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Abstract The crystal structure of the light-gated anion channel GtACR1 reported in our previous
Research Article (Li et al., 2019) revealed a continuous tunnel traversing the protein from
extracellular to intracellular pores. We proposed the tunnel as the conductance channel closed by
three constrictions: C1 in the extracellular half, mid-membrane C2 containing the photoactive site,
and C3 on the cytoplasmic side. Reported here, the crystal structure of bromide-bound GtACR1
reveals structural changes that relax the C1 and C3 constrictions, including a novel salt-bridge
switch mechanism involving C1 and the photoactive site. These findings indicate that substrate
binding induces a transition from an inactivated state to a pre-activated state in the dark that
facilitates channel opening by reducing free energy in the tunnel constrictions. The results provide
direct evidence that the tunnel is the closed form of the channel of GtACR1 and shed light on the
light-gated channel activation mechanism.

Introduction

GtACR1 is a light-gated anion channel discovered in 2015 (Govorunova et al., 2015) now widely
used in optogenetics as a neuron-silencing tool. GtACR1 conducts both bromide and chloride ions
effectively with higher relative permeability for the former substrate (Govorunova et al., 2015). We
and the group of Karl Deisseroth independently determined X-ray crystal structures of the dark
(closed) form of GtACR1 homodimer at 2.9 A (Kim et al., 2018; Li et al., 2019). We proposed that
the conductance pathway was attributable to a full-length intramolecular tunnel traversing each pro-
tomer from the extracellular side to the intracellular side of the membrane lined by mostly hydro-
phobic residues (Li et al., 2019). Current rectification by charges introduced inside but not outside
the tunnel support our hypothesis that the tunnel serves as the anion-conducting path upon photo-
activation (Sineshchekov et al., 2019). However, no substrate was found in either structure
(Kim et al., 2018; Li et al., 2019) despite the presence of chloride in the crystallization conditions.
The mechanism of anion conductance is still elusive.

In the apo form (i.e., without anion substrate) (Li et al., 2019) the tunnel is narrowed by three
constrictions blocking ion permeation: Constriction 1 (C1) in the extracellular half, C2 mid-membrane
consisting of the photoactive retinylidene Schiff base and interacting residues, and C3 in the cyto-
plasmic half. In our model, retinal photoisomerization at C2 needs to open all three of these gates
to form a conductive anion channel through the protein. However, structural changes at the two con-
strictions, C1 and C3, which are located on each side of the Schiff base, and their roles in the chan-
nel gating mechanism are unclear.
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To address these questions, here we report the crystal structure of bromide-bound GtACR1. The
structure in bromide provides direct evidence for our proposed conductance mechanism (Li et al.,
2019) and also demonstrates protein conformational changes in C1 and C3, which shed light into
the role of the constrictions in channel opening.

Results
Overall structure of bromide-bound GtACR1

Bromide-bound GtACR1 crystals were obtained in the same conditions and pH used for the apo
form structure, except for replacement of NaCl with NaBr in both protein purification and crystalliza-
tion buffers. Avoiding radiation damage, small wedge data sets were collected using the in meso in
situ serial data collection method (IMISX) (Huang et al., 2018). A detailed description of data collec-
tion and processing is provided in ‘Materials and methods’. The structure of bromide-bound
GtACR1 was determined at 3.2 A resolution by molecular replacement (MR) using the apo form
structure (PDB code 6EDQ) as the model (Table 1).

The bromide-bound GtACR1 exhibits a similar homodimeric overall structure as the apo form
(rmsd: ~0.6 A by comparing Co from residues 1 to 295) (Figure 1A). All 7-helices and trans-config-
ured retinal moieties are well superimposed, including the inter-subunit disulfide bridge stabilizing
the N-terminus fragments of the two protomers on the extracellular surface. The two protomers,
chain A and chain B, are also well superimposed with an rmsd of ~0.5 A. Each protomer exhibits a
continuous tunnel extending from the extracellular to intracellular surfaces of the protein similar to
that seen in the apo form structure (Figure 1A).

As seen from comparison of the tunnel profile diameters of the apo- and bromide-bound struc-
tures (Figure 1B-C), bromide binding enlarges the tunnel in constriction C3 on the cytoplasmic side
of the tunnel, where it is bound (Figure 1A), and also in part of C2, adjacent to the binding site, and
the more distant constriction C1 on the extracellular side of the tunnel. The widened constriction
regions indicate a pre-activated conformation exhibiting a closed channel with fractional transition
to an open-channel state. Despite the similar tunnel profiles of the two protomers, the changes in
chain A (Figure 1B) are more profound than in chain B (Figure 1C), particularly near C1, indicating
conformational differences between the tunnels of the two chains.

