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Abstract. — We associate to each non-degenerate smooth interval map a number

measuring its global asymptotic expansion. We show that this number can be cal-

culated in various different ways. A consequence is that several natural notions of

nonuniform hyperbolicity coincide. In this way we obtain an extension to interval

maps with an arbitrary number of critical points of the remarkable result of Nowicki

and Sands characterizing the Collet-Eckmann condition for unimodal maps. This also

solves a conjecture of Luzzatto in dimension 1.

Combined with a result of Nowicki and Przytycki, these considerations imply

that several natural nonuniform hyperbolicity conditions are invariant under topo-

logical conjugacy. Another consequence is for the thermodynamic formalism: A non-

degenerate smooth map has a high-temperature phase transition if and only if it is

not Lyapunov hyperbolic.

Résumé (Expansion asymptotique des applications lisses d’intervalle). — On associe

à chaque application lisse et non dégénérée de l’intervalle un nombre measurant

sa expansion asymptotique globale. On montre que ce nombre puet être calculé

de plusiers façons distinctes. En conséquence, plusieurs notions d’hyperbolicité

faible coïncident. De cette façon on obtient une extension aux applications de

l’intervalle avec une nombre arbitraire de points critiques du résultat notable

de Nowicki et Sands caractérisant la condition de Collet-Eckmann pour les

applications unimodales. Ceci résoudre aussi une conjecture de Luzzatto en

dimensión 1. En combinaison avec un résultat de Nowicki et Przytycki, ces

considérations entraînent que plusieurs notions d’hyperbolicité faible sont invariantes

par conjugaison topologique. Une autre consequence est pour le formalisme

thermodynamique : Une application lisse et non dégénérée de l’intervalle possède une

transition de phase de haute temperature si et seulement si elle n’est pas Lyapunov

hyperbolique.
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Key words and phrases. — Non-uniform hyperbolicity, mixing rates.

© Astérisque 416, SMF 2020



É
pr

eu
ve

SM
F

M
ar

ch
4,

20
20

34 J. RIVERA-LETELIER

1. Introduction

In the last few decades, the statistical and stochastic properties of nonuniformly

hyperbolic maps have been extensively studied in the one-dimensional setting, see for

example [6, 12, 16, 37, 39, 45] and references therein. These maps are known to be

abundant, see for example [3, 5, 15, 10, 21, 42, 44] for interval maps and [2, 34, 40, 14]

for complex rational maps.

In this paper we associate to each non-degenerate smooth interval map a num-

ber measuring its global asymptotic expansion. Our main result is that this number

can be calculated in various different ways. For example, it can be calculated using

the Lyapunov exponents of periodic points or the Lyapunov exponents of invariant

measures, and it can also be calculated using the exponential contraction rate of

preimages of a small ball. This implies that several natural notions of nonuniform

hyperbolicity coincide, including the existence of an absolutely continuous invariant

probability (acip) that is exponentially mixing. In this way we obtain an extension

to interval maps with an arbitrary number of critical points of the remarkable re-

sult of Nowicki and Sands characterizing the Collet-Eckmann condition for unicritical

maps, see [28]. Moreover, this solves in the affirmative a conjecture of Luzzatto in

dimension 1, see [19, Conjecture 1].

Combined with a result of Nowicki and Przytycki, we obtain that several natu-

ral notions of nonuniform hyperbolicity are invariant under topological conjugacy,

see [27]. In particular, for non-degenerate smooth interval maps the existence of an

exponentially mixing acip is invariant under topological conjugacy.

Combined with [11, 22, 23, 43, 46], these considerations imply that an arbitrary

exponentially mixing acip satisfies strong statistical properties, such as the local cen-

tral limit theorem and the vector-valued almost sure invariant principle. On the other

hand, by [37] it follows that for some p > 1 the density of such a measure is in the

space Lp(Leb).

Our main result provides an important step in the study of the thermodynamic

formalism of non-degenerate smooth interval maps in [32]. (1) Combining our main

result with [32, Theorem A], we obtain a characterization of those maps having a

high-temperature phase transition.

We proceed to describe our results more precisely. To simplify the exposition, below

we state our results in a more restricted setting than what we are able to handle. For

general versions, see §4 and the remarks in §6.

1.1. Quantifying asymptotic expansion. — Let I be a compact interval and f : I → I

a smooth map. A critical point of f is a point of I at which the derivative of f vanishes.

The map f is non-degenerate if it is non-injective, if the number of its critical points is

(1) The proof of our Main Theorem applies without change to the more general class of maps con-

sidered in [32], see Theorem C of that paper. Note however that, although the proof in [32] follows

the proof of our Main Theorem, it has a part that is different. This modified proof only gives a

qualitative version of our Main Theorem, similar to Corollary A.
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ASYMPTOTIC EXPANSION OF SMOOTH INTERVAL MAPS 35

finite, and if at each critical point of f some higher order derivative of f is nonzero. A

non-degenerate smooth interval map is unicritical if it has a unique critical point. (2)

Let f : I → I be a non-degenerate smooth map. For an integer n ≥ 1, a periodic

point p of f of period n is hyperbolic repelling if |Dfn(p)| > 1. In this case, denote by

χp(f) :=
1

n
ln |Dfn(p)|

the Lyapunov exponent of p. Similarly, for a Borel probability measure ν on I that is

invariant by f denote by

χν(f) :=

∫
ln |Df | dν

its Lyapunov exponent.

The following is our main result. A non-degenerate smooth map f : I → I is

topologically exact, if for every open subset U of I there is an integer n ≥ 1 such

that fn(U) = I.

Main Theorem. — For a non-degenerate smooth map f : I → I, the number

χper(f) := inf {χp(f) : p hyperbolic repelling periodic point of f}

is equal to

χinf(f) := inf {χν(f) : ν invariant probability measure of f} .

If in addition f is topologically exact, then there is δ > 0 such that for every interval J

contained in I that satisfies |J | ≤ δ, we have

lim
n→+∞

1

n
ln max

{
|W | : W connected component of f−n(J)

}
= −χinf(f).

Moreover, for each point x0 in I we have

(1.1) lim sup
n→+∞

1

n
ln min

{
|Dfn(x)| : x ∈ f−n(x0)

}
≤ χinf(f),

and there is a subset E of I of zero Hausdorff dimension such that for each point x0

in I \ E the lim sup above is a limit and the inequality an equality.

Except for the equality χinf(f) = χper(f), the hypothesis that f is topologically

exact is necessary, see §1.6.

The result above suggests that for a non-degenerate smooth map f the num-

ber χper(f) (equal to χinf(f)) is a natural measure of the asymptotic expansion of f .

In fact, χinf(f) gives a lower bound for the (lower) Lyapunov exponent of every point

in a set of total probability. This motivates the following definition.

Definition 1.1. — A non-degenerate smooth map f is Lyapunov hyperbolic if

χinf(f) > 0. In this case, we call χinf(f) the total Lyapunov exponent of f .

(2) Note that every unicritical map is unimodal, but not conversely.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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36 J. RIVERA-LETELIER

Lyapunov hyperbolicity can be regarded as a strong form of nonuniform hyperbolic-

ity in the sense of Pesin. A consequence of the Main Theorem is that Lyapunov hyper-

bolicity coincides with several natural nonuniform hyperbolicity conditions, see §1.2.

When restricted to the case where f is unicritical, the Main Theorem gives a

quantified version of the fundamental part of [28, Theorem A]. In [28, Theorem A],

property (1.1) was only considered in the case where x0 is the critical point of f ; so

the assertions concerning (1.1) in the Main Theorem are new, even when restricted

to the case where f is unicritical. The proof of [28, Theorem A] relies heavily on

delicate combinatorial arguments that are specific to unicritical maps. As is, it does

not extend to interval maps with several critical points. When restricted to unicritical

maps, our argument is substantially simpler than that of [28].

When f is a complex rational map, the Main Theorem is the essence of [33, Main

Theorem]. The proof in [33, Main Theorem] does not extend to interval maps, because

at a key point it relies on the fact that a complex rational map is open as a map of the

Riemann sphere to itself. Our argument allows us to deal with the fact that a non-

degenerate smooth interval map is not an open map in general, see §1.7 for further

details.

1.2. Nonuniformly hyperbolic interval maps. — We introduce some terminology to

state a consequence of the Main Theorem about the equivalence of various nonuniform

hyperbolicity conditions.

Let (X,dist) be a compact metric space, T : X → X a continuous map and ν a

Borel probability measure that is invariant by T . Then ν is exponentially mixing or

has exponential decay of correlations, if there are constants C > 0 and ρ in (0, 1)

such that for every continuous function ϕ : X → R and every Lipschitz continuous

function ψ : X → R we have for every integer n ≥ 1
∣∣∣∣
∫

X

ϕ ◦ fn · ψ dν −

∫

X

ϕ dν

∫

X

ψ dν

∣∣∣∣ ≤ C

(
sup
X

|ϕ|

)
‖ψ‖Lipρ

n,

where ‖ψ‖Lip := supx,x′∈X,x 6=x′

|ψ(x)−ψ(x′)|
dist(x,x′) .

We denote by Leb the Lebesgue measure on R. For a non-degenerate smooth

map f : I → I, we use acip to refer to a Borel probability measure on I that is

absolutely continuous with respect Leb and that is invariant by f .

A non-degenerate smooth map f : I → I has Uniform Hyperbolicity on Periodic

Orbits, if χper(f) > 0. Moreover, f satisfies the:

— Collet-Eckmann condition, if all the periodic points of f are hyperbolic repelling

and if for every critical value v of f we have

lim inf
n→+∞

1

n
ln |Dfn(v)| > 0.

— Backward or Second Collet-Eckmann condition at a point x of I, if there are

constants C > 0 and λ > 1, such that for every integer n ≥ 1 and every point y

of f−n(x) we have |Dfn(y)| ≥ Cλn.
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ASYMPTOTIC EXPANSION OF SMOOTH INTERVAL MAPS 37

— Backward or Second Collet-Eckmann condition, if f satisfies the Backward

Collet-Eckmann condition at each of its critical points.

