the video,
frame-level PSNR increases when λ increases. By vision
examination, we can hardly notice the distortion on the per-
son’s appearance shown in Fig. 4.

1) Motion-Based Physiological Signal Extraction: The
prior art has demonstrated that physiological signals can
also be extracted from facial videos via subtle head motions
caused by ballistocardiogram (BCG). We evaluate how effec-
tive PulseEdit can remove heart rate information extracted
using the motion-based method [3]. Since voluntary head
motions can easily sabotage the subtle involuntary head
motions induced by BCG, we analyze the steady cases for
fair evaluations in Fig. 5.

From our intuition, PulseEdit may not perform well against
motion-based methods, because it focuses on altering skin
color and does not deliberately modify the subtle head motions
in the steady facial videos. Nevertheless, we can observe that
PulseEdit can still amplify the HR error estimated by the
motion-based method though it can more effectively remove
heart rate infromation obtained via rPPG extraction methods.
One possible reason is that the imposed perturbation on pixels
influences the estimated optical flow of the facial pixel points
in tracking, degrading the pixel-level trajectory analysis of the
involuntary subtle head motion.

2) Running Time: Overall, PulseEdit runs efficiently.
On average, the step of rPPG extraction runs at around 10 fps,
the step of rPPG editing reaches 170 fps (the detrending runs

Fig. 6. Illustration of the three facial subregions: forehead (red), left cheek
(green), and right cheek (blue). The figure is best viewed in color.

at 200 fps and the optimization runs at 1000 fps, respectively),
and the step of skin pixel adjustment runs at around 100 fps.
These running times were measured using a single-core Python
implementation on a PC with an Intel Core i5-4440 processor.

B. rPPG Analysis on Multiple Facial Subregions
To examine the universality of PulseEdit, we analyze the

presence of rPPG signals in three facial subregions: forehead,
and left and right cheek, shown in Fig. 6. The regions
are detected automatically via the facial landmarks. Fig. 7
presents the performance of HR estimation from the three
facial subregions using the five rPPG algorithms. For classical
non-deep learning methods, we apply the algorithms within
the selected subregions; for deep learning methods, we first
warp the polygon regions to regular rectangles with the fitting
input size, and then feed them into the models. Since a
larger size of ROI generally gives a better average quality
of rPPG extraction [40], we expect a reduced accuracy of HR
estimation from facial subregions alone, compared with using
the whole face region.

From Fig. 7, we observe that HR error from the three
facial subregions has a similar trend as that from the whole
face region under different λ values. For the rPPG-removed
videos, the error is much larger than the original videos,
when λ is less than 0.5. This suggests that the intrinsic rPPG
signals are completely erased in all three facial subregions.
For the rPPG-modified videos, the HR error with respect to
the target HR is in an acceptable range, when λ is less than 0.5.
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Fig. 7. HR estimation of PulseEdit videos on multiple face subregions with different λ using five rPPG methods: (a) ICA, (b) CHROM, (c) POS, (d) HR-CNN,
(e) DeeprPPG in the rPPG removal mode, and (f) ICA, (g) CHROM, (h) POS, (i) HR-CNN, (j) DeeprPPG in the rPPG modification mode.

We can see that the rPPG signals in all three facial subregions
are successfully transformed to the target HR. In summary,
these results indicate that PulseEdit can effectively edit the
rPPG signals not only in the global facial region but also
in local facial subregions, which satisfies the “universality”
requirement.

PulseEdit computes the original skin intensity variations
R ∈ R

M×3×N (M denotes the number of subregions) from
multiple facial subregions and finds the optimal perturba-
tion in (6) that can change the heartbeat information in the
extracted local regions. This design can help the perturbation

universally change the heartbeat information in the global face
and the local facial regions.