Bromide binding at the tunnel entry
A bromide ion was found at the cytoplasmic port of the tunnel in each protomer (Figure 1A). Based
on the composite omit map, the signal of bromide in chain A is stronger than in chain B (Figure 1—
figure supplement 1A-B). A priori, given the larger number of electrons in Br (Z = 35), it would be
difficult to mistake it for a water molecule (Z = 10), but to test this possibility directly, the bromide
ion was replaced with a water molecule and the structure refined using PHENIX (Adams et al.,
2010). The refinement showed a strong positive electron density at the bromide position in the F,-
F. difference map (Figure 1—figure supplement 1C-D) and it was diminished only when a bromide
ion was placed at that position (Figure 1—figure supplement 1E-F). This evidence excludes a water
molecule as responsible for the electron density at the position. From these data and additional evi-
dence presented below, we conclude a bromide ion resides at the tunnel entry in each protomer.
The bromide-binding site is formed by three cyclic residues: Pro58 from the cytoplasmic loop
between TM1 and 2, and Trp246 and Trp250 from TM7 in a triangular configuration (Figure 2A). In
the binding site, a bromide is stabilized by a H-bond interaction formed by the indole NH group of
Trp250. This type of anion binding conformation has also been found in several chloride-bound
nucleotide structures (Auffinger et al., 2004). Pro58 may play an important role in substrate binding
by pressing its ring towards the bromide anion with a distance of 3.6 A and 3.1 A between the bro-
mide ion and CG and CD atoms of Pro58 in chain A and 4.0 A and 3.2 A in chain B. Unlike other aro-
matic residues, the ring of proline exhibits a partial positive charge due to electron withdrawal by
the adjacent protein backbone and the lower electronegativity of the hydrogens on the ring surface
(Zondlo, 2013). The partial electropositivity of Pro58 may contribute to the binding of bromide via
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Table 1. Crystallographic data and refinement of the bromide-bound GtACR1 structure*.

PDB ID 7L1E

Space group P2,

a b, c@ 61.66, 77.64, 73.63
o B.v0 90, 95.59, 90
Beamline SLS-X06SA
Wavelength (A) 0.91882
Resolution (A) 48.15-3.20 (3.28-3.20)"
Rmeas 0.56 (2.81)

I /o () 2.84 (0.54)
Completeness (%) 95.6 (96.0)
Multiplicity 4.84 (3.31)

CC1/2 (%) 97.5 (13.4)
Refinement

Resolution (A) 41.73-3.2 (3.28-3.20)
No. of unique reflections 11,054 (800)
Rwork/Rfree 0.24/0.29

R.m.s. deviations

Bond lengths (A) 0.003

Bond angles () 0.730

B-factor

Proteins 52.45

Ligands 51.31

H,O 33.96
Ramachandran Plot

Favored (%) 96.18

Allowed (%) 3.82

MolProbity 12.22

Clash score

*Data processing and refinement statistics are reported with Friedel pairs merged.

"Walues in parentheses are for the highest resolution shell.

electrostatic interactions. Notably, this type of proline-halide interaction has also been observed in
the structure of the chloride-pump rhodopsin CIR (site 2) (Kim et al., 2016).

