
1. Introduction

Barrier islands predominate the Atlantic and Gulf coastlines of the USA (Mulhern et al., 2017; Stutz & Pilkey, 2011). 

An estimated 4,300–4,700 km of open coast is parceled into as many as 282 islands (Dolan et al., 1980; Mulhern 

et al., 2017, 2021; Stutz & Pilkey, 2011), of which approximately a quarter have been described as “urbanized” 

(Dolan et al., 1980; Dolan & Lins, 2000). These host more than 1.4 million permanent residents (Zhang & Leath-

erman, 2011) and a disproportionate number of high-value properties (Nordstrom, 2004). Over recent decades, 

population growth and expansion of the built environment on US barrier islands have continued at rates that 

exceed national trends (McNamara & Lazarus, 2018; NOAA, 2013; Stutz & Pilkey, 2011; Zhang & Leather-

man, 2011), unchecked by damaging impacts of large storms (Godschalk et al., 1989; Lazarus et al., 2018).

The future dynamics of “urbanized” barrier islands will be determined by their built environments, and the 

persistence of localized hazard-mitigation practices (e.g., seawalls, breakwaters, groynes, beach nourishment, 
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dune construction) to protect against storm impacts, chronic erosion, and sea-level rise (Armstrong & 

Lazarus, 2019; Lazarus et al., 2016; Lazarus & Goldstein, 2019; Lazarus et al., 2021; McNamara et al., 2015; 

McNamara & Keeler,  2013; McNamara & Lazarus,  2018; Miselis & Lorenzo-Trueba,  2017; McNamara & 

Werner, 2008a, 2008b; Nordstrom, 1994, 2004; Rogers et al., 2015). Construction and protection of the built 

environment in barrier settings alters natural pathways of sediment transport, which in turn redistributes and reap-

portions local sediment budgets (Nordstrom, 1994, 2004). Changes in the sediment budget in turn change spatial 

patterns of hazard exposure, to which coastal management and planning must respond. Research into this feed-

back, which has come to typify human-altered coastlines, has tended to emphasize the comparative morphologi-

cal state of the barrier environment (McNamara & Werner, 2008a, 2008b) or to focus on the economic dynamics 

reflected in real-estate and property values (Armstrong & Lazarus, 2019; Armstrong et al., 2016; Gopalakrishnan 

et  al.,  2016,  2011; Lazarus et  al.,  2016; McNamara et  al.,  2015; McNamara & Keeler,  2013; McNamara & 

Lazarus, 2018; McNamara et al., 2011; Smith et al., 2009; Williams et al., 2013). Much of this work uses numer-

ical modeling to explore and understand potential thresholds in the human–environmental system that might 

drive barriers toward different management regimes—or even abandonment. However, subsumed in the spatial 

domains of these modeling exercises, but not addressed directly, are the networks of critical infrastructure—roads 

and public utilities—that are fundamental to the fabric of built environments. These networks connect physical 

spaces, with their own thresholds in functioning where failure may be abrupt.

Investigating infrastructure networks on developed barrier islands for thresholds in functioning—which could 

necessitate changes in management and planning—is an essential step toward improved insight and foresight into 

how human-altered barriers may evolve in the future. The analysis we present here examines potential thresh-

olds in the functioning of US Atlantic and Gulf barrier island road networks. In the US, road networks tend 

to be the principal way in which people and goods reach and move within developed barrier islands, and are 

vital to hazard evacuation, emergency response, and recovery operations during and after catastrophic storms 

(Anarde et  al., 2018; Darestani et  al., 2021; Frazier et  al., 2013; Godschalk et  al., 1989; Velasquez-Montoya 

et al., 2021). Road network disruptions—mechanisms that cause reductions in mobility or increases in the costs 

necessary to maintain the desired levels of mobility (Markolf et  al.,  2019)—are common on barrier islands 

during hurricanes, tropical storms, and nor'easters (Dolan & Lins, 2000; Hardin et al., 2012; Krynock et al., 2005; 

Nordstrom, 2004; Nordstrom & Jackson, 1995; Spanger-Siegfried et al., 2014; Velasquez-Montoya et al., 2021), 

and also occur as a result of king tides, sea-level anomalies, groundwater flooding, or other factors that lead to 

nuisance or “sunny day” flooding (Fant et al., 2021; Hino et al., 2019; Housego et al., 2021; Jacobs et al., 2018; 

Moftakhari et al., 2018, 2015, 2017; Praharaj et al., 2021). Road disruptions can lead to major socio-economic 

impacts, isolating neighborhoods, compromising evacuation, and preventing people from accessing critical 

services (Balomenos et al., 2019; Dong, Esmalian, et al., 2020; Jenelius & Mattson, 2012; Spanger-Siegfried 

et al., 2014; Suarez et al., 2005). The maintenance and restoration of other critical systems—electricity, water 

supply, communications—often depends on a functioning road system (Chang, 2016; Johansen & Tien, 2018; 

Mattson & Jenelius, 2015; Nicholson & Du, 1997).

