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Residue fixed point index and wildly ramified power series

Jonas Nordqvist and Juan Rivera-Letelier

ABSTRACT

In this paper, we study power series having a fixed point of multiplier 1. First, we give a closed
formula for the residue fixed point index, in terms of the first coefficients of the power series. Then,
we use this formula to study wildly ramified power series in positive characteristic. Among power
series having a multiple fixed point of small multiplicity, we characterize those having the smallest
possible lower ramification numbers in terms of the residue fixed point index. Furthermore, we
show that these power series form a generic set, and, in the case of convergent power series, we
also give an optimal lower bound for the distance to other periodic points.

1. Introduction

Consider an open subset U of C and a holomorphic map f: U — C. For a fixed point 2y of f,
the derivative f’(zg) is invariant under coordinate changes. In the case zj is isolated as a fixed
point of f, a related invariant is defined by the contour integral

. 1 dz
index(f, z9) := 57 f ) (1.1)
where we integrate on a sufficiently small simple closed curve around zy that is positively
oriented. The complex number (1.1) is invariant under coordinate changes and is called the
residue fixed point index of f at zy. Together with the related holomorphic fixed point formula,
it is one of the basic tools in complex dynamics, see, for example, [18, §12] for background,
and [1-3] for some results where the residue fixed point index plays an important réle. See
also [24, Exercise 5.10] for an extension to an arbitrary ground field.

In the case f’(z0) # 1, a direct computation shows that (1.1) is equal to % We give
a closed formula for (1.1) in the case f’(z9) = 1, in terms of the first coefficients of the power
series expansion of f about zy (Theorem 1). This formula holds for an arbitrary ground field.
We also show that the residue fixed point index is invariant under coordinate changes, and use
it to study normal forms. We also study the behavior of the residue fixed point under iteration.

In our succeeding results, we restrict to ground fields of positive characteristic and power
series having the origin as a fixed point of multiplier 1. Such power series are called wildly
ramified.” See, for example, [9, 12, 23, 25| for background on wildly ramified power series,
[8, 11, 14-16, 19, 21] for results related to this paper, and [6, 13, 17, 22] and references
therein for local dynamics of analytic germs in positive characteristic. See also, for example,
[4, 7] and references therein, for the myriad of group-theoretic results about the ‘Nottingham
group’, which is the group under composition formed by the wildly ramified power series.
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Every wildly ramified power series has associated a sequence of ‘lower ramification’ numbers.
It encodes the multiplicity of the origin for the iterates of the power series. We study the lower
ramification numbers of power series for which the multiplicity at the origin is small. First, we
characterize those power series having the smallest possible lower ramification numbers. They
are characterized by the nonvanishing of Ecalle’s ‘iterative residue’, which is a dynamical version
of the residue fixed point index (Theorem 2). As a consequence, we obtain that these power
series form a generic set. In the case of convergent power series, we also give an optimal lower
bound for the distance to other periodic points (Theorem 3). This gives an affirmative solution
to [16, Conjecture 1.2], for generic multiple fixed points of a fixed and small multiplicity, and
to [8, Conjecture 4.3].

We proceed to describe our results more precisely.

1.1. Closed formula for the residue fixed point index

Our first result is a closed formula for the residue fixed point index of a fixed point of multiplier
1. We allow an arbitrary ground field, and an arbitrary power series about a fixed point. In
particular, we allow non-convergent power series. To simplify the notation, throughout the rest
of the paper we restrict to the case of a power series f fixing the origin, and denote index(f, 0)
by index(f).

DEFINITION 1. Let K be a field and f a power series with coefficients in K satisfying f(0) = 0
and f(z) # z. The residue fixed point index of f at 0, denoted by index(f), is the coefficient
of % in the Laurent series expansion about 0 of

I
2= f(z)

Clearly, this definition agrees with (1.1) in the case where K=C, 2y =0, and f is
holomorphic on a neighborhood of 0.

To state our first result, denote by N the set of nonnegative integers and for an integer ¢ > 1
and (tg,...,tq) In N9 define

[(tos---ytq)]

q q
ZLJ' and ||(co, - -+, t9)| := Zij .
j=0 j=1

THEOREM 1 (Residue fixed point index formula). Let K be a field, ¢ > 1 an integer, and f
a power series with coefficients in K of the form

—+oo
F2) =21+ a2’ |, withag # 0. (1.2)
Jj=q

Then we have

. 1 — q— Ll g L
i) ==z 3 (10 L )
LeNat =0
[e]=ql¢]l=q

We also show that the residue fixed point index is invariant under coordinate changes
(Proposition 1) and use the residue fixed point index to study normal forms (Proposition 2).
Both of these results, together with Theorem 1, are used to prove our results below. In the
Appendix, we use Theorem 1 to study the behavior under iterations of the residue fixed point
index, and of the closely related ‘iterative residue’ defined below.
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1.2. Wildly ramified power series

Let K be a field, and f a power series with coefficients in K such that f(0) =0 and f(z) # z.
The multiplicity of 0 as a fixed point of f is the lowest degree of a nonzero term in f(z) — z.
We denote it by mult(f).

From now on, we assume the characteristic p of K is positive. The power series f is wildly
ramified if mult(f) > 2, or equivalently, if 0 is a multiple fixed point of f. Note that f is wildly
ramified if and only if f/(0) = 1. For a wildly ramified power series f, the lower ramification
numbers {i,,(f)}120 of f are defined by

in(f) := mult(f?") — 1.

See, for example, [9, 12, 23, 25] and references therein for background on wildly ramified power
series and their lower ramification numbers. Due to their relation to ultrametric dynamics, they
have been studied in, for example, [14—16; 21, § 3.2]. Note that the lower ramification numbers
are invariant under coordinate changes.

If we put

g =mult(f)—1>1,

then the results of Sen in [23] imply that, in the case ¢ < p — 1, for every integer n > 0 we
have

in(f)Zql+p+---+p"), (1.4)

see Proposition 3. Following [19], for an integer ¢ > 1 that is not divisible by p, we say that
f is g-ramified if equality holds in (1.4) for every n. In the case ¢ = 1, 1-ramified power series
are also known as ‘minimally ramified’ [11, 15, 16]. ¢-Ramified power series appear naturally
as reductions of invertible elements of formal groups, see, for example, [11, Proposition 4.2
for the case ¢ = 1, and [11, Corollary 3.12] for general ¢ not divisible by p. Note that when ¢
is divisible by p, for every n > 1 we have i, (f) = io(f)p" [23], so we cannot have equality in
(1.4).

Our next result characterizes g-ramified power series when ¢ < p — 1, and shows that ¢-
ramified power series are generic among power series having the origin as a fixed point of
multiplicity ¢ + 1. We restrict to odd p, as the case p =2 is treated in [15, 16]. As in [16,
Theorem EJ, our characterization is best stated in terms of the ‘iterative residue’, which is a
dynamical variant of the residue fixed point index introduced by Ecalle in the complex setting.
For a power series f satisfying f(0) = 0 and f(z) # z, the iterative residue of f is defined by'

résit(f) = %mult(f) — index(f). (1.5)

See, for example, [5, § I] or [18, § 12] for background on the iterative residue.

THEOREM 2 (g-Ramified power series). Let p be an odd prime number and K a field of
characteristic p. Furthermore, let ¢ be in {1,...,p— 1}, and let f be a power series with
coefficients in K satisfying mult(f) = q + 1. Then f is g-ramified if and only if résit(f) # 0.

Let ¢ > 1 be an integer, x4, T¢y1, ...indeterminates over K, and consider the generic power
series

+oo
FQO=¢l 1+ a!

Jj=q

TWe keep Ecalle’s notation ‘résit’, an abbreviation of the French ‘résidue itératif .
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Then by Theorem 1, 23+ résit(f) is equal to

q
q +1 1 _ q— Lo .
(5 ) e S e ) Lot (o)
eNatl $ =0
[el=a.ll¢ll=q
which is a polynomial in 24, 2441, - . ., T24 With coefficients in IF,,.T Thus, the following corollary
is a direct consequence of Theorem 2.

