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1 Introduction

An important concept in dynamical systems is that of physical measure. An
invariant probability measure u of a dynamical system f is physical if there
exists a set £ of positive Lebesgue measure in the phase space such that for
every x € E the empirical mean on the orbit {x, f(x), fz(x), cey f’“l (x)}
converges to i as n — 00, in the weak* topology. The theory of large devia-
tions aims to provide exponential bounds on the probability that the empirical
means stay away from p. See, e.g., [14,18] for general accounts of large devi-
ation theory.

For uniformly hyperbolic diffeomorphisms, physical measures have been
constructed in the pioneering works of Sinai, Ruelle and Bowen [4,43,47]. In
this setting, the Large Deviation Principle (LDP for short) has been established
by Takahashi [48,49], Orey & Pelikan [35], Kifer [28], Young [50]; it describes
stochastic features of deterministic dynamics with chaotic behavior.

In recent years there have been considerable efforts to extend these results
beyond the uniformly hyperbolic setting. All previous results we are aware
of are restricted to maps satisfying a weak form of hyperbolicity, see for
example [8,9,12,20,26,30,33,37,41] and references therein. The only ones
establishing a full LDPs are [8] and [9, Theorem B], for a set of positive
measure of quadratic maps satisfying the Collet-Eckmann condition [11]. See
also[12,20,30] for full LDPs for maps satisfying a weak form of hyperbolicity,
in which the empirical measures are weighted with respect to an equilibrium
state of a Holder continuous potential. In spite of the relative incompleteness of
the theory, there was a belief among experts that the LDP holds under weaker
assumptions.

In this paper we study smooth interval maps with only non-flat critical points.
The presence of critical points is a severe obstruction to uniform hyperbolic-
ity. We establish a full level-2 LDP for every such map that is topologically
exact. In particular, the LDP holds for every non-renormalizable quadratic map.
Notably, this includes maps having no physical measure, like the quadratic
maps found by Hofbauer & Keller in [21,22]. Notice that the formulation of
the LDP [17] does not a priori assume the strong law of large numbers or the
existence of a physical measure.

We now proceed to describe our main results in more detail.

1.1 Statement of results

Throughout this paper we set X = [0, 1], and for a measurable subset A of X
we denote by |A| its Lebesgue measure.

A critical point of a differentiable map f: X — X is a point at which the
derivative of f vanishes. Denote by Crit(f) the set of critical points of f.
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Large deviation principle in one-dimensional dynamics 855

A critical point ¢ of f is non-flat if there are £ > 1 and diffeomorphisms ¢
and ¥ of R such that ¢(c) = ¥ (f(c)) = 0 and such that for every x in a
neighborhood of c,

Yo f)] = o).

Note that a continuously differentiable map with only non-flat critical points
has at most a finite number of critical points.

Denote by M the space of Borel probability measures on X endowed with
the weak™* topology. For x € X denote by §, € M the Dirac measure at x.
Given a continuous map f: X — X and an integer n > 1, define §7 =
% Z?:_ol 8¢i(x)- The map f is topologically exact if for every nonempty open
subset U of X there is an integer n > 1 such that f*(U) = X

Main Theorem Let f: X — X have Holder continuous derivative and only
non-flat critical points. If f is topologically exact, then the full level-2 Large
Deviation Principle holds, namely, there exists a lower semi-continuous func-
tion I: M — [0, oo] such that:

— (lower bound) for every open subset G of M,

hmmfllong €X:68 e QH > —1an

n—oo n

— (upper bound) for every closed subset K of M,

lim sup — log|{x eX:8 ek} < —1an

n—ooc N

In the theorem above and in the rest of the paper,
log0 = —oc, inf # = oo and sup¥) = —

The function [ is called a rate function. From the general theory of large
deviations [14,18], the LDP determines / uniquely. We show that —1 is the
upper semi-continuous regularization of the “free energy function”. Then
the rate function is convex, and it is characterized as the Legendre transform
of the cumulant generating function, see Sect. 1.2.

The traditional application of the LDP in dynamical systems is for maps
having a physical measure. In the probabilistic viewpoint of dynamical sys-
tems, the existence of a physical measure is analogous to the law of large
numbers, and the LDP is a refinement of this law. For concreteness, consider a
map f: X — X as in the Main Theorem that in addition has a physical mea-
sure . Then the rate function / vanishes at © and, assuming f is sufficiently
regular, for Lebesgue almost every point x in X the sequence of empirical mea-
sures {87}°° | converges to u in the weak™* topology, see [6, Theorem 8]. This
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last property is thus analogous to the law of large numbers, and the LDP given
by the Main Theorem is a refinement: the speed of convergence is controlled
by the rate funcion 1.

The LDP given by the Main Theorem applies to situations beyond the tra-
ditional one, since it does not require the existence of a physical measure.
Note also that the LDP in the Main Theorem does not require any weak form
of hyperbolicity. To illustrate the broader applicability of the the Main Theo-
rem, we give two new insights into the dynamics of quadratic maps. The first
concerns one of the quadratic maps fp without physical measures studied by
Hofbauer & Keller in [21,22]. The rate function of fy vanishes entirely on its
effective domain, in sharp contrast with the uniformly hyperbolic case where
the rate function only vanishes at the physical measure. The LDP given by the
Main Theorem gives a quantitative version of the “maximal oscillation™ prop-
erty studied by Hofbauer & Keller in [22], see Sect. 1.2 for details. We also
consider the quadratic Fibonacci map fi studied by Lyubich & Milnor [32],
Keller & Nowicki [27], and others. The equilibrium states of f for the geomet-
ric potential — log | Df| form a segment, having the physical measure j, of fi
as an endpoint. Although the basin of an equilibirum state p different from g
has zero Lebesgue measure, the LDP given by the Main Theorem implies that 1
still attracts a significant set of initial conditions, see Sect. 1.2 for details.

Besides the uniformly hyperbolic case mentioned at the beginning of the
introduction, the only previous full LDPs were established in [8] and [9,
Theorem B] for a set of positive measure of quadratic maps satisfying the
Collet-Eckmann condition. See also [12,20,30]! for full LDPs for maps sat-
isfying a weak form of hyperbolicity, in which the empirical measures are
weighted with respect to an equilibrium state of a Holder continuous poten-
tial. For local LDPs, see [26, Theorems 1.2 and 1.3], [33], [37, Corollary B.4],
[41], and references therein.

We now state a corollary of the Main Theorem that follows from the general
theory of large deviations. We use it below to compare our result with previous
related ones. Let M (f) be the subspace of M of those measures that are f-
invariant. For a continuous function ¢ : X — R define

c¢,=min{/<pdv: veM(f)} andd¢=max{/<pdv: veM(f)},

and for each integer n > 1 and x in X write

n—1

Su) = v o 100 =n [ gdst.

i=0

I See also the survey article of Denker [15].
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Large deviation principle in one-dimensional dynamics 857

Moreover, define a rate function g, : R +— [0, oo] by

qy(1) =inf{l(,u): JTRS M,/(pdu:t}.

This function is bounded on [c,, dyy] and constant equal to 0o on R\ [cy, dy].
Furthermore, g, is convex on R, and therefore continuous on (cy, dy).

The following corollary is a direct consequence of the Main Theorem and
of the contraction principle, see for example [14,18].

Corollary Let f: X — X have Holder continuous derivative and only non-
flat critical points. If f is topologically exact, then for every continuous
function ¢ : X — R satisfying ¢, < dy and for every interval J intersecting

(c(/) ’ d(p);

1
lim —log
n—-oon

1
eX: — e Ji| = —inf g,.
{x " n(x) ” H} de

One previous result relevant to this corollary is that of Keller & Nowicki [26,
Theorem 1.2], in the case where f is a S-unimodal map satisfying the Collet-
Eckmann condition, see the definition of S-unimodal map below. Denoting
by uac the unique absolutely continuous invariant probability (acip for short)
of f,they proved that the corollary holds with ¢ = log | Df | forevery interval J
whose boundary is contained in a small neighborhood of t = [ log | D |d juac-

Let us illustrate a broad applicability of the Main Theorem and its corollary
in the context of “S-unimodal” maps, which we proceed to recall. A non-
injective continuously differentiable map f: X — X is unimodal,if f(0X) C
0X, and if f has a unique critical point. The unique critical point ¢ of such
a map must be in the interior of X and be of “turning” type; that is, f is not
locally injective at c. The map f is S-unimodal, if in addition c is non-flat for f,
and if f is of class C3 and has negative Schwarzian derivative on X \ {c}; in
this context the non-flatness condition is the same as above with the additional
requirement that the diffeomorphisms ¢ and v are of class C3.