— Exponential Shrinking of Components condition, if there are constants δ > 0

and λ > 1 such that for every interval J contained in I that satisfies |J | ≤ δ,

the following holds: For every integer n ≥ 1 and every connected component W

of f−n(J) we have |W | ≤ λ−n.

In the statement of the following corollary we use the following fact: Every non-

degenerate smooth map that is topologically exact has strictly positive topological

entropy and a unique measure of maximal entropy, see for example [4, §3]. Finally, a

measure ρ on I has a power-law lower bound, if there are constants C > 0 and α > 0

such that for every interval J contained in I we have ρ(J) ≥ C|J |α.

Corollary A. — For a non-degenerate smooth map f : I → I that is topologically ex-

act, the following properties are equivalent:

1. Lyapunov hyperbolicity (χinf(f) > 0).

2. Uniform Hyperbolicity on Periodic Orbits (χper(f) > 0).

3. Existence of an exponentially mixing acip for f .

4. The map f is conjugated to a piecewise affine and expanding multimodal map by

a bi-Hölder continuous function.

5. The map f satisfies the Exponential Shrinking of Components condition.

6. The map f satisfies the Backward Collet-Eckmann condition at some point of I.

7. The maximal entropy measure of f has a power-law lower bound.

Furthermore, these equivalent conditions are satisfied when f satisfies the Collet-

Eckmann or the Backward Collet-Eckmann condition.

The equivalence 1 ⇔ 3 solves [19, Conjecture 1] in dimension 1.

When f is unicritical, the equivalence of conditions 1–5 was proved by Nowicki and

Sands in [28, Theorem A]. They also showed, still in the case where f is unicritical,

that the Collet-Eckmann and the Backward Collet-Eckmann conditions are equiva-

lent and that each of these conditions is equivalent to conditions 1–5. In contrast,

for maps with several critical points the Collet-Eckmann and the Backward Collet-

Eckmann conditions are not equivalent and neither of these conditions is equivalent

to conditions 1–7, see [33, §6]. When f is a complex rational map, a statement ana-

log to Corollary A was shown by Przytycki, Smirnov, and the author in [33, Main

Theorem], (3) [31, Corollary 1.1] and [35, Theorem B].

Even when restricted to the case where f is unicritical, the implication 6 ⇒ 5 of

Corollary A is new. It is the main new ingredient of the proof, which is provided by

Main Theorem. The implication 5 ⇒ 4 is also new. The rest of the implications are

known, or can be easily adapted from known properties of unicritical interval maps

or complex rational maps, see §6 for references.

(3) In [33] condition 4 was interpreted as the existence of a “Hölder coding tree.”

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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1.3. Exponentially mixing acip’s. — Let f : I → I be a non-degenerate smooth map

that is topologically exact and that is Lyapunov hyperbolic. Such a map has a unique

exponentially mixing acip. In [31, Theorem C], this measure is constructed using

the general method of Young in [46]. (4) When a measure ν on I can be obtained in

this way, we say ν can be obtained through a Young tower with an exponential tail

estimate. Such a measure has several statistical properties, including the “local central

limit theorem” and the “vector-valued almost sure invariant principle,” see [23, 46] for

these results and for precisions, and [11, 22, 43] for other statistical properties satisfied

by such a measure.

On the other hand, for f as above there is p(f) > 1 with the following prop-

erty: For p ≥ 1 the density of the unique exponentially mixing acip of f is in the

space Lp(Leb) if 1 ≤ p < p(f), and it is not in Lp(Leb) if p > p(f). See [37, Corol-

lary 2.19], where a geometric characterization of p(f) is also given. (5)

In view of the results above, the following corollary is a direct consequence of

Corollary A and of general properties of non-degenerate smooth interval maps.

Corollary B. — Let f be a non-degenerate smooth interval map having an exponen-

tially mixing acip ν. Then there is p > 1 such that the density of ν with respect

to Leb is in the space Lp(Leb). Moreover, ν can be obtained through a Young tower

with an exponential tail estimate. In particular, ν satisfies the local central limit the-

orem and the vector-valued almost sure invariant principle.

Alves, Freitas, Luzzatto, and Vaienti showed under mild assumptions that in any

dimension each polynomially mixing or stretch exponentially mixing acip can be ob-

tained through a Young tower with the corresponding tail estimates, see [1, Theo-

rem C]. In contrast with this last result, in Corollary B the existence of p > 1 for

which the density of ν is in Lp(Leb) is obtained as a consequence, and not as a

hypothesis. So the following question arises naturally.

Question 1.2. — Let f be a non-degenerate smooth interval map having an acip ν.

Does there exist p > 1 such that the density of ν with respect to Leb is in the

space Lp(Leb)?

1.4. Topological invariance. — A direct consequence of Corollary A and a result of

Nowicki and Przytycki in [27], is that each of the conditions 1–7 of Corollary A

is invariant under topological conjugacy for maps having all of its periodic points

hyperbolic repelling. To state this result more precisely, we recall the definition of the

“Topological Collet-Eckmann condition” introduced in [27]. Let f : I → I be a non-

degenerate smooth map that is topologically exact and fix r > 0. Given an integer

n ≥ 1, the criticality of fn at a point x of I is the number of those j in {0, . . . , n− 1}

(4) The proof of [31, Theorem C] is written for complex rational maps and applies without change to

topologically exact non-degenerate smooth interval maps. See [37, Corollary 2.19] for a proof written

for interval maps.
(5) If f is unicritical and we denote its critical point by c, then p(f) = ℓc/(ℓc − 1).

ASTÉRISQUE 416
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such that the connected component of f−(n−j)(B(fn(x), r)) containing f j(x) contains

a critical point of f . Then f satisfies the Topological Collet-Eckmann (TCE) condition,

if for some choice of r > 0 there are constants D ≥ 1 and θ in (0, 1), such that the

following property holds: For each point x in I the set Gx of all those integers m ≥ 1

for which the criticality of fm at x is less than or equal to D, satisfies

lim inf
n→+∞

1

n
# (Gx ∩ {1, . . . , n}) ≥ θ.

One of the main features of the TCE condition, which is readily seen from its def-

inition, is that it is invariant under topological conjugacy preserving critical points:

If f : I → I is a non-degenerate smooth map satisfying the TCE condition and

f̃ : Ĩ → Ĩ is a non-degenerate smooth map that is topologically conjugated to f by a

map preserving critical points, then f̃ also satisfies the TCE condition. Nowicki and

Przytycki showed in [27] that for a non-degenerate smooth interval map f , condi-

tion 5 of Corollary A implies the TCE condition. They also proved that if in addition

all the periodic points of f are hyperbolic repelling, then the TCE condition implies

condition 2 of Corollary A. Thus, the following is a direct consequence of Corollary A

and [27].

Corollary C. — For a non-degenerate smooth interval map that is topologically exact

and that only has hyperbolic repelling periodic points, the Topological Collet-Eckmann

condition is equivalent to each of the conditions 1–7 of Corollary A. In particular,

each of the conditions 1–7 of Corollary A is invariant under topological conjugacy

preserving critical points, for maps having only hyperbolic repelling periodic points.

Combining [27] and [28, Theorem A], it follows that for unicritical maps having only

hyperbolic repelling periodic points the Collet-Eckmann and the Backward Collet-

Eckmann conditions are both invariant under topological conjugacy preserving critical

points. This is not the case for maps with several critical points, see [33, Appendix C].

The following is for maps that are not necessarily topologically exact. It is obtained

by combining Corollary C with general properties of non-degenerate smooth interval

maps, see §6 for the proof.

Corollary D. — For non-degenerate smooth interval maps having only hyperbolic re-

pelling periodic points, the property that an iterate has an exponentially mixing acip

is invariant under topological conjugacy preserving critical points.

1.5. High-temperature phase transitions. — Corollary A has a very useful application

to the thermodynamic formalism of interval maps, that we proceed to describe. Let

f : I → I be a non-degenerate smooth interval map that is topologically exact. Denote

by M (I, f) the space of Borel probability measures on I that are invariant by f . For

a measure ν in M (I, f), denote by hν(f) the measure-theoretic entropy of f with

respect to ν and for each real number t put

P (t) := sup {hν(f) − tχν(f) : ν ∈ M (I, f)} .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020
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Combining Ruelle’s inequality in [38] with the fact that the Lyapunov exponent of

every measure in M (I, f) is nonnegative, see [30, Theorem B] or Proposition A.1, it

follows that the number above is finite and that the function P : R → R so defined

is convex and nonincreasing. Moreover, P has at least one zero and that its first zero

is in (0, 1]. The function P is called the geometric pressure function of f , and it is

related to various multifractal spectra and large deviation rate functions associated

to f .

Following the usual terminology in statistical mechanics, for a real number t∗ we

say f has a phase transition at t∗, if P is not real analytic at t = t∗. In accordance

with the usual interpretation of t > 0 as the inverse of the temperature in statistical

mechanics, if in addition t∗ > 0 and t∗ is less than or equal to the first zero of P , then

we say that f has a high-temperature phase transition.

The following is an easy consequence of Corollary A and [32, Theorem A], see §6

for the proof.

Corollary E. — For a non-degenerate smooth interval map f that is topologically ex-

act, the following properties are equivalent:

1. The map f has a high-temperature phase transition.

2. If we denote by t0 the first zero of P , then for every t ≥ t0 we have P (t) = 0.

3. The function P is nonnegative.

4. The map f is not Lyapunov hyperbolic.

When f is a complex rational map, the equivalence of conditions 2–4 is part of [33,

Main Theorem]. (6)

1.6. Notes and references. — If the map f is not topologically exact, then by the

Main Theorem we have χinf(f) = χper(f), but the remaining assertions of the Main

Theorem do not hold in general. For an example, consider the logistic map with the

Feigenbaum combinatorics, f0. For this map we have χinf(f0) = 0. However, if J is

a small closed interval that is disjoint from the post-critical set of f0, then the limit

in the Main Theorem is strictly negative. Similarly, for every point x0 that is not in

the post-critical set of f0, the lim sup in the Main Theorem is strictly positive. This

also shows that the implication 6 ⇒ 1 of Corollary A does not hold for f0. Note also

that an infinitely renormalizable map f cannot satisfy any of the conditions 1–5 of

Corollary A.