Because road systems are networks, they can be investigated with the quantitative tools of graph theory (Albert & 

Barabási, 2002; Boeing, 2017, 2019, 2020; Callaway et al., 2000; Holme et al., 2002; Iyer et al., 2013; Jamakovic 

& Uhlig, 2008; Kirkley et al., 2018; Moreira et al., 2009; Porta et al., 2006; Tian et al., 2019). Note that network 

analyses have also been variously applied to coastal morphology and dynamics in non-built environments (Hiatt 

et al., 2021; Passalacqua, 2017; Pearson et al., 2020; Tejedor et al., 2018). Within the large and rapidly expand-

ing body of research into climate-driven disruptions to critical infrastructure (Faturechi & Miller-Hooks, 2015; 

Jaroszweski et al., 2014; Markolf et al., 2019; Neumann et al., 2021; Wang et al., 2020), a subset is exploring 

specifically the exposure and susceptibility of infrastructure to different drivers of flood disturbance. In addition 

to graph-based methods, recent work has focused on investigating disruption to road networks using techniques 

from agent-based traffic simulation paired with hydrodynamic models of flooding, specifically to look at travel 

time delays (e.g., Hummel et al., 2020; Papakonstantinou et al., 2019). Studies consider road and other transpor-

tation networks in urban coastal settings (de Bruijn et al., 2019; Kasmalkar et al., 2020, 2021; Kermanshah & 

Derrible, 2017; Pezza & White, 2021; Plane et al., 2019; Rotzoll & Fletcher, 2013; Sadler et al., 2017; Suarez 

et al., 2005; Sweet et al., 2014) and in fluvial floodplains and upland catchments (Abdulla & Birgisson, 2021; 

Arrighi et  al.,  2021; Dave et  al.,  2021; Dong, Esmalian, et  al.,  2020; Dong et  al.,  2022; Evans et  al.,  2020; 

Hummel et  al.,  2020; Kelleher & McPhillips,  2020; Papakonstantinou et  al.,  2019; Pregnolato et  al.,  2017; 

Singh et al., 2018; Versini et al., 2010; Wang et al., 2019); others focus on water-treatment systems in low-lying 
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coastal regions (Hummel et al., 2018) or multiple layers of infrastructure networks (Douglas et al., 2016; Habel 

et al., 2020, 2017; Koks et al., 2019; Neumann et al., 2021). To understand and forecast the future dynamics of 

developed barrier islands, more inquiry is needed to link thresholds in road network functioning to the physical 

forces that drive coastal change.

Here, we examine the drivable road networks of 72 barrier islands along the Atlantic and Gulf Coasts of the USA 

(Figure 1), selected because their networks contain >100 nodes. First, we cast the road network of each barrier 

island as a separate graph of nodes (intersections) connected by edges (road segments). We use spatially exten-

sive digital elevation models to assign an elevation to each node (intersection) in each road network. For each 

barrier island, we sequentially remove nodes from the network, starting from the lowest elevation, and identify 

Figure 1. US Atlantic and Gulf Coast barrier islands considered in this study, and their road networks. (a) Map of 184 barrier 

islands (Mulhern et al., 2017, 2021), of which 74 have road networks with >100 nodes (intersections). Of those, 72 (light 

blue) overlap with tiles currently available in the Continuously Updated Digital Elevation Model data from NOAA (Amante 

et al., 2021; CIRES, 2014). Box shows location of example barrier in panel below. (b) Example of drivable road network at 

Ocean Isle, North Carolina, USA, in which intersections are represented as nodes and roads as edges. Maps shown in Web 

Mercator projection (EPSG:3857).
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the critical node—with its corresponding elevation—at which each barrier island road network crosses a thresh-

old of functioning. We then link the elevation of each critical node to the local annual exceedance probability 

curve for extreme high-water levels. Our analysis demonstrates a method to identify specific physical locations 

that, if disrupted by flooding or a flood-related hazard (e.g., road damage, debris/sediment accumulation), could 

trigger functional failure in an island road network. We organize the components of this threshold, which varies 

by barrier island, in terms of common metrics—elevation and annual exceedance probabilities—to facilitate their 

incorporation into forward-looking modeling of developed barrier island dynamics.

2. Methods

Our workflow for investigating US Atlantic and Gulf barrier island road networks is shown in Figure 2. We 

discuss each step in the sequence below.

2.1. Road Networks and Topography

To isolate barrier island road networks, we used digitized perimeters of 184 barrier islands along the Atlantic 

and Gulf Coasts of the USA as spatial boundaries (Mulhern et al., 2017, 2021) and extracted the drivable road 

networks from Open Street Map (OSM) with OSMnx (Boeing, 2017). Cast as networks, road intersections are 

encoded as nodes and road segments are edges. We excluded connections between an island and the mainland 

(i.e., bridges, causeways, etc.) as well as other possible transportation pathways on islands, such as bikeways and 

walkways.