COROLLARY 1. Let p be an odd prime number, K a field of characteristic p, and q in
{1,...,p— 1}. Then, among power series with coefficients in K for which the origin is a fixed
point of multiplicity g + 1, those that are q-ramified are generic.

The following corollary is essentially a reformulation of the previous corollary in terms of
the Nottingham group N(K), which is the group under composition formed by all wildly
ramified power series with coefficients in K. Since the work of Johnson [7], this group has been
extensively studied for its interesting group-theoretic properties. See, for instance, the survey
article [4].

Given an integer g > 1, consider the subgroup of N (K),

N, (K) := {f power series with coefficients in K satisfying mult(f) > ¢ + 1}.
Note that in the case ¢ = 1, we have N7 (K) = N (K).

COROLLARY 2. Let p be an odd prime number, K a field of characteristic p, and ¢ in
{1,...,p—1}. Then, an element f of Ny(K) is g-ramified if and only if résit(f) # 0. In
particular, g-ramified power series are generic in Ny(K).

This answers [8, Question 1.4] for ¢ in {1,...,p—1}.

In the case ¢ = 1, Theorem 2 was shown by Lindahl and the second author [16, Theorem E].
This last result also applies to the case p = 2, and asserts that a power series of the form (1.2)
with ¢ = 1 is 1-ramified if and only if

résit(f) # 0 and résit(f) # 1.

In the case ¢ = 2, Theorem 2 was shown by the first author [19, Theorem 1], with résit(f)
replaced by (1.6). In the case ¢ =3 and K=TF,, Theorem 2 was shown by Kallal and
Kirkpatrick in the first version of [8], with résit(f) replaced by (1.6). After a preliminary
version of this paper was completed, we received a new version of [8] proving Theorem 2 when
restricted to those ¢ satisfying ¢? < p, and with résit(f) replaced by (1.6).

Theorem 2 and its corollaries are not expected to extend to the case ¢ > p 4+ 1 not divisible
by p. In fact, we give examples showing that the conclusion of Theorem 2 is false for g =p+1
(see Example 1). About genericity, if ¢ > p + 1 is not divisible by p, then the results of Laubie
and Saine in [12] imply that the inequality (1.4) fails in general, even for n = 1. Thus, for
q = p+ 1 the g-ramified power series are not expected to be generic among power series having
0 as a fixed point of multiplicity ¢ 4+ 1. So, the following question arises naturally.

QUESTION 1. Let p be a prime number, K a field of characteristic p, and ¢ > p + 1 an integer
that is not divisible by p. How are the lower ramification numbers of a generic power series in

N (K)? ¥

fNote that this polynomial is isobaric of degree g(q + 1).
fRecently, the first author answered this question completely in [20].
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In the case ¢ = p + 1, it seems that for a generic power series satisfying mult(f) = ¢+ 1, we
have for every n > 0

in(f)=1+p+---+p"

See also Example 1, and the discussion following it.

1.3. Periodic points of wildly ramified power series

Our next result is about the distribution of periodic points of a convergent g-ramified power
series. To state it, we introduce some notation. Given an ultrametric field (K, | - |), denote by

Ok ={CeK:|(] <1}, and mg:={¢ € K: (] < 1},
the ring of integers of K and the maximal ideal of Ok, respectively.

THEOREM 3 (Periodic points lower bound). Let p be an odd prime number, let q be in
{1,...,p— 1}, and let (K,|-|) be an ultrametric field of characteristic p. Furthermore, let f
be a power series with coefficients in Ox of the form

f(O)=¢(1+a¢?) mod (¢IF?), with a # 0.

Then, for every fixed point (s of f in Ok that is different from 0 we have |(y| > |a|, and for
every periodic point (o of f in Ok that is not a fixed point, we have

ICol > la] - |résit(f)]7. (1.7)

We give explicit examples for which equality holds in (1.7) for every periodic point that is
not fixed, when ¢ < p — 3 (Example 3). We recall that by Theorem 1 we can explicitly compute
résit(f), see also (1.6), so the lower bound in Theorem 3 is effective. Note also that the lower
bound given by Theorem 3 is trivial in the case that f is not ¢-ramified, because by Theorem 2
we have résit(f) = 0 in this case.

Note that every convergent power series about 0 without constant term is conjugated to a
power series with coefficients in Ok by a scale change. So, the following corollary is a direct
consequence of Theorem 3.

COROLLARY 3. Let K be an ultrametric field of positive characteristic, and let ¢ > 1 be an
integer that is strictly smaller than the characteristic of K. Moreover, let f be a g-ramified
power series with coefficients in K that converges on a neighborhood of the origin. Then the
origin is isolated as a periodic point of f.

Combined with Corollary 1 and [16, Theorem E with p = 2], the previous corollary implies
the following result as a direct consequence.

COROLLARY 4. Let p be a prime number and fix m in {2,...,p}. Then, over a field of
characteristic p, a generic fixed point of multiplicity m is isolated as a periodic point.

This corollary solves [16, Conjecture 1.2] in the affirmative, for generic multiple fixed points
of a fixed and small multiplicity, as well as [8, Conjecture 4.3]. In the case m = 2, Corollary 4
is [15, Main Theorem)].

In the case ¢ = 1, Theorem 3 was shown by Lindahl and the second author [15, Theorem B].
This last result also applies to p = 2. In the case ¢ = 2, and for power series with integer
coefficients, Theorem 3 was shown by Lindahl and the first author [14, Theorem A].
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1.4. Organization

In §2 and the Appendix, we study the residue fixed point index over a field of arbitrary
characteristic. Theorem 1 is shown in §2.1, the invariance of the residue fixed point index
under coordinate changes is shown in §2.2, and in §2.3 we study normal forms. All these
results are used in the proof of Theorems 2 and 3. In the Appendix, we study the behavior
under iterations of the iterative residue.

In § 3, we give a short proof of Theorem 2 that relies on a result of Laubie and Saine in [12].
After some preliminaries on lower ramification numbers in § 3.1, this proof is given in §3.2.

In §4, we give a self-contained proof of Theorem 2, and the proof of Theorem 3. We obtain
both of these from our main technical result that we state as the ‘Main Lemma’ at the beginning
of §4. The proof of this result occupies §5. In §4.1, we use the Main Lemma and the results
in §2 to obtain more information about the coefficients of the iterates of a wildly ramified
power series as in Theorem 2. This is stated as Proposition 6, and it implies Theorem 2 as
a direct consequence. It is also the main new ingredient in the proof of Theorem 3, which is
given in §4.2.

In §6, we gather several examples illustrating our results.

2. The residue fixed point index

In this section, we prove the closed formula (Theorem 1) and the invariance under coordinate
changes of the residue fixed point index. The former is proved in § 2.1, and the latter is stated
and proved in §2.2. In §2.3, we also use the residue fixed point index to study normal forms
of wildly ramified power series.

Given a ring R and elements ay,...,a, of R, denote by (ai,...,a,) the ideal generated by
ai,...,a,. Furthermore, denote by R[[z]] the ring of power series with coefficients in R in the
variable z, and denote by ord, the z-adic valuation on R[[z]], that is, for a nonzero f in R[[z]]
the valuation ord,(f) is the unique integer j such that f is in 2/ R[[2]] \ 2/T!R[[2]], and for
f =0 we have ord,(0) := +o0.