See [25] for further examples illustrating the difference between the Collet-Eckmann

condition and conditions 1–7 of Corollary A for maps with at least 2 critical points.

Li [17] and Luzzatto and Wang [20] showed that the Collet-Eckmann condition

together with a slow recurrence condition is invariant under topological conjugacy

preserving critical points. See also [18] for a recent related result.

(6) It is unclear to us if condition 1 is equivalent to 2–4 in the complex setting.

ASTÉRISQUE 416
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See [8, 9] and references therein for results on low-temperature phase transitions;

that is, phase transitions that occur after the first zero of the geometric pressure

function.

1.7. Strategy and organization. — To prove the Main Theorem and Corollary A we

follow the structure of the proof of the analog result for complex rational maps in [33,

Main Theorem]. The main difficulty is the proof that χper(f) > 0 implies the last

statement of the Main Theorem, which is essentially the implication 2 ⇒ 5 of Corol-

lary A. The proof of this fact in [33] relies in an essential way on the fact that a

nonconstant complex rational maps is open as a map from the Riemann sphere to

itself. The argument provided here allows us to deal with the fact that a multimodal

map is not an open map in general. Ultimately, it relies on the fact that the boundary

of a bounded interval in R is reduced to 2 points.

To prove implication 2 ⇒ 5 of Corollary A we first remark that the proof of the

implication 2 ⇒ 6 for rational maps in [33] applies without change to interval maps.

Our main technical result is a quantified version of the implication 6 ⇒ 5 for interval

maps. This is stated as Proposition 3.1, after some preliminary considerations in §2.

Its proof occupies all of §3. In §4 we formulate a strengthened version of the Main

Theorem, stated as the Main Theorem′, and we deduce it from Proposition 3.1 and

known results. In the proof we use that the Lyapunov exponent of every invariant

measure supported on the Julia set is nonnegative [30, Theorem B]. We provide a

simple proof of this fact (Proposition A.1 in Appendix A), which holds for a general

continuously differentiable interval map. This result is used again in the proof of

Corollary E.

The proofs of Corollaries A, D, and E are given in §6, after we prove the implica-

tion 5 ⇒ 4 of Corollary A in §5.
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2. Preliminaries

Throughout the rest of this paper I denotes a compact interval of R. We endow I

with the distance dist induced by the absolute value | · | on R. For x in I and r > 0, we

denote by B(x, r) the open ball of I centered at x and of radius r. For an interval J

contained in I, we denote by |J | its length and for η > 0 we denote by ηJ the open

interval of R of length η|J | that has the same middle point as J .

Given a map f : I → I, a subset J of I is forward invariant if f(J) = J and it is

completely invariant if f−1(J) = J .
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2.1. Fatou and Julia sets. — Following [24], in this section we introduce the Fatou

and Julia sets of a multimodal map and gather some of their basic properties.

A non-injective continuous map f : I → I is multimodal, if there is a finite partition

of I into intervals on each of which f is injective. A turning point of a multimodal

map f : I → I is a point in I at which f is not locally injective.

Fix a multimodal map f : I → I. The Fatou set F (f) of f is the largest open

subset of I on which the iterates of f form a normal family. A connected component

of F (f) is called Fatou component of f . A Fatou component U of f is periodic if for

some integer p ≥ 1 we have fp(U) ⊂ U . In this case the least integer p with this

property is the period of U .

The Julia set J(f) of f is the complement of F (f) in I. By definition we

have f−1(F (f)) ⊂ F (f) and therefore f(J(f)) ⊂ J(f). In contrast with the complex

setting, the Julia set of f might be empty, reduced to a single point, or might not

be completely invariant. If the Julia set of f is not completely invariant, then it is

possible to make an arbitrarily small smooth perturbation of f outside a neighbor-

hood of J(f), so that the Julia set of the perturbed map is completely invariant and

coincides with J(f).

2.2. Topological exactness. — Fix a multimodal map f : I → I. We say that f is

boundary anchored if f(∂I) ⊂ ∂I and that f is topologically exact on J(f), if J(f) is

not reduced to a point and if for every open subset U of I intersecting J(f) an iterate

of f |J(f)
maps U ∩ J(f) onto J(f).

Since it is too restrictive for our applications to assume that a multimodal map

is at the same time boundary anchored and topologically exact on its Julia set, we

introduce the following terminology. We say that a multimodal map f is essentially

topologically exact on J(f), if there is a compact interval I0 contained in I that con-

tains all the critical points of f and such that the following properties hold: f(I0) ⊂ I0,

the multimodal map f |I0
: I0 → I0 is topologically exact on J(f |I0

), and
⋃+∞
n=0 f

−n(I0)

contains an interval whose closure contains J(f).

2.3. Differentiable interval maps. — Fix a differentiable map f : I → I.

A critical point of f is a point at which the derivative of f vanishes. A critical value

of f is the image by f of a critical point. We denote by Crit(f) the set of critical points

of f . If f is in addition a multimodal map, then we put

Crit′(f) := Crit(f) ∩ J(f).

Let J be an interval contained in I and let n ≥ 1 be an integer. Then each connected

component of f−n(J) is a pull-back of J of order n, or just a pull-back of J . If in

addition fn : W → J is a diffeomorphism, then the pull-back W is diffeomorphic.

Note that if f is boundary anchored and W is a pull-back of J of order n, then

fn(∂W ) ⊂ ∂J .
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Let J be an interval contained in I, let n ≥ 1 be an integer, and let W be a pull-

back of J by fn. We say W is a child of J , (7) if W contains a unique critical point c

of f in J(f) and if there is s in {0, . . . , n− 1} such that fs(c) belongs to Crit(f) and

such that the following properties hold:

1. Either s = n− 1 or the pull-back of J by fn−s−1 containing fs+1(c) is diffeomor-

phic.

2. For each s′ in {0, . . . , s} the pull-back of J by fn−s
′

containing fs
′

(c) is either

disjoint from Crit(f) or fs
′

(c) belongs to Crit(f) and then fs
′

(c) is the unique

critical point of f contained in this set.

2.4. Interval maps of class C3 with non-flat critical points. — A differentiable interval

map f : I → I is of class C3 with non-flat critical points, if:

— The set Crit(f) is finite and f is of class C3 outside Crit(f).

— For each critical point c of f there exists a number ℓc > 1 and diffeomorphisms φ

and ψ of R of class C3, such that φ(c) = ψ(f(c)) = 0 and such that on a

neighborhood of c on I we have,

|ψ ◦ f | = |φ|ℓc .

The number ℓc is the order of f at c.

Denote by A the collection of non-injective interval maps of class C3 with non-flat

critical points, whose Julia set is completely invariant and contains at least 2 points.

Note that every smooth non-degenerate interval map that is topologically exact is

in A , and that every interval map in A is a continuously differentiable multimodal

map.

We use the following important fact: For each map in A every Fatou component

is mapped to a periodic Fatou component under forward iteration, and the number

of periodic Fatou components is finite, see [24, Chapter IV, Theorem AB].

The following version of the Koebe principle follows from [41, Theorem C(2)(ii)].

As for non-degenerate smooth interval maps, a periodic point p of period n of a map f

in A is hyperbolic repelling if |Dfn(p)| > 1.

Lemma 2.1 (Koebe principle). — Let f : I → I be an interval map in A all whose

periodic points in J(f) are hyperbolic repelling. Then there is δ0 > 0 such that for

every K > 1 there is ε in (0, 1) such that the following property holds. Let J be

an interval contained in I that intersects J(f) and satisfies |J | ≤ δ0. Moreover, let

n ≥ 1 be an integer and W a diffeomorphic pull-back of J by fn. Then for every x

and x′ in the unique pull-back of εJ by fn contained in W we have

K−1 ≤ |Dfn(x)|/|Dfn(x′)| ≤ K.

The following general fact is used in the proof of the Main Theorem′ in §4.

(7) This definition is a variant of the usual definition of “child.” It is adapted to deal with the case

where f has a critical connection.
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Fact 2.2. — If f is an interval map in A that is topologically exact on J(f), then J(f)

contains a uniformly expanding set whose topological entropy is strictly positive. In

particular, the Hausdorff dimension of J(f) is strictly positive.

The following lemma is standard, see for example [36] for part 1.

Lemma 2.3. — Let f : I → I be a multimodal map in A having all of its periodic

points in J(f) hyperbolic repelling. Then the following properties hold.

1. For every integer n ≥ 1, every pull-back W of B(x, δ1) by fn intersects J(f),

contains at most 1 critical point of f , and is disjoint from (Crit(f) ∪ ∂I) \ J(f).

2. For every κ > 0 there is δ2 > 0 such that for every x in J(f), every integer n ≥ 1,

and every pull-back W of B(x, δ2) by fn, we have |W | ≤ κ.

3. Exponential shrinking of components

The purpose of this section is to prove the following proposition. It is the key step

in the proof of the Main Theorem, which is given in the next section.

Proposition 3.1. — Let f : I → I be a map in A that is topologically exact on J(f).

Suppose there is a point x0 of J(f) and constants C > 0 and λ > 1 such that for

every integer n ≥ 1 and every point x in f−n(x0) we have

|Dfn(x)| ≥ Cλn.

Then every periodic point of f in J(f) is hyperbolic repelling and for every λ0 in (1, λ)

there is a constant δ2 > 0 such that the following property holds. Let J be an interval

contained in I that intersects J(f) and satisfies |J | ≤ δ2. If J(f) is not an interval,

then assume that J is not a neighborhood of a periodic point in the boundary of a

Fatou component of f . (8) Then for every integer n ≥ 1 and every pull-back W of J

by fn, we have

(3.1) |W | ≤ λ−n0 .