Of the 184 barriers considered, 108 have drivable road networks, according to their classification within OSM. Of 

those, 103 overlapped with tiles currently available in the NOAA Continuously Updated Digital Elevation Model 

(CUDEM), a set of 1/9 Arc-Second resolution bathymetric and topographic tiles for the coastal USA (Amante 

et al., 2021; CIRES, 2014). Note that some of these 103 networks are sandy tracks or access roads, or networks 

with very few nodes. For statistically meaningful metrics of network structure, we restricted our analysis to barri-

ers with drivable road networks of at least 100 nodes (Figure 1). This reduced our sample to 72 barriers. We deter-

mined the elevation of each node (road intersection) in each network by spatially querying the CUDEM dataset.

The size of this subset is broadly consistent—despite very different selection criteria—with the count by Dolan 

et al.  (1980), who identified 70 barrier islands as “urbanized.” We did not attempt to reconcile differences in 

reported numbers of US Atlantic and Gulf barrier islands: Dolan et  al.  (1980) report 282 islands; Stutz and 

Pilkey (2011) report 277; Mulhern et al. (2017, 2021) digitized 184. Note that several developed barrier islands 

are missing from Mulhern et al. (2017), but we use this dataset from Mulhern et al. (2017, 2021) because it is the 

only barrier compilation that is openly accessible.

2.2. Network Response to Node Removal

The susceptibility of a network to the failure of its components is typically explored by nullifying or removing 

nodes and calculating metrics that reflect network functioning (Abdulla & Birgisson, 2021; Iyer et al., 2013; Li 

et al., 2015; Newman, 2010; Schneider et al., 2011; Wang et al., 2019). For example, when enough of the network 

is removed, travel between any two nodes (intersections) becomes impossible or requires long travel distances 

Figure 2. Methodological workflow for assessing robustness to flood-induced failures in road networks on US Atlantic and Gulf barrier islands. Abbreviations are as 

follows: OSM is Open Street Map; OSMnx is an analytical toolbox (Boeing, 2017). CUDEM is the NOAA Continuously Updated Digital Elevation Model (Amante 

et al., 2021; CIRES, 2014). GCC is the giant connected component of a network, or the large cluster of nodes connected in the original network.
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(and time) on the network. We removed nodes from a network based on a ranked list by elevation—from lowest 

to highest—in contrast to removing nodes randomly (a common approach, e.g., Albert & Barabási, 2002). Node 

removal in this way mimics a simplified “bathtub” flooding scenario (e.g., Abdulla & Birgisson, 2021; Wang 

et al., 2019), which assumes that nodes become nullified because they are actively flooded, damaged by flood-

ing, and/or unusable because of debris and/or sand deposited on the road. We assumed that the removal of a 

node causes the immediate disconnection of all its connected edges. This work thus considered node removal 

exclusively. Because road intersections can be abstracted as points, they can be linked to specific elevations in a 

straightforward way. Since edges encode segments of roadway, an alternate strategy could preferentially remove 

network edges, or both edges and nodes. Edge removal would require dense sampling of elevation data along each 

edge of a road network to accurately locate lowest road elevation and calculate other summary metrics (e.g., mean 

road elevation). Future work should address whether the inclusion of edges significantly improves (or otherwise 

substantively changes) the results of this kind of analysis. Network metrics were calculated using NetworkX 

(Hagberg et al., 2008).

For road networks, the original network is connected in a single large cluster—the giant connected component 

(or giant component). As nodes in the original network are serially removed, the network breaks into smaller 

networks. Here, we tracked the size of these subnetworks relative to the size of the giant component. Specifically, 

as the fraction of nodes removed (q) increases and the first giant component degrades, we tracked the size of the 

second-largest cluster—the second giant connected component (Figure 3a). The network crosses a critical thresh-

old at qc, when the first giant component fragments and the size of the second giant component becomes maximal 

(Li et al., 2015; Wang et al., 2019). Generally, the higher qc—that is, the more nodes that can be removed before 

the giant component fragments—the less prone the network is to failure (Newman, 2010). The critical threshold 

(qc) can be linked to a specific node that causes the failure of the network (Figure 3b) and to the elevation of that 

node, which we refer to as the critical elevation (zc).

The relative importance of a node to the connectivity of a network is often measured in terms of centrality (e.g., 

Newman, 2010). Our focus here is specifically on quantifying network failure—which is related to but distinct from 

calculating node centrality and network connectivity. Determining the relative importance of a node to the potential 

failure (or robustness) of a network is typically treated as a percolation-type problem (Abdulla & Birgisson, 2021; 

Callaway et  al., 2000; Dong, Mostafizi, et  al., 2020; Li et  al., 2015; Wang et  al., 2019), and assessed in terms 

of threshold behavior in the giant connected component (Newman, 2010; Schneider et al., 2011). Relationships 

between metrics for network connectivity and percolation are not necessarily straightforward (Newman, 2010), in 

part because many metrics of network topology are autocorrelated, making them poorly suited tools for distinguish-

ing among networks with different structures (Bounova & de Weck, 2012; Jamakovic & Uhlig, 2008).