2.1. Closed formula for the residue fixed point index
In this section, we prove Theorem 1 after the following lemma.

LEMMA 1. Let K be a field, ¢ > 1 an integer, and f a power series with coefficients in K of
the form (1.2). Then —al*! index(f) is equal to the coefficient of z? in

q
D ap(—1)1 " (agr1z 4+ aggz) T (2.1)

r=0

Proof. From the definition, index(f) is equal to the coefficient of 1 in the Laurent series
expansion about 0 of

1 1
z — f(z) - 7aqz‘1+1 +aq+lzq+2 + .- +a2qz2q+1 + .-
o 1
gt 1+ a;—:lz + %zQ e (2.2)
1

Zagij(*l)j (ag+12 + agraz® + - )j-

altlza+1
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Thus, index(f) is equal to the coefficient of 27 in the sum in (2.2). Note that for k > 2¢ + 1,
the coefficient ay, does not contribute to the coefficient of z¢ in the sum in (2.2). Also for j > g,
the corresponding term in the sum in (2.2) has no term in z9. Hence, index(f) is equal to the
coefficient of 29 in (2.1), as claimed. O

Proof of Theorem 1. In view of Lemma 1, it is sufficient to compute the coefficient of 27 in
(2.1). Using the multinomial theorem and regrouping, (2.1) is equal to

q q
_ q—rT o
Sacu X () e
r=0 (¢15-001Lq)ENT? EEARRE AL j=1

L1+ Frg=q—r

q
_ q—1lo i
- Y (e <L1 L) a0,
it ],Izlo

In the last expression, the term in z? is given by restricting the sum to those multi-indices ¢
satisfying || ¢ || = ¢. This proves the theorem. O

2.2. The residue fixed point index is invariant

This section is devoted to prove the following proposition.

PROPOSITION 1. Let K be a field. Then, among power series f with coefficients in K and
satisfying f(0) = 0 and f(z) # z, the residue fixed point index is invariant under coordinate
changes. That is, for every power series ¢ with coefficients in K such that ¢(0) = 0 and ¢'(0) #

—1

0, the power series f := po f o™+ satisfies

~

index(f) = index(f).
The proof of this proposition is given after the following lemma.

LEMMA 2. Let K be a field and ¢ a power series with coefficients in K such that ¢(0) =0
and ¢'(0) # 0. Then for every integer N > 1, the coefficient of % in the Laurent series expansion
about 0 of

is zero.

Proof. Put ¢(z) = jzog a;jz9 and for a field automorphism o of K put

+oo

07 (z) = Z o(a;)z.

=0

If the characteristic of K is 0 or if the characteristic of K is positive and it does not divide

N, then the lemma is clear as
ez (1 1
p()NFL U N ()N )

So, we assume K is of characteristic p > 0 and that N is divisible by p. Let £ > 1 be the largest
integer such that p | N, and put n := p~¢N. Moreover, denote by Frob: K — K the Frobenius
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automorphism, given by Frob(z) := 2P, and put o := Frob®. Then we have

£ ¥
¢'(z) _ (@) (F) [ ¢7(ZF)  ¢(2) (2.3)
(p(z)NJrl (po(zpl)n-i-l ((pg)/(ng) SO(Z) ’ ’
Since n is not divisible by p, the coefficient of l 1n the Laurent series expansion about 0 of
(¢)(2)/(°(2))"*! is zero. So, the coefficient of ,3 in the Laurent series expansion about 0
of (¢7)(27") /¢ (2P )"+1 is zero. Together with
o(.pt /
ord. [ £ (/Z O
() (27")  #(2)

this implies that the coefficient of 1 in the Laurent series expansion about 0 of ¢'(z)/¢(2)
is zero, which is the desired assertion. O

N+1

Proof of Proposition 1. If f'(0) # 1, then index(f) is equal to 1/1 — f/(0), which is easily
seen to be invariant under coordinate changes. Assume f’(0) = 1, and put
A(z) := f(z) — z and ¢ := ord,(A(z)) — 1.

Our hypothesis f(z) # z implies that ¢ is finite and our assumption f/(0) =1 implies that
q=1
Let ¢ be a power series with coefficients in K such that ¢(0) =0 and ¢’(0) # 0, and put

~

fi=¢7 o fopand Az) = f(z) —
Clearly, f’(O) =1,s0 ordz(ﬁ(z)) > 2. Moreover,
Ao g(z) = p(f(2) — ¢(2)

= ¢z +A(2) — (2) (2.4)

= ¢/(2)A(z) mod (A(2)2).
Since ord,(A) = ¢+ 1 and ord,(¢’) = 0, we conclude that

ord, (Ao @) =q+1 and ord,(¢" - A) = ord.(A).
On the other hand, by (2.4) we have ord, (Ao ¢ — ¢ - A) > 20rd,(A) and therefore
ord,(A) = ord, (A o) =g+ 1.
Using (2.4) again we obtain
Aop=¢ - A+ (2717,

~

and conclude that index(f) is equal to the coefficient of % in the Laurent series expansion
about 0 of

4
A (0] (‘D
Putting
1 ™=
<A> () := Z a;z*,
i=—(gq+1)
we have

) Z(I (N+1 SOE’;: N+1 Zal(p l /
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By Lemma 2, the coefficient of % in the Laurent series expansion about 0 of the right-hand
side is equal to that of a_4 9;’((5))7 which is clearly equal to a_;. This completes the proof of the

proposition. 0

2.3. Normal forms in positive characteristic

Let K be a field and f a power series with coefficients in K such that ¢ := mult(f) — 1 is finite
and satisfies ¢ > 1. In the case of K = C, or more generally if K is of characteristic 0, there
exists a (formal) power series conjugating f to the polynomial

2(1 + 2% + index(f)z29). (2.5)

When K is of characteristic 0, this polynomial is called the normal form of f.

This statement is false if K is of positive characteristic. Our goal in this section is to prove
the following proposition giving a sufficient condition for f to have the same normal form up
to a high order.

PROPOSITION 2. Let p be a prime number and K a field of characteristic p. Moreover,
let ¢ be in {1,...,p—1}, and let f be a power series with coefficients in K satisfying

mult(f) = ¢+ 1. Then, f is conjugated to a power series with coefficients in a finite extension
of K, of the form

2(1 4 27 + index(f)z%?) mod (z2¢TP+L), (2.6)
The proof of this proposition is given after the following lemma.

LEmMA 3. Let K be a field, ¢ > 1 an integer, and f a power series with coefficients in K of
the form

+oo
flz)==2[1 +Zajzj , with aq # 0.
Jj=q

Then, for every integer k > 1 such that aqyr # 0 and k # ¢ in K, there is ¢ in K such that for
the polynomial p(z) := z(1 + cz*), we have

pofopt(2)=z2(1+a2%+ - +agp-12" 1) mod (29HF+2).

Proof. Let ¢ be a constant in K to be chosen later, and put

+oo
©(2) :== z(1 4 ¢z¥) and f(z) =gpofop l(z)=2|1+ Zajzj
Jj=q

Then we find
pof(2) =2(1+agz?+  + agrz?F) (1 + c2F(1 + ay27)*) mod (z2+k+2)
=2(14czF + a2+ -+ agyp_129tF1
+((k + 1)caq + aq+k)zq+k) mod (zatF+2)
and

fo 0(2) = 2(1 4+ c2) (1 +0g29(1 + c2F)T + Q129 + - + Qg 27HF)
mod (z7+F+2)

=2(1+ 2P + 29 + - + Agpp_129TF 1

+((q + 1)cg + Ggrr)27F) mod (z2H5+2).
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Equating both expression yields

aqg = Ziq, ceey Qg k—1 = aq+k_1,
and
gy = (k — q)cag + agyp.
By our assumption k # ¢ in K, we can take ¢ = — a:(‘jcﬂ“q) to obtain gy = 0. O

Proof of Proposition 2. Denote by a # 0 the coefficient of z+! in f, and let 7 in a finite
extension of K be such that v¢ = a~!. Note that the power series f(z) : =~ !f(yz) satisfies
mult(f) = ¢+ 1 and that the coefficient of 29+ in f is equal to 1.

Since by assumption ¢ is in {1,...,p — 1}, we can apply Lemma 3 successively with k =
1,...,q — 1, to obtain that there is a polynomial ¢ with coefficients in K[7], such that ¢(0) = 0,
¢©'(0) =1, and

9(2) i= g0 Fop () = 2(1+ 27) mod (:2+1),
Note that by Theorem 1 the coefficient of 2297 in g is equal to index(g) and by Proposition 1

~

we have index(g) = index(f) = index(f). Thus,
9(2) = 2(1 + 29 + index(f)z*?) mod (z%772).