The proof of this proposition is at the end of this section. It is based on several

lemmas.

In this section, a critical point c of a map f in A is exposed, if for every integer j ≥ 1

the point f j(c) is not a critical point of f . Given c in Crit′(f), let s ≥ 0 be the largest

integer such that fs(c) is in Crit(f) and put

ℓ̂c :=
∏

j∈{0,...,s}

fj(c)∈Crit(f)

ℓfj(c) and ℓ̂max := max
{
ℓ̂c : c ∈ Crit′(f)

}
.

(8) There is an example showing that this hypothesis is necessary, see [36, Proposition A]. However,

a qualitative result holds when this hypothesis is not satisfied, see [36, Theorem B].
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Lemma 3.2. — Let f : I → I be an interval map in A such that all of its periodic

points in J(f) are hyperbolic repelling. Then there are δ3 > 0 and C1 > 1 such that

for every interval J that intersects J(f) and satisfies |J | ≤ δ3 and C1J ⊂ I, the

following property holds: For every integer n ≥ 1 and every pull-back W of J by fn

such that the pull-back of C1J by fn containing W is a child of C1J , we have

|W | ≤ 6ℓ̂max|J |max {|Dfn(a)| : a ∈ ∂W}
−1
.

Proof. — Let δ0 > 0 and ε in (0, 1) be given by Lemma 2.1 with K = 2 and let

δ1 > 0 be given by Lemma 2.3. Since the critical points of f are non-flat, there is δ∗ > 0

so that for each c in Crit′(f), each integer s ≥ 0 such that fs(c) is in Crit′(f), and

each interval W contained in B(c, δ∗) we have

|W |max
{
|Dfs+1(a)| : a ∈ ∂W

}
≤ 3ℓ̂c|f

s+1(W )|.

Let δ2 > 0 be given by Lemma 2.3(2) with κ = δ∗.

We prove the lemma with δ3 = εmin{δ2, δ0} and C1 = ε−1. To do this, let J be

an interval contained in I that intersects J(f) and satisfies

|J | ≤ δ2 and Ĵ := ε−1J ⊂ I.

Moreover, let n ≥ 1 be an integer and let W be a pull-back of J by fn such that the

pull-back Ŵ of Ĵ by fn containing W is a child of Ĵ . Let c be the unique critical

point of f contained in Ŵ and let s be the largest element of {0, . . . , n − 1} such

that fs(c) is in Crit(f). So either s = n − 1 or the pull-back Ŵ ′ of Ĵ by fn−s−1

containing fs+1(W ) is diffeomorphic. Then the Koebe principle (Lemma 2.1) implies

that, if we denote by W ′ the pull-back of J by fn−s−1 containing fs+1(W ), then

|W ′| ≤ 2|J |max
{
|Dfn−s−1(a′)| : a′ ∈ ∂W ′

}−1
.

On the other hand, by our choice of δ2 we have W ⊂ Ŵ ⊂ B(c, δ∗), so by our choice

of δ∗ we have

|W | ≤ 3ℓ̂c|f
s+1(W )|max

{
|Dfs+1(a)| : a ∈ ∂W

}−1

≤ 3ℓ̂max|W
′|max

{
|Dfs+1(a)| : a ∈ ∂W

}−1
.

The desired inequality is obtained by combining the last 2 displayed inequalities.

Lemma 3.3. — Let f : I → I be an interval map in A such that all of its periodic

points in J(f) are hyperbolic repelling. Suppose that none of the boundary points

of I is a critical point of f and let C1 > 1 be the constant given by Lemma 3.2.

Then, for every η > 1 there is a constant δ(η) > 0 such that for every interval Ĵ that

intersects J(f) and satisfies |Ĵ | ≤ δ(η) and C1Ĵ ⊂ I, the following properties hold for

every integer n ≥ 1 and every pull-back Ŵ of Ĵ by fn:

1. For every interval J contained in Ĵ , the number of pull-backs of J by fn contained

in Ŵ is bounded from above by 2ηn.

2. |Ŵ | ≤ 12ℓ̂maxη
n|Ĵ |max

{
|Dfn(a)| : a ∈ ∂Ŵ

}−1

.
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Proof. — Let δ0 > 0 and ε in (0, 1) be given by Lemma 2.1 with K = 2, let δ1 > 0

be given by Lemma 2.3(1), and let δ3 > 0 and C1 > 1 be given by Lemma 3.2.

Enlarging C1 if necessary we assume C1 ≥ ε−1. On the other hand, let L ≥ 1 be a

sufficiently large integer such that ηL > 6ℓ̂max and let δ∗ > 0 be sufficiently small so

that for every exposed critical point c of f and every j in {0, . . . , L}, the point f j(c) is

not in B(Crit(f), δ∗). Finally, let δ2 be given by Lemma 2.3(2) with

κ := C−1
1 min {δ0, δ1, δ3, δ∗,dist(Crit(f), ∂I)} .

We prove the lemma with δ(η) = δ2. To do this, let Ĵ be an interval that inter-

sects J(f) and satisfies |Ĵ | ≤ δ2 and C1Ĵ ⊂ I, let n ≥ 1 be an integer, and let Ŵ be

a pull-back of Ĵ by fn. Put m0 := n and Ŵ0 := Ĵ and define inductively an integer

k ≥ 0 and integers

m0 > m1 > · · · > mk ≥ 0,

such that for each t in {1, . . . , k} the pull-back Ŵt of Ĵ by fn−mt containing fmt(Ŵ ) is

contained in B(Crit(f), κ). Note that by our choice of δ2 this last property implies

that C1Ŵt ⊂ I. Recalling that m0 = n, let t ≥ 0 be an integer such that mt is

already defined. If mt = 0, or if the pull-back of C1Ŵt by fmt containing Ŵ is

diffeomorphic, then put k = t and stop. Otherwise, define m′
t+1 as the largest in-

teger m in {0, . . . ,mt − 1} such that the pull-back Ŵ ′
t+1 of C1Ŵt by fmt−m con-

taining fm(Ŵ ) is not diffeomorphic. In view of Lemma 2.3(1), it follows that Ŵ ′
t+1

contains a unique critical point and that this critical point is in J(f). Moreover,

Ŵ ′
t+1 is a child of C1Ŵt. Define mt+1 as the smallest integer m in {0, . . . ,m′

t+1}

such that the pull-back W∗ of C1Ŵt by fmt−m containing fm(Ŵ ) is a child of C1Ŵt.

Clearly, Ŵt+1 ⊂W∗ ⊂ B(Crit(f), κ).

Note that if k = 0, then the pull-back of Cj Ĵ by fn containing Ŵ is diffeomorphic;

in particular fn : Ŵ → Ĵ is diffeomorphic. On the other hand, note that for every t

in {1, . . . , k − 1} the unique critical point in Ŵ ′
t+1 is exposed. So, by definition of L

we have

mt −mt+1 ≥ mt −m′
t+1 ≥ L.

To prove item 1 of the lemma, observe that if k = 0, then fn : Ŵ → Ĵ is a diffeo-

morphism and the desired assertion is trivially true. Suppose k ≥ 1 and let J be an

interval contained in Ĵ . It follows from the definitions that for every t in {1, . . . , k} the

map fmt−1−mt has at most one critical point in fmt(Ŵ ). Furthermore, an induction

argument in t shows that there are at most 2t pull-backs of J by fn−mt contained in

the pull-back of Ĵ containing fmt(Ŵ ). Since

2k ≤ 2η(k−1)L ≤ 2ηm1−mk ≤ 2ηn,

the last assertion with t = k proves item 1 of the lemma in the case where mk = 0.

If mk ≥ 1, then it follows from the definitions that the pull-back of C1Ŵk by fmk

containing Ŵ is diffeomorphic. So the number of pull-backs of J by fn contained
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in Ŵ is also bounded from above by 2ηn. This completes the proof of item 1 of the

lemma.

To prove item 2, suppose first k = 0. Then the pull-back of C1Ĵ by fn contain-

ing Ŵ is diffeomorphic and the desired inequality follows from the Koebe princi-

ple (Lemma 2.1) with 12ℓ̂maxη
n replaced by 2. Suppose k ≥ 1 and observe that by

Lemma 3.2 for each t in {1, . . . , k} we have

|Ŵt| ≤ 6ℓ̂max|Ŵt−1|max
{
|Dfmt−1−mt(a)| : a ∈ ∂Ŵt

}−1

.

By an induction argument we obtain,

|Ŵk| ≤ (6ℓ̂max)
k|Ĵ |max

{
|Dfn−mk(a′)| : a′ ∈ ∂Ŵk

}−1

.

Using

(6ℓ̂max)
k−1 < η(k−1)L ≤ ηm1−mk ≤ ηn,

we obtain

|Ŵk| ≤ 6ℓ̂maxη
n max

{
|Dfn−mk(a) : a ∈ ∂Ŵk

}−1

.

This proves item 2 of the lemma in the case where mk = 0. If mk ≥ 1, then the

pull-back of C1Ŵk by fmk containing Ŵ is diffeomorphic and by the Koebe principle

(Lemma 2.1) we obtain

|Ŵ | ≤ 2|Ŵk|max
{
|Dfmk(a)| : a ∈ ∂Ŵ

}−1

≤ 12ℓ̂max|Ĵ |max
{
|Dfn(a)| : a ∈ ∂Ŵ

}−1

.

This completes the proof of item 2 and of the lemma.

The following lemma is more general than what we need for the proof of Proposi-

tion 3.1. It is used again in the proof of the Main Theorem in the next section.

Lemma 3.4. — Let f : I → I be an interval map in A that is topologically exact

on J(f) and put

χ0
per(f) := inf {χp(f) : p periodic point of f in J(f)} .