Each S-unimodal map has exactly one of the following dynamical charac-
teristics:

(1) it has an attracting cycle;

(i) it is infinitely renormalizable;

(iii) it is at most finitely renormalizable.
In case (iii) there is an integer p > 1 and a closed interval J containing
the critical point of f in its interior, such that f7(J) C J, such that the
return map f7: J — J is topologically exact, and such that the intervals J,

f(J), ..., fP~1(J) have mutually disjoint interiors, see for example the com-
bination of [13, Theorem V.1.3] and [45, Theorem 2.19 and Proposition 2.34].
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858 Y. M. Chung et al.

This implies that a rescaling of f7|; satisfies the assumptions of the Main The-
orem. It follows that the LDP holds for every at most finitely renormalizable
S-unimodal map.

For a real analytic family of S-unimodal maps with quadratic critical point
and non-constant combinatorics, such as the quadratic family, Lebesgue almost
every parameter corresponds to either case (i) or case (iii), and in the latter
case there is an acip [1,31]. The set of parameters corresponding to acips has
positive Lebesgue measure [2,23].

1.2 Further results and comments

We characterize the rate function / in the Main Theorem as follows. For v €
M(f) denote by h(v) the entropy of v, and define the Lyapunov exponent X(v)
of v by A(v) = [log|Df|dv. The free energy function F: M — [—00, 00)
is defined by,

h(v) —A(v) ifve M(f);
F(v) = .
—00 otherwise.
Since the map f in the Main Theorem is topologically exact, it has the spec-
ification property. Then it has no hyperbolic attracting periodic point and
empirical measures along periodic orbits are dense in the space of invari-
ant measures [46, Theorem 1]. Together with the upper semi-continuity of the
Lyapunov exponent, this implies that for every v € M(f) we have A(v) > 0,
see also [42, Proposition A.1]. We show that the rate function / in the Main
Theorem is given by

I(n) = — inf sup F, (1)

Gou ¢

where the infimum is taken over all open subsets G of M containing . It
follows that I is convex, and therefore that / is the Legendre transform of
the cumulant generating function, see for example [14, Theorem 4.5.10(b)].
On the other hand, using (1) and the fact that the rate function takes only
nonnegative values, we obtain from the LDP in the Main Theorem that for
every v € M(f) we have F(v) < 0. This is known as Ruelle’s inequality
[44]. Note also that the rate function vanishes at each equilibrium state of f
for the geometric potential — log | Df|. That is, the rate function / vanishes at
every measure v € M( f) for which Rohlin’s formula F(v) = 0 holds. See
below for an example where the function vanishes at a measure that is not an
equilibrium state.

Consider a S-unimodal map f with a non-flat critical point that satisfies the
Collet-Eckmann condition [11]. Then the corresponding rate function vanishes
precisely at the (unique) acip [10, Theorem A.1]. As mentioned earlier, for such
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amap f we have the traditional application of the LDP in the Main Theorem
as a refinement of the law of large numbers.

We now describe two applications of the LDP in the Main Theorem that go
beyond the traditional application of refining the law of large numbers. First,
we consider one of the quadratic maps fo: X — X without physical measures
studied by Hofbauer & Keller in [21, Theorem 5] and [22], see Theorem A.1
in the Appendix for a precise description. The Main Theorem applies to fy
and the corresponding rate function vanishes entirely on its effective domain,
see Theorem A.2 in the Appendix. This is in sharp contrast with the uniformly
hyperbolic case, for which the rate function only vanishes at the physical
measure. Applying the Corollary of the Main Theorem to fj, we obtain:

Choose ¢ > 0, an arbitrary invariant measure x, and an arbitrary contin-
uous function ¢: X — R. Then for n > 1, the set E, of all the initial
conditions xq for which

1 n—1 )
Yoo - [eau| <e.
j=0
is sub-exponentially large with respect to n:
.1
lim —log|E,| = 0. 2)
n—-oon

Equivalently, there is a sub-exponentially large set of initial conditions for
which the Birkhoff average of ¢ is near the mean with respect to w. This
happens simultaneously for every invariant measure /¢, and gives a quantitative
version of the “maximal oscillation” property of fo shown by Hofbauer &
Keller in [22].

The second application is for the Fibonacci quadratic map fi: X — X,
studied by Lyubich & Milnor [32], Keller & Nowicki [27], and others. This
map has a physical measure . whose basin of attraction has full Lebesgue
measure on X [32, Theorem 1.3(4)]. That is, for Lebesgue almost every point x
in X the sequence of empirical measures {67 }°° | converges to u in the weak™®
topology. On the other hand, the closure of the critical orbit is a Cantor set
that supports a unique invariant probability measure v, [32, Theorem 1.2].
The measures . and v, are the unique ergodic equilibrium states of f; for
the geometric potential — log | Dfx|, so every equilibrium state is a convex
combination of u, and v, [5, Corollary 3.11 and Example 3.13]. The Main
Theorem applies to f; because this map is non-renormalizable. The rate func-
tion [ thus vanishes at each convex combination of i, and v,. Moreover, 1
can only vanish at the convex combinations of . and v,, because the free
energy function F for f; is upper semi-continuous and therefore / = —F [5,
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Corollary 2.6 and Proposition 2.9]. Consider an equilibrium state p different
from the physical measure 4. Since i # [y, the basin of i has zero Lebesgue
measure. Nevertheless, 7(u) = 0 and therefore the LDP lower bound given
by the Main Theorem show that u does attract a significant set of initial con-
ditions: for every n > 1 the set E, of initial conditions xo for which the
empirical mean &} is close to u satisfies (2). That is, Ej, is sub-exponentially
large with n. Furthermore, the LDP given by the Main Theorem also shows that
the equilibrium states of f for the potential — log | D f| are the only invariant
measures satisfying this property. There is an analogous application of the LDP
for Manneville-Pomeau maps, see [36], [7, Section 5] and [10, Appendix B].
For a certain range of parameters, there is a physical measure whose basin has
full Lebesgue measure, and the rate function vanishes precisely at the convex
combinations of this measure and the Dirac mass at the indifferent fixed point.

Usually the free energy function F is not upper semi-continuous,” so in gen-
eral / is different from — F'. For a concrete example for which these functions
differ, consider the quadratic map f(x) = 4x(1 — x). Then O is a hyperbolic
repelling fixed point and F(§p) = —log4. The Lyapunov exponents of all
other ergodic measures are log 2, and §¢ is weak*-approximated by measures
supported on periodic points, and so I (6p) = log 2. For another example, con-
sider a quadratic map f] given by [21, Theorem 3], whose unique physical
measure is the Dirac measure supported at a repelling fixed point p of fi.
As mentioned before 7(5,) = 0, but F(§,) = —log|[Dfi(p)| < 0. This is
also an example where the rate function vanishes at a measure that is not an
equilibrium state.

In [8] a full level-2 LDP similar to the Main Theorem is shown for a positive
measure set of Collet-Eckmann quadratic maps. In this result, the rate function
is the same as in the Main Theorem, but instead of weighting the empirical
measures with respect to the Lebesgue measure, in [8] they are measured
with respect to the acip. Combining both of these LDPs, we obtain that the
Lebesgue measure and the acip are sub-exponentially close on a large class of
dynamically defined sets. It is not clear to us whether the LDP in [8] holds for
every Collet-Eckmann quadratic map, or if a parameter exclusion as in [8] is
needed.

Our methods apply with minor modifications to complex rational maps that
are “backward stable” in the sense of [3,29]; this is a condition analogous to
the conclusion of Lemma 3.3. There is a large class of rational maps satisfying
this property, including every polynomial with locally connected Julia set and
all cycles repelling, see [29, Corollary 1]. There are however quadratic maps
with all cycles repelling that are not backward stable, see [29, Remark 2]. Fur-

2 Although the entropy map is upper semi-continuous as a function of measures, the Lyapunov
exponent function is not lower semi-continuous in general since f has critical points, see for
example [5, Proposition 2.8].
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thermore, it is not known whether every rational map satisfies the specification
property, or some of this consequences, like the results in [46].

1.3 OQutline of the paper

In this section we outline the proof of the Main Theorem, and simultaneously
describe the organization of the paper.