Finally, we apply Lemma 3 successively with k =¢+1,...,9+ p — 1, to obtain that there is
a polynomial ¢ with coefficients in K[v], such that ¢(0) =0, ¢’(0) = 1, and

pogod (2) = 2(1 4 29 + index(f)2%9) mod (z24TPF1). -

3. g-Ramified power series

After some preliminaries on lower ramification numbers in § 3.1, in §3.2 we give a short proof
of Theorem 2 that relies on a result of Laubie and Saine in [12]. See §4.1 for a self-contained
proof of Theorem 2.

3.1. Lower ramification numbers

In this section, we fix a prime number p and a field K of characteristic p. Recall that for a
power series f in K[[(]] and an integer n > 1, the lower ramification number i, (f) of f is

in(f) = mult(fP") — 1.

Lower ramification numbers have been studied by several authors (for example, [9, 11, 12, 23]).
A central theorem of Sen [23, Theorem 1] states that if for some n > 0 we have i, (f) < +oo,
then

in(f) =in—1(f) (mod p").

The following consequence of Sen’s theorem shows that for ¢ in {1,...,p — 1}, a g-ramified
power series can be thought of as minimal in the sense that for every integer n the lower
ramification number 4, (f) is least possible.

PROPOSITION 3. Let p be a prime number and K a field of characteristic p. Then for every
q in {1,...,p— 1}, and every power series f in K][[(]] satisfying mult(f) = q + 1, we have for
every integer n > 1

in(f)Zql+p+--+p"). (3.1)



480 JONAS NORDQVIST AND JUAN RIVERA-LETELIER

The proof of this proposition is given after the following lemma. To state this lemma, we
introduce some notation. Let R be a ring, and f a power series in R[[z]] of the form f(z) =z
mod (z2). Following [16; 21, Example 3.19], define recursively for every integer m > 0 the
power series A,, by

Ag(z) := 2, (3.2)
and for m > 1 by
Am(2) i= A1 (F(2) = Amei (2). (3.3)

If R is of characteristic 0, then for every prime number p a direct computation shows that we
have

Ap(z) = fP(2) — 2 mod (p). (3.4)

In the case R is of characteristic p, we have A, (z) = fP(z) — =.

LEMMA 4. Let p be a prime number and K a field of characteristic p. Given a wildly ramified
power series f in K[[(]], let (A,,)}25, be as above. Then for every integer m > 1 we have

orde(Ap) — orde (A1) > ord(Ay) — 1. (3.5)

Proof. Put q:=ord¢(A1) —1, f(¢)=C((1+ 350 bi¢?), ri=ordc(Ay), and A, (¢) =
F°4;¢". Then

+oo
Apy1(€) = Z%Ci[(l +bgCl+ - )= 1}’

i=r

and therefore ord¢ (A1) =7+ ¢ O

Proof of Proposition 3. We prove (3.1) by induction in n. To prove (3.1) for n =1,
let (A,,)} be as in (3.2) and (3.3). Then for every integer m > 1 we have ord¢(A,,) —

m=0

ord¢(Ay,—1) = ¢ by Lemma 4. An induction argument combined with (3.4) gives
ir(f) = ord¢(Ap) — 1 = qp = pio(f).
But by Sen’s theorem, we have i1(f) = io(f) (mod p), so
i(f) = ap+a. (3.6)

This proves (3.1) for n = 1.

Let n > 1 be an integer for which (3.1) holds, and put g(¢) := f*"(¢). Let (ﬁm)z":oo be the
sequence (A,,) > given by (3.2) and (3.3) with f replaced by g. Then by Lemma 4 for every
integer m > 1 we have

ord¢(A,) — orde(Ap_1) = orde(Aq) = ig(g).

An induction argument together with (3.4), implies

~

int1(f) = i1(g) = ord¢(Ap) — 1 2 pio(g) = pin(f)- (3.7)
If the inequality in our induction assumption (3.1) is strict, then we have

int1(f) =p+pg(l+p+-- +p") > q(l+p+---+p").

If equality holds in (3.1), then by Sen’s theorem we have
ing1(f) =ql+p+--+p") (mod p"t).
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Combined with (3.7), this implies

ing1(f) = q+pg(l+p+-+p") =q(l+p+---+p").

In all the cases, we obtain (3.1) with n replaced by n + 1. This completes the proof of the
induction step, and of the proposition. O

3.2. Proof of Theorem 2

In the proof of Theorem 2, we use the following result of Laubie and Saine.

PROPOSITION 4 [12, Corollary 1]. Let p be a prime number, K a field of characteristic p,
and f in K[[(]] such that f(0) =0 and f'(0) = 1. If

pfio(f) and i1 (f) < (0* = p+ D)io(f),

then for every integer n > 1 we have
in(f) =d0(f) + (L +p+--+p")(01(f) —io(f))-

In view of this result, the proof of Theorem 2 reduces to show that for ¢ in {1,...,p— 1}
and f in K[[¢]] satisfying io(f) = ¢, the conditions

i1(f) = q(p+1) and résit(f) # 0

are equivalent. The following is the key ingredient, together with Proposition 2 and the
invariance of the residue fixed point index under coordinate changes shown in § 2.

PROPOSITION 5. Let p be an odd prime number and consider the rings
Lpy = {% €Q:m,nc¢e Z,p)(n},
Fy = Zpy[wo, 21], and Fy := Zp)[wo, 21, T2, . . .].

Then for each integer ¢ > 1 not divisible by p, the power series f in F[[¢]] defined by

i=1

+oo
F(¢) = C<1 + xo¢? 4 1% + ¢ inHCi) :

satisfies

fp(() = C(l + xS*I (acgq —; L xl) CQ(P+1)> mod (p, Cq(p+1)+2>'

The proof of Theorem 2 is given at the end of this section, after the proof of this proposition.
To prove this proposition, we use the strategy introduced in [16; 21, Example 3.19], using (3.2)
and (3.3). We also use the following elementary lemma.

LEMMA 5. Let p be an odd prime number, a and b in F}, such that a # 0, and let w: F, — F,
be defined by w(n) := an + b. Denoting s’ := —a~'b, we have

H w(s) = —1 and Z %:0.

w
selp \{s'} s€lp \{s'}

Proof. We use the fact that the nonconstant affine map w is a bijection of F,,. Together
with Wilson’s theorem, this implies the first assertion. The second assertion follows from the
fact that, since p is odd, the sum of all nonzero elements in IF, is 0. O
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Proof of Proposition 5. Let (A,,);>>, be given by (3.2) and (3.3). For each integer m > 1
define oy, and By, in the ring Fy := Z,) [0, 1] by the recursive relations

Q1 = To(gm + 1) ayy, (3.8)

B = {x% (qm; 1) 21 (qm + 1)] tm + o(g(m + 1) + 1), (3.9)

with initial conditions «; := x¢ and [y := z;. We prove by induction that for every integer
m > 1 we have

A (Q) = @I 4 8, (I DL o (a2, (3.10)

For m =1 this holds by definition. Assume further that it is valid for some m > 1. Then

Amr1(6) = A (F(0) = An(¢)
= q,, (1M T! [(1 + 0% + 21¢%7 + - -)qm+1 — 1}
B IV (1 20¢T 4+ 212 - )T g
mod <<q(m+2)+2>
= o [0 D g (g + 1) + (1D (2 (175 + 21 (gm + 1))
+BmC‘1(m+2)+1mo(q(m +1)41) mod <<Q(m+2)+2>_

In view of (3.8) and (3.9), this proves the induction step and (3.10).
By (3.4) and (3.10), to prove the proposition it is sufficient to prove

1
a, =0 mod pF; and 3, = 55871 <x%q;

- a:1> mod pFj. (3.11)