Then for every interval J contained in I that intersects J(f) we have

(3.2) lim inf
n→+∞

1

n
ln max

{
|W | : W connected component of f−n(J)

}
≥ −χ0

per(f)

and for every point x0 of J(f) we have

(3.3) lim sup
n→+∞

1

n
ln min

{
|Dfn(x)| : x ∈ f−n(x0)

}
≤ χ0

per(f).

Proof. — Let ℓ ≥ 1 be an integer and let p be a periodic point of f of period ℓ in J(f).

Suppose first p is hyperbolic repelling. Then there is δ > 0 and a uniformly con-

tracting inverse branch φ of f ℓ that is defined on B(p, δ) and fixes p. It follows that

φ(B(p, δ)) ⊂ B(p, δ) and that there is K > 1 such that for every integer k ≥ 1
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the distortion of φk on B(p, δ) is bounded by K. On the other hand, the hypothesis

that f is topologically exact on J(f) implies that there is an integer m ≥ 1 such that

the intersection of f−m(J) and B(p, δ) contains an interval J ′ and such that there is

a point x′0 in f−m(x0) contained in B(p, δ). Then we have

(3.4) lim inf
n→+∞

1

n
ln max

{
|W | : W connected component of f−n(J)

}

≥ lim inf
k→+∞

1

kℓ
ln |φk(J ′)| = −χp(f)

and

(3.5) lim sup
n→+∞

1

n
ln min

{
|Dfn(x)| : x ∈ f−n(x0)

}

≤ − lim
k→+∞

1

kℓ
ln |Dφk(x′0)| = χp(f).

Since p is an arbitrary hyperbolic repelling periodic point, this proves (3.2) and (3.3).

It remains to consider the case where p is not hyperbolic repelling, so that

Df2ℓ(p) = 1. Without loss of generality we assume that for every δ > 0 the inter-

val (p, p+ δ) intersects J(f). Let η > 1 be given and let δ > 0 be sufficiently small so

there is an inverse branch φ of f2ℓ that is defined on B(p, δ), that fixes p, and that is

strictly increasing on (p, p+ δ). Reducing δ if necessary we assume we have |Df | < η

on B(p, δ). As in the previous case there is an integer m ≥ 1 such that the intersection

of f−m(J) and (p, p + δ) contains an interval J ′ and such that there is a point x′0
in f−m(x0) contained in (p, p+ δ). Then we have (3.4) and (3.5) with χp(f) replaced

by ε. Since ε > 0 is arbitrary, these inequalities hold with χp(f) = 0. The proof of

the lemma is thus completed.

Proof of Proposition 3.1. — By Lemma 3.4 all the periodic points of f in J(f) are

hyperbolic repelling. It is enough to show that for every λ̂0 in (λ0, λ) there is a

constant C0 > 0 such that the proposition holds with the right hand side of (3.1)

replaced by C0λ̂
−n
0 .

Let Ĩ be equal to I if J(f) = I. Otherwise, for each periodic point y in the

boundary of a Fatou component U of f , let y′ be a point in U , let Uy be the open

interval bounded by y and y′, and put

Ĩ := I \
⋃

y

Uy,

where the union runs through all the periodic points of in the boundary of a Fatou

component of f . In all the cases Ĩ is a finite union of closed intervals. In part 1 below

we show that for every y in J(f) there is a constant Cy > 0 and an interval Jy
contained in Ĩ that is a neighborhood of y in Ĩ and such that for every integer n ≥ 1

and every pull-back W of Jy by fn we have

|W | ≤ Cyλ̂
−n
0 .
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Since J(f) is compact, this implies the proposition, except in the case where J(f) is

an interval having a boundary point in the interior of I that is a periodic point of f .

This last case is treated in part 2.

Let Î be a compact interval containing I in its interior and let f̂ : Î → Î be an

extension of f in A that is boundary anchored, such that all the critical points of f̂

are contained in I, and such that
⋃+∞
n=0 f̂

−n(I) contains an interval whose closure

contains J(f̂). Note in particular that f̂ is essentially topologically exact on J(f̂).

Without loss of generality we assume that all the periodic points of f̂ in J(f̂) are

hyperbolic repelling. Put η := (λ/λ̂0)
1/2 and let δ∗ > 0 be the constant δ(η) given

by Lemma 3.3 with f replaced by f̂ . Moreover, let C1 > 1 be the constant given by

Lemma 3.2. Reducing δ∗ if necessary we assume

δ∗ < C−1
1 dist(I, ∂Î).

Note that this implies that for every interval J intersecting I and satisfying |J | ≤ δ∗,

we have C1J ⊂ Î.

1. Suppose first y is not a boundary point of a Fatou component of f of length

greater than or equal to δ∗/2. Since f is topologically exact on J(f), we can find

an integer n0 ≥ 1 and points x and x′ in f−n0(x0) such that

x < y < x′ and |x− x′| < δ∗.

Then the desired assertion follows with

Jy = (x, x′) and Cy = 12ℓ̂maxC
−1δ∗,

by Lemma 3.3(2) with f replaced by f̂ and with Ĵ = (x, x′).

Suppose y is a boundary point of a Fatou component of f and that y is not

periodic. Then there is an integer N ≥ 1 such that every point in f−N (y) is

either not in the boundary of a Fatou component or in the boundary of a Fatou

component of length strictly smaller than δ∗/2. Then the desired assertion follows

from the previous case.

It remains to consider the case where y is a periodic point in the boundary

of a Fatou component of length greater than or equal to δ∗/2. Let ℓ ≥ 1 be

the period of y and let δ in (0, δ∗/2) be sufficiently small so that there is an

inverse φ of f̂ ℓ defined on B(y, δ), fixing y and such that φ(B(y, δ)) ⊂ B(y, δ).

Since δ < δ∗/2 and y is a boundary point of a Fatou component of f of length

greater than or equal to δ∗/2, it follows that φ is strictly increasing. Let n0 ≥ 1 be

a sufficiently large integer so that f−n0(x0) intersectsB(y, δ) and let y0 be a point

of f−n0(x0) in B(y, δ). For each integer j ≥ 1 put yj := φj(y0) and let Kj−1 be

the closed interval bounded by yj−1 and yj . Note that the intervals (Kj)
+∞
j=0

have pairwise disjoint interiors and that the closure of their union is equal to the

closed interval Jy bounded by y and y0. Clearly Jy is a neighborhood of y in Ĩ.

On the other hand, for each integer j ≥ 1 the interval Kj is equal to φj(K0) and

it is a pull-back of K0 by f̂ ℓj . So, Lemma 3.3(2) with Ĵ = K0, with f replaced
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by f̂ , and with n replaced by n + ℓj, shows that for every pull-back W of Kj

by f̂n we have

|W | ≤ 12ℓ̂maxη
n+jℓ|K0|max

{
|Df̂n+jℓ(a)| : a ∈ ∂W

}−1

≤ 12ℓ̂maxη
n+jℓδ∗C

−1λ−(n+jℓ+n0) min
{
|Df̂n0(y0)|

−1, |Df̂n0+ℓ(y1)|
−1

}
.

On the other hand, by Lemma 3.3(1) with f replaced by f̂ and with Ĵ = Jy

and J = Kj , every pull-back Ŵ of Jy by fn contains at most 2ηn pull-backs

of Kj by fn. So, letting

C ′ := 12ℓ̂maxδ∗C
−1λ−n0 min

{
|Df̂n0(y0)|

−1, |Df̂n0+ℓ(y1)|
−1

}

and using the definition of η we obtain

|Ŵ ∩ f̂−n(Kj)| ≤ 2ηnC ′ηn+jℓλ−(n+jℓ) ≤ 2C ′λ̂
−(n+jℓ)
0 .

Since Jy is the closure of
⋃
j≥0Kj , summing over j we get

|Ŵ | ≤ 2C ′
+∞∑

j=0

λ̂
−(n+jℓ)
0 = 2C ′(1 − λ̂−ℓ0 )−1λ̂−n0 .

This proves the desired assertion with Cy = 2C ′(1 − λ̂−ℓ0 )−1.

2. Suppose that J(f) is an interval having a boundary point y in the interior of I

that is a periodic point of f . In view of part 1, it is enough to show that for

each such point y there are δ > 0 and C > 0 such that for every integer n ≥ 1

and every pull-back W of B(y, δ) by fn, we have |W | ≤ Cλ̂−n0 . By part 1 there

are δ > 0 and C > 0 such that this property holds with B(y, δ) replaced by the

interval J := B(y, δ) ∩ J(f).

Let O be the forward orbit of y. Note that O ⊂ ∂I, that the set O′ := f−1(O)∩

∂J(f) is forward invariant, and that f−1(O′) \ O′ is contained in the interior

of J(f). Reducing δ if necessary assume that each pull-back of B(y, δ) by f

or by f2 that is disjoint from O′ is contained in J(f). It follows that for every

integer n ≥ 1, each pull-back W of B(y, δ) by fn that is disjoint from O′ is

contained in J(f) and therefore coincides with a pull-back of J by fn. By our

choice of δ, in this case we have |W | ≤ Cλ̂−n0 . It remains to consider those pull-

backs W of B(y, δ) that intersect O′. Since by Lemma 3.4 the periodic point y

satisfies χy(f) ≥ lnλ, reducing δ if necessary we can assume that for every

integer n ≥ 1 and every pull-back W of B(y, δ) by fn that intersects O′, we

have |W | ≤ Cλ̂−n0 .

This completes the proof of the proposition.
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4. Quantifying asymptotic expansion

The purpose of this section is to prove the following strengthened version of the

Main Theorem. Given a compact space X and a continuous map T : X → X, we

denote by M (X,T ) the space of Borel probability measures on X that are invariant

by T .

Main Theorem′. — For an interval map f in A , the number

χper(f) := inf {χp(f) : p hyperbolic repelling periodic point of f in J(f)}

is equal to

χinf(f) := {χν(f) : ν ∈ M (J(f), f)} .