2.3. Extreme Water Levels

Comparison of coastal barrier islands solely on the basis of topographic elevation (i.e., one barrier is higher 

or lower than another) is not meaningful unto itself because of local differences in tidal forcing and extreme 

Figure 3. Examples illustrating the methodology used to (a) explore the size decay of the first and second GCCs, (b) identify the critical node that leads to the 

fragmentation of the network, and (c) quantify overall network robustness to elevation-based node removal. Barrier example shown here is the drivable network at 

Ocean Isle, North Carolina, USA. In (a), the vertical axes show the first (left) and second (right) GCC size as a fraction of nodes in the original network, as a function 

of the fraction of nodes removed (q). Red dot in panels (a) and (b) marks the critical node in the GCC and in real physical space, respectively. In panel (c), robustness R 

is taken as the area (light green) under the decay curve for the first GCC (bold green). Dashed gray line shows the inverse 1:1 reference line, indicating the theoretical 

maximum for R = 0.5. Maps like the example shown in (b) for all 72 barrier road networks with >100 nodes can be found in the data repository.



Earth’s Future

ALDABET ET AL.

10.1029/2021EF002581

6 of 16

water level statistics. For example, road networks on higher-standing barriers subject to frequent extreme storms 

might be more prone to flooding than road networks on lower-lying barriers subject to fewer storms. To provide 

meaningful comparisons among the broad geospatial distribution of barriers in our sample, we recast all node 

(intersection) elevations to local annual exceedance probabilities of extreme water events.

Extreme water levels have been used to examine the direct and indirect impacts of coastal floods on transportation 

systems and assess the susceptibility of the network to flood-induced failure (Fant et al., 2021; Habel et al., 2020; 

Jacobs et al., 2018; Pezza & White, 2021). Annual exceedance probabilities and average recurrence intervals 

are commonly applied for infrastructure design and assessment of flood risk (Apel et  al., 2004, 2006; Hackl 

et al., 2018; Haigh et al., 2014; Sweet & Park, 2014; Vitousek et al., 2017; Wahl et al., 2017). Average recurrence 

intervals, also known as return periods, provide an estimation of the time elapsed between events of the same 

magnitude; annual exceedance probability refers to the likelihood that high-water levels exceed a certain eleva-

tion in any given year (Haigh et al., 2014). For example, a flood with an annual exceedance probability of 0.01 

corresponds to an event that has a 1% chance of annual occurrence, or an average recurrence interval of 100 years. 

(Return period can be understood as the inverse of exceedance probability.)

Extreme value analysis (EVA)—the branch of statistics that deals with the estimation and prediction of rare values 

within a series (Coles, 2001)—has been applied broadly to analyses of observed and simulated extreme high-wa-

ter levels to quantify the probability of occurrence (and/or return period) of extreme events (Vitousek et al., 2017; 

Wahl et al., 2017; Zervas, 2013). One of the most common EVA methods is block maxima, which considers the 

maximum of all recorded values within a block of time (i.e., days, months, or years) and approximates extreme 

values using a Generalized Extreme Value (GEV; Coles, 2001; Zervas, 2013) distribution. The GEV distribution 

is described by three parameters—location (μ), scale (σ), and shape (ξ)—that refer, respectively, to the center of 

the distribution, the deviation around the mean, and the tail behavior of the distribution. The shape parameter 

determines the extreme distribution used: Gumbel (ξ = 0), Frèchet (ξ > 0), or Weilbull (ξ < 0). Using long-term 

monthly tide gauge records from the 112 US stations operated by the Center for Operational Oceanographic 

Products and Services, Zervas (2013) followed a GEV approach to characterize the distributions of extreme high 

and low-water levels and produce exceedance probability curves for each station. For each barrier island in this 

analysis, we generated extreme high-water level annual exceedance probability curves by sampling the Gumbel 

distribution described by the three reported GEV parameters (Zervas, 2013) for the tidal station closest to that 

barrier by straight-line distance. Note that this use of straight-line distance is an assumption, as extremes may 

differ based on factors such as bathymetry, geometry of adjacent coastal landforms, and dynamics of the forcing 

event (e.g., direction of storm propagation). We then estimated annual exceedance probabilities for the critical 

node of each barrier network, which we refer to as the critical exceedance, ec. We thus linked each critical node 

to a specific annual exceedance probability. All calculation was done using the Python ecosystem, for example, 

Scipy (Virtanen et al., 2020) and Numpy (Harris et al., 2020). Note that the choice of extreme value analysis 

applied to a data set has the greatest effect on events with the lowest likelihood of occurrence (Wahl et al., 2017). 

Because high-likelihood events are of particular interest to us in this analysis, the Gumbel distributions that we 

use to reproduce the estimates reported by Zervas (2013) are sufficient: a different method of extreme value anal-

ysis would result in different probabilities for the low-likelihood events from these tide gauges, but estimates for 

high-likelihood events will be effectively the same.

2.4. Network Robustness

Having focused on identifying a single critical node for each island and defining a critical threshold for each 

barrier road network in terms of elevation (and exceedance probability), we next examined the overall network 

robustness of each barrier. The purpose of this step is to provide a summary metric for network functioning 

that includes but is not limited to the occurrence of the critical threshold: for example, determining how much 

of the original road network is still connected when any given percentage of the nodes is removed. Calculating 

whole-network robustness permitted us to compare barrier road networks in terms of their entire architecture, 

rather than solely by comparing aspects of a single critical node (e.g., its elevation and the related exceedance 

value).