We do this by solving explicitly the linear recurrences described in (3.8), and (3.9). By
telescoping (3.8), we obtain for every m > 1 the solution

—1
am=1zq3" || (¢gj+1). (3.12)

3

<.
Il
—

Taking m = p, we obtain the first congruence in (3.11).
On the other hand, inserting (3.12) in (3.9) yields

s

~
Il
-

Brr = (e85 + 1)y [T (0 +1) + zola(m + 1) + 1)y

Noting that for every j > 0, we have ¢qj + 1 > 0, we utilize the substitution

By = ﬁm/ wg  [I@i+1 ],
j=1
which yields

* —_ 3 2@ ) 1

Using g7 = 2%, we obtain inductively for every m > 1

¢+
* S 2(](7’—1) 1
Bm—2<$o 2 +x1>qr+1'

r=1
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Equivalently,

= 2l IZ < +x1> II @+l (3.13)

je{l,..omi\{r}

When m = p every term in the sum above contains a factor p, except for the unique r in
{1,...,p} such that ¢gr = —1 (mod p). Denote by r( this value of r. Then by Lemma 5, we
have

gq(ro — 1) .
o =a5 <0 - wl) [ieqr,..pnirop (7 +1) mod pFy

2
=ab < 2 —; — ac1> mod pF;.
This proves the second congruence in (3.11) and thus the proposition. O

Proof of Theorem 2. By Proposition 2 and our hypothesis that ¢ is in {1,...,p — 1}, we
have that f is conjugated to a power series g in K[[¢]] of the form

g(¢) = ¢(1 + ¢ + index(f)¢??) mod (3712).

Since

io(g) =io(f) = ¢ and i1(g) = i1 (),

by Proposition 4 the series f is g-ramified if and only if 41(g) = g(p + 1).

Let Z,) and Fi be as in Proposition 5. Moreover, let h: Fi, — K be the unique ring
homomorphism extending the reduction map Z,) — IFp, such that h(z;) = index(f) and such
that for every i > 2 the element h(z;) of K is the coefficient of ¢?9*% in g. Then h extends to

a ring homomorphism Fi[[¢]] = K[[¢]] that maps fto g. So, Proposition 5 implies
g7 (¢) — ¢ = résit(f)¢I P mod (¢1PHIFZ),

This proves that i1(g) = ¢(p+ 1) if and only if résit(f) # 0 and completes the proof of the
theorem. 0

4. Periodic points of q-ramified power series

In this section, we give a self-contained proof of Theorem 2, and the proof of Theorem 3.
In doing so, we obtain more information about the coefficients of the iterates of a wildly
ramified power series as in Theorem 2 (Proposition 6). This extra information is used to prove
Theorem 3.

The main ingredients in the proofs of Theorems 2 and 3 are the results on the residue fixed
point index in § 2, and the following result that is proved in §5.

MAIN LEMMA. Let p be an odd prime number, and let Z,), F1 and Fy, be the rings
defined in Proposition 5. Moreover, let ¢ > 1 be an integer that is not divisible by p, and £ > 1
an integer satisfying

{=¢q (mod p), and¢<p—1lor2+1<gq
Then the power series [ in Fao|[C]] defined by

F(¢) = C(l +xoCt + 3 (T 4 (1 Z$i+14i> ;

i=1
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satisfies the following property: There are f and v in F} such that

_ 1
xg 1(1%(]'; —xl) mod pFy; ifg<p—-1;
B= (4.1)
7%;—1%1 mod pFy ifg=p+1,
g+1 ?
—x€72 (xg — x1> mod pF; ifqg<p—1;
Lo 2 (12)
—227%22  mod pFy ifg>p+1,
and
FP(Q) = C(1+ BCPHE 4 4¢PF2E) mod (p, (PH21H2), (4.3)

4.1. Self-contained proof of Theorem 2

The goal of this section is to deduce the following proposition from the Main Lemma, which
is a more precise version of Theorem 2. Tt is also one of the main ingredients of the proof of
Theorem 3, which is given in §4.2.

PROPOSITION 6. Let p be an odd prime number and K a field of characteristic p.
Furthermore, let q be in {1,...,p— 1}, let f in K][(]] be of the form

F(O) = ¢(1 4+ ap¢? + a1¢*) mod (¢3*1?), with ag # 0,

and for each integer n > 1, put

pt—1

- ST <q+ 1 ‘“) o
n -— W 2 )
2 aj

and

n P19
() p:—lflﬂ g+1 a7t
= —Q .
" 0 2 a?

Then we have
n pn+1_1
f? (C) — (= xnC? 71 + + (!

In particular, f is g-ramified if and only if

résit(f) = L= 2 2o,

p™

+1_ n+l_
= +a+1 mod <qu 1 1+q+2>'

The proof of Proposition 6 is given after the following lemma.

LEMMA 6. Let p be an odd prime number, ¢ in {1,...,p — 1}, and d > 1 an integer satisfying
d =1 (mod p). Furthermore, let K be a field of characteristic p and let f in K][[(]] be of the
form

£(¢) = g(1 +apc® 4 a1§q<d+1>) mod (C@TD+2) with ao # 0.

Then there is a polynomial ¢ with coefficients in K such that mult(p) > ¢ + 2, and such that
@ conjugates f to a power series g satisfying

9(0) = ¢(1+ao¢™ + () mod (aHIIIH, (4.4)
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and
g°(¢) = fP(¢)  mod (¢MU)rat2)
Proof. Noting that gd = ¢ (mod p), we can apply Lemma 3 successively with ¢ replaced by
gd, and with
k=q+1,...,9+p—1,

to obtain a polynomial ¢ satisfying mult(¢) > ¢ + 2, such that g := @ o f o ! satisfies (4.4).
To prove the second assertion, note that ¢ also conjugates fP to ¢g”, so by Lemma 3

i1(f) = i1(9) and f7(¢) = g (¢) mod (¢ Hmtle)),
The desired assertion follows from the inequality mult(¢) > g + 2. This completes the proof of
the lemma. O
Proof of Proposition 6. The last assertion is a direct consequence of the first and of (1.6).
To prove the first assertion, for each integer n > 0 put d,, :== 1+ p+ --- + p", and note that
dp, =1 (mod p), and dpp+ 1 = dpy1.

We first prove by induction that for every integer n > 0 there are x,, and v, in K, such that

F7€) = (14 xnC + U@ HD) mod (Al H42), (4.5)
The case n = 0 is trivial, with
Xo = ag and ¥ = az. (4.6)

Let n > 0 be a given integer, and assume the desired assertion is true for n. By Lemma 6, there
is a power series g with coefficients in K such that

9(0) = (14 xXnC™ + @) mod (14 DH2),
and
g"(Q) = 77 (Q) mod (¢ DFar2), (4.7)
Define Z,), F1 and Fy as in Proposition 5. Moreover, let g in Fi[[C]] be of the form

00
3¢ =¢l1+ Iochn + xICQ(dn‘l’l) + Cq(dn+2) Zl'jJrlC] ,
j=1

let h: Fw — K be the unique ring homomorphism extending the reduction map Z,) — F,
such that h(zg) = xn, h(x1) = 9y, and such that for every i > 2 the element h(x;) of K is the
coefficient of (2(4n+2)+i in g Then h extends to a ring homomorphism Fi[[¢]] — K[[¢]] that

maps g to g. In the case n = 0, note that f in the Main Lemma is equal to §, so

9P (() = g(l TV <<h;1 _ i’g)cq(pﬂ)

2
1
—x§+2 <q—; _ wg) Cq(p+2)> mod <<(1(P+2)+2>_
X0
Together with (4.7) with n = 0, this implies
i1(f) =i1(9) > a(p+1) = qdi,
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and (4.5) with n =1,

2
_oprifatl ¢0> _ p+2<Q+1 %)
=X —— — — ] and ¥ := —x — . 4.8
' ° ( 2 X0 ' 0 2 X5 “8)

X
In the case n > 1, the Main Lemma with ¢ replaced by ¢d,, and ¢ replaced by ¢, implies

9(Q) = (1= MO 2 CH D) ) mod (U HE2),
Together with (4.7), this implies

in—i—l(f) = 7:1(9) P Q(dnp + 1) = qdn+1
and (4.5) with

Xnt1 = —X5 1, and Y41 = —xE 22 (4.9)

This completes the proof of the induction step and of (4.5) for every integer n > 0. Then the
proposition follows from a direct computation using the recursion (4.9), together with (4.6)
and (4.8). O

4.2. Lower bound of the norm of periodic points

The goal of this section is to prove Theorem 3. We first introduce some notation and recall a
result from [15].