If in addition f is topologically exact on J(f), then there is δ′ > 0 such that the

following properties hold. Let J be an interval contained in I that intersects J(f) and

satisfies |J | ≤ δ′. In the case where χinf(f) > 0 and where J(f) is not an interval,

assume in addition that J is not a neighborhood of a periodic point in the boundary

of a Fatou component of f . Then:

1. For every χ < χinf(f) there is a constant C > 0 independent of J , such that for

every integer n ≥ 1 and every pull-back W of J by fn, we have |W | ≤ C exp(−nχ).

2. We have

lim
n→+∞

1

n
ln max

{
|W | : W connected component of f−n(J)

}
= −χinf(f).

Finally, for each point x0 in J(f) we have

lim sup
n→+∞

1

n
ln min

{
|Dfn(x)| : x ∈ f−n(x0)

}
≤ χinf(f),

and there is a subset E of J(f) of zero Hausdorff dimension such that for each point x0

in J(f) \ E the lim sup above is a limit and the inequality an equality.

Remark 4.1. — In the case where χinf(f) > 0 and where J(f) is not an interval,

there is an example showing that the hypothesis in the Main Theorem′ that J is not

a neighborhood of a periodic point in the boundary of a Fatou component, is necessary,

see [36, Proposition A]. However, a qualitative result holds when this hypothesis is

not satisfied, see [36, Theorem B].

The proof of the Main Theorem′ is given below, after the following lemmas

from [33].

When f is a complex rational map the following lemma is a direct consequence

of [33, Lemma 3.1]. Using Fact 2.2, the proof applies without change to the case

where f is a map in A .

Lemma 4.2. — Let f be an interval map in A that is topologically exact on J(f) and

such that χper(f) > 0. Then there is a point x0 in J(f) such that

lim inf
n→+∞

1

n
ln min

{
|Dfn(x)| : x ∈ f−n(x0)

}
≥ χper(f).
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In the case where f is a complex rational map, the following is [33, Lemma 2.1 and

Remark 2.2]. The proof applies without change to maps in A .

Lemma 4.3. — Let f : I → I be a map in A . Then there are δ4 > 0 and a subset E

of I of zero Hausdorff dimension, such that for every interval J contained in I that

intersects J(f) and satisfies |J | ≤ δ4 and every point x0 in J \ E, we have

lim inf
n→+∞

1

n
ln min

{
|Dfn(x)| : x ∈ f−n(x0)

}

≥ − lim sup
n→+∞

1

n
ln max

{
|W | : W connected component of f−n(J)

}
.

Proof of the Main Theorem′. — To prove

(4.1) χinf(f) = χper(f),

suppose f is “infinitely renormalizable,” see [24] for the definition and for preci-

sions. It follows easily from the a priori bounds in [41] that in this case we have

χinf(f) = χper(f) = 0. So, to prove (4.1) it is enough to consider the case where f is

at most finitely renormalizable. Then f can be decomposed into finitely many interval

maps, each of which has a renormalization with a topologically exact restriction, see

for example [24, §III, 4]. Thus, to prove the Main Theorem′ it is enough to consider

the case where f is topologically exact.

In part 1 below we prove item 1 of the theorem with χinf(f) replaced by χper(f)

and in part 2 we prove χper(f) = χinf(f). We complete the proof of the theorem in

part 3.

1. We prove item 1 of the theorem with χinf(f) replaced by χper(f). This statement

being trivial in the case where χper(f) = 0, we suppose χper(f) > 0. Combining

Lemma 4.2 and Proposition 3.1 we obtain that all the periodic points of f in J(f)

are hyperbolic repelling and that for every χ in (0, χper(f)) there is δ(χ) > 0 such

that for every interval J that intersects J(f), that is disjoint from each periodic

Fatou component of f , and that satisfies |J | ≤ δ(χ), the following property holds:

For every integer n ≥ 1 and every pull-back W of J by fn we have

|W | ≤ exp(−nχ).

Put δ′ := δ(χper(f)/2) and let J be an interval that intersects J(f),

that is disjoint from the periodic Fatou components of f , and that satis-

fies |J | ≤ δ′. Given χ in (χper(f)/2, χper(f)), let N ≥ 1 be sufficiently large so

that exp(−Nχ) ≤ δ(χ), let n ≥ N be an integer, and let W be a pull-back of J

by fn. If we denote by W ′ the pull-back of J by fN containing fn−N (W ), then

we have

|W ′| ≤ exp(−Nχ) ≤ δ(χ).

So the property above applied to W ′ instead of J implies

|W | ≤ exp(−(n−N)χ).
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This proves item 1 of the theorem with C = exp(Nχ) and with χinf(f) replaced

by χper(f).

2. We prove χper(f) = χinf(f). To prove χper(f) ≥ χinf(f), let p be a hyper-

bolic repelling periodic point of f in J(f) and let ν be the probability measure

equidistributed on the orbit of p. Then ν is in M (J(f), f) and χν(f) = χp(f),

so χp(f) ≥ χinf(f). This proves χper(f) ≥ χinf(f). To prove the reverse in-

equality we show that for every ν in M (J(f), f) we have χν(f) ≥ χper(f). By

the ergodic decomposition theorem we can assume without loss of generality

that ν is ergodic. By [30, Theorem B] or by Proposition A.1 in Appendix A, we

have χν(f) ≥ 0. We show that for every ε > 0 there is a point x in J(f) such

that for every sufficiently large integer n ≥ 1 we have

(4.2) fn(B(x, exp(−(χν(f) + 2ε)n))) ⊂ B(fn(x), exp(−εn)).

Using this estimate with a sufficiently large n and combining it with part 1

we obtain χν(f) + 2ε ≥ χper(f). Since ν and ε are arbitrary, this proves

χinf(f) ≥ χper(f), as wanted. To prove (4.2), note that by Birkhoff’s ergodic

theorem there is a point x0 in J(f) and an integer n0 ≥ 1 such that for

every n ≥ n0 we have

(4.3) exp
((
χν(f) − 1

3ε
)
n
)
≤ |Dfn(x0)| ≤ exp

((
χν(f) + 1

3ε
)
n
)
.

On the other hand, since the critical points of f are non-flat, there are

constants C0 > 0 and α > 0 such that for every x in I we have

|Df(x)| ≤ C0 dist(x,Crit(f))α.

Put ε′ := ε
α . Using the previous inequality with x = fn(x0), combined with

Dfn+1(x0) = Df(fn(x0)) ·Df
n(x0),

with (4.3) and with (4.3) with n replaced by n+1, we obtain that for every n ≥ n0

we have

dist(fn(x),Crit(f)) ≥
(
C−1

0 exp(χν(f))
) 1

α exp
(
− 2

3ε
′(n+ 1)

)
.

This implies that there is an integer n1 ≥ n0 such that for every n ≥ n1 the

distortion of f on B(fn(x0), exp(−ε′n)) is bounded by exp
(

1
3ε

′
)
. Let n2 ≥ n1 be

sufficiently large so that the distortion of fn1 on B(x0, exp(−(χν(f) + ε′)n2)) is

bounded by exp
(

1
3ε

′n1

)
. Then for every n ≥ n2 we have,

(4.4) fn1(B(x0, exp(−(χν(f) + 2ε′)n)))

⊂ B
(
fn1(x0), exp

(
−(χν(f) + 2ε′)n+ 1

3ε
′n1

)
|Dfn1(x0)|

)
.

Fix n ≥ n2. We prove by induction that for every j in {n1, . . . , n} the inclusion

above holds with n1 replaced by j. The desired assertion is obtained from this

with j = n, combined with (4.3). Noting that the case j = n1 is given by (4.4) it-

self, let j in {n1, . . . , n−1} be given and suppose (4.4) holds with n1 replaced by j.

Then (4.4) with n1 replaced by j+1 is obtained by using that the right hand side
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of (4.4) with n1 replaced by j is contained in B(f j(x0), exp(−ε′n)), combined

with the fact that the distortion of f on this last set is bounded by exp
(

1
3ε

′
)
.

This completes the proof of the induction step, and hence that χν(f) ≥ χper(f)

and χinf(f) = χper(f).

3. So far we have shown item 1 of the theorem and the equality χinf(f) = χper(f).

Let χ0
per(f) be as in the statement of Lemma 3.4. Clearly,

χinf(f) ≤ χ0
per(f) ≤ χper(f)

(cf., first part of part 2), so χ0
per(f) = χinf(f). Thus, inequality (3.2) of

Lemma 3.4 and item 1 of the theorem imply item 2 of the theorem. In turn,

item 2 of the theorem together with (3.3) of Lemma 3.4 and with Lemma 4.3

imply the last assertion of the theorem.

The proof of the theorem is thus complete.

5. Conjugacy to a piecewise affine map

In this section we show that a conjugacy between 2 Lipschitz continuous multi-

modal maps that satisfy the Exponential Shrinking of Components condition (9) is

bi-Hölder continuous (Proposition 5.2). Combined with Lemma 5.1 below, this proves

implication 5 ⇒ 4 of Corollary A.

A multimodal map f is expanding, if there is λ > 1 so that for every x and x′

contained in an interval on which f is monotonous, we have

|f(x) − f(x′)| ≥ λ|x− x′|.

In this case we say λ is an expansion constant of f .

Lemma 5.1. — Every expanding multimodal map satisfies the Exponential Shrinking

of Components condition.

In this section, a turning point c of a multimodal map f is exposed if for every

integer n ≥ 1 the point fn(c) is not a turning point of f .

Proof. — Let f : I → I be an expanding multimodal map and let λ > 1 be an

expansion constant of f . Let L ≥ 1 be a sufficiently large integer so that λL > 2

and let δ† > 0 be sufficiently small so that for every exposed turning point c of f

and every j in {1, . . . , L} the set f j(B(c, δ†)) does not contain a turning point of f .