The proof of the Main Theorem follows the strategy originated in [7] and that
has been developed in [8,9]. The main new ingredient is a diffeomorphic pull-
back argument that simplifies the construction substantially, and that allows
us to apply it to a larger class of maps. The proof is divided in two parts: the
lower bound is shown in Sect. 2, and the upper bound in Sects. 3 and 4.

We show that the lower bound holds without the non-flatness hypothesis.
Roughly speaking, the proof of the lower bound consists of finding a set of
points whose empirical means are close to a given invariant measure. In the
case this last measure is hyperbolic, the desired set is easily found using Katok-
Pesin theory, which allows one to approximate each hyperbolic measure by
hyperbolic sets in a particular sense. The main difficulty is to deal with non-
hyperbolic measures. We use the specification property to approximate a non-
hyperbolic measure by hyperbolic measures, in a suitable sense. In this way we
reduce the case of non-hyperbolic measures to the case of hyperbolic measures.

The upper bound is much harder, because a global control of the dynamics is
required. The main idea is to construct certain horseshoes with a finite number
of branches that are tailored to a given open subset of M. This construction
is necessarily involved due to the presence of the critical points. In [8,9], this
method was implemented under strong assumptions on the orbit of the critical
value, as mentioned earlier in the introduction. In this paper, we use a diffeo-
morphic pull-back argument to replace the analytic horseshoe constructions
in [8,9] by one of more topological flavor, enabling us to dispense with the
strong assumptions on the critical orbits altogether.

The diffeomorphic pull-back argument is developed in Sect. 3, where it is
stated as the “Uniform Scale Lemma.” One of the main ingredients in the proof
of this lemma are some general sub-exponential distortion bounds (Proposi-
tion 3.1 in Sect. 3.1.) These sub-exponential distortion bounds are combined
with a method that goes back to [39], to carefully avoid critical points and
choose diffeomorphic pull-backs. The preliminary results needed to imple-
ment this method are established in Sect. 3.2, and the proof of the Uniform
Scale Lemma is given in Sect. 3.3.

The proof of the upper bound is completed in Sect. 4. The main step is to
construct, for a given basic open set of M ( f) and for each large integern > 1,
a certain horseshoe with inducing time g, where ¢ > n and ¢ — n = o(n)
as n — oo (Proposition 4.1 in Sect. 4.1.) By a horseshoe with inducing
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time ¢ we mean a finite collection L1, Lo, ..., L; of pairwise disjoint closed
intervals such that ¢ mapseach L;,i € {1,2, ..., }, diffeomorphically onto
an interval whose interior contains Uf-=1 L;. The inducing time g consists
of three explicit parts: in the first n iterations, the intervals are mapped to a
ball of radius n~¢, for a fixed constant « > 1, centered at a carefully chosen
base point; in the second part, of roughly logn iterations, intervals reach a
fixed scale x > 0 independent of n; the third part, of a bounded number of
iterations, the intervals return to a prefixed small interval. In order to reach
the scale «, a key ingredient is the Uniform Scale Lemma in Sect. 3. Once the
horseshoe is constructed, we prove two intermediate estimates in Sect. 4.2.
The first is restricted to a small interval (Proposition 4.4), and the second is
a global estimate (Proposition 4.6) obtained by using topological exactness
to spread out the local estimate. The local estimate is used to treat inflection
critical points. The proof of the upper bound is completed in Sect. 4.3.

1.4 Notation

The following notation and terms are used in the rest of the paper. For x € X
and n > 0 denote by B(x, n) the closed ball of radius 5 centered at x, i.e.,

B(x,nm) ={yeX:|y—x|=<n}
and for subsets A and A’ of X define

B(A.n) = B(x.n), dist(x, A) =inf{|x —a|: a € A},

xXeA

and
dist(A, A)) =inf{la —a'|:a € A,a’ € A"}.

A subset F' of X is called n-dense if B(F, n) = X holds. For a subset A of X,
denote by HD(A) the Hausdorff dimension of A.

Let f: X — X be continuously differentiable. A subset K of X is forward
f-invariant if f(K) C K. The set K is called hyperbolic, if there exist C > 0
and A > 1suchthatforeveryx € K andeveryintegern > 1, |Df"(x)| > CA"
holds.

2 Large deviations lower bound

In this section we prove the large deviations lower bound in the Main Theo-
rem. As the proof below shows, these estimates hold without the non-flatness
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Large deviation principle in one-dimensional dynamics 863

hypothesis. The following is the key estimate and it contains Ruelle’s inequal-
ity. It must be noted that in the following estimate we have to treat measures
with zero Lyapunov exponent.

Proposition 2.1 (Key Estimate) Let f: X — X have Holder continuous
derivative and at most a finite number of critical points. Assume f is topolog-
ically exact. Let | > 1 be an integer, o1, ¢2,...,¢;: X — R continuous
functions and a1, a2, ...,0; € R. Then for every u € M(f) such that

Jejdu > aj forevery j € {1,2,...,1},

1
lim inf — log
n—-oo n

> F(w).

1
{xeX: =Snpj(x) > aj forevery j € {1,2,...,1}}
n

In the proof of this proposition we use the following version of Katok’s theo-
rem, which allows one to approximate each hyperbolic measure by hyperbolic
sets in a particular sense, compare with [24, Theorem S.5.9] and [38, The-
orem 4.1]. Using Dobbs’ adaptation of Pesin’s theory to interval maps [16,
Theorem 6], the proof is a slight modification of that of [24, Theorem S.5.9]
and hence we omit it. For a continuous map f: X — X, asubset U of X, and
an integer n > 1, each connected component of f~"(U) is called a pull-back
of U by f".If in addition f is differentiable, then a pull-back J of U by f"
is called diffeomorphic if f*: J — U is a diffeomorphism.

Lemma 2.2 Let f: X — X have Holder continuous derivative and at most
a finite number of critical points. Let @ € M(f) be ergodic and such that
h(uw) > 0. Let | > 1 be an integer, and ¢1,...,¢: X — R continuous
Sfunctions. Then for every ¢ > O there are integers k > 2 and m > 1 satisfying
%logk > h(u) — &, a closed subinterval K of X, and pairwise disjoint
diffeomorphic pull-backs K1, ..., Ky of K by f™ contained in K, such that
the following holds:

k
< g foreveryx € UKi and every j € {1,...,1};

i=l

1
sy~ [

and

k
A= 1 prm (x| < AWM for every x € U K;.

i=l

Proof of Proposition 2.1 Fix ¢ > 0 sufficiently small so that [f pjdpu > aj+e
holds for every j € {1, ...,[}. Foreach (ng,...,n;+1) € Z +2 put

& & & &
C(0. - m) = [m03. (0 + 13 ) X+ x [mg1 5. (ur + D).
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Denote by Me(f) the subset of M(f) of ergodic measures, and let
D: Merg(f) — R'*2 be the function defined by

d(v) = (h(v), x(v), /(pldv, e /gom’v) .

Finally, let Z be the subset of 772 of those n such that o~ IC (n)) is nonempty,
sets = #Z, choose a bijection¢: {1,...,s} - Z,and foreachi € {1, ..., s}
choose a measure (; € Merg(f) in &~ 1(C((i))). Thus, if W is the unique
probability measure on Me(f) such that u = f vdg(v), and for each i €
{1,....s} weput i = pu (@ ~1(C(u(i)))), then the measure 1’ = Biu —I—

+/3sus isin M(f), and satisfies | () —h(u)| < 5, [A() —A(1')] < 5,
andfor each j € {1,...,1},

‘/w;du - /wjdu’

Foreachi € {1, ..., s} define integers k; and m; and subintervals K I K i,
Ki of X, as follows. In the case where h(u;) > 0, let k; = k, m; = m,
K= K K’ Ky, ... K,’; = K, be as in Lemma 2.2 with ¢ replaced by £.
Suppose h(,u,) = 0. By [46 Theorem 1] and the upper semi-continuity of
the Lyapunov exponent function there is a perlodlc point p such that, if we
denote by N > 1 its minimal period, then + v log IDfN(p)| < A(ui) + £ ¢ and
foreach j € {1,...,1},

=

&
3 .