C. User Study on Perceptual Distortion
We conducted a user study to investigate whether a human

viewer can notice the perceptual distortion introduced by
PulseEdit under different λ. Each question shows two videos,
the original video and the edited video by PulseEdit, and
provides three options: video one, video two, and “cannot
determine”. The respondents were asked to choose the original
video from the two given videos. If they could not distinguish
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Fig. 8. Results of user study on perceptual distortion in (a) the rPPG removal mode and (b) the rPPG modification mode.

the two videos, they might select the “cannot determine”
option. Thus, one respondent has three conditions for each
question: select the correct video, cannot determine, or select
the wrong video. We collected 28 responses and present the
survey result in Fig. 8 which illustrates the numerical propor-
tion of the correct answer, the “cannot determine” option, and
the wrong answer under different λ. The user study shows
that more people could not distinguish between the original
video and the edited video and fewer people could select the
original video correctly as λ increases. This indicates that the
large λ can reduce the perceptual distortion in human vision.
There is an abrupt drop of correct answer rate at λ = 0.5,
suggesting that λ = 0.5 is a good choice to balance the editing
performance and the perceptual distortion.

D. PulseEdit Against Forensic Analysis

From the previous performance analysis on PulseEdit,
we can see that PulseEdit is effective in editing the intrinsic
rPPG signals in facial videos for privacy protection. As moti-
vated in Section I, it is possible to utilize PulseEdit in adver-
sarial scenarios by forgers. In this subsection, we examine the
resistance of PulseEdit against forensic analysis tools to help
us understand its strengths and limitations.

PulseEdit perturbs the skin pixels by a small amount in
the video frames to edit rPPG signals, which is similar to
how steganography [43] manipulates the images. Based on
this point of view, we examine the forensic detectability of
PulseEdit against two representative steganalysis methods:
spatio–color rich model (SCRM) [41] with ensemble train-
ing [44], and WISERNet [42] based on deep learning. Since
PulseEdit only edits the facial regions, we cropped facial
ROI with a size of 300 × 300. We set the original video
frames as negative and the PulseEdit video frames as positive,
and used 5-fold cross-validation to evaluate the performance.
For deep models, we changed the size of feature maps in
the intermediate layers accordingly to cater to the input size
of 300 × 300.

We observe that steganalysis models are effective on uncom-
pressed video frames as their detection performance has an
area under curve (AUC) of 0.99+ for every λ value. They can
almost perfectly differentiate the original video frames and
the edited video frames by PulseEdit. Without incorporating

Fig. 9. Performance of PulseEdit against forensic analysis in MPEG-4 videos.

additional constraints, the randomized pixel adjustment in
Section III-C perturbs the skin pixels independently in the
frame, introducing artificial changes among local neighboring
pixels that are not presented in the direct output of video
cameras. This kind of unconstrained distortion can be easily
extracted by various image forensic models and discriminative
to natural images and edited images [45]–[47]. Fig. 9 presents
the steganalysis results on the lossily compressed videos. Com-
pared with the uncompressed videos, the steganalysis result of
the MPEG-4 videos degrades in a noticeable amount. For the
two steganalysis models, the deep model has a better ability
to detect the manipulation trace in the lossily compressed
videos than the classic model. We also find that the steganaly-
sis performance on the lossily compressed videos decreases
significantly in both forensic methods as λ increases. This
suggests that lossy compression can alleviate the detectability
of the manipulation traces in videos introduced by PulseEdit.

In the current form, PulseEdit focuses on altering the
rPPG information for privacy protection and has not explicitly
concealed the traces of manipulation. As such, the presence of
perturbation can be detected from the uncompressed frames by
such forensic tools as steganalysis. Because of the limitation
of such forensic analysis for lossy compressed frames and
the small and random perturbation of PulseEdit by design,
a lossy compression on PulseEdit videos can evade forensic
steganalysis and remain effective in concealing/modifying the
intrinsic rPPG information. It is possible to further include
various forensic undetectability into the algorithm, to gain
insights on the ability of PulseEdit as an antiforensic tool and

Authorized licensed use limited to: Min Wu. Downloaded on September 29,2022 at 08:36:13 UTC from IEEE Xplore.  Restrictions apply.