Let δ∗ > 0 be sufficiently small so that for every interval J contained in I that

satisfies |J | ≤ δ∗ and every connected component W of f−1(J) we have |W | ≤ δ†.

We prove by induction on n ≥ 0 that for every interval J contained in I that

satisfies |J | ≤ δ∗/2, every j in {1, . . . , n}, and every pull-back W of J by f j we have

|W | ≤
(
2

1
Lλ−1

)j
δ∗.

(9) The Exponential Shrinking of Components condition is defined in §1.2 for non-degenerate smooth

interval maps. In this section we apply this definition to multimodal maps.

ASTÉRISQUE 416



É
pr

eu
ve

SM
F

M
ar

ch
4,

20
20

ASYMPTOTIC EXPANSION OF SMOOTH INTERVAL MAPS 55

This implies that f satisfies the Exponential Shrinking of Components condition. The

case n = 0 being trivial, suppose that for some n ≥ 1 this assertion holds with n re-

placed by each element of {0, . . . , n − 1}. Let J be an interval contained in I that

satisfies |J | ≤ δ∗/2 and let W be a pull-back of J by fn. The induction hypothe-

sis implies for every j in {1, . . . , n − 1} we have |f j(W )| ≤ δ∗. Using the hypothe-

sis |J | ≤ δ∗/2 and the definition of δ∗, we conclude that for every i in {0, . . . , n−1} we

have |f i(W )| ≤ δ†. Using the definition of δ†, this implies that the number of those i

in {0, . . . , n − 1} such that f i(W ) contains a turning point of f in its interior is at

most n
L + 1. It thus follows that W can be partitioned into at most 2

n
L

+1 intervals on

each of which fn is injective. Using that λ is an expansion constant of f , we obtain

|W | ≤ 2
n
L

+1λ−n|J | ≤ 2
n
Lλ−nδ∗.

This completes the proof of the induction hypothesis and of the lemma.

Proposition 5.2. — Let f : I → I be a Lipschitz continuous multimodal map

and f̃ : Ĩ → Ĩ a multimodal map satisfying the Exponential Shrinking of Compo-

nents condition. If h : I → Ĩ is a homeomorphism conjugating f to f̃ , then h is

Hölder continuous.

We deduce this proposition as an easy consequence of the following lemma.

Lemma 5.3. — Let f : I → I be a multimodal map satisfying the Exponential Shrink-

ing of Components condition with constant λ > 1. Then for every A > (lnλ)−1 there

is a constant δ5 > 0 such that for every interval J contained in I the following prop-

erty holds: There is an integer m ≥ 0 that satisfies m ≤ max{−A ln |J |, 0} and an

interval J0 contained in J , such that fm is injective on J0 and |fm(J0)| ≥ δ5.

Proof. — Put χ := lnλ and let L be an integer satisfying L > (Aχ − 1)−1A ln 2.

Let δ† > 0 be sufficiently small so that for every exposed turning point c of f and

for every j in {1, . . . , L}, the set f j(B(c, δ†)) does not contain a turning point of f .

Let δExp > 0 be the constant δ given by the Exponential Shrinking of Components

condition, see §1.2. Reducing δExp if necessary we assume that for every interval J

contained in I that satisfies |J | ≤ δExp, every integer n ≥ 1, and every pull-back W

of J by fn we have |W | ≤ δ†. Let δ∗Exp > 0 be such that for every interval J contained

in I that satisfies |J | ≥ δExp and for every connected component W of f−1(J) we

have |W | ≥ δ∗Exp. Reducing δ∗Exp if necessary we assume δ∗Exp ≤ δExp. Observing

that 1+A ln 2
L < χA, it follows that there is n0 ≥ 1 such that for every integer n ≥ n0

we have,

(5.1) −A ln
δ∗Exp

2
+

(
1 +A

ln 2

L

)
n ≤ χAn.

In part 1 below we show that every interval contains an interval that is mapped

bijectively by an iterate of f onto a relatively large interval. In part 2 we use this fact

to prove the lemma by induction.
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1. We prove that for every integer n ≥ 1 and every interval J contained in I

that satisfies |J | ≥ exp(−(n + 1)χ), there is m in {0, . . . , n} and an interval J0

contained in J such that fm is injective on J0 and

|fm(J0)| ≥
δ∗Exp

2
2−

m
L .

If |J | ≥ δExp, then the assertion follows with J0 = J and m = 0 from our

assumption that δExp ≥ δ∗Exp. Assume |J | ≤ δExp and note that by the Ex-

ponential Shrinking of Components condition, for every integer m ≥ n + 1 we

have |fm(J)| > δExp. So there is a largest integer m ≥ 0 such that |fm(J)| ≤

δExp and m satisfies m ≤ n. By definition of δ∗Exp we have |fm(J)| ≥ δ∗Exp.

On the other hand, by our choice of δExp, for every j in {0, . . . ,m − 1} we

have |f j(J)| ≤ δ†. From the definition of δ† it follows that the number of those j

in {0, . . . ,m − 1} such that f j(J) contains a turning point in its interior is

bounded by m
L + 1. This implies that J can be partitioned into at most 2

m
L

+1

intervals on which fm is injective. So, if we denote by J0 an interval J ′ in this

partition for which |fm(J ′)| is maximal, then we have

(5.2) |fm(J0)| ≥
|fm(J)|

2
m
L

+1
≥
δ∗Exp

2
2−

m
L .

2. Put δ5 :=
δ∗Exp

2 2−
n0
L . We prove by induction that for every integer n ≥ 1 the

lemma holds for every interval J that satisfies |J | ≥ exp(−(n+ 1)χ). Part 1

implies that this holds for every integer n ≥ 0 satisfying n ≤ n0. Let n ≥ n0

be an integer for which the lemma holds for every interval J that satisfies

|J | ≥ exp(−nχ). To prove the inductive step, let J be a given interval contained

in I that satisfies

exp(−(n+ 1)χ) ≤ |J | ≤ exp(−nχ).

Let m be the integer in {0, . . . , n} and J0 the interval contained in J given by

part 1. So fm is injective on J0 and

|fm(J0)| ≥
δ∗Exp

2
2−

m
L ≥

δ∗Exp

2
2−

n
L .

Together with (5.1) this implies |fm(J0)| ≥ exp(−nχ), so we can apply the induc-

tion hypothesis with J replaced by fm(J0). Therefore there is an interval J ′
0 con-

tained in fm(J0) and an integer m′ ≥ 0 satisfying m′ ≤ max{−A ln |fm(J0)|, 0},

such that fm
′

is injective on J ′
0 and |fm

′

(J ′
0)| ≥ δ5. If m′ = 0, then |fm(J0)| ≥

|J ′
0| ≥ δ5. Together with

m ≤ n ≤ −χ−1 ln |J | < −A ln |J |,

this completes the proof of the induction step in the case where m′ = 0. Sup-

pose m′ ≥ 1 and let J̃0 be the connected component of f−m(J ′
0) contained in J0,
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so that fm is injective on J̃0 and fm(J̃0) = J ′
0. Then fm+m′

is injective on J̃0

and |fm+m′

(J̃0)| = |fm
′

(J ′
0)| ≥ δ5. On the other hand, we have by (5.1) and (5.2)

m+m′ ≤ m−A ln |fm(J0)| ≤ −A ln
δ∗Exp

2
+

(
1 +A

ln 2

L

)
m ≤ χAn ≤ −A ln |J |.

This completes the proof of the induction step with m replaced by m + m′

and J0 replaced by J̃0.

The proof of the lemma is thus complete.

Proof of Proposition 5.2. — Denote by M a Lipschitz constant of f , let A and δ5 be

as in Lemma 5.3 with f replaced by f̃ and let δ∗5 > 0 be such that for every interval J∗

contained in Ĩ that satisfies |J∗| ≥ δ5, we have |h−1(J∗)| ≥ δ∗5 .

To prove that h is Hölder continuous, let J be an interval contained in I and let

m ≥ 0 be the integer and J0 the interval given by Lemma 5.3 with J replaced by h(J),

so that

m ≤ max{−A ln |h(J)|, 0}, J0 ⊂ h(J), |f̃m(J0)| ≥ δ5,

and so that f̃m is injective on J0. It follows that fm is injective on h−1(J0), so by the

definition of δ∗5 we have

|J | ≥ |h−1(J0)| ≥M−m|h−1(f̃m(J0))| ≥ min{|h(J)|A lnM , 1} · δ∗5 .

This proves that h is Hölder continuous of exponent (A lnM)−1.

6. Nonuniform hyperbolicity conditions

The purpose of this section is to prove Corollaries A, D and E.

Proof of Corollary A. — To prove that conditions 1–7 are equivalent, remark first

that the equivalence between conditions 1, 2, 5 and 6 is given by the Main Theorem′,

using Fact 2.2 for the implication 5 ⇒ 6. When f is a complex rational map, the

implication 5 ⇒ 3 is [31, Theorem C]. The proof applies without change to the

case where f is a non-degenerate smooth interval map that is topologically exact. (10)

When f is unicritical, the implication 3 ⇒ 2 is [28, Lemma 8.2]. The proof applies

without change to the general case. We complete the proof that conditions 1–6 are

equivalent by showing the implications 5 ⇒ 4 and 4 ⇒ 2. For the implication 5 ⇒ 4,

recall that by the general theory of Parry [29] and of Milnor and Thurston [26], the

map f is conjugated to a piecewise affine expanding map. That the conjugacy is bi-

Hölder follows from the combination of Lemma 5.1 and Proposition 5.2. When f is

unicritical, the implication 4 ⇒ 2 is [28, Lemma 8.4]. The proof applies without change

to the general case. This completes the proof that conditions 1–6 are equivalent.