1
‘NSNQOj(P) —/tﬂjdui <

AN ™

Using that f is topologically exact, it follows that for every sufficiently small
interval K containing p, the pull-back K| of K by f" containing p is contained
in K. Reduce K if necessary, so that f N.K,—> Kisa diffeomorphism, and
such that for every x € K| we have %log |DfN(x)| < A(ui) + % and for
each j € {1,...,1},

=<

‘_SN(/)](X) f¢de

w o

Setk; =1,m; = N,K' = K, and K| = K.
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Take an integer M > 1 suchthatforeachi € {1,..., s} wehave fM(Ki) =
X, and fix an integer n > 1. Foreachi € {1, ..., s}, put

b = |:,3,_n} andn; = ¢;m; + M,
mj
and denote by L; the collection connected components of
1z . .
<fm" IK{U_“UK,- ) (K*"). Note that #£; = kf’, and that for each L € £;
s(i)

we have f" (L) = X. Furthermore, for each x € L we have

1 , Lim; £ M
—log D" (0] = == (M) + 3 ) + —log (sup IDfI) NG
n; n; 3 nj b'e

4
and for each j € {1, ..., [} we have

M

E,-m,- &
3t suplejl. “
ni x

=<

1
S0 () = /(ﬂjdui

1

1

Setm = ny + - - - + ng, and note that the sets in
-1 -1
ﬁ:{(f”le) oo (f™L,) (X):Lleﬁl,...,Lseﬁs}

are pairwise disjoint, and that each set in £ is mapped onto X by f™. On the
other hand, if » is sufficiently large, then

1 Cilogky + -+ + s logk; S Bi €
— log(#L) = > —loghi | —
mog( ) ny+---+ng B Zmi oeh 3

i=1
- (S (- 5)) - § =h00r - 22 -
i=l

Furthermore, by (3), for each L € L and x € L we have |Df"(x)| <
ew+em and by (4), for each j € {1, ..., 1} we have

<e.

1
‘Zsmfpj(x) —/wjdu

Note that for each L in £ we have |L| > e~ *(+em,
Let n be a large integer and write n = pm 4+ ¢, where p, g are non-negative
integers with 0 < g < m — 1. We have
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1 1
—log {x € X: =Supj(x) > aj forevery j € {1,...,I}H
n n
1 1 .
> —log|yx € X: —Spmpj(x) > aj +eforevery j e {l,...,[}
n pm
.. > L
—1lo
= g
Le\/’-) f-imc
1
= (plog(#L) — pm(A(p) + ¢€))
1
> Zlog(#/;) — (M) + 2¢)

> h(pn) — A(p) — 3e.
Letting n — oo and then ¢ — 0 we obtain the desired inequality. O

Proof of the large deviations lower bound in the Main Theorem Let f: X —
X be a map satisfying the hypotheses of Proposition 2.1, and G an open sub-
set of M. Note that the topology of M has a base consisting of sets of the
form

{veM: /gojdv > o for every j e{l,...,l}},

where [ > 1 is an integer, each ¢;: X — R is a continuous func-
tion and «; € R. Hence, there exists a collection {Og}s of sets of
this form such that § = UE O¢. Proposition 2.1 applied to each O
yields

o] L1
hm1nf—log|{xeX:SﬁeG}|=lw_1)ggf;log xeXx: 8 el o

n—o00 n
§

> supliminfllong € X: 8 € O

E n—->oo n

> supsup F
§ O
=sup F
g

= —inf .
g
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3 The uniform scale lemma

This section is devoted to the proof of the following lemma that is a key element
of the proof of the large deviations upper bound in the Main Theorem. The
large deviations upper bound is completed in Sect. 4.

For a differentiable map g: X — X and a subinterval J of X that does not
contain critical points of g, the distortion of g on J is by definition

Dy ()|
—_— X, Ji.
S“p{wg(yn nye }

Uniform Scale Lemma Let f: X — X have Holder continuous derivative
and only non-flat critical points. Assume f is topologically exact. Then for
every ¢ > 0 there exist constants ng > 0, C > 0, and k > 0, such that
for every n € (0, no) there is no > 1 such that the following property holds
for every integer n > ng. For every subinterval W of X that satisfies n <
| f"(W)| < 2n, there exists a subinterval J of W and an integer m such that

J[>e W[, n<m <n+Clogn, [f"(J)| > «,

and such that f™ maps J diffeomorphically onto f™(J) with distortion
bounded by ¢*" (Fig. 1).

In Sect. 3.1 we establish one of the main ingredients in the proof of this
lemma, which are some general sub-exponential distortion bounds (Proposi-
tion 3.1). The first type of distortion bound is on the ratio of the sizes of two
iterated intervals, which holds for an arbitrary pull-back that is not necessarily
diffeomorphic. The second one is a sub-exponential derivative distortion bound
for diffeomorphic pull-backs with a definite “Koebe space”. This last distor-
tion bound is obtained from the Koebe Principle in [13] and a sub-exponential
cross-ratio distortion bound. In Sect. 3.2 we show the abundance of “safe
points” contained in hyperbolic sets (Lemma 3.5). This is used to apply the
method of [39] to find sub-exponentially small intervals all whose pull-backs
by a high iterate of the map are mapped diffeomorphically to unit scale. The
proof of the Uniform Scale Lemma is given in Sect. 3.3.

3.1 Sub-exponential distortion bounds

In this section we prove the following proposition giving a sub-exponential
bound on the ratio of the sizes of two iterated intervals, and a sub-exponential
derivative distortion bound for certain diffeomorphic pull-backs.

Proposition 3.1 Let f: X — X have Holder continuous derivative and only
non-flat critical points. Assume f is topologically exact. Then for every e > 0
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an*n

/ —
fn :
el ; ‘

J
W

W

\\

Fig. 1 On the Uniform Scale Lemma: for a given ¢ > 0 one can find two small scales n > 0
and k > 0 such that for every pull-back W of intervals of size 1 one can choose a subinterval J
of W that is mapped diffeomorphically to an interval of length x intime m,n < m < n+Clogn

there exist an integer n1 > 1 and ng > 0 such that for every integer n >
ny, every subinterval W of X that satisfies | f"(W)| < 2no, and for every
subinterval J of W,

DL _ e 1L
TR

If in addition f": W — f™"(W) is a diffeomorphism and |f"(J)| <
dist(af™(W), f"(J)), then the distortion of f" on J is bounded by ¢*".

For the proof of this proposition we need the next lemma, in which we use
the assumption that each critical point is non-flat. To state this lemma, we use
the concept of “cross-ratio” that we proceed to recall. Given a subinterval J
of R and an interval J whose closure is cc/)zltained in the interior of J, dglote
by L and R the connected components of J \ J. Then the cross-ratio Ct(J; J)
of J and J is defined by

~ I
CI'(J, J) = m

Lemma 3.2 Let f: X — X be continuously differentiable with only non-
flat critical points. Then there exist constants Co > 1 and 8o > 0 such that
for every interval U contained in B(Crit(f), do), and every subinterval U of

U,
SO _ o U1
@) 0|
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If in addition ﬁA is disjoint from Crit( f) and the closure of U is contained in
the interior of U, then

Cr(f(U); f(U)) = Cy' Cr(U; U).

Proof Let ¢ € Crit(f). By the definition of non-flatness, there exist a number
¢ > 1 and diffeomorphisms ¢ and i of R such that ¢ (c) = ¥ (f(c)) = 0 and
g = Vo fop !satisfies |g(x)| = |x|¢ for x near 0. It is thus enough to prove
the lemma with f replaced by g. For g, the second inequality with Co = 1 is
given by [13, Property 4 in Sect.IV.1] by noting that the Schwarzian derivative
of g is negative on R \ {0}. To prove the first inequality we treat four cases
separately.

Case 1: 0 € U. We have (|U|/2)* < [g(U)| < |U|". Since 0 € U we also
have (1U1/2)¢ < |g(@)| < |U|. Then |g(U)|/Ig(@)] < QUI/ITN" <
244U /|01,

Case2:0¢ UandQ € U. By the mean value theorem and the form of g, there
is& in U suchthat |g(U)| = |Dg(€)|-|U| < ¢|U " |U). Combining this with
the lower estimate of |g(U)| in Case 1 yields |g(U)|/|g(U)| < ZE€|U|/|U|
Case3:0 ¢ U and |U| < dist(0, U) The mean value theorem gives |g(U)| =
|Dg(§)] - |U| and |g(U)| = [Dg(n)| - |U| for some & € U and n € U The
assumptlon |U| < dist(0, U) implies |£/n| < 2, and so |g(U)|/|g(U)|
2N |/|0|.