We used the robustness metric R proposed by Schneider et al. (2011), which measures the summed size of the 

giant connected component as nodes are removed (Figure 3c):
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where N refers to the total number of nodes in the network, Q to the number 

of nodes removed, and s(Q) is the fraction of nodes in the giant component 

after removing Q nodes. The normalization factor 1/N allows comparison 

between networks of different sizes. The resulting R values range between 1/N 

(for a star graph) to 0.5 (a fully connected network; Schneider et al., 2011). 

Note that we evaluated network robustness in two ways: by removing nodes 

in rank order of elevation (lowest to highest) and by random node removal 

(e.g., Wang et al., 2019). Other studies have investigated how R changes with 

non-random but abstracted network disruptions (Iyer et al., 2013), and how R 

varies in transportation networks, specifically, with different types of disrup-

tions (Dong, Mostafizi, et al., 2020; Wang et al., 2019).

3. Results

3.1. Barrier Island Road Networks

Of the 184 barrier islands considered in this analysis (Mulhern 

et  al.,  2017,  2021), 74 have drivable road networks with more than 100 

nodes, and only 72 overlap with CUDEM tiles. These 72 islands account 

for 65% of the total US Atlantic and Gulf barrier island area (3,082 km 2 out 

of 4,716  km 2) and 60% of the US Atlantic and Gulf barrier island shore-

line length (4,282 km out of 7,150 km) delineated in the dataset by Mulhern 

et al. (2017, 2021). On average, the 72 islands with networks of >100 nodes 

are typically three times larger (43 km 2) than barrier islands with small or no 

drivable road networks (15 km 2). Almost 90% of the 72 islands (63 barriers) 

are smaller than 100 km 2, and ∼60% (42 barriers) are smaller than 25 km 2 

(Figure 4a). Road network size is variable, ranging between 19 and 678 km of total road length (143 km on aver-

age; Figure 4b) and between 111 and 3,486 intersections (739 nodes on average; Figure 4c). Approximately 20% 

of these drivable networks (16 networks) have more than 200 km of total street length, and more than 25% (19 

networks) have more than 1,000 nodes. The average node elevation for the 72 road networks with >100 nodes is 

2.5 m (Figure 4d). Of all nodes in the dataset, ∼65% sit between 1 and 3 m elevation (34,438 nodes out of 53,214), 

and ∼8% (4,516 nodes) are below 1 m elevation. Conversely, barely 7% of all road intersections (3,695 nodes) are 

located above 5 m elevation, and only 0.5% (265 nodes) are above 10 m elevation.

3.2. Elevation-Based Node Removal

Elevation plays a primary role in determining the sequence of road closures, where intersections at the lowest 

elevations are expected to be among the first disrupted during floods (e.g., Abdulla & Birgisson, 2021): disrup-

tion might include being submerged by the flood, being physically damaged by flood water, and being buried 

under debris and/or sediment deposited by flooding. The aggregate compilation of all networked node elevations 

shows that most nodes sit below 5 m (Figure 4d). We also plot each node in a given network in ranked order 

of elevation, from lowest to highest, for all 72 barriers with networks >100 nodes—a representation akin to a 

hypsometric curve (Figure 5a)—which demonstrates the topographic similarity of these road networks despite 

the geographic distribution of the barriers on which they are situated. For each road network, we used the ranked 

order of node elevation to sequentially remove nodes, from lowest to highest, and plot the corresponding size 

of the first giant connected component (Figure 5b). We find that two general modes of behavior emerge. In one 

mode, the giant component decreases linearly with each node removed: as one node is removed from network, 

one node is removed from the giant component. This occurs as the removed nodes come from areas at the 

extremities of the network, or where the network is highly connected and nodes are linked by multiple edges (i.e., 

removal of a single intersection from a gridded network). In the other mode, the removal of a single node results 

in a sharp drop in giant component size. An example of this is the loss of a single node that links two parts of an 

Figure 4. Summary statistics for 72 US Atlantic and Gulf barrier-island road 

networks with >100 nodes. Panels show distributions of (a) total area, (b) 

total road length, and (c) the number of networked nodes for all 72 barriers. 

Panel (d) shows the distribution of elevation for all networked nodes in all 72 

barriers.
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island, each with its own cluster of nodes. Large, abrupt changes in the size 

of the giant component indicate the presence of nodes whose removal results 

in the fragmentation of the network. Thus, although these 72 barrier networks 

appear similar topographically, node removal on the basis of elevation does 

not yield identical curves because of differences in local network architecture 

(Figure 5b).

We find that for all 72 road networks with >100 nodes, the elevation of the 

critical node (zc)—the node whose removal from the network simultaneously 

reduces the size of the first giant component and maximizes the size of the 

second giant component—lies below 5 m (Figure 5c). Moreover, 85% (61 

networks) have critical nodes below 2.5 m; 44% (32 networks) have critical 

nodes below 1.5 m; and 18% (13 networks) have a critical node below 1 m. 