Our previous results implicated Pro58 in gating of GtACR1, in that substitution of Pro58 by Glu
reduced photocurrent amplitude, altered the kinetics of channel closing, and caused strong outward
rectification of the current-voltage dependence (Li et al., 2019; Sineshchekov et al., 2019). We
observed similar effects in W246E and W250E mutants in the bromide-binding site (Figure 2B), in
that photocurrent amplitudes were significantly reduced compared to the wild type and outward
rectification was increased (Figure 2B). None of these three substitutions with Glu reduced the
selectivity for anions, as assessed by reversal potential measurements (Figure 2B). Based on the
structure, the two tryptophan residues, Trp246 and Trp250, appear to have different roles in bro-
mide binding; for example, compared to distant Trp246 moving its aromatic ring away from the bro-
mide, Trp250 is close to the anion and forms an H-bond interaction between its indole NH and the
bromide. In further examination of this bromide binding conformation, we found that W250F shows
reduction of the current amplitude by 50%, whereas W246F behaves like WT (Figure 2B). These
results are consistent with the structural observations in which Trp250, but not Trp246, stabilizes bro-
mide via H-bond interaction.
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Figure 1. Overall conformation of the bromide-bound GtACR1 structure. (A) Superimposition of GtACR1 apo (orange, PDB 6EDQ) and bromide-bound
(green) structures; one bromide ion (red sphere) is located at the cytoplasmic entry of the intramembrane tunnel (grey tube, predicted using the
program CAVER [Chovancova et al., 2012] of each promoter). All-trans-retinal moieties are depicted as blue sticks. (B-C) Tunnel profiles of GtACR1
chain A (B) and chain B (C) predicted by CAVER: GtACR1 apo form (black line); bromide-bound form (red line). The sizes of chloride and bromide ions
are indicated as dashed lines.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Confirmation of a bromide ion at the cytoplasmic port of GtACR1.

Assesment of bromide binding by FTIR

To test for consequences of halide binding in the dark state with an alternative method, we investi-
gated the effect of different halide anions on GtACR1 structure by measuring FTIR difference spec-
tra at 80 K (see 'Materials and methods’). As previously shown, FTIR difference spectra of GtACR1
membranes recorded at 80 K reflect the photoinduced transition from the dark ground state to K
and L-like intermediates formed upon illumination (Yi et al., 2017). Negative bands in the spectra
measure vibrational frequencies of normal modes in the dark state structure, whereas positive bands
measure photoinduced appearance of altered vibrational frequencies in the photoproducts.
Figure 3A shows GtACR1 FTIR difference spectra recorded for GtACR1 multilamellar membrane
films prepared using NaF, NaCl, or NaBr solutions. The major bands in the 1500-1600 cm ™' region
reflect the ethylenic (C=C) stretch mode of the retinylidene chromophore in GtACR1 (Yi et al.,
2017). Changes in yc=c in microbial rhodopsins entail alterations in the electron conjugation of the
retinylidene polyene chain (Bergo et al., 2004; Bergo et al., 2002; Bergo et al., 2003; Smith et al.,
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Figure 2. Structure of the bromide-binding site in the apo and bromide-bound GtACR1 and electrophysiological properties of site mutants. (A) A
bromide ion (magenta sphere) stabilized by three cyclic residues (green sticks) via H-bond interaction (black dashed line) with superimposition of the
apo form structure (orange). (B) Functional probing of the bromide-binding site residues by patch clamp analysis of their mutants: Left: Rectification
index (Rl), defined as the ratio of peak photocurrent amplitudes recorded at +60 and —60 mV at the amplifier output. Rl > 1 by one-sample Wilcoxon
signed-rank test: *p<0.05, **p<0.01, n.s. not significant (p>0.05). Middle: Peak current at 60 mV. Comparison with the wild-type by Mann-Whitney test:
*p<0.005. Right: Reversal potential at the reduced CI” concentration in the bath. Comparison with the wild-type by Mann-Whitney test: n.s., not

significant (p>0.05).

The online version of this article includes the following source data for figure 2:

Source data 1. Electrophysiological data for binding site mutants.

1987a). Notably, the frequency of the negative ethylenic band (yc_c) undergoes an upshift from
1529 cm~" in NaF to 1533 cm™ ' in NaBr (Figure 3B). The significant upward shift of 3 and 4 cm™’
from that of CI" and F, respectively, by Br in the dark state, provides compelling evidence for Br’
binding in the dark. This Br” induced shift reveals an alteration in charge conjugation in the polyene
chain of the retinylidene chromophore due to Br” binding. In the case of NaBr the frequency upshift
accentuates the appearance of a negative feature near 1520 cm ™" that appears as a shoulder in the
case of NaF and NaCl (Figure 3B). We conclude that Br™ interacts with GtACR1 in the unilluminated
ground state.

While the different halides alter the retinylidene yc_c band in the dark and L-like states, the all-
trans to 13-cis isomerization that occurs upon light absorption and induces formation of the K and
L-like intermediates appears to be unaffected. The unperturbed photoisomerization reaction, consis-
tent with the photocurrent function observed with each of the three halides (Govorunova et al.,
2015), is indicated by the absence of frequency shift differences in the negative and positive bands
in the mixed C-C stretch fingerprint region from 1100 to 1300 cm™" for the different halides (Fig-
ure 3) since these band frequencies (yc.c) are highly sensitive to the retinal isomeric configuration
(Smith et al., 1987a; Smith et al., 1987b).