Case4:0 ¢ U and |U | > dist(0, U ). Let Ve denote the smallest closed interval
containing U and 0. We have lg(V)] = |g(U)|+|g(V\U)| < 2|g(U)| Using
this and the estimate in Case 2 for the pair (U, V') yields

1g()1/1g(0)] < (1/2)1g)I/1g(V)| <2 U/ Iv] < 28 Leu))|U).

O

In the proof of Proposition 3.1 we also use general properties of topolog-
ically exact maps. First, notice that from the compactness of X, for every
continuous and topologically exact map f: X — X and each y > 0 there is
an integer N > 1 such that for every subinterval J of X with |J| > y, we
have fV(J) = X; we denote by N (y) the smallest such integer.

Lemma 3.3 Let f: X — X be a continuous map that is topologically exact.
Then for every ¢ > 0 there exists n € (0, 1/2) such that for every integer
n > 1 and every subinterval W of X that satisfies | f*(W)| < n, | f{(W)| < ¢
holds for everyi € {0,...,n — 1}.

Proof Let n € (0, 1/2) be such that for every subinterval V of X that sat-
isfies |V| < n, |f*(V)| < 1/2 holds for every i € {0, ..., N(g) — 1}. Let
n > 1 be an integer and W a subinterval of X such that | f*(W)| < n. If

@ Springer



870 Y. M. Chung et al.

| fO(W)] > & holds for some ig € {0, ..., n — 1}, then the definition of N (¢)
gives fNE(fo(W)) = X. Since f(X) = X we get fNEOI(f1(W)) = X,
and this contradicts the choice of n with V = f*(W). O

Proof of Proposition 3.1 In order to treat critical relations that can arise in the
case # Crit(f) > 2 we introduce the following notion. We say ¢ € Crit(f) is
a tail if f™(c) ¢ Crit(f) holds for every n > 1. Let Crit’( /) denote the set of
tails.

Consider a graph made up of vertices and oriented edges between them. The
vertices are critical points of f. For two vertices ¢y and ¢ put an edge from cp
to ¢y if there exists an integer n > 1 such that f(co), f2(co), ..., " Nco) ¢
Crit(f) and f"(co) = c1. The edge is labeled with n. By definition, there is at
most one outgoing edge from each vertex. Since no critical point is periodic,
there is no loop in the graph. The concatenation of edges groups the set of
vertices into blocks, which might intersect. For each block consider the sum
of labels of all its edges. Let E denote the maximal sum over all blocks. Let
¢ > 0be given and let Cg and §( be the constants given by Lemma 3.2. Choose
a sufficiently large integer n; > 1 such that efm/12 > 2C02E .Let s € (0, 8p)
be such that the set U'j“:1 fI(B(Crit'(f), 8)) is disjoint from B(Crit(f), §/2).

Since f is continuously differentiable, there is « € (0, §/2) such that for
every interval U contained in X \ B(Crit(f), §/2) that satisfies |U| < «,

sup |Df (x)| <ef. )
x,yeU |Df(y)|
Finally, in view of Lemma 3.3 we can choose 79 > 0 such that for every n €
(0, no), every x € X, every integer n > 1 and every pull-back W of B(x, n)
by £, | f/(W)| < « holds for every j € {0,...,n — 1}. Note that by our
choices of n and §, it follows that

; 2E
#{j€{0,....,n—1}: f/(W)NB(Crit(f), §/2) # O} <E <l + 1) < iy
ny ni
()
Letn > ny,n € (0, ng), W apull-back of B(x, n) by f" and J a subinterval

of W. For every j € {0,...,n — 1} we have | f/(W)| < k. Thus, if in
addition f/ (W) is disjoint from B(Crit(f), §/2), then (5) gives

SN < ofs 17 (D)]
|fITE W) T W)

If in addition f J(W) is disjoint from Crit( f), then for every subinterval ,(:j
of f/(W) and every interval U whose closure is contained in the interior of U,
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Cr(f/ N O); W) = e Cr(f1(O); £ W)).

Supposenow j € {0, ..., n—1}is such that fj(W) intersects B(Crit(f), §/2).
Since « € (0, §/2), the interval f/(W) is contained in B(Crit(f), §), and by
Lemma 3.2 we have

DL _ D
LI WL~ T m)

If in addition f J(W) is disjoint from Crit(f), then for every subintervalAﬁ
of /(W) and every interval U whose closure is contained in the interior of U,

Cr(f/ 1 (O); I W)) = C5' Cr(f1(O); f1(U)).
Therefore, by our choice of 1 and (6) we have

n 2En
|f () SCOM el%n Seenﬂ,
| f(W)] W]

which gives the first assertion of the proposition.

To prove the second assertion of the proposition, suppose f": W — f*(W)
is a diffeomorphism. Then for every subinterval U of W and interval U whose
closure is contained in the interior of U,

n

Cr(/" W) ["W)) _ U
Cr(U; U) i aGi@ oy T

ni

-1 . ~ .
j+1 .pj+l __2En R R
Cr(f TN Q): U i,

The Koebe Principle [13, Theorem IV.1.2] with T = 1 implies that the distor-
tion of f” on J is bounded by ¢*". This completes the proof of the proposition.
O

3.2 Abundance of safe points in hyperbolic sets

Let f: X — X be a differentiable interval map with at most a finite number
of critical points. In order to carefully avoid critical points and choose dif-
feomorphic pull-backs, we use the method introduced in [39]. We adopt the
terminology of “safe points” in [40, Definition 12.5.7]. For a given o > 0 and
an integer n > 1 define

En(a) = | B(f7 (Crit(f)), min{n ™, j ).

j=1
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Note that the set £, («) is decreasing in n. Set
o0
E(@) = (") En(e).
n=1

Note that E () contains [ J32, fI(Crit(f)).

We say x € X is a-safe if x ¢ E(x). If x is a-safe, then for every integer
n > 1 with x ¢ E,(«) the ball B(x, n™%) is disjoint from U?:l I (Crit(f)).
Hence, the pull-backs of B(x, n™%) by f" are diffeomorphic.

Lemma 3.4 Foreverya > 0, HD(E(x)) < a .

Proof For each n consider the covering of E(«) by the intervals
B(f/(c), min{n™®, j=*)), ¢ € Crit(f), j € {1,2,...}.

Let 8 > o~!'. We have

> D IB(f(e), minin ¢, j)IP

ceCrit(f) j=1

o0

~ Y (X y

ceCrit(f) \j=1 j=n+1

o
<#Crit(f) - | 280! 7P+ Y 2f b
Jj=n+1

This number goes to 0 as n — o0, and so the Hausdorff 8-measure of E («)
is 0. Since 8 > aLis arbitrary we obtain HD(E(«)) < a L. O
Lemma 3.5 Let f: X — X have Holder continuous derivative and at most a
[finite number of critical points. If f is topologically exact, then there is & > 0
such that the following property holds. For every n > 0 there is a hyperbolic
set A of [ such that for every x € X, the set B(x,n) N A is nonempty and
contains an a-safe point.

Proof Since f is topologically exact, there exist an integer n > 0 and a closed
subset A of X such that f”(g) C Aand S A— f”(;4\) is topologically
conjugate to the one-sided full shift on two symbols. Hence, f has positive
topological entropy, see also [45, Proposition 4.70]. From the variational prin-
ciple, see for example [25, Theorem 4.4.11] or [40, Theorem 3.4.1], there
is a measure p in M(f) satisfying h(n) > 0, and therefore A(n) > 0 by
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Ruelle’s inequality. By Lemma 2.2 with ¢ = A(u)/2, there are integers k > 2
and m > 1, a closed subinterval K of X and pairwise disjoint closed subinter-
vals K1, ..., K of K,suchthatforeachiin{l, ..., k}themap f": K; — K is
a diffeomorphism and |[Df™| > exp(k (n)m/2) on K;. It follows that the max-
imal invariant set Agof f™on Ul 1 K isahyperbolic setfor f™. Sincek > 2,
we have HD(AO) > 0.

