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Despite its simplicity, the composition of a material can be used as input to machine learning models to

predict a range of materials properties. However, many property optimization tasks require the

generation of novel but realistic materials compositions. In this study, we describe a way to generate

compositions of hybrid organic–inorganic crystals through adapting Augmented CycleGAN, a novel

generative model that can learn many-to-many relations between two domains. Specifically, we

investigate the problem of composition change upon amine swap: for a specific chemical system (set of

elements) crystalized with amine A, how would the product chemical compositions change if it is

crystalized with amine B? By training with limited data from Cambridge Structural Database, our model

can generate realistic chemical compositions for hybrid crystalline materials. The Augmented CycleGAN

model can also utilize abundant unpaired data (compositions of different chemical systems), a feature

that traditional supervised methods lack. The generated compositions can be used for many tasks, for

example, as input fed to a classifier that predicts structural dimensionality.
1. Introduction

Organic–inorganic hybrid crystalline materials are a wide class
of functional materials that encompasses halide perovskites,1–3

metal organic frameworks (MOFS),4,5 and templated metal
oxides.6 The subclass of amine-templated metal oxides (ATMOs)
have been a research focus of structural chemistry owing to the
intricate interactions between their inorganic building units
and amine templates.7–11 The great structural diversity found in
ATMOs (exemplied by the amine-templated zinc phosphate
structures of four different dimensionalities), can only be
matched by their compositional diversity (71 elements, 25 main
group building units, and 349 amines as of 2021).12 This
immense chemical space, along with various types of possible
interactions, makes it extremely challenging to predict the
properties of novel ATMOs.

Since the seminal works on generative adversarial networks13

(GAN) and variational autoencoder14 (VAE) in 2014, generative
models have proliferated in multiple disciplines, including
biology,15 geology,16 and meteorology.17 Chemistry is no excep-
tion: exploring the virtually innite chemical space requires
efficient methods and representations. A variety of
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architectures, such as generative adversarial networks,18 recur-
rent neural networks,19 and variational autoencoders20 have
been applied to a wide range of substances, including drug-like
small molecules,21,22 chemical formulations,23 and crystalline
reticular materials.24 The generators can be conditioned such
that the generated samples have desired properties, enabling
their use for inverse design.25

Most chemical generative models focus on molecules, which
can be represented as molecular graphs. Representations for
periodic crystalline materials typically require coordinate
information, which is considerably more difficult. To represent
crystal structures, a common practice is to dene a parameter-
ized structural model and to represent the structure in this
parameter space.26,27 Recent studies also explored representa-
tion learning. Noh et al. proposed a VAE based framework
(iMatGen) which learns a latent space from 3D images with
predened composition (V–O system).28 This method was also
used in the Bi–Se binary system.29 A framework similar to
iMatGen was proposed by Hoffmann et al. with a U-Net
segmentation model to assign atomic species from decoded
images.30 Court et al. used a similar VAE/U-Net framework based
on electron-density map for cubic structures.31

Using structural representations for crystalline materials is
not always necessary: compositional information alone can
have excellent predictive power for a wide range of properties,
such as formation energy,32 band gap33 and thermal hysteresis.34

For inverse design, the immense space of chemical composi-
tion35 requires efficient sampling methods to guide materials
discovery. Sawada et al. used conditional VAE and GAN to
Digital Discovery
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Fig. 1 Structure, chemical composition, composition vector and
chemical system of an amine-templated uranium sulfate (CCDC
identifier: FAHYOD).41

Fig. 2 Breakdown of two structure groups showing limited paired
data. (A) A “can pair” structure is a structure that shares the same
chemical system with at least one structure from the other group. (B)
Only 45 unique chemical systems can be found in both structure
groups.
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generate inorganic composition with bag-of-atom representa-
tions, however, it appears that their models could not generate
compositions with properties outside the training domain,
possibly owing to the use of property descriptors in the encod-
ing process.36 Dan et al. proposed a GAN model using a 2D
encoding of composition information. While this model returns
chemically plausible compositions with high novelty, the
encoding method used can only represent composition of
integer element fraction.37 Furthermore, only inorganic mate-
rials were investigated in these studies.