Conformational changes of the C1 and C3 constrictions
Despite the similar overall structure to that of the apo form, conformational changes were observed
at the C1 and C3 constrictions within the tunnel. Pro58 is an important component of C3. In the apo
form structure, Pro58, together with Leu108, Alaé1, and Leu245, constrains the cytoplasmic port,
leading to the cytoplasmic half of the tunnel narrowing to 3.6 A in diameter (Li et al., 2019). In the
bromide-bound structure, the presence of bromide pushes Pro58 outward by ~1.8 A (Figure 2A). As
a result, the cytoplasmic half of the tunnel is broadened by 1 A in diameter in both protomers
(Figure 1B-C).

Conformational changes were observed in the extracellular half of the tunnel between chain A
and chain B (Figure 1B-C). In the apo form structure, the C1 constriction is stabilized by a salt-
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Figure 3. Specific interaction of bromide with GtACR1 detected by FTIR. (A) Comparison of FTIR difference spectra recorded at 80 K of GtACR1
hydrated multilamellar films formed using different halides. Spectra shown are the average of >5 individual difference spectra (see ‘Materials and
methods’). The scale bar shown is for the NaBr difference spectrum. (B) Comparison of FTIR difference spectra of GtACR1 in the ethylenic C=C stretch

region. All spectra shown are from (A) (purple, green, and red plots) except the NaBr difference spectrum (blue plot) which was recorded on the same
film after 3 days to evaluate the reproducibility of the FTIR measurement. The scale bar shown is for the NaBr difference spectrum (red plot).

bridge formed between Arg94 and Glu223 near the extracellular surface (Li et al., 2019). In the bro-
mide-bound structure, chain B exhibits a similar conformation of C1 as that in the apo form. In con-
trast, Arg94 undergoes salt-bridge switching along the tunnel in chain A (Figure 4A). The side-chain
of Arg%4 is flipped by ~180° to form an alternative salt-bridge with Asp234 in the photoactive site
(Figure 4A), resulting in modest relaxation (~1 Ain diameter) of the C1 constriction (Figure 1B).

Arg94 is highly conserved in the microbial rhodopsin family and it is critical for anion conductance
of GtACR1. The mutation R94A or R94E nearly abolished anion conductance (Li et al., 2019,
Sineshchekov et al., 2019). Arg94 is the only positively charged residue in the extracellular half of
the tunnel. It may enable transfer of anions across the extracellular half of the tunnel via charge-
charge interaction. We found that this side chain rotation enables Arg94 and its neighboring resi-
dues to form a conformation nearly identical to the chloride-binding site of the CI” pump CIR
(Figure 4B). In the structure of CIR, a chloride ion (site 1) is bound between Arg95 and the Schiff
base via H-bonds and salt-bridges. Based on the similar chemical conformations (Figure 4B), it is
possible that Arg94 rotates its side chain to form an anion-binding site with the Schiff base in
GtACR1.

Studies in three different laboratories have concluded that Asp234 is neutral in the dark state
from measurements of the D234N mutant of GtACR1 by UV-vis absorption spectroscopy (Kim et al.,
2018; Sineshchekov et al., 2016), resonance Raman spectroscopy (Yi et al., 2016), and FTIR
(Kim et al., 2018). Both studies of independently determined crystal structures of GtACR1 attribute
the major component of its neutralization to hydrogen-bonding to Tyr207 and Tyr72 (Kim et al.,
2018; Li et al., 2019), leaving open partial electronegativity of Asp234 participating in H-bonding to
the protonated Schiff base (PSB). The Asp234 residue is expected to be functionally important given
its proximity to the PSB and its nearly universal conservation in microbial rhodopsins. Kim et al.,
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e Llfe Research advance

Structural Biology and Molecular Biophysics

A

Retinal

Arg94 M‘
(Arg95)

4
4

> Thr101
(Thr102)

Figure 4. Conformational changes of the C1 constriction. (A) Superimposition of chain A (green) and chain B (pink) of the bromide-bound GtACR1
structure showing salt-bridge switching (black dashed lines) of Arg94 from the extracellular Asp223 to Asp234 near the mid-membrane retinal (blue
sticks). Arg?4_A and Arg94_B designate Arg94 in chains A and B, respectively. (B) Superimposition of chain A of the bromide-bound GtACR1 (green)
and Cl-pump CIR (red, PDB: 5G2A) structures showing a putative halide-binding site in the extracellular half of the tunnel of GtACR1. In the CIR
structure, a chloride ion (maroon sphere) is stabilized via H-bond interactions (black dashed lines). The residues are labelled as in GtACR1 and

analogous residues for CIR are indicated in parentheses.
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of Arg%94 in GtACR1 and Arg95 in CIR.