Let Q > 2n~! be an integer and put & = exp(A(u)m/2). Since f is
topologically exact, the map f” is also topologically exact, so there is an inte-

ger N > 1 such that fN’” ((%, é)) = X holds foreachi € {1,..., O}

Let pg be a point in the uncountable set Ko that is not in Uj’; W f J(Crit(f)).
Define recursively for each i € {1,..., Q} a point p; € <% l@) SO

that fN"(p;) = pi_1. Using again that f™ is topologically exact, we can
find an integer N’ > 1 and a point p in the interior of K that is not in Ko, such
that fN,’"(p) = pg. Defining £ = QN + N’, we have that i (p) = po and
that the set

(P, f™P)s -y 7Py D {P1, P2v -y PO)

is n-dense in X. Since pq is not in Uj’il fj (Crit(f)), there is §o > 0 such
that B(po, 8p) is disjoint from Uf’i W f J(Crit(f)). It follows that the pull-

back Wy of B(po, §o) by f tm containing p is diffeomorphic. Reduce §q if
necessary so that Wy is containedin K. Let £y > 1 be a sufficiently large integer
such that £~% < inf wo | Df tm| and such that the pull-back of K by f¢
containing po is contained in B(pg, 8p). Since py is in Ko, it follows that this
last pull-back is diffeomorphic. We conclude that, if we put M = (£ + £o)m,
then the pull-back Lo of K by fM containing p is diffeomorphic. Moreover,
from our choice of £y we have

inf [DfFY| > g% inf |DFO"| > 1. )
Lo Wo

Let £ be the collection formed by Lg and by all pull-backs of K by f™ that
intersect Ag. Since infg, [Df™| > & foreachi € {1,...,k}, infg IDfM| >
gt > 1 holds for every L € L different from Lo. Together with (7) this
implies that the maximal invariant set A of fMin | Ler L is ahyperbolic set
for fM, and that fM: :A—> Alis topologically exact. On the other hand, the
point p is by definition in Lo and f M(py = flom(pp) is in Ao. This implies
p € A and therefore A is n-dense on X. So, for every x € X the ball B(x, 1)
intersects A and, since M. A > Ais topologically exact, it follows that
there is an integer k > 1 such that ko(B(x, n)N A) A. Using that ko
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Lipschitz continuous on A and that A contains Xo, we obtain

HD(B(x,n) N A) > HD(A) > HD(A).

In view of Lemma 3.4, this proves the lemma with o = HD% ) and with the

hyperbolic set for f defined by A = Uf‘i 61 1! (K). O

3.3 Proof of the uniform scale lemma

Let ¢ > 0 be given. Let ny and 9 > 0 be such that the conclusions of
Proposition 3.1 hold with ¢ replaced by ¢ /2. Fix n € (0, np), and let o« and A be
given by Lemma 3.5 with n replaced by /6. Since A is a hyperbolic set for f,
there exist constants Cyp > 0, > 0,1 > 1 suchthatforevery x € X and every
integer n > 1 such that dist(fi(x), A) <3k foreveryi € {0,1,...,n—1},
|IDf"(x)| = CoA™ holds. It follows that there is a constant C; > 0 such that
for every interval U intersecting A and satisfying |U| < 3k, there is an integer
k > 0 such that

k< Cilog(1/[U)), 3k <|f*(U)| <3« - sup|Df], (®)
X

and such that f* maps U diffeomorphically onto f¥(U). Reduce « if necessary,
so that « < n/(3supy |Df]), and so that for every U and k as above we have
in addition that the distortion of f* on U is bounded by 2.

By Lemma 3.5, each ball of radius /6 contains an «-safe point in A. From
this and the compactness of X, we can find a finite subset F' of A \ E(«) that
is (n/3)-dense in X. Let ng > nj be a sufficiently large integer so that F' is
disjoint from E,,(«),

o

3 e
ny® < min {%, EI{} and ?Tﬂ > e 2", ©)

Now, let n > ngo be an integer, and W a subinterval of X that satisfies
n < |f"(W)| < 2n.Since the finite set F is (n/3)-dense, thereisapointx € F
whose distance to the mid point of (W) is at most /3. Since | f*(W)| > nit
follows that B(x, n/6) is contained in " (W). Together with the first inequality
in (9) this implies that U = B(x,n~%) is contained in f"(W). Since by
construction x ¢ Ej,,(«), every pull-back of U by f" is diffeomorphic. Take
one pull-back of U by f” contained in W and denote it by J.

Since x € A and |U| = |B(x,n™%)| < 3k by the first inequality in (9),
there is an integer k > 0 such that

k < Cilog(1/|U]) < Cralogn, 3k < |f*U)I <n
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by (8), and such that ¥ maps U diffeomorphically onto £*(U) with distortion
bounded bl 2.So0,if weputm =n + k}\then n<m<n+ Cialogn and
J™ maps J diffeomorphically onto ™ (J). Denote by J C W the pull-back
by f™ of the interval with the same center as /™ ) and whose length is equal
to L 31f m (T )|. By Proposition 3.1 withn = m and W = 7, the distortion of fm
on J is bounded by ¢®". Note furthermore that

m 1 m Ty 1 k
|/ (J)|=§|f (J)|=§|f )| = «.

On the other hand, by Proposition 3.1 and the fact that the distortion of f k
onU = f”(]) is bounded by 2, we have

1 UL 1D e ]

< —.

120 =6 17 W) = 1wy - Wl

By the second inequality in (9) this implies |J| > e~ ¢"|W|, and completes the
proof of the lemma with C = «C}.

4 The large deviations upper bound

In this section we complete the proof of the large deviations upper bound in the
Main Theorem. In Sect. 4.1 we construct certain horseshoes (Proposition 4.1)
that are tailored to a given basic open set of M ( f). The construction is based
on the Uniform Scale Lemma in Sect. 3. In order to treat inflection critical
points, initially we restrict ourselves to small intervals. In Sect. 4.2 we prove
two intermediate estimates. The first is restricted to a small interval (Propo-
sition 4.4), and the second is a global estimate (Proposition 4.6) obtained by
spreading out the local estimate. In Sect. 4.3 we complete the large deviations
upper bound.

Positive constants we will be concerned with for the rest of this paper are
&, 1, K, p, chosen in this order. The purposes of them are as follows:

e ¢ is the error tolerance in the statement of Proposition 4.6;

e i determines the scale of intervals given by the Uniform Scale Lemma;
e 7 determines the scale of the images of pull-backs of intervals;

e p determines the scale of horseshoes (see Proposition 4.1).

4.1 Horseshoe argument
Let f: X — X be a topologically exact continuous map. Let n > 1 be an

integer and 7 in (0, 1/2). Put M = [1/n] 4+ 1 and note that 1/M < n <
3/(2M). Set x; = k/M foreach k € {1,2,..., M — 1}, and let W, (xx, n)
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Fig. 2 part of the graph of
/™ and the partition of

Py (n). Every element of :
Py (n) intersects no more I’H‘l _________________________
than two other elements in
their interiors

)
il
1
1
1
1
!
J
1
1
1
—— - d o _

denote the collection of all pull-backs W of B(xx, ) by f" that satisfy x; €
f™(W). Note that elements of W, (xx, n) are pairwise disjoint. We now define

M—1

Pu(n) = | Waxi, m.
k=1

It is easy to see that P, (n) has the following properties:

e for every x € X there exists W € P,(n) such that x € W;

e forevery W € P,(n), we have n < | f"(W)| < 2n;

e every element of P, (1) can intersect at most two others on the boundary and
two others in the interior. If Wi, W» € P,(n) and int(W1) N int(W3) # 0,
then for some k € {2,..., M — 1},

{Wy, Wa} C Wi (xk—1, m) UWy, (xk, 1) U Wy (Xkt1, 1)

The first two items follow from f(X) = X. The last one is immediate from
the definitions, see Fig. 2.
Fix once and for all a point x € int X such that xo ¢ ;= /" (Crit(f)).

Proposition 4.1 Let f: X — X have Holder continuous derivative and only
non-flat critical points. Assume f is topologically exact. Then for every g > 0
there exist n > 0, C > 0 and p > 0 such that B(xg,2p) N 0X = 0, and the
Jollowing holds. Let | > 1 be an integer, ¢1, ..., ¢;: X — R be continuous
Sfunctions and let a1, . . ., a; € R. For each integer n define
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1
H, = {x € X: forevery jin{l,...,1} we have —S,¢;(x) > aj} (10)
n

and
9, = {W e P, (n) intersecting H, N B(xg, p)}.