466 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE I

RESULT OF PULSEEDIT WITH λ = 0.5 ON HR ERROR, PERCEPTUAL DISTORTION, AND FORENSIC ANALYSIS

the competing direction of detecting the manipulations made
by PulseEdit.

E. Performance Summary of PulseEdit

Taking into consideration HR estimation error, perceptual
distortion, and resistance of PulseEdit videos against forensics,
we choose λ = 0.5 in PulseEdit and use it for the follow-
ing experiments. We summarize the experimental results of
PulseEdit with λ = 0.5 in Table I. The first five macro-rows
show MAE of HR estimation (unit: bpm), using different
rPPG algorithms. Note that, we compute MAE between the
estimated HR and the reference HR from pulse oximeter in
the rPPG removal mode, and compute MAE between the
estimated HR and the target HR= 120 bpm in the rPPG
modification mode. The next row shows frame-level perceptual
distortion analysis within the facial ROI between original
videos and edited videos. The last two rows present the
forensic analysis on PulseEdit.

Table I shows that the error of HR estimation with respect
to the reference HR from the facial video increases after
PulseEdit in the rPPG removal mode; the error of HR estima-
tion with respect to the target HR decreases significantly after
PulseEdit in the rPPG modification mode. This indicates that
the proposed PulseEdit can effectively remove/modify rPPG
information both in the whole face sense and in the local
subregion sense, tested by various rPPG methods. High PSNR

index suggests that PulseEdit hardly introduces perceptual
distortion on the subject’s appearance. Comparing the HR
estimation error between the uncompressed and MPEG-4
videos, we can see that lossy compression can weaken the
manipulation applied in the facial videos, but PulseEdit can
still edit the rPPG signals to some extent. From the perspective
of antiforensics, the AUC index reduces more than 0.4 in the
SCRM and more than 0.2 in the WISERNet. This indicates
that lossy compression can greatly help PulseEdit videos
defend forensic analysis.

F. Comparison With Prior Art

We compare the proposed PulseEdit in the rPPG
removal mode with the prior art Chen’s method [34].
We re-implemented Chen’s method and tuned the hyperpa-
rameter to obtain the best performance. We report the HR
error from the facial videos using the five rPPG methods: ICA,
CHROM, POS, HR-CNN, and DeeprPPG. The performance is
evaluated on the uncompressed videos.

1) Steady Case: We compare the rPPG-removing methods
under steady cases using the UBFC-RPPG dataset [48]. From
Table II, we can see that the five rPPG methods can accurately
estimate HR from the original videos. Given the fact that we
can extract rPPG signals accurately from the original videos,
Chen’s methods and PulseEdit have the comparable capability
to amplify the HR estimation error in steady cases. The PSNR
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TABLE II

PERFORMANCE COMPARISON OF RPPG REMOVAL
METHODS ON UBFC-RPPG DATASET

index indicates that the proposed PulseEdit has less distortion
than Chen’s method on the video frames.

2) Realistic Case: We compare the rPPG-removing meth-
ods under realistic cases using the PURE dataset [39]. Realistic
cases reflect the facial conditions in practical applications,
including steady cases and motion cases. Similarly, we can
see that the five rPPG methods can accurately estimate HR
from the original videos in Table III. Given the fact that we
can extract rPPG signals accurately from the original videos,
PulseEdit has larger amplification of HR error than Chen’s
method in realistic cases, which indicates that PulseEdit has
better editing performance to remove the intrinsic rPPG signal
in facial videos. The PSNR index indicates that the proposed
PulseEdit has less distortion than Chen’s method on the video
frames.

Fig. 10 presents barplots of performance comparison
between the proposed PulseEdit and Chen’s method regarding
6 motion settings: steady, talking, slow translation, fast trans-
lation, small rotation, and medium rotation. We can observe
that Chen’s method has similar performance to our method in
the steady case but does not perform well in the talking, head
translation, and head rotation cases.