Let (K, | - |) be an ultrametric field, and recall that Ox denotes the ring of integers of K, and
mg the maximal ideal of Ok. Denote the residue field of K by K := Ok /mg, and for an element
a of Ok, denote by the @ its reduction in K. The reduction of a power series f in Ok][[(]], is the
power series f in ]IA{[[C]] whose coeflicients are the reductions of the corresponding coeflicients
of f. For a power series f in Ok[[(]], the Weierstrass degree wideg(f) of f is the order in
K[[¢]] of the reduction f of f. Note that if wideg(f) is finite, then the number of zeros of f in
mg, counted with multiplicity, is less than or equal to wideg(f) (see, for example, [10, § VI,
Theorem 9.2]).

In the case the characteristic p of K is positive, and f is a wildly ramified power series in
Ok|[¢]], it is well known that the minimal period of every periodic point of f in mg is a power
of p.

DEFINITION 2. Let p be a prime number and K field of characteristic p. For a wildly ramified
power series f in K[[(]], define for each integer n > 0 the element §,(f) of K as follows: Put
Sn(f) := 0/if i, (f) = 400, and otherwise let &, (f) be the coefficient of =)+ in 7" (¢).

LEMMA 7 (Special case of [15, Lemma 2.4]). Let p be a prime number and (K,|-|) an
ultrametric field of characteristic p. Then, for every wildly ramified power series f in Ox][[(]],
the following properties hold.

(1) Let wy in mg be a fixed point of f different from 0. Then we have
lwo| = 160(f)
with equality if and only if
wideg(f(C) =€) = io(f) +2.

(2) Let n > 1 be an integer and (y in mg a periodic point of f of minimal period p™. If in
addition iy (f) < +oo, then we have

-

p

on(f)
5n71(f)

|Co| =
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with equality if and only if

. 7)) =¢ > : .
wideg ( =in(f) —in-1(f) +D". 4.10
L) =i —ina() (4.10)
Moreover, if (4.10) holds, then the cycle containing (o is the only cycle of minimal period p"
of f in mg, and for every point (}, in this cycle |}| = |5fj(lj(c}) |z%"

Proof of Theorem 3. The assertion about fixed points is a direct consequence of §o(f) = a
and Lemma 7(1).

To prove the statement about periodic points that are not fixed, note first that this statement
holds trivially in the case résit(f) = 0. Thus, we assume that résit(f) # 0, and therefore f is
g-ramified by Theorem 2. In particular, for every integer n > 1 we have i,,(f) < +o00. On the
other hand, by Proposition 6 we have for every integer n > 1

p™

7pn+171 ;. pt—1
On(f) =a »=T résit(f) »1.
Hence, by Lemma 7(2) we have for every periodic point (g in my of minimal period p”,

1 1
I

On n n—1|p . 1

[ Onlf) 7 vésit(£)P" |7 = |a| - Jrésit(f)|7. (4.11)
5n—l(f)

This completes the proof of Theorem 3. O

REMARK 1. Equality in (4.11) is, as seen in Lemma 7, given by a condition on the reduction
of f. In the case of equality, for g-ramified power series all periodic points in the open unit disk,
which are not fixed by f, in fact lie on the sphere about the origin of radius |do(f)] - \résit(f)ﬁ,
see Example 3 in §6.

5. Proof of the Main Lemma

The goal of this section is to prove the Main Lemma. We use the strategy introduced in [16;
21, §3.2], using the power series (A,,)>, defined by (3.2) and (3.3). The proof is naturally
divided into the cases g < p—1and g > p+1.

Case 1, g < p — 1. Note that in this case we have £ = ¢q. For each integer m > 1 define ay,,
Bm and 7, in F; by the recursive relations

Q1 = To(gm + 1), (5.1)
9fqm+1

Bm+1 = Lo 92 + Il(qm + 1) Qm + xO((J(m + 1) + 1)Bma (5'2)
3fgm+1

Tm+1 = | T 3 + zox1gm(gm + 1) |y,

N {x% <q(m +21) +1

)+ alatm+ 1)+ 1) 5

+zo(g(m +2) + 1)vm, (5.3)

with initial conditions a; := xg, 1 := x1, and 71 := 0. We claim that for every integer m > 1,
we have

Am(() = amcqm—i-l +ﬁm<q<m+l)+l +,ym<q(m+2)+1 mod <<q(m+2)+2>' (5'4)
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For m = 1 this holds by definition. Assume this is valid for some m > 1. Then
An1(€) = An(F(0) ~ Am(¢)

= ap (It [(1 +20CT + w1 (2 4 mpCPatt 4 ) 1}
4 By CalmHD+1 [(1 ¥ 200 + 2029 4 pp(BaH 4. )q(m+1)+1 B 1}
F Ay CAmF2) 1 [(1 F 2oCT 4 21C2 4z 4 _)q(m+2)+1 B 1}

mod <§Q(m+3)+2>

= q,, [Cq(m+1)+1x0(qm +1)+ calm+2)+1 (33(2) (qm2+1) +zi(gm+ 1))

+Cq(m+3)+1 (3:8 (qrr?-l) + xox1gm(gm + 1))]

+ B | (1 H g (q(m + 1) + 1)

+Cq(m+3)+1 <m% ((I(mng)Jrl) + xl(q(m + 1) + 1))

+ Y G (g(m + 2) + 1) mod ((2m+H+2),

which proves the induction step and (5.4).
In view of (3.4) and (5.4), to prove the Main Lemma with ¢ < p — 1, it is sufficient to prove

ap =0 mod pFh, (5.5)

(4.1) with 8 = 8, and (4.2) v = y,. The first two are given by Proposition 5, so we only need
to prove the latter. To do this, we solve (5.3) explicitly, utilizing the explicit solutions of (5.1)
and (5.2) given in the proof of Proposition 5. Assume first ¢ = —1 (mod p). By (3.12) and
(3.13) with m = p — 1, we have

ap—1 =0 mod pFy and 3,1 = —33872:51 mod pF;.
Combined with (5.3) with m = p — 1, this implies
Yp = —xb %22 mod pF.

This proves (4.2) with v = 7,, when ¢ = —1 (mod p).

It remains to prove (4.2) with v = ,, when ¢ # —1 (mod p). Denote by ry the unique r in
{1,...,p — 1} such that gr = —1 (mod p). By our assumption g # —1 (mod p), we have ry # 1
and therefore

ro €{2,...,p—1}. (5.6)
Noting that for every j > 0 we have ¢j + 1 > 0, we use the substitution
T = T

(@m + 1) + D(gm + Dam’
Note that by (3.12), we have

m—+1
Ym = 7m/ vy ] (@i +1)
j=1
On the other hand, by (3.12) and (3.13), we get

ﬂmi 1 G 2(](7’—1) qm+l
A Z o 2 o gr+1°

xr
0 r=1
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By plugging these equations into (5.3), we obtain

—1
Yol = Ym T an x% (m% m + $1>
(glm+ 1)+ 1D)(g(m+2)+ 1)

1 2q(m+1) i 2q(r—1) 1
+q(m—|—2)+1<w0 g ton ) (#5— ro o+l

Using 7 = 0 and defining for every integer s

we obtain inductively for each m > 1

489

. _mfl qs gs — 1 H(s+1) <H(r—1)
7’”’; (q(s—|—l)+1)(q(s+2)+1)m%<x8 6 +x1>+q(s+2)+12 ar+1

r=1
Equivalently,
m—1

_ qgs —1 .
=y S |oas (2 4 I @y
je{l,....m+1}\{s+1,s+2}

s=1

je{1,....m+1}\{r,s+2}

FH(s+1)> H(r— 1) 11 (¢ + 1)} .