Then, for each sufficiently large integer n > 1 such that Q, is nonempty,

there exist an integer q > n and pairwise disjoint diffeomorphic pull-backs
Li,...,L; of B(xo,2p) by f? contained in B(xq,2p) such that:

(a) n <qg <n+ Clogn,

(b) for each i in {1, ...t} the distortion of f1 on L; is bounded by e°",
the interval L; is contained in some W € Q,, and ZWGQ” W] <
ey iy |Lil;

(c) foreveryx € U§:1 Liand j € {1,...,1}, we have %ngoj(x) > aj — &

Proof Let &g > 0. Since each ¢; (j = 1,...,1) is uniformly continu-
ous, there exists ¢ € (0, g9) such that if x,y € X and |x — y| < ¢ then
lpj(x) —@;(¥)| < eo/2.Letno, C and k be the constants for which the conclu-
sion of the Uniform Scale Lemma holds with ¢ replaced by ¢ /4. Fix n € (0, no)
sufficiently small so that for every subinterval W of X and every integerm > 1
such that | f"(W)| < 2n, we have for each j € {0,...,m — 1} the esti-
mate | f J(W)| < & (Lemma 3.3). Recall that N (k) > 1 is the smallest integer
such that for every subinterval J of X with |J| > «, fV W (J) = X, see Sect. 3.
Let po > 0 be sufficiently small such that B(xq, 2p9)NdX = @ and B(xg, 2p0)
is disjoint from U,Nz('f) fi(Crit(f)) = ¥. The last condition is indeed realized
by our assumption xp ¢ | oo, f"(Crit(f)), and it implies that each pull-back
of B(xo,2p0) by fN () ig diffeomorphic. Let p € (0, min{pg, «}) be suffi-
ciently small so that the distortion of fV®) on each pull-back of B(xg, 2p)
by £V is bounded by 2.

Lemma 4.2 For every integer n > N(p) and every W € P, (n) intersect-
ing B(xg, p), we have W C B(xg, 2p).

Proof From the definition of N(p) in Sect. 3, for every integer n > N(p)
and every pull-back W € P, (n), we have [W| < p. So W N B(xg, p) # ¥
implies W C B(xo, 2p). O

Let n > max{ng, N(p)}. By the Uniform Scale Lemma it is possible to

choose foreach W € Q,, aclosed subinterval Jyy C W and an integermy > 1
such that the following holds:

@ Springer



878 Y. M. Chung et al.

Jwl=e W], n <mw <n+Clogn, |f™ (Jw)| > «,

and ™" maps Jyw diffeomorphically onto ™V (Jy ) with distortion bounded
by e4". Set

Qn(p) ={W e Qy: mwy = p}.

Let po denote a value of p that maximizes Yy cg () |WI. s0

> 'W'—1+c1 > . (11)

WeQ,(po) W €Qn

Setq = po+ N (k), and note that for every sufficiently large » item (a) holds
with C replaced by 2C. Since for each W € Q,(po) we have | fP°(Jw)| > «,
Jw contains at least one pull-back of B(x¢, 2p) by 4. Moreover, since the map
fPo: Jw — fPo(Jw) is diffeomorphic, every pull-back of B(xq,2p) by f4
that is contained in Jy is diffeomorphic. Pick one of these diffeomorphic pull-
backs and denote it by Ly . Since by the Uniform Scale Lemma the distortion
of fP0 on Jy is bounded by e3", and since by our choice of p the distortion
of fN®) = f4=Po on fPo(Ly) is bounded by 2, it follows that the distortion
of f4 on Ly is bounded by e", provided that n is sufficiently large.

Lemma 4.3 For every sufficiently large n and W € Q,,(po), we have |Ly| >
3
e IFMW].

Proof Since | f1(Lw)| =4p and g — n < 2C logn, we have

(g—n) —2C logn
| f"(Lw)|l = | f4(Lw)| (sgl(plDfl) >4p (sgl(plDfl) -

Using |f”(Jué)| < |f™(W)| < 2n, and that the distortion of f7° on Jy is
bounded by e4”, we also have

—2C'logn
ILwl _ —enS"Lw)l e, 4P (supx |Df1)

e 4

Jwl = 1wl T 2

Together with the inequality | Jw| > e*%”| W|, this completes the proof. O

Any two elements of the collection of intervals {Lw: W € Q,(po)} are
either disjoint or coincide with each other. Moreover, each of these intervals
intersects at most five elements of {Ly: W € O, }. Let {L,-}éz1 denote a col-
lection of distinct elements of {Ly : W € O,,(po)} that maximizes Zle |L;]|.
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Using (11) and Lemma 4.3, for every large integer n > 1 we have

t
Yz Y izt Y wize ™ Y Wl
i=1

WeQ,(po) WeQ,(po) WeQ,

By Lemma 4.2, L; C B(xp, 2p). Since € € (0, &) this completes the proof of
item (b).

It is left to prove item (c). Since Ly C Jw C W forevery W € Q,(po),
it suffices to prove the inequality for every x € [y, co, W. To ease notation,
write ¢, a for gj, a; respectively. Let W € Q,, choose a point x € W such
that S, (x) > an, and let y € W. By our choice of n we have | f*(Lw)| <
| fE{(W)| < e foreveryi € {0,...,n—1},s0

&
<0

1
=ISnp(x) — Sne(y)| < .
n 2

Since

Sq@(y) = Su@(y) + Sg—n@(f"y)
> Spp(x) = [Sp@(x) = Spe(Y)| — (g — n) sup |g|
X
and 0 < g —n < 2Clogn, for large n we have

1 1 ney q—n
SS90 2 S = 20

sup |¢|
2q X
n eg 2Clogn
> —a— = — ———sup|g|
q 2 X
> a — €.
This completes the proof of item (c) and of the proposition. O

4.2 Intermediate estimates

Using Proposition 4.1 we prove two propositions. The first one (Proposi-
tion 4.4) is a local estimate near the point xo chosen before Proposition 4.1.
The second proposition (Proposition 4.6) is a global estimate that is obtained
by using the topological exactness of f to spread out the local estimate.

Proposition 4.4 Let f: X — X have Holder continuous derivative and only
non-flat critical points. Assume f is topologically exact. Then for every g > 0
there exists p > 0 such that the following holds. Let | > 1 be an integer,
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@1, ...,¢01: X — R be continuous functions and let oy, ..., € R. Then
there exists an integer ng > 1 such that, if n > ng is an integer for which the
set Hy, defined by (10) is non-empty, then there exists i € M(f) such that

/(pﬂlp, >aj—¢go forevery je{l,... 1},
and
1
;longn N B(xo, p)| < F () + €o.

The proof of this proposition is given after the following lemma. The next
lemma will be proved along the standard line of the ergodic theory of uniformly
hyperbolic systems.

Lemma 4.5 Let f: X — X have continuous derivative and at most a finite
number of critical points. Moreover, let B be a subinterval of X, t,q > 1
integers, andlet L1, . .., L; be pairwise disjoint diffeomorphic pull-backs of B
by f1 contained in B. Finally, let A > 1 be a constant such that for each i
in {1, ...,t} the distortion of f1 on L; is bounded by A. Then there exists
w € M(f4) supported on Ly U - - - U Ly, such that the measure 1 = [lj(ﬁ +

R ffflﬁ) in M(f) satisfies

|L1|+---+|L,|>

F >
q (M)_0g< AB|

Recall that for a continuous map f: X — X, anintegern > 1 and ¢ > 0,
asubset Y of X is (n, ¢)-separated if for each distinct y and y'inY there is j
in {0, ...,n — 1} such that | f/(y) — f/(y))| > &.

Proof Let K be the maximal invariant set of f¢ on L; U ---U L;, and fix a
point yy in this set. Moreover, put

e =min{dist(L;, L;): i, j € {1, ..., t} distinct},
and note that for every integer n > 1 the set (f4|x) ™" (yo) is (n, €)-separated

for f9|k. From the definition of topological pressure in terms of (n, €)-
separated sets and the variational principle, this implies

sup (hfq|K(ﬁ)—/log|qu|d’ﬁ)

VeM(flk)

1
> lim sup — log Z D",

n—oo N
xe(f9 k)" (yo)
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where M (f?|k) denotes the set of 7| g -invariant Borel probability measures
and & ¢4, (V) denotes the entropy of v € M(f?|k). See for example [25,
Theorem 4.4.11] or [40, Theorems 3.3.2 and 3.4.1]. Using that for each i
in{l1,...,t}thedistortion of £ on L; is bounded by A, we have for every n >
1

n

PRV Ol I D D Al
‘e
e(£416) " (30) T verao o)

n
o (Ml L"
= A

We thus obtain

sup <hffI|K(?) - /longfqld?> > log<

|L1|+-.-+|L,|>
VeM(f1|k)

AlB|

Since the measure-theoretic entropy of f? is upper semi-continuous [34,
Corollary 2], the supremum above is attained. Then the lemma follows from

the fact that foreachVin M( f9|k), the measure v = é O+ fi 4+ f _1?7)
is in M (f) and satisfies

hfap, (9) — /longfq|d'17= gF(v).