(10) For a proof written for maps in A , see [37, Corollary 2.19]. If in addition f satisfies Collet-

Eckmann condition and J(f) = I, see also [16, 45] if f is unicritical, [6] if all the critical points of f

are of the same order and [12, Theorem 6] if f is real analytic.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



É
pr

eu
ve

SM
F

M
ar

ch
4,

20
20

58 J. RIVERA-LETELIER

To complete the proof that conditions 1–7 are equivalent, we prove that condi-

tion 7 is equivalent to condition 4. First notice that the conjugacy h : I → [0, 1] to the

piecewise affine model is Hölder continuous by Lemma 5.1 and Proposition 5.2. Thus

condition 4 is equivalent to the condition that h−1 is Hölder continuous. The conju-

gacy h is defined in terms of its unique maximal entropy measure ρf , as follows: If we

denote by a the left end point of I, then for every x in I we have h(x) = ρf ([a, x]).

Thus, it readily follows that condition 4 is equivalent condition 7.

To prove the final statement, note that the Backward Collet-Eckmann condition

implies condition 6 trivially. On the other hand, the Collet-Eckmann condition implies

condition 2 by [7, Corollary 1.1].

Remark 6.1. — Conditions 1, 2, 5 and 6 of Corollary A have natural formulations for

maps in A . The Main Theorem′ implies that, for maps that are essentially topologi-

cally exact on their Julia sets, these conditions are equivalent, using Fact 2.2 for the

implication 5 ⇒ 6. Using conformal measures, a condition analogous to condition 3

of Corollary A can also be stated for a general interval map in A . Our results imply

that in this more general setting condition 3 is equivalent to conditions 1, 2, 5 and 6.

In fact, the implication 5 ⇒ 3 is again given by either [31, Theorem C] or [37, Corol-

lary 2.19]. The proof of the implication 3 ⇒ 2 for unicritical maps in [28, Lemma 8.2]

does not apply directly to this more general setting, as it uses that the reference mea-

sure is the Lebesgue measure. Using Frostman’s lemma, the argument can be adapted

to deal with the case where the reference measure is a conformal measure, as in [31,

Theorem D] for complex rational maps.

Remark 6.2. — Both, the Collet-Eckmann and the Backward Collet-Eckmann condi-

tion have natural formulations for maps in A . In this more general setting each of

these conditions implies conditions 1–3, 5, and 6 of Corollary A, see Remark 6.1. In

fact, the Backward Collet-Eckmann condition implies condition 6 trivially and the

Collet-Eckmann condition implies condition 2 by [7, Corollary 1.1]. We note also that

for a map in A the Collet-Eckmann condition implies the Backward Collet-Eckmann

condition at each critical point of maximal order: For complex rational maps this is

given by [13, Theorem 1]; the proof applies without change to maps in A . (11)

Proof of Corollary D. — We show that for a non-degenerate smooth map f : I → I

having only hyperbolic repelling periodic points, an iterate of f has an exponentially

mixing acip if and only if:

(*) There is an interval J contained in I and an integer s ≥ 1, such that fs(J) ⊂ J

and such that fs : J → J is a topologically exact map that satisfies the TCE

condition.

Since (*) is clearly invariant under topological conjugacy preserving critical points,

this implies the corollary.

(11) In fact, the proof for maps A is slightly simpler, as the arguments involving shrinking neighbor-

hoods can be replaced by the one-sided Koebe principle.
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If (*) is satisfied, then fs|J
is non-injective and therefore it is a non-degenerate

smooth interval map. Then Corollary C implies that fs|J
, and hence fs, has an

exponentially mixing acip.

Suppose there is an integer s ≥ 1 such that fs has an exponentially mixing acip ν,

and denote by J the support of ν. Then J is an interval, fs(J) ⊂ J , and fs|J
is

topologically exact, see [41, Theorem E(2)]. It follows that fsJ is non-injective and

therefore that fs|J
is a non-degenerate smooth interval map. Thus Corollary C implies

that fs|J
satisfies the TCE condition. This proves that f satisfies (*), and completes

the proof of the corollary.

Remark 6.3. — The proof of Corollary D applies without change to maps in A .

Proof of Corollary E. — Denote by I the domain of f . Recall from §1.5 that P in

nonincreasing, that it has at least one zero, and that its first zero t0 is in (0, 1].

The implication 2 ⇒ 1 is trivial, and the implication 2 ⇒ 3 is a direct consequence

of the fact that P is nonincreasing. Since P has at least one zero, the implication 3 ⇒ 2

also follows from the fact that P is nonincreasing.

To prove the implication 2 ⇒ 4, suppose 2 holds. Since the first zero of P is in (0, 1],

we have P (2) = 0. So for each χ > 0 there is an ergodic measure ν in M (I, f) satisfy-

ing hν(f)−2χν(f) ≥ −χ. By [30, Theorem B] or Proposition A.1, we have χν(f) ≥ 0.

Combined with Ruelle’s inequality

hν(f) ≤ max{0, χν(f)} = χν(f),

see [38], we obtain

2χν(f) ≤ hν(f) + χ ≤ χν(f) + χ and χν(f) ≤ χ.

Since χ is arbitrary, this shows that χinf(f) = 0 and completes the proof of the

implication 2 ⇒ 4.

To prove the implication 4 ⇒ 3, suppose χinf(f) = 0, and let t > t0 and χ > 0 be

given. Then there is a measure ν in M (I, f) such that χν(f) < χ, so

P (t) ≥ hν(f) − tχν(f) ≥ −tχ.

Since χ > 0 is arbitrary we conclude that P (t) ≥ 0 and hence that P is nonnegative.

We complete the proof of the corollary by showing the implication 1 ⇒ 4. Sup-

pose χinf(f) > 0, so that

t+ := sup{t > 0 : P (t) > −tχinf(f)}

satisfies t+ > t0. By [32, Theorem A] the function P is real analytic on (0, t+), and

hence at t = t0. This proves that f does not have a high-temperature phase transition,

and completes the proof of the implication 1 ⇒ 4 and of the corollary.

Remark 6.4. — Each of the conditions 1–4 of Corollary E have natural formulations

in the case where f is an interval map in A . The proof of Corollary E applies without

change in this more general setting.
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Appendix A

Lyapunov exponents are nonnegative

In this appendix we prove the following general result characterizing those invariant

measures whose Lyapunov exponent is strictly negative (possibly infinite). For smooth

interval maps with a finite number of non-flat critical points, this was shown by

Przytycki in [30, Theorem B]. We give a proof of this important fact that avoids the

Koebe principle and applies to continuously differentiable maps. It is considerably

shorter than the proof in [30] and extends without change to complex rational maps.

For a continuously differentiable interval map f , a periodic orbit of f of period n is

strictly attracting, if for each point p in this orbit |Dfn(p)| < 1. For a Borel measure ν

on a topological space X, we use supp(ν) to denote the support of ν, which is by

definition the set of all points in X such that the measure of each of its neighborhoods

is strictly positive.

Proposition A.1. — Let f be a continuously differentiable interval map and let ν be

an ergodic invariant probability measure. Then either χν(f) ≥ 0 or ν is supported on

a strictly attracting periodic orbit of f .

Proof. — Suppose χν(f) < 0. By the dominated convergence theorem there ex-

ists L > 0 such that the function

ϕ := max{ln |Df |,−L}

satisfies A :=
∫
ϕ dν < 0. Fix χ in (0,−A/3) and for each integer n ≥ 1 put

Sn(ϕ) := ϕ+ ϕ ◦ f + · · · + ϕ ◦ fn−1.

1. We show that for every point x in the domain I of f satisfying

lim
n→+∞

1
nSn(ϕ)(x) = A,

there exists τ > 0 such that for every sufficiently large integer n we have |Dfn| ≤

exp(−χn) on B(x, τ). Fix such x in I and let δ > 0 be such that we have

|Df | ≤ exp(−L) on B(Crit(f), δ). As f is continuously differentiable there is ε

in (0, δ/3) such that the distortion of f on an interval of length at most ε and

disjoint from B(Crit(f), δ/3) is at most exp(χ). By our choice of χ there is τ > 0

so that for every n ≥ 0 we have

τ exp(Sn(ϕ)(x) + 3nχ) < ε/2.

Finally, for each n ≥ 0 put

rn := τ exp(Sn(ϕ)(x) + nχ) and Bn := B(fn(x), rn).

Note that we have |Bn| = 2rn ≤ ε exp(−2nχ).

We show that for every n ≥ 0 we have |Df | ≤ exp(ϕ(fn(x))+χ) on Bn. This

implies that f(Bn) ⊂ Bn+1 and by induction that on B(x, τ) we have

|Dfn| ≤ exp(Sn(ϕ)(x) + χn) ≤ τ−1(ε/2) exp(−2nχ).
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It then follows that for large n we have |Dfn| ≤ exp(−χn) on B(x, τ), as wanted.

Case 1. — fn(x) 6∈ B(Crit(f), 2δ/3). Since the length of Bn is less than ε < δ/3,

it follows that the interval Bn is disjoint from B(Crit(f), δ/3) and that the

distortion of f on Bn is bounded by exp(χ). So on Bn we have

|Df | ≤ |Df(fn(x))| exp(χ) ≤ exp(ϕ(fn(x)) + χ).

Case 2. — fn(x) ∈ B(Crit(f), 2δ/3). Then Bn ⊂ B(Crit(f), δ) and by our

choice of δ we have |Df | ≤ exp(−L) on Bn.

2. By Birkhoff’s ergodic theorem the set of points x satisfying the property de-

scribed in part 1 has full measure with respect to ν. We can thus find such

a point x in supp(ν), such that in addition its orbit is dense in supp(ν). Let

τ > 0 be given by the property described in part 1 for this choice of x. Then

there is an integer n ≥ 1 such that |Dfn| ≤ exp(−nχ) ≤ 1
4 on B(x, τ) and such

that fn(x) is in B(x, τ/4). Then

fn(B(x, τ)) ⊂ B(fn(x), τ/2)

and fn is uniformly contracting on B(x, τ). This implies that x is asymptotic to

a strictly attracting periodic point of f . Since x is in supp(ν) and ν is ergodic,

it follows that ν is supported on a strictly attracting periodic orbit of f .
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