Unlike the more varied curves apparent when the size of the giant component 

is plotted as a function of the fraction of nodes removed (Figure 5b), plotting 

the size of the giant component as a function of the elevation of each node 

removed emphasizes the precarity implied by such low elevations for critical 

nodes (Figure 5d): the size of the giant component decays all but instantane-

ously as node elevation increases. However, similarly low-lying topography 

does not equate to similar likelihoods of flooding. For that, we needed to 

consider geographic differences in extreme water level.

3.3. Extreme Water Levels

Inferring road network susceptibility to failure purely in terms of node 

elevation is not meaningful. Tidal range varies along the US Atlantic and 

Gulf coastline, as does exposure to extreme high-water levels (i.e., hurri-

canes, nor'easters, and sea-level anomalies). We therefore connected each 

barrier road network node elevation to estimated local exceedance probabil-

ities of extreme high-water levels. As a result, nodes at the same elevation 

but on different barrier islands can be associated with markedly different 

annual exceedance probabilities (Figure  6a). We find that 44 of the 72 

barrier networks (61%) have critical nodes at elevations associated with 

annual exceedance probabilities >0.01 (greater than 1% per year, or an average recurrence time of once every 

100 years; Figure 6b). Of those, 25 networks—over a third of the barriers sampled—yield critical thresholds in 

annual exceedance probability at or above 0.1 (10% chance per year, or an average recurrence time of once every 

10 years). The critical elevation for those nodes is, on average, just above 1 m elevation (Figure 6c). Generally, we 

find that local critical exceedance (ec) is associated with the elevation of the critical node (zc; Figure 6c).

Figure 5. Network effects of node removal based on ranked list of elevation 

(from low to high). (a) Elevation of each networked node, sorted into a ranked 

list from lowest to highest, for 72 barriers with networks with >100 nodes. 

Network size is normalized to 1. (b) Size decay of each giant connected 

component under sequential node removal by elevation, from lowest to 

highest. Gray dashes are the inverse 1:1 reference line. (c) Elevation of the 

critical node (zc) for each of the 72 road networks with >100 nodes, ranked 

from lowest to highest. (d) Size decay of each giant connected component as a 

function of node elevation.

Figure 6. Relationships between road networks and extreme water levels. (a) Size decay of the giant connected component 

versus annual exceedance probability (AEP) of extreme high-water events, based on the elevation of each node removed. (b) 

Barrier islands ranked according to exceedance probability of the critical node (ec). (c) Relationship between the exceedance 

probability of the critical node for each barrier (ec) as a function of the critical-node elevation (zc).



Earth’s Future

ALDABET ET AL.

10.1029/2021EF002581

9 of 16

3.4. Road Network Robustness

We calculated road network robustness to measure the ability of the road network architecture to withstand node 

removal. Recall that robustness (R) is the normalized, summed size of the giant connected component as nodes 

are removed (Equation 1, after Schneider et al., 2011). We first focus on robustness by removing nodes in order 

of elevation (low to high). For the 72 barriers with networks >100 nodes, we show the giant component as a func-

tion of the fraction of nodes removed (as in Figure 5b), now colored by the corresponding R value (Figure 7a). 

When the size of the giant component decreases linearly with each successive node removed—as shown by the 

inverse 1:1 reference line (gray dashes)—the area under the curve is maximized, and so is the associated R value 

(R = 0.5). Color makes the gradient in R visually apparent: low values (purples) are associated with the farthest 

excursions from the 1:1 reference line, and high values (yellows) are concentrated closest to the reference line.

Approximately 35% of the networks (26 islands) have R > 0.4, with four networks above 0.45. Nearly half of 

the barriers analyzed (32 islands) fall within the range 0.3 < R < 0.4, and the remaining 20% of the networks 

(14 islands) have R < 0.3, with one network below 0.2 (Figure 7b). The highest R values in our sample illustrate 

behavior close to an end-member situation, where the giant component decreases almost linearly until nearly 

two-thirds of the nodes in the network are removed (qc ∼ 0.6)—at which point, the network begins to disintegrate 

(Figure 7c). By contrast, networks with low R values are characterized by abrupt reductions in the size of the giant 

component with the removal of a small fraction of nodes (Figure 7d).

Figure 7. Road network robustness. (a) Normalized giant connected component size as a function of fraction of network 

nodes removed (as in Figure 5b), where color represents values of robustness (purple ∼ low; yellow ∼ high). Dashed gray 

inverse 1:1 reference line denotes the curve for perfectly linear GCC decay with a theoretical maximum robustness of R = 0.5. 

(b) Rank-order plot of robustness values for the 72 barriers with >100 nodes. (c) Decay of giant component as a function of 

fraction of nodes removed for a network with high robustness to flooding disturbance (black line; R = 0.47; island FL28 in 

Mulhern et al. (2021)). Solid gray lines show comparatively distinct decay curves for the same network under random node 

removal. (d) Decay of giant component as a function of fraction of nodes removed for a network with low robustness to 

flooding disturbance (black line; R = 0.17; island SC1 in Mulhern et al. (2021)). Solid gray lines show similar decay curves 

for the same network under random node removal.
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Related work on flood-driven disruptions to road networks has demonstrated 

quantitative differences between the behavior of the giant component with 

preferential removal of nodes by elevation versus random node removal 

(Abdulla & Birgisson, 2021; Wang et  al.,  2019). We likewise show that a 

given network can have high robustness to elevation-based node removal, 

yet low robustness to random node removal (Figure 7c). Barriers with higher 

mean elevation tend to have critical nodes at higher elevations, and therefore 

be more tolerant of elevation-based node removal—but are no less prone 

to failure under random removal. Note that networks with low robustness 

values for elevation-based removal tend to show little difference between 

elevation-based removal versus random removal (Figure 7d), suggesting an 

intrinsic low robustness in their network architecture that is independent of 

removal order type.