O

Proof of Proposition 4.4 Leteg > 0. Take constants n, C, p, a positive integer
q, and a collection of pairwise disjoint closed intervals Ly, ..., L; for which
the conclusion of Proposition 4.1 holds with gg replaced by &o/2. Since H, N

B(x0, ) C Uweo, W,

log |H, N B(xg, p)| < log Z |W|
WeQ,

Let u € M(f?) be as in Lemma 4.5 applied to B = B(xg, 2p), A = eSTO”,
and the pull-backs L1, ..., L; of B(xg, 2p) by f4. Proposition 4.1(c) yields
[@jdn > aj — g for every j € {1,2,...,1}. On the other hand, using
| B(x0, p)| < 1 and Proposition 4.1(b), for every large n we have

t
€0
log | Y 1wl] <log <Z|L,~|>+3nsqF<m+son.

wWeQ, i=1
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Since ¢ > n and F(u) < 0 from Proposition 2.1, we have

1
“log | Y Wi | = ZFG 460 < Fu) + 0.
n weo, n

This yields the desired inequality. O

Proposition 4.6 Let f: X — X have Holder continuous derivative and only
non-flat critical points. Assume f is topologically exact. Let g9 > 0, let | >
1 be an integer, let @1, ...,¢;: X — R be continuous functions, and let
oy, ..., € R Then

1
lim sup — log
n—oo N

< sup{F(u): u e M(f) and /gojdu > o — &g forevery j € {1,...,1}}
+&9.

1
{x € X: =85,0;j(x) >«aj foreveryj e {1,...,1}}‘
n

Remark 4.7 Since the Lyapunov exponent is not lower semi-continuous in
general, it is not possible to let g = 0 in the inequality in Proposition 4.6.

Proof of Proposition 4.6 Let ¢g > 0,1 > 1, ¢1,...,¢;, and o1, ..., be
as in the statement of the proposition. Let p > 0 denote the constant for
which the conclusion of Proposition 4.4 holds with ¢q replaced by o /2. Fix a
large integer M > 1 with f M (B(xo, p)) = X. Since each ¢; is bounded, for
sufficiently large n we have

1 .
{x € fM(B(xo, p)): - n@j(x) > o forevery j € {1,...,1}}
w 1 ) .
C f" {x € B(xg, p): — n(pj(x)Zaj—z forevery j € {1,...,1}¢,
n

and therefore

1 1
—log {xeX: =Snpj(x) = a; foreveryje{l,...,l}”
n n

M
log [(sup |Df I)
X

1
{x € B(xp, p): =Sppj(x) > «; —%O for every j € {1,...,1}}‘}
n

=

S| =
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1 1 €
< —log {x € B(xp, p): =Sppj(x) > aj — 30 for every j € {1,...,1}}‘
n n
€0
+ >
We use Proposition 4.4 with « j replaced by o ; —eo /2 forevery j € {1,...,1}.

For each sufficiently large n there exists © € M(f) such that f pidu >
aj —go forevery j € {1,...,1}, and

1 1
—log {x € B(xp, p): =Sppj(x) > aj — %0 for every j € {1,...,1}}‘
n n
<Fu+2
=Fuw+ -
Letting n — oo we obtain the proposition. O

4.3 End of the large deviations upper bound

We are in position to complete the large deviations upper bound in the Main
Theorem.

Proof of the large deviations upper bound in the Main Theorem Let f: X —
X have Holder continuous derivative and only non-flat critical points, and
assume it is topologically exact. Let K be a closed subset of M, and let G be
an arbitrary open set containing /C. Since K is compact, one can choose a finite
collectionCy, . .., C, of closed sets such that £ C | J;_; Cx C G and such that
each of them has the form

Ck:{ue/\/l: /¢deZajforeveryje{1,...,p}},

where p > 1 is an integer, each ¢;: X — R is a continuous function and
aj € R. For each k € {1,2,...,r} and &9 > O define an open neigh-
borhood Ci(gg) of Cr by replacing f @jdv > «aj in the definition of Cy
by [¢jdv > «j — &. From Proposition 4.6, for every &y > 0 and every
ke{l,2,...,r},

1
limsup — log |{x € X: 6} € Cx}| < sup F + &o.
n—oo N Cr(e)
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Since | J—; Ck(g0) C G foreg > 0small enough, using the previous inequality
foreachk € {1,2,...,r} gives

{xeX:SﬁeUCk}

k=1

limsup%long eX: e IC}| §limsup£10g

n—00 n—oo N

. 1 o
< omax  limsup -~ log|{x € X: 8 € il

< max sup F+g
ke{1,2,...,r}ck(eo)

<sup F + ¢op.
g
Letting eg — O we obtain

limsupllog‘{x eX: 48l e ICH <supkF.
g

n—oo N

Since G is an arbitrary open set containing X, it follows that

1
limsup—log‘{x €X: 8 GICH §gig§csgpF:gig§ngp(—1) = —i%fl.

n—oo N

The last equality is due to the upper semi-continuity of —1. O
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Appendix Rate functions for Hofbauer-Keller maps

Let f,: X - X (0 < a < 4) be the quadratic map f,(x) = ax(1 — x). Let
¢ =1/2and put X, = [faz(c), fa(c)]. Notice that f,(X,) = X,. Denote by
M, the space of Borel probability measures on X, endowed with the weak*
topology, and by M, ( f,,) the set of elements of M, which are f,|x -invariant.

By [19,31], for Lebesgue almostevery a € (0, 4] there exists aunique phys-
ical measure of f;. Based on the kneading theory, Hofbauer & Keller [21,22]
constructed various examples of quadratic maps with unexpected properties.
One of them is the following.
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Theorem A.1 ([22], Propositions 1 and 2) There is a uncountable set A C
(0,4) suchthat ifa € A then f, is non-renormalzable and there are sequences
{ni}i, {mi}i of positive integers with nj < m; < n;1 for each i such that the
following holds:

foas — foase

and each continuous ¢ : X, — R;
(b) if z € X, and p > 1 are such that fP(z) = z, then 8 is an weak*-
accumulation point of the sequence {8;" }i>1.

(a)

— 0 (i — 00) for Lebesgue almost every x € X,

In particular, if a € A then there is no physical measure of f,. Hence, the
law of large numbers does not hold for the Birkhoff sum ¢ +¢o f,+---+¢o
=1 of a continuous function ¢ : X, — R. Nevertheless, f,|x, satisfies the

hypotheses of the Main Theorem and hence the LDP holds. The rate function
is identically zero on its effective domain.

Theorem A.2 Let A be the set as in Theorem A.1. If a € A then the large
deviations rate function of f4|x, is identically zero on M, ( f,).

Proof Leta € A and u € M,(f,). LetU be an arbitrary open set containing

u. Take [ > 1, continuous functions @1, ..., ¢;: Xg — R, ¢ > 0 such that
uw € C C U, where

Cz{vEMa: l/gojdv—/(pjdu

Since f, is non-renormalizable, its restriction to X, is topologically exact and
has the specification property. Hence u is weak*-approximated by another
supported on a periodic orbit [46, Theorem 1] and there exist z € X, and
p > 1such that £/ (z) = z and

‘/wdef —/fpjdu

From Theorem A.1 there are increasing sequences {n;};, {m;}; of positive
integers for which the following holds:

{x €Xy: ‘/(pjd&'c’i — /(pdeZ”
‘/(pde’C"i — /godef

< ¢ forevery j € {1,...,1}}.

5% forevery j € {1,...,1}.

<

=

1-
2,

forevery j € {1,...,1}}

W[ ™

< - forevery j € {1,...,[}.

W ™
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Combining these three inequalities yields

{x € X,: ‘/wjda;“ —/gojdu

=|X4l = 1. (12)

=

1
5 <e foreveryje{l,...,l}H

Denote by I, the large deviations rate function of f,|x,. Then

1
0§limsup—long € Xq: 6% ECH <—infl, < —inf I, <O.
n—oo N C u

The first inequality is from (12) and the second from the Main Theorem.
Hence igf I, = 0. Since U is an arbitrary open set containing u and 1, is

lower semi-continuous, /,(u) = 0. O
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