2018 conducted an extensive analysis of Asp234 and report that the D234N mutation nearly abol-
ished photocurrents. Reduced photocurrents to 20% of wild-type from the D234N mutation were
also observed by Sineshchekov et al., 2015. Differences in extent of photocurrent reduction are
likely attributable to different assay conditions used in these studies. The electrostatic interaction of
Arg94 with Asp234 in the pre-activated state may be correlated with the change in the electron con-
jugation of the retinylidene polyene chain in the dark that we observed by FTIR.

Discussion

In this research advance, we addressed several major questions raised by our previous apo form
structure by determining the crystal structure of bromide-bound GtACR1. We identified a novel bro-
mide-binding site at the cytoplasmic entry of the transmembrane tunnel (Figure 1). The identifica-
tion of bromide is supported by multiple lines of evidence: (1) the composite omit map indicates the
presence of bromide at the cytoplasmic port (Figure 1—figure supplement 1A-B); (2) we exclude
the possibility of a water at the bromide position as demonstrated in the F,-F. difference map (Fig-
ure 1—figure supplement 1C-D); (3) the bromide-binding site exhibits a similar chemical conforma-
tion seen in chloride-binding structures (Auffinger et al., 2004); (4) functional analysis of W250F and
W246F is consistent with the H-bond interaction in the bromide-binding site (Figure 2B); (5) specific
interaction of GtACR1 with bromide in the unphotolyzed dark state was further demonstrated by
FTIR analysis (Figure 3). In sum, these data confirm the bromide binding conformation in the
structure.

Li, Huang, et al. eLife 2021;10:e65903. DOI: https://doi.org/10.7554/eLife.65903 7 of 14
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These findings provide direct evidence for our hypothesis (Li et al., 2019) that the tunnel we
observe both in the apo form and in an altered form in the bromide-bound condition, is the closed
anion channel. The structure shows protein conformational changes in the bromide-bound tunnel
that widen the tunnel: (1) bromide binding at the cytoplasmic entry induces relaxation of the C3 con-
striction (Figure 2A); and (2) salt-bridge switching of Arg94 widens the tunnel and may facilitate
anion binding with the protonated Schiff base (Figure 4A-B).

The two protomers, chains A and B, share a very similar overall structure (rmsd = 0.5 A). Both
chains show a similar bromide binding conformation at the cytoplasmic entry and bromide binding
to each site results in widening of the C3 constriction in each protomer (Figure 1B-C). The most sig-
nificant difference is found in the tunnel at the Arg%94 residue located at the C1 constriction
(Figure 4A). In chain B, the conformation of Arg94 is nearly identical to that found in the apo form
structure. Its side chain extends towards the extracellular side of the tunnel and is stabilized by a
salt-bridge with Glu223. In contrast, Arg94 undergoes a salt-bridge switching in chain A; it rotates
its side chain towards the retinylidene Schiff base to form an alternative salt-bridge with Asp234.
This conformational change results in widening of the C1 constriction in chain A (Figure 1B). Based
on these observations, we propose as a working hypothesis that the conformational differences of
Arg94 between chains B and A accompanied by bromide binding at C3 demonstrate a transition
from an inactivated state to a pre-activated state in the dark.

The conformational change of Arg94 near C1 is not likely to be directly induced allosterically by
bromide binding at distant C3 since it is only observed in chain A, not in chain B. Instead, this con-
formational change may reflect the intrinsic flexibility property of Arg94 in the tunnel in the bro-
mide-bound state. Weak binding and low occupancy of bromide at C1 is also a possibility suggested
by the similar conformations of Arg94 of GtACR1 (chain A) and Arg95 of CIR (Figure 4B). These two
counterpart residues appear to be stabilized by distinct H-bond networks. In GtACR1, inward Arg%94
only forms a salt-bridge with Asp234 and an H-bond with a water molecule (Figure 4—figure sup-
plement 1A). However, in the CIR structure, in addition to the salt-bridge, Arg95 is further stabilized
by three polar residues, Asn92, GIn224, and Thr228, via two water molecules from the extracellular
side of the protein (Figure 4—figure supplement 1B). The absence of these polar residues and
waters in the vicinity may liberalize Arg94 and facilitate its flip-flopping in the tunnel of GtACR1.