Overall, the two methods have the similar performance
of rPPG removal in steady cases, but Chen’s method is not
effective when dealing with head motions. In comparison,
PulseEdit has little performance variation in steady cases and
motion cases, indicating that our proposed method is effective
in a variety of motion settings.

Chen’s method first estimates the color intensity variations
from pixel level, and then subtracts the pixel-wise intensity
variations from the original video to remove the physiological

TABLE III

PERFORMANCE COMPARISON OF RPPG REMOVAL
METHODS ON PURE DATASET

signals. The color intensity variation in each facial pixel is a
combined consequence of pulse-induced color variation and
voluntary motion. For head motion cases, the color intensity
variation caused by voluntary motions can easily overwhelm
the pulse-induced color variation in the video. This could
explain the reason why Chen’s method has ineffective editing
performance for motion cases. In contrast, PulseEdit tracks
multiple facial subregions and then extracts the pulse-induced
skin color variations from them. The tracking of facial subre-
gions can alleviate the interference of color variations caused
by voluntary motions. Also, PulseEdit finds the optimal per-
turbation such that the original rPPG signals in multiple facial
subregions can directly transfer to the target rPPG signal.
Hence, PulseEdit can deal with both steady and motion cases.

V. ANALYSIS OF ADVERSARIAL SCENARIOS

Since PulseEdit can edit rPPG signals in facial videos,
we expect that PulseEdit, as an adversarial operation, can
circumvent rPPG-based liveness detection [16], [18] and
rPPG-based deepfake detection [19]. Thus, we conducted
experiments on the HKBUMARsV1+ dataset [17] for live-
ness detection and the Celeb-DFv1 dataset [49] for deepfake
detection to evaluate the effectiveness of PulseEdit on above
two aspects, respectively.

A. Analysis Against rPPG-Based Liveness Detection

Liveness detection aims at detecting whether a person seen
by a camera is in his/her true live appearance or wearing a
camouflaging mask with different facial appearances, a profile
photo, or a video replay, to prevent face spoofing in iden-
tity authentication. Since live faces and many spoofed faces
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Fig. 10. Performance comparison between PulseEdit and Chen’s method in different subject motion settings with five rPPG methods: (a) ICA, (b) CHROM,
(c) POS, (d) HR-CNN, and (e) DeeprPPG. The motion settings are steady, talking, slow translation (ST), fast translation (FT), small rotation (SR), and medium
rotation (MR).

Fig. 11. ROC curves of (a) Hernandez’s and (b) Liu’s methods of rPPG-based liveness detection, and (c) FakeCatcher of rPPG-based deepfake detection
before and after PulseEdit.

often have different characteristics in rPPG features extracted
from the facial area, several prior publications have presented
classifiers based on rPPG features. We test two rPPG-based
liveness detection methods, namely, Hernandez’s method [18]
and Liu’s method [16], as a proof-of-concept, to analyze the
performance of PulseEdit on circumventing the rPPG-based
methods.

We conducted experiments on the HKBUMARsV1+
dataset [17], which consists of video recordings from 12
subjects in flesh and wearing 3D face masks of different
appearances. We set live facial videos as negative and 3D
mask videos as positive. The classifier settings are the same
as stated in [16], [18]. PulseEdit was applied to the 3D mask
videos, with the target rPPG signals generated using the same

procedure as in the rPPG modification mode in Section IV-A.
We used subject-based 5-fold cross-validation to evaluate the
performance of the detector on the videos before and after
PulseEdit.

We report the equal error rate (EER) and AUC in Fig. 11
to show the impact of PulseEdit on the rPPG-based liveness
detection algorithms. EER refers to the point where false
positive rate and false negative rate are equal. AUC refers
to the area under the receiver operating characteristic (ROC)
curve. Smaller EER and larger AUC indicate better detection
ability. We can see that PulseEdit increases the EER from
0.29 to 0.40 and decreases the AUC from 0.77 to 0.31 for
Hernandez’s method [18], and increases the EER from 0.10
to 0.26 and decreases the AUC from 0.94 to 0.73 for Liu’s
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method [16]. These results suggest that the current form of
PulseEdit can already circumvent the rPPG-based liveness
detection to some extent and additional optimization may
enhance such evasion by incorporating information from the
existing research of liveness detection.