In this study, we describe the generation of ATMO composi-
tions through Augmented CycleGAN,38 a novel generative model
that can learn many-to-many relations between two domains
through unpaired data. Given observed compositions, our model
predicts a distribution of possible compositions when the amine
is changed. Our model takes composition information as the
only input, and thus can be readily generalized to other types of
materials. To showcase its application, the generated composi-
tions were passed to an inorganic framework dimensionality
classier, providing a dense sampling of different structural
dimensionality in the chemical space.

2. Composition translation

Image translation is the problem of how to transform images
from one domain to another,39 for example, the task of trans-
forming pictures of horses to pictures of zebra without altering
the background or pose of the animal.40 In this study, we focus
on an analogous composition translation problem for amine-
templated metal oxides (ATMO, see Methods for detailed de-
nitions): given the chemical compositions of structures con-
taining amine A, can we learn a function that transforms them
to compositions of structures containing amine B? As a specic
example, we chose amine A and amine B to be N-methyl-
methanamine (SMILES: CNC) and ethane-1,2-diamine (SMILES:
NCCN), respectively, as they are the two amines found most
frequently (in 314 and 427 structures, respectively) in the
Cambridge Structural Database (CSD) as of 2021. The popularity
provides more data points for training and more paired data for
testing, which allows us to better characterize the performance
of our model. Throughout this paper, chemical compositions of
CNC-templated structures and NCCN-templated structures will
be referred to as CA and CB, respectively, and are encoded as
normalized 1D vectors of elemental mole fractions [C ¼ (x1,
x2,.) and Sixi ¼ 1 where xi is the mole fraction of the ith
element, see Fig. 1 for an example].

Composition translation is not a formal chemical reaction,
as it does not specify the amounts of each reagent that are
incorporated into the nal product. Consequently, it need not
conserve the total number of atoms of each type. However, it
should conserve the types of elements present, because the
inorganic reagents remain the same. We dene a chemical
system as the set of unique elements in a chemical composition,
and impose the requirement that the translation model only
map an input in a given chemical system to an output of the
same chemical system. Such conservation also greatly reduces
the number of datapoints available for supervised learning. As
Digital Discovery
shown in Fig. 2, only a portion of all compositions can form
a pair of the same chemical system (35.1% of CA and 32.5% of
CB), and most chemical systems found in a structure group
cannot be found in the other structure group. The lack of paired
data is analogous to the horse to zebra image translation
problem: there are virtually no real horse–zebra image pairs
where the pose and background are identical. Fig. 2 also
suggests the limitation of training a generator on one structure
group (CA or CB) only: such a generator would not be able to
generate compositions of chemical systems that are absent in
this structure group. Using data from two (or multiple) structure
groups, extrapolations can be made to chemical systems that
are absent in one particular structure group.

The lack of paired data is not unique to CNC and NCCN. Out
of the 10 pairs of amines from the most popular 5 amines as of
2020 in the CSD, for 7 of them, the number of shared chemical
systems is less than the unshared (Fig. S1†). The pairing
between chemical systems and amines can be described by
a bipartite graph whose edges are the observed structures. Two
noteworthy features of this bipartite graph (Fig. 3) are that: the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 A bipartite graph describing the pairing between chemical
systems and amines in ATMO structures. 685 chemical systems and
349 amines are represented by nodes on the circle, connected by gray
arcs.
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number of observed chemical systems (685, the purple arc) is
much larger than that of amines (349, the green arc),12 and,
more importantly, connections are concentrated on a small
portion of all available nodes for both chemical systems and
amines. Only 22.64% of all amine pairs are connected, and
there is only a small probability (1.03%) to nd an edge between
a randomly chosen chemical system–amine pair. Such
concentrated connections are consistent with a preferential
attachment type of discovery process,42 and are not unique to
organic templated oxides but also present in other elds of
chemistry, such as organic reactions: in the network where
reactants (nodes) connected by reactions (edges), some reac-
tants are much more likely to be in a reaction than others.43

We aim to generate hypothetical CB (which will be referred to
as C

0
B) regardless of the popularity of its chemical system in

observed amine A-templated structures. For a specic chemical
system, the absence of different amine-directed structures in
crystallographic databases merely indicates they have not been
attempted or reported, but is not a strong indication that they
cannot be synthesized. In fact, previous studies have found that
there are no meaningful differences in the synthetic feasibility
for popular and unpopular amines within a chemical system.42
3. CycleGAN and Augmented
CycleGAN
3.1 CycleGAN