4. Implications

4.1. No Single Metric Can Be Used to Rank Barrier Susceptibility to 

Disruption

Taken together, the key variables explored in this work—critical node eleva-

tion (zc), critical exceedance (ec), and robustness (R)—provide a window into 

the complexity of elevation-based disturbance to road networks on seemingly 

similar barrier environments. Collating these three variables in a parallel-co-

ordinates plot shows that the ranking of barriers changes depending on the 

metric (Figure 8). Here, the barriers are first ranked by critical elevation (zc) 

in ascending order (left column), then by critical annual exceedance prob-

ability (ec) in descending order (middle column), and then by robustness 

(R) in ascending order (right column). The top of the plot thus uniformly 

corresponds to barrier networks that are less susceptible to disturbance based 

on each metric. Barrier islands are colored according to their elevation rank 

(sequence in first column), and each color tracks across the other two columns 

for ec and R. Connecting lines cross as individual barriers change places in 

the respective rankings. This result illustrates a key insight: a barrier network might appear worryingly suscepti-

ble to disturbance on a ranked list according to one variable but reassuringly strong according to another. That is, 

a network might have a notably low critical node elevation, but be situated in a place unlikely to be affected by 

extreme high-water levels, and/or be characterized by an architecture with high robustness to elevation-controlled 

(i.e., flooding) disturbance. Cognate studies of hazard-driven disturbance to road networks have reached similar 

conclusions regarding the elusiveness of a single, definitive, ranking metric that captures network susceptibility 

to failure (Kermanshah & Derrible, 2017).

4.2. Caveats: Non-Stationarity and Interdependencies in Hazard Forcing

Our analysis does not account for non-stationarity in environmental forcing, which is needed for work like this 

to be incorporated in future-looking modeling of barrier island dynamics. Our results are therefore indicative 

of road network robustness to disturbance on US Atlantic and Gulf barriers based on past conditions, but likely 

underestimate annual exceedance probabilities for critical nodes (ec) in the future, as even high-likelihood events 

become more frequent. Future work should incorporate and explore the effects of forcing non-stationarity (e.g., 

Buchanan et al., 2017; Cheng & AghaKouchak, 2014; Ezer & Atkinson, 2014; Kirezci et al., 2020; Moftakhari 

et  al.,  2015; Sweet & Park,  2014; Taherkhani et  al.,  2020; Tebaldi et  al.,  2012; Vitousek et  al.,  2017; Wahl 

et al., 2017). We anticipate that the primary effect of non-stationarity would be to raise critical exceedance over 

time across the dataset, driving more barriers—some more rapidly than others—toward high if not guaranteed 

annual exceedance probabilities.

We also do not explicitly consider flood drivers or specific impacts of flooding (e.g., standing water, road 

damage, traffic flow, debris and sediment deposition), and instead focus on network disruption based purely on 

Figure 8. Parallel-coordinates plot of critical node elevation (zc), exceedance 

probability (ec), and robustness (R) for barriers with road networks of >100 

nodes. In each column, respectively, barriers (labeled at far left) are ranked by 

zc in ascending order, by ec in descending order, and by R in ascending order. 

Each barrier is colored by zc, and that color follows each barrier across the plot 

as its relative rank changes for ec and R.
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elevation. Future work can incorporate observations on how road networks are impacted by relative contributions 

of specific drivers from marine sources (Serafin et al., 2017) and others, such as pluvial (Dave et al., 2021; Evans 

et al., 2020; Kelleher & McPhillips, 2020; Neumann et al., 2021; Pregnolato et al., 2017) or groundwater flooding 

(Habel et al., 2020, 2017; Plane et al., 2019; Rotzoll & Fletcher, 2013), or the potential importance of variability 

in flood duration (Arrighi et al., 2021; Darestani et al., 2021; de Bruijn et al., 2019; Najibi & Devineni, 2018; 

Pezza & White, 2021; Sweet et al., 2014). Adding traffic dynamics either through graph-based approaches (e.g., 

Dong et al., 2022), or agent-based traffic simulations (e.g., Hummel et al., 2020; Papakonstantinou et al., 2019) 

would also enrich future work, as would further investigation of material and mechanical properties of roadways 

to understand the event conditions likely to cause permanent damage (e.g., Khan et  al.,  2014, 2017; Mallick 

et al., 2017).