Despite the conformational changes that expanded the tunnel in C1 and C3, C2 remains as the
narrowest constriction attributable to the trans-configured retinal moiety within the tunnel
(Figure 1B), suggesting a dominant role of the photoactive site Schiff base per se in the channel-gat-
ing mechanism. Moreover, the pre-activating conformational changes induced by bromide binding
may facilitate channel opening by reducing free energy in the tunnel constrictions, consistent with
the larger conductance of bromide vs chloride (Govorunova et al., 2015).

FTIR data show that bromide binding in the dark significantly alters the electron conjugation of
the retinylidene polyene chain without perturbing the all-trans to 13-cis photoisomerization reaction
occurring in the femtosec to picosec time window. Future structural study of GtACR1 in light-acti-
vated states is needed to resolve protein conformational changes in its photochemical reaction
cycle.

Materials and methods

(species) or Source or Additional
resource Designation reference Identifiers information
Gene GtACR1 Synthetic GenBank: Humanized gene
(Guillardia theta) KP171708

Cell line Pichia pastoris Sigma Aldrich Sigma Aldrich: Methylotrophic
(Pichia 82070101, yeast

pastoris) RRID:CVCL_0549

Cell line HEK293 ATCC ATCC: CRL-

(Homo sapiens) 1573,

RRID:CVCL_0045

Continued on next page
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Continued
Reagent type
(species) or Source or Additional
resource Designation reference Identifiers information
Recombinant Cellfectin Thermo Cat. No.: https://www.thermofisher.
DNA reagent Il Reagent Fisher 10362100 com/order/catalog/
product/10362100
Recombinant ScreenFectA Waco Cat. No.: 29973203 http://www.ereagent.
DNA reagent transfection Chemicals com/uh/Shs.do?now=
reagent USA 1544459665328
Recombinant pPIC9K Thermo Cat. No.: https://www.thermofisher.
DNA reagent Fisher V175-20 com/order/catalog/
product/V17520#/V17520
Recombinant pcDNA3.1 Thermo Cat. No.: V79020 https://www.thermofisher.
DNA reagent Fisher com/order/catalog/
product/V79020
Software, PyMol PyMOL RRID:SCR_000305 http://www.pymol.org
algorithm Molecular
Graphics
System,
Schrédinger,
LLC
Software, UCSF Chimera UCSF Resource for RRID:SCR_004097 http://plato.cgl.
algorithm Biocomputing, ucsf.edu/chimera

Visualization, and
Bioinformatics

Software, PHENIX PMID:20124702 RRID:SCR_014224 http://www.

algorithm phenixonline.org/

Software, Coot PMID: 15572765 RRID:SCR_014222 http://www.biop.

algorithm ox.ac.uk/coot

Software, OriginPro 2016 OriginLab https://originlab.com

algorithm

Software, pClamp 10 Molecular Devices RRID:SCR_01123 http://www.moleculardevices.

algorithm com/products/software/
pclamp.html

Protein expression and purification

Protein expression and purification of GtACR1 expressed in Pichia pastoris followed the procedure
described (Li et al., 2019). The eluted protein was further purified using a Superdex Increase 10/300
GL column (GE Healthcare, Chicago, IL) equilibrated with buffer containing 350 mM NaBr, 5% glyc-
erol, 0.03% DDM, 20 mM MES, pH 5.5, thereby replacing CI” with Br™ in the micelle suspension. Pro-
tein fractions with an A280/A515 absorbance ratio of ~1.9 were pooled, concentrated to ~20 mg/ml
using a 100 K MWCO filter, flash-frozen in liquid nitrogen, and stored at —80°C until use. Molar pro-
tein concentration was calculated using the absorbance value at 515 nm divided by the extinction
coefficient 45,000 M~ 'em™".