The small number of paired examples precludes a supervised
approach relying on paired data. Instead we propose
© 2022 The Author(s). Published by the Royal Society of Chemistry
a composition translation model based on CycleGAN,44 a gener-
ative model originally developed for image translation. It does
not require a predened similarity measure, and, more impor-
tantly, can be trained with unpaired data. Its training process,
shown in Fig. 4A, consists of two cycles starting from CA and CB,
both encoded as normalized 1D vectors of elemental mole frac-
tions. Randomly selected pairs (CA, CB) are passed to two residual
network45 generators, GAB and GBA. GAB takes a composition
vector of amine A (CA) and translates it to a composition vector of
amine B (C

0
B). A prime is used to denote generated composition

vectors throughout this paper. Similarly, GBA translates CB to C
0
A.

Filters were added to the generators to avoid generating
compositions of a different chemical system.

A CycleGAN model is trained by the CycleGAN loss LCycleGAN:

LCycleGAN ¼ LGAN�A + LGAN�B + lcycLcyc (1)

that has three contributions and a hyperparameter lcyc. The
rst two terms are the LS-GAN46 objective functions. The second
term is:

LGAN�B ¼ 1

2
ECB�pdðCBÞ

h
jDBðCBÞ � 1j2

i

þ 1

2
ECA�pdðCAÞ

h
jDBðGABðCAÞÞj2

i
(2)

where pd(CA) and pd(CB) represent the distributions of CA and
CB, respectively. The generator GAB is trained to minimize
LGAN�B, while DB is trained to maximize it. LGAN�A, the rst term
of eqn (1), was similarly dened for training GBA and DA. The
last term of eqn (1) is the cycle-consistency loss Lcyc:

Lcyc ¼ ECB�pdðCBÞkGABðGBAðCBÞÞ � CBk1
þ ECA�pdðCAÞkGBAðGABðCAÞÞ � CAk1 (3)

which compares real compositions with reconstructed ones
using L1 loss (alternatively, task-specic loss can be used47).
Here, reconstruction means to transform a generated sample
using another generator. For example, GAB(GBA(CB)) is the
reconstruction of CB from GBA(CB). Minimizing cycle-
consistency loss makes the reconstructed sample close to the
original sample, which reduces the number of possible
mappings produced by the generators. In the case of horse-to-
zebra, for example, the generated zebra can be transformed
back to the original horse.

3.2 Augmented CycleGAN

While CycleGAN can utilize unpaired data, its cycle-consistency
loss forces a one-to-one mapping between domains. This is
appropriate for image translation (each horse image corre-
sponds to a single zebra image), but problematic for chemical
compositions. A chemical system may have multiple composi-
tions (determined by stoichiometric ratios, polymorphism, etc.)
necessitating a many-to-many relation. To address this, we
adapted the Augmented CycleGAN model38 which connects the
original CycleGAN model with two latent spaces ZA and ZB. This
allows generation of multiple C

0
B from one CA by sampling ZB

and vice versa, which cannot be realized in the original
CycleGAN.
Digital Discovery
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Fig. 4 Training processes of (left) CycleGAN and (right) Augmented CycleGAN. Rectangles denote input data. Colored arrows represent
generators/autoencoders. Solid double gray lines and dashed lines represent GAN loss and cycle consistent loss, respectively. Horizontal black
solid lines visually separate different training cycles.
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As shown in the lower part of Fig. 4B, the generator GAB now
takes an additional vector, zB, sampled from a prior on ZB to
generate C

0
B. An autoencoder EA is used to encode C

0
B and CA to

z
0
A˛ZA, which is used to reconstruct CA via GBA (rec CA). The
number of elements in an ATMO composition ranges from 5 to
7. To avoid generating mappings solely rely on zA and zB, the
dimensions of both ZA and ZB should be smaller than 5. We set
the dimensions to be one to lower the computation cost of
optimizing zA and zB.