B. Analysis Against rPPG-Based Deepfake Detection

The fast development of deep learning enables computers
to transform a person’s face to another’s in images and videos.
These “deepfake” videos can spread misinformation and fake
news and impair the integrity of social media, prompting a
strong and urgent need of developing the detection algorithms
for deepfake videos [50]. Recently, FakeCatcher [19] was
proposed to utilize rPPG signals from the video as features
to detect whether the video is real or deepfake. To analyze the
effectiveness of PulseEdit, we tested PulseEdit videos using
the FakeCatcher CNN model.

We conducted experiments on the Celeb-DFv1 dataset [49],
which consists of 370 real videos and 733 deepfake videos in
the training set, and 38 real videos and 62 deepfake videos in
the test set. We considered real videos as negative and fake
videos as positive, and trained the FakeCatcher CNN model
in the training set. The CNN architecture is the same as stated
in [19]. As shown in Fig. 11(c), FakeCatcher achieves an EER
of 0.29 and an AUC of 0.76 in the test set.

We applied PulseEdit on the deepfake videos in the test set,
with the rPPG signals extracted from the corresponding real
videos as the target rPPG signals. In other words, we tried to
restore the original rPPG signal in the deepfake videos. From
the classification performance of the FakeCatcher on the test
set with PulseEdit, we observe that the EER increases to 0.47
and the AUC reduces to 0.57, indicating that the rPPG signals
inserted by PulseEdit can circumvent FakeCatcher, making
it consider the deepfake videos as trustworthy. The above
observations show that PulseEdit can degrade the reliability of
the FakeCatcher classifier and fool it to make wrong decisions
on the deepfake videos.

C. Comparison With Prior Art

We analyze the prior art, Chen’s method [34], in the
above adversarial scenarios. Based on EER and AUC indices
from Fig. 11, we can see that there is no significant perfor-
mance degradation on rPPG-based visual security algorithms
when we process the fake/synthesized videos using Chen’s
method [34].

The rPPG-based visual security algorithms utilize the fea-
ture discrepancy between the extracted rPPG signals from real
videos and fake/synthesized videos to do the classification.
Typically, the real videos contain meaningful rPPG signals
while the fake/synthesized videos may mainly contain noise.
PulseEdit in the modification mode can synthesize designed
physiological signals for fake/synthesized videos to fool the
rPPG-based visual security algorithms. In constrast, Chen’s
method [34] was mainly designed removing the physiological
signals from the facial videos. Since fake/synthesized videos
do not contain rPPG signals already, removing the rPPG
signals does not change the feature of the extracted rPPG

signal in fake/synthesized videos. This explains why Chen’s
method [34] is not an effective adversarial tool. Overall, our
proposed PulseEdit provides a better adversarial capability to
circumvent rPPG-based visual security algorithms.

VI. DISCUSSIONS

In terms of the running time and the HR estimation
error of PulseEdit, the proposed PulseEdit is an effective
algorithm to edit rPPG signal in facial videos. Compared
with the prior art [34] that only focuses on eliminating the
rPPG information, we have designed PulseEdit with two
modes: rPPG removal and rPPG modification. The former
mode can remove the rPPG information and the latter mode
can change the rPPG information to a target HR of user’s
choice. The proposed algorithm offers the users more options
of editing operations on the physiological signal in facial
videos regarding physiological privacy protection. PulseEdit
also provides a better capability to remove the physiological
signal from videos with head motions (i.e., talking, translation,
and rotation), more robust to deal with practical recording
scenarios.