Setting m = p, for every s in {1,...,p — 1} we have by Lemma 5

gp+1)+1 _ g+1 .
o+ 1)+1 7 mod pZy) ifs=ro—1;
II @+D={ ap+n+1 _g+1
. - = dpZ if s =19 —2;
Tetii) qro 1) +1_ g HoPPm  HSTTomS
| 0 otherwise.

Analogously, for every s in {1,...,p— 1} and r in {1, ..., s}, we have

q+1

Tar1 medrZo if 5 =1y — 2
[I @+y= g+ 1 |
——— oy modpZy) ifs>roand r=ro;
jig{zl{’r"'sﬂf} o2 r1 medply ifs>roandr=r
| 0 otherwise.

Combined with (5.7) with m = p and

+1
H(To—l)E—I%q2

+ x; mod pZ(p),
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these congruences imply

QQ(TO 7 1) -1

Y = —xhq(ro — 1) <a¢06 + $1> 47 -

Q
+
—

ro—2)—1
+zhq(ro — 2) <x%q( 0 G ) + 23

7‘072

—af *H(ro—1) Y H(r—1)

r=1

qg+1
qr+1

q+1

_ d pF
g(s+2)+1 mod pr

p—1
—af 2 H(s+1)H(ro — 1)

S=To

= —2P(q+1)H(ro — 1)

_ H(r—-1
—2} % (q+1)H(ro — 1) > 75« - ) mod pF.
re{l,..., p+1l1} q

rg{ro—1,r0,r0
By (5.6), we have
H(r—1 2 H(rg—1
) D S o J LG B
gr+1 2 qgr+1
re{l,....p+1} r€{l,....,p+1}
ré&{ro—1,ro,ro+1} rég{ro—1,ro,ro+1}

1
=23+ H(ro—1) Z | mod pFy.  (5.10)
re{l,...,p+1}
rg@{ro—1,ro,ro+1}

On the other hand, by the second assertion of Lemma 5, we have

1 1 1 1
2 r+1 - DL aro-D+1 qornr1 mlPEw
re{lpry ¢ a\p q(ro q(ro

ré&{ro—1,ro,m0+1}

1
= — dpZ, . 5.11
11 medpZe) (5.11)
Together with (5.8), (5.9), and (5.10), this implies (4.2) with v = -, and completes the proof
of the Main Lemma in the case ¢ < p — 1.
Case 2, ¢ > p+ 1. Note that in this case our hypotheses on ¢ imply in all the cases that
q = 2¢ + 1. For each integer m > 1 define ay,, B, and 7, in Fy by the recursive relations

Qm+1 = To(gm + 1)@y, (5.12)
Bmg1 = x1(qgm + 1)@ + zo(gm + L+ 1) By, (5.13)
At 1= z1(qm + £ + 1) By, + zo(qm + 20 + 1)3m, (5.14)

with initial conditions @ = xg ,gl :=x1, and 7; := 0. We claim that for every integer m > 1,
we have

Apn(€) = @I 4 BT 45, (ML mod ((ITR2). (5.15)
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For m = 1 this holds by definition. Assume further this is valid for some m > 1. Then, using
q > 20+ 1, we have

Ami1(¢) = Am(F(Q)) ~ Am(<)
= Q,, (Imt! [(1 T 20CT 4 O (IR 4 _)qm+1 _ 1}
ARttt [(1 + 30T + 3y CIH gy (ORI 1}

FAm G (1 oG 4 @1 CTHE 4 apCrh26HT )T g
mod (Ca(m+1)+26+2)
= G (C1m Mg (qm + 1) 4 IO g (gm + 1))
+ B (CAmHDH g (g 4 £ 4 1) 4 CAmHDF2 L (g 4 € 4 1))
+§m<q(m+1)+2€+1$0(qm +2¢+1) mod <Cq(m-|-1)-i-2€-|-2>7
which proves the induction step and the claim (5.15).

In view of (3.4) and (5.15), to complete the proof of the Main Lemma in the case ¢ > p + 1,
it is sufficient to prove

a, =0 mod pFy, (5.16)

(4.1) with g = Bp, and (4.2) with v = 7,. The linear recursion described in (5.12), (5.13), and
(5.14) can be solved explicitly. By telescoping (5.12), we obtain for every m > 1 the solution

m—1
=5 [[ (@i +1). (5.17)
j=1
Taking m = p, this implies (5.16).
On the other hand, inserting (5.17) in (5.13) yields
j=1
Then, an induction argument shows that for every m > 1 we have
. m
B = 2 2y Z H (g7 +1) mod pF;. (5.18)
r=1je{l,..m\{r}

When m = p every term in the sum above contains a factor p, except for the unique 7y in
{1,...,p — 1} satisfying qro = —1 (mod p). Then by Lemma 5, we have

Ep =20 ey H (¢ +1) mod pFy
je{l,...,p}\{ro}

—1
= —zb 2, mod pFy.

This proves (4.1) with g = Bp.
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To prove (4.2) with v =7, assume first ¢ = —1 (mod p). Then by (5.14) with m =p —1,
(5.18), and Lemma 5 we have

~

T = xlgpfl mod pF;

p—1

ah 22y II (¢j +1) mod pFy
r=1je{1,..,p—1}\{r}

op %2t JI (1—4) modpF
j€{2,...p—1}

— p—2,.2
= —x; “2] mod pFy.

It remains to prove (4.2) with v = 7, in the case ¢ # —1 (mod p). Note that in this case 7o # 1.
Inserting (5.18) in (5.14), we obtain

m
Vmi1 = i @] Z H (¢j +1)
r=lje{l,..,m+1}\{r}
+z0(g(m +2) + 1)¥, mod pFi. (5.19)
For every m > 1 define 4, in F} recursively, by 41 := 0 and for m > 1, by
m
Y1 = oo Z H (g7 +1) 4+ x0(gim +2) + 1)y, (5.20)
r=lje{l,..,m+1}\{r}

Note that by (5.19) for every m > 1 we have %, = 7,, mod pF;. Using that for every 7 > 0
we have ¢j + 1 > 0, and the substitution

m—+1
i :—vm/ 27222 TT(aj +1) |

j=1
we obtain .
Inductively, we have
m—1 1 s 1
= , 5.21
Tm ;q(s—i-Q)—l-l;qr—l—l (5:21)
which is a rational number. Since r¢ # 1, for every r in {1,...,p + 1} \ {ro} we have that ﬁ

is in Zp). Thus, taking m = p in (5.21), and using (5.11), we obtain

(qro+1)7, = Z

re{l,....,p+1}
ré{ro—1,ro.,ro+1}

o T 1 mod pZ(p)

Using Lemma 5, we obtain

- 1 .
Yo = 70 2$§q g, 11 (¢j +1) mod pFy
J€{l 1\ {ro}

—2
= —2b %27 mod pF).

This completes the proof of (4.2) with v =7, and of the Main Lemma.
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6. Further results and examples

In this section, we gather several examples illustrating our results and state some further
consequences of our main theorems.

ExXAMPLE 1. The following example shows that the conclusion of Theorem 2 is false when
¢ =p+ 1 and p is odd. Consider the polynomial with coeflicients in F,,

P(C) = (14 P+ (P42 4 (20HD),
A direct computation using (1.6) shows that résit(P) = 1. On the other hand, using the Main
Lemma with g =p+1, £ =1, and 9 = z1 = 1, we have
i1(P)=p° +p+1<io(P)(p+1),
so P is not (p + 1)-ramified.