As empirical and modeled data for constructing annual exceedance probabilities for extreme high-water levels 

continue to improve (Muis et  al.,  2020; Tadesse & Wahl,  2021; Woodworth et  al.,  2016), so too will analy-

ses of infrastructural robustness to flooding at specific localities—which might involve recalculating probabil-

ities of infrastructural failure under non-stationary forcing (Cheng & AghaKouchak,  2014) and/or including 

the mitigating or exacerbating effects of coastal landscape morphodynamics (Anarde et  al.,  2018; Darestani 

et al., 2021; Velasquez-Montoya et al., 2021). Nevertheless, gaining insight into the probability distribution—and 

non-stationarity—of multi-source flood magnitude and frequency will also require a proliferation of accessible, 

comprehensive, multi-layer datasets (Habel et al., 2020). For example, our annual exceedance probabilities do 

not explicitly account for changes in each component of the total water level, and accounting for changing wave 

climates can significantly increase predictions of future total water levels (e.g., Vitousek et al., 2017). Emerging 

multi-layer datasets will not only include environmental forcings, but also different types of susceptible infra-

structure (Emanuelsson et al., 2014; Neumann et al., 2021), of which road networks are only one: recent works 

in this expanding research space consider wastewater treatment facilities (Hummel et  al.,  2018), storm-water 

conduits (Habel et al., 2020), rail and tunnel systems (Douglas et al., 2016; Koks et al., 2019), and interdepend-

encies across multiple infrastructure systems (Najafi et al., 2021).

4.3. Identifying Hotspots of Concern

Our analysis offers a computationally efficient way of exploring (with open-access data sets) barrier island road 

network robustness to disturbance from extreme high-water events. The resulting isolation of a critical node 

associated with large-scale network failure is essentially a first-order diagnostic, derived from the assumption, 

a priori, that topography is a key control on flood susceptibility. To test if flood-driven failure of coastal (and 

other floodplain) road networks is fundamentally a function of topography at critical nodes will require sustained 

observation of real settings (e.g., Plane et al., 2019). But if borne out, then this work demonstrates how specific 

nodes, or sets of nodes, in a road network might be targeted in planning strategies for climate adaptation at local 

scales—especially where resources for adaptation are limited, and specific actions (e.g., raising a road surface 

over a given distance) may have noticeable effect on the impact of increasingly frequent disturbances.

Local actions at critical nodes in road networks—and other networked infrastructure—are important because, 

as our results illustrate, the local failure of a critical node triggers a nonlocal failure of the larger network in 

which it sits. Climate-driven, local disruptions with nonlocal consequences represent a vital concern not only 

for physical networks of critical infrastructure (Arrighi et al., 2021; Hummel et al., 2018; Li et al., 2015), but 

also for the emplacement of hazard defenses, which can displace or amplify hazard impacts alongshore (Ells 

& Murray, 2012; Lazarus et al., 2016; Wang et al., 2018) or downstream (Tobin, 1995). Our analysis suggests 

that if the critical node of a road network is elevated, for example, by a local intervention that rearranges the 

three-dimensional network topology, then a different node elsewhere in the network will become the new critical 

junction. However, if the new critical node corresponds to a significantly lower annual exceedance probability, 

then the functional susceptibility of the network will have improved in kind—as long as other interventions, such 

as hazard defenses, do not likewise displace flooding impacts in unintentionally confounding ways.

Broadly, our findings contribute to a diverse and rapidly expanding body of work concerning climate-driven 

impacts to infrastructure (Faturechi and Miller-Hooks,  2015; Jaroszweski et  al.,  2014; Markolf et  al.,  2019; 

Neumann et al., 2021; Wang et al., 2020), and pertain to forward-looking discourse on sustainable urban systems, 

including calls for “developing new data and methods to understand current drivers and interactions among 

natural, human-built, and social systems in urban areas as they impact multiple sustainability outcomes across 
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scales” (ACERE, 2018). Our work here is focused on barrier islands along the US Atlantic and Gulf Coasts, 

but a similar effort could be applied to other low-lying coastal systems vulnerable to flooding, such as coral 

atolls (e.g., Storlazzi et al., 2018). Development of simple diagnostics for infrastructure susceptibility in built 

environments with high exposure to natural hazard should only become more promising with improved accessi-

bility to high-resolution geospatial data for natural and human systems. Specifically, our results can contribute to 

forward-looking predictions of barrier island dynamics. Future work can incorporate thresholds for road network 

functioning into barrier island models. Numerical models could include human actions and management strate-

gies that acknowledge thresholds in infrastructure functioning and incorporate hazard-mitigation practices that 

aim to protect infrastructure. We anticipate that feedbacks between sediment dynamics and infrastructure will 

also contribute to future barrier island dynamics.

Data Availability Statement

All datasets and analytical code used in this study are publicly available from the cited sources listed in the 

manuscript text. Our code to extract and analyze road networks and topography is available on Github (https://

github.com/envidynxlab/Networks_Barriers), with citable DOIs via Zenodo: code (https://doi.org/10.5281/

zenodo.6354835) and data (https://doi.org/10.5281/zenodo.6354814). This manuscript relies on open data, 

specifically CUDEM (https://coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/), 

OSM (https://www.openstreetmap.org; accessed programmatically via Boeing, 2017), and barrier island shape-

files (Mulhern et al., 2021).
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