Considering PulseEdit as an adversarial operation to the
rPPG technology, we have studied to what extent PulseEdit can
circumvent rPPG-based visual security algorithms. As a proof-
of-concept, we considered the rPPG-based liveness detec-
tion and deepfake detection algorithms. The experimental
results demonstrate noticeable performance drops between
the spoofed videos before and after PulseEdit processes
them, indicating that PulseEdit can successfully mitigate the
rPPG-based visual security algorithms. From the perspective
of threat modeling for these visual security algorithms, our
PulseEdit research suggests that it is important to investi-
gate this and other similar vulnerabilities and improve the
rPPG-based visual security algorithms against adversarial
operations.

Over the past decade, rPPG technology has been prospering
and it is becoming feasible to monitor vital signs, such as HR,
using commercial digital cameras in daily life. One common
bottleneck in the R&D of rPPG technology is the lack of
sufficient facial videos with known HR of a wide range [51].
PulseEdit in the rPPG modification mode may be used to
synthesize facial videos with controllable HR to enlarge the
dataset and facilitate the R&D of rPPG technology.

There are some potential directions to improve the proposed
algorithm. PulseEdit has a hyperparameter λ to balance the
editing performance and the perceptual distortion. For facial
videos with different skin tones and illumination conditions,
the λ for the optimal performance is different. So far, to find
the optimal editing performance for each video, we can heuris-
tically try λ in ascending order until the optimal perturbation is
less than a maximum intensity threshold or the perceptual dis-
tortion can not be discovered by human examination. In future
research, the adaptive λ method is one direction to improve
the overall performance of PulseEdit.

Our algorithm focuses on altering rPPG information for
physiological privacy protection. Physiological information
can also be extracted from facial videos via BCG or invol-
untary subtle head motions. It is interesting to develop BCG
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editing algorithm to synergically edit the physiological infor-
mation from facial videos in parallel with PulseEdit.

In the current form, one limitation of PulseEdit as an
adversarial tool for video forgery is that we have not explicitly
conceal the manipulation traces introduced by itself. Forensic
tools such as steganalysis can detect the presence of perturba-
tion from the uncompressed frames if available. Nevertheless,
we have found that lossy video compression is a feasible
approach to improve the resistance of the edited frames against
forensic analysis and retain the edited rPPG signal in the video.
In future work, the inclusion of various forensic undetectability
into the framework of PulseEdit and the development of new
detectors to detect these manipulations may be two intertwin-
ing research directions. In addition, beyond the current form of
PulseEdit perturbing the facial pixels independently, the future
algorithm can take spatial and temporal correlations of facial
pixels into consideration for the pixel perturbation to further
minimize the perceptual distortion of facial videos.

VII. CONCLUSION

In this paper, we have proposed PulseEdit, a novel algo-
rithm that can edit the rPPG signal in facial videos without
visible distortion, to protect the physiological information
from disclosure. We design a set of perturbation frames
and impose them onto the input video frames to change a
person’s intrinsic rPPG signal present in the facial region.
PulseEdit can either remove the rPPG signals on the face
or change them to a target heart rate of a user’s choice.
Extensive experimental results demonstrate the effectiveness
and robustness of PulseEdit in different facial subregions,
and various rPPG algorithms can no longer detect heart rate
accurately from facial videos after PulseEdit. We also show
that PulseEdit can potentially circumvent rPPG-based liveness
detection and deepfake detection, suggesting a direction for
improvement in these areas.

Several improvements on PulseEdit can be explored in
future research. Adaptive choice of the optimization parameter
λ could be better than fixed λ to optimize the editing per-
formance and the perceptual distortion in each video. Apart
from rPPG editing, BCG editing algorithm can be developed
to synergically edit the physiological information from facial
videos in parallel with PulseEdit. The inclusion of various
forensic detectability criteria into the algorithm can help gain
insights into the ability of PulseEdit as an antiforensic tool and
the competing direction of detecting the manipulations made
by PulseEdit.
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