Protein crystallization

Crystallization was carried out using the in meso method as with the apo protein (Li et al., 2019).
The lipidic mesophase (lipidic cubic phase, LCP) sample was obtained by mixing 40 ul of GtACR1
protein with 60 ul monoolein (MO) (Sigma, St. Louis, MO; or Nu-chek, Waterville, MN) using two
syringes until the mixture became transparent. Crystallization trials were set up using both 96-well
LCP glass sandwich plates (Molecular Dimensions, Maumee, OH) and IMISX plates (MiTeGen), which
are designed to perform in meso in situ serial X-ray crystallography (Huang et al., 2018,
Huang et al., 2016) with 150 nl aliquots of the protein-mesophase mixture and overlaid with 1.5 pl
of precipitant solution using a Gryphon crystallization robot (Art Robbins, Sunnyvale, CA). The plates
were covered by aluminum foil to maintain a dark environment and incubated at room temperature.
Bromide-bound GtACR1 was crystallized in essentially the same conditions and pH as previously
used for the apo form (Li et al., 2019) except 100 mM NaBr bromide was supplied in both protein
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purification and crystallization buffers. The most highly diffracting crystals of ~20 pm in size were
obtained after one month from a crystallization screen containing 15% 2-methyl-2,4-pentanediol
(MPD), 0.1 M NaBr, and buffer of 0.1 MES, pH 5.5, or Na-acetate, pH 5.5. LCP crystals from glass
plate were harvested using micromesh loops (MiTeGen, Ithaca, NY), and the wells with crystals-laden
LCP in IMISX plate were retrieved using a glass cutter and scissors and mounted using 3D-printed
holders (Huang et al., 2016; Huang et al., 2015). All the samples were flash-cooled in liquid nitro-
gen without any additional cryoprotectant and stored in uni-pucks (MiTeGen, Ithaca, NY) for X-ray
diffraction. An improvement over our previous work was setting up the crystallization in the IMISX
plates and shipping the plates to PSI. This step prevents potential damage to the crystals during har-
vesting and facilitates high-throughput screening in the beamline.

Data collection and processing

X-ray diffraction data collections were performed on protein crystallography beamlines X06SA-PXI at
the Swiss Light Source (SLS), Villigen, Switzerland. Data were collected with a 10 x 10 um? micro-
focused X-ray beam of 13.49 keV (0.91882 A in wavelength) at 100 K using SLS data acquisition soft-
ware suites (DA+) (Wojdyla et al., 2018). Continuous grid-scans (Wojdyla et al., 2018) were used
to locate crystals in frozen LCP samples both from conventional loop and IMISX samples
(Huang et al., 2016). The crystals harvested on loop were collected by the rotation method with 0.2
s exposure time, 0.2° oscillation for data collection and 30° wedge for each crystals. The sample
using IMISX setup was measured by an automated serial data collection protocol (CY+) as described
(Basu et al., 2019) using the following parameters: 0.2° oscillation and 0.1 s exposure time for data
collection with 10-20° wedge for each crystal. 217 data sets were collected using the EIGER 16M
detector operated in continuous/shutterless data collection mode. Data were processed with XDS
and scaled and merged with XSCALE (Kabsch, 2010a; Kabsch, 2010b). Isomorphic data sets were
selected using XDSCC12 (Assmann et al., 2020). The selection is first performed using a multi-
dimensional scaling procedure which identifies data sets with large non-isomorphism relative to clus-
ters of other data sets, and then further selection based on the ACC1/2. The ACC1/2 represents the
influence of a set of reflections on the overall CC1/2 of the merged data. By this mean, 31 IMISX
data sets and five data sets obtained from loop-mounted samples were selected and then merged
to a final complete data set yielding a 3.2 A resolution structure. Data collection and processing sta-
tistics are provided in Table 1.

Structure determination and analysis

The structure of bromide-bound GtACR1 was determined by the molecular replacement (MR)
method using 6EDQ (Li et al., 2019) as the search model with the program Phaser (McCoy et al.,
2007). The structure was refined using PHENIX (Adams et al., 2010) and model building was com-
pleted manually using COOT (Emsley and Cowtan, 2004). The final structure yields a Ryon/Rfee fac-
tor of 0.26/0.29. Refinement statistics are reported in Table 1. The structure factors and coordinates
have been deposited in the Protein Data Bank (PDB entry code: 7L1E). Figures of molecular struc-
tures were generated with PyMOL (http://www.pymol.org). We analyzed the halide tunnel using the
program CAVER with 0.9 A as the detecting probe (Chovancova et al., 2012).