There is another natural source of power series f that satisfy io(f) = p + 1 and that are not
(p + 1)-ramified. Let g in K[[(]] be a 1-ramified power series, and put f := ¢g?. Then

io(f) =i1(g) =p+1 and i1(f) = i2(g) =1+ p+p* <io(f)(p+1),

so f is not (p+ 1)-ramified. For concreteness, let a in K be different from 1, and assume that
g is of the form

9(¢Q) =<¢(1 + ¢ +ac¢?) mod (¢Y).

In view of (1.6), we have résit(g) =1 —a # 0, so g is 1-ramified by Theorem 2. On the other
hand, for p = 3, 5, and 7 a computation shows that résit(f) = (1 — a)? # 0. Thus, in contrast
with the situation for ¢ in {1,...,p — 1} in Theorem 2, for ¢ =p+ 1 and p = 3, 5, and 7, the
nonvanishing of the iterative residue does not imply (p + 1)-ramification.? So, the following
question arises naturally.

QUESTION 2. For which 1-ramified power series ¢ in KJ[[¢]] do we have résit(g?) # 07

ExaMPLE 2. The following example illustrates Theorem 2 in the case ¢ = p— 1. A direct
computation shows that for the polynomial P(() := ¢ 4+ (P, we have for every integer n > 1

P () = ¢+ ¢

In particular, i, (P) = p?" — 1, and therefore P is not (p — 1)-ramified. This is consistent with
Theorem 2, since by Theorem 1 we have résit(P) = index(P) = 0.

ExAMPLE 3. This example shows that the lower bound (1.7) in Theorem 3 is optimal for
p>=5and g < p— 3. Let p > 3 be a prime number, (K, | - |) an ultrametric field of characteristic
p, and ¢ in {1,...,p — 1}. Furthermore, let a and b in K be such that 0 < |a| < 1 and |b| = 1,
and let f be a power series in K[[z]] satisfying

F(Q) = ¢+ a¢” +b¢™) mod (¢21H).
A direct computation using (1.6) shows that

_q+1 b4

TThe situation is now clear form the recent characterization of (p + 1)-ramification by the first author in
[20].
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so by Theorem 2 the series f is g-ramified. In the case ¢ < p — 2, by (1.6) the reduction fof f
satisﬁgs résit(f) = %. Assuming further that ¢ < p — 3, we have résit(f) # 0, and we obtain
that f is (¢ + 1)-ramified by Theorem 2. This implies that (4.10) in Lemma 7 holds for every

integer n > 1. It follows that for every periodic point (y of f in mg that is not fixed, we have
. 1
[Col = lal - |résit(f)7,

see the proof of Theorem 3.

The following result is a direct consequence of Theorems 2 and 3 for fixed points whose
multiplier is a root of unity, compare with [15, Corollary C].

COROLLARY 5. Let K be an ultrametric field of odd characteristic, let v in K be a root of
unity, and denote by q > 1 the order of vy. Moreover, let f be a power series with coefficients
in K satisfying f(0) =0 and f'(0) = ~. If

¢ =mult(f?) — 1< p—1 and résit(f?) # 0,
then f9 is ¢’-ramified. In particular, if f converges on a neighborhood of the origin, then the
origin is isolated as a periodic point of f.

EXAMPLE 4. Let K be an ultrametric field of characteristic 7, and note that 2 is a root of
unity in K of order 3. Let f be a power series with coefficients in Ox such that

f(€)=2¢+ ¢ mod (¢*¥).

A direct computation shows that

Q) =¢1+¢"+¢") mod (¢'%).

In particular, mult(f3) —1 =6 > 3, so f is not minimally ramified in the sense of [15], and
we cannot apply Corollary C of that paper to f. However, by (1.6) we have résit(f?) # 0, so
Corollary 5 applies to f3 and it implies that f? is 6-ramified and that the origin is isolated as
a periodic point of f3, and hence of f.

Appendix. Iterative residue in positive characteristic

In this section, we study the behavior of the iterative residue under iteration, which is defined
for a power series f with coefficients in a field of characteristic different from 2, by (1.5).
For a ground field of characteristic 0, this behavior can be understood from a relatively easy
computation using the normal form (2.5)." For a ground field of positive characteristic, not
every power series f is formally conjugated to (2.5), so we cannot apply this strategy. We use
instead the closed formula for the residue fixed point index (1.3) in Theorem 1.

PROPOSITION A.1. Let K a field of characteristic different from 2, and let f be a power
series with coefficients in K such that

f(0) =0, f(0) =1 and f(z) # =.

Then, for every integer n > 1 that is not divisible by the characteristic of K, we have

résit(f™) = %résit(f). (A1)

TSee also [18, Lemma 12.9] for a different approach for convergent power series.
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For a field of characteristic 2, the formula (1.5) defining the iterative residue is meaningless.
Instead, we study the behavior of the residue fixed point index under iteration.

PropPOSITION A.2. Let K be a field of characteristic 2, and let f be a power series with
coefficients in K such that q := mult(f) — 1 > 1. Then, for every odd integer n > 1 we have

index(f)+1 ifq is even and n =3 (mod 4);

index(f) otherwise.

index(f") = {

The proofs of Proposition A.1 and A.2 are given after the following lemma. For a field K of
positive characteristic, and an integer n > 0, we use (g) to denote the reduction of this integer
in the prime field of K.

LEMMA A.1. Let K be a field, let f be a power series with coefficients in K such that
q :=mult(f) — 1 > 1, and denote by a the coefficient of 24+ in f(z). Then, for every integer
n > 1 we have

f(z) —z=n(f(z) — 2) + <Z> (¢ +1)a*2%"™ mod (22712). (A.2)

Proof. We proceed by induction. The lemma holds trivially for n = 1. Assume that (A.2)
holds for an integer n > 1. Put ®(z) := @ and note that

®(2) = az? mod (z71), and ®(f(2)) = ®(2) + ¢a®22? mod (227H1).
Together with the induction hypothesis, this implies

£ 1) = 1)+ nfBIE) + () fa+ Ve S mod (A7)

=2+ 2®(2) + nz(1 + ®(2)) (®(2) + qa®z%7)
+ (;L) (q +1)a®2z%7™ mod (229+2)

n
2
n+1
2

=2+ (n+1)20(2) + <n + ( ))(q + 1)a?22* mod (2%1+2)

=z+n+1)(f(z)—2)+ < )(q + 1)a2224+1 mod <2’2(Z+2>. 0

Given a field K, an integer ¢ > 1, and aq, . .., azq in K, denote by P,(ay,- .., az,) the right-
hand side of (1.3). Note that for every A in K, we have

Pq(aq,...,a2q+)\a,21) =Py(aq,...,a29) + A (A.3)
If in addition A is nonzero, then we also have
1
Py(Aag, ..., Aagq) = XPq(aq,...,agq). (A.4)

Proof of Propositions A.1 and A.2. Put
f(2) =2(1+aqzq—|—---+a2qz2’1+---),
so that aq # 0. A direct computation shows that for every integer n > 1, we have

"(2) = 2(1 4+ nayz?) mod (¢41?).
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In particular, if n is not divisible by the characteristic of K, then mult(f™) = ¢+ 1. On the
other hand, by Theorem 1, Lemma A.1, (A.3), and (A.4), we have

. n
index(f") = P, <naq, ..., NA2g—1, NA2g + <2) (¢ + 1)a,21)

n

2) (¢g+1) (A.5)

1 1
= EP(I(%’ ey A2g-1, agq) =+ 7’L2<

_1 [index(f) + i@) (¢+ 1)} :

n

If the characteristic of K is different from 2, then by the definition of the iterative residue (1.5),
we have

nrésit(f") = n%(fn) — nindex(f™)

= n% — index(f) — nT_l(q + 1) = résit(f).

This proves Proposition A.1. In the case the characteristic of K is 2, Proposition A.2 follows
from (A.5) and from the fact that, in K, we have n = 1 and

n 1 if g is even and n =3 (mod 4);
+1) =
<2> (a ) 0 otherwise. O
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