Electrophysiology of GtACR1 mutants

GtACR1 mutants were characterized by whole-cell patch clamp recording as described in detail in
our previous report (Li et al., 2019). Briefly, the wild-type expression construct was cloned into the
mammalian expression vector pcDNA3.1 (Life Technologies, Carlsbad, CA) in frame with an EYFP
(enhanced yellow fluorescent protein). Mutations were introduced using a QuikChange XL site-
directed mutagenesis kit (Agilent Technologies, Santa Clara, CA) and verified by DNA sequencing.
HEK293 (human embryonic kidney) cells were transfected using the ScreenFectA transfection
reagent (Waco Chemicals USA, Richmond, VA). All-trans-retinal (Sigma, St. Louis, MO) was added at
the final concentration 4 UM immediately after transfection. Photocurrents were recorded 48-72 hr
after transfection in whole-cell voltage clamp mode at room temperature (25°C) with an Axopatch
200B amplifier (Molecular Devices, Union City, CA) and digitized with a Digidata 1440A using
pClamp 10 software (both from Molecular Devices). Patch pipettes were fabricated from borosilicate
glass and filled with the following solution (in mM): KCI 126, MgCl, 2, CaCl, 0.5, EGTA 5, HEPES 25,
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and pH 7.4. The standard bath solution contained (in mM): NaCl 150, CaCl, 1.8, MgCl, 1, glucose 5,
HEPES 10, pH 7.4. To test for changes in the permeability for CI', this ion in the bath was partially
replaced with non-permeable aspartate (the final CI” concentration 5.6 mM). For each cell, a single
value of the E,., was calculated. The holding potential values were corrected for liquid junction
potentials calculated using the Clampex built-in LIP calculator. Continuous light pulses were pro-
vided by a Polychrome V light source (T.I.L.L. Photonics GMBH, Grafelfing, Germany) at 15 nm half-
bandwidth in combination with a mechanical shutter (Uniblitz Model LS6, Vincent Associates,
Rochester, NY; half-opening time 0.5 ms). The maximal light intensity at the focal plane of the objec-
tive lense was 7.7 mW mm~2 at 515 nm.

Batches of culture were randomly allocated for transfection with a specific mutant; no masking
(blinding) was used. Individual transfected HEK293 cells were selected for patching by inspecting
their tag fluorescence; non-fluorescent cells were excluded, as were cells for which we could not
establish a gigaohm seal. Results obtained from different individual cells were considered as biologi-
cal replicates. The raw data obtained in individual cells are shown as diamonds. Sample size was esti-
mated from previous experience and published work on a similar subject, as recommended by the
NIH guidelines. No outliers were excluded. Normality of the data was not assumed, and therefore
non-parametric statistical tests were used as implemented in OriginPro 2016 software; P values > 0.05
were considered not significant.

Cell lines
Only a commercially available cell line authenticated by the vendor (HEK293 from ATCC) was used,;
no cell lines from the list of commonly misidentified cell lines were used. The absence of micoplasma

contamination was verified by Visual-PCR mycoplasma detection kit (GM Biosciences, Frederick,
MD).

FTIR difference spectroscopy

The expression, purification, and reconstitution of GtACR1 into proteolipid membranes using E. coli
polar lipids was performed as described previously (Yi et al., 2017). The GtACR1 membranes were
washed and centrifuged 5x in TM NaF, NaCl and NaBr solutions and the pellet finally resuspended
in a solution of 100 mM NaF, NaCl, or NaBr. Multilamellar films were formed by drying a small drop
of this suspension on a BaF window which is rehydrated with a drop of water in a sealed cell. FTIR
difference measurements at 80 K were performed as previously described (Yi et al., 2017). All spec-
tra were recorded using a Bio-Rad FTS-60A FTIR spectrometer (Agilent Technologies, Inc) equipped
with a liquid nitrogen cooled HgCdTe detector. Each acquired spectrum consisted of 200 scans
(approximately one-minute total acquisition time) recorded at 4 cm ™" resolutions. Difference spectra
consisted of an average of at least five difference spectra recorded immediately before illumination
each subtracted from a spectrum recorded during illumination using 505 nm LED light. In order to
repeat this measurement and average multiple differences, the sample was photoreversed after illu-
mination with 590 nm light (Yi et al., 2017).
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