The total loss function for Augmented CycleGAN is:

Laug�CycleGAN ¼ laug�cyc[Laug�cyc�A + Laug�cyc�B

+ laug�cyc�z(Laug�cyc�zA
+ Laug�cyc�zB

)] + Laug�GAN (4)

where laug�cyc and laug�cyc�z are hyperparameters. The rst
term of eqn (4), Laug�cyc�A, is the augmented version of cycle-
consistency loss term, and is similar to the second term of
eqn (3):

Laug�cyc�A ¼ ECA�pdðCAÞ zB�pðzBÞkGBA

�
GABðCA; zBÞ; z

0
A

�
� CAk

1

(5)

where p(zB) is a prior dened on ZB. Another autoencoder EB is
used to reconstruct zB (rec zB) from C

0
B and CA, which gives

another cycle-consistency loss term Laug�cyc�zB:

Laug�cyc� zB ¼ ECA�pdðCAÞ zB�pðzBÞkEBðGABðCA; zBÞ; CAÞ � zBk1
(6)

Similarly, we can construct the other cycle with Laug�cyc�B

and Laug�cyc�zA. Two training cycles are connected by the
adversarial loss:
Digital Discovery
Laug�GAN ¼ Laug�GAN�A + Laug�GAN�B + Laug�GAN�zA +

Laug�GAN�zB (7)

where the rst two terms are similar to that of eqn (1). The third
term of eqn (7) is:

Laug�GAN�zA ¼ 1

2
EzA�pðzAÞ

h
jDzAðzAÞ � 1j2

i

þ 1

2
ECA�pdðCAÞ zB�pðzBÞ

h
jDzAðEAðGABðCA; zBÞ; CAÞÞj2

i

(8)

where DzA is the discriminator for zA, and the fourth term of eqn
(7) can be calculated in a similar manner.
4. Composition translation with
augmented CycleGAN

Given NA examples of CA and a potentially smaller test set of CB

that have a corresponding CA, a latent vector zB (just a number
since we set the dimension of ZB to be one), sampled from
a Gaussian prior on ZB, is used to generate C

0
B through

Augmented CycleGAN. To compare two compositions C
0
B,CB of

the same chemical system, we dene the average elemental
mole fraction difference DðC0

B;CBÞ as:

D
�
C

0
B;CB

�
¼

Pn
i¼1

�
x1
i � x2

i

�

n
(9)

where n is the number of elements present in CB. Note this is
different from the mean absolute difference, as the denomi-
nator is not the dimension of vectors but the number of non-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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zero elements of vectors. The model performance can be eval-
uated by the following distributions of DðC0

B;CBÞ:
(1) Dsample: for each CB, what is the minimum DðC0

B;CBÞ
obtained aer sampling the prior on ZB for Nsample times for
each CA?

(2) Dopt: for each CB, what is the minimum DðC0
B;CBÞ ob-

tained aer optimizing zB for each CA?
For comparison, two baseline methods were used:
(1) Identity baseline Didentity: the generated C

0
B is a copy of CA.

(2) Random baseline Drandom: the generated C
0
B is a randomly

selected vector from a uniform distribution in the subspace of
CB vectors. The vector is normalized such that the sum of its
elements is one.

Distributions of Dopt, Dsample and Didentity for compositions
were generated using three independently trained models
(three-fold splitting of CB, see Methods for more details).
Augmented CycleGAN results are shown in Fig. 5. The distri-
bution of Drandom is too broad to be included. Comparing with
both baseline methods, Augmented CycleGAN model generates
more realistic compositions, with mean values of Dopt, Dsample,
Didentity and Drandom being 0.0123, 0.0147, 0.0338 and 0.1395,
respectively. The distribution of Dsample is a function of Nsample,
Fig. 5 Distributions of Dopt, Dsample(Nsample ¼ 50) and Didentity for
compositions generated using Augmented CycleGAN. (A) Violin graph.
(B) Cumulative density function.

© 2022 The Author(s). Published by the Royal Society of Chemistry
as enlarging sample size naturally improves the best result of
that batch. The mean value of Dsample, as a function of Nsample,
converges at Nsample ¼ 50 (Fig. S2†) with a cutoff of 0.001. While
previous studies suggest the earth mover's distance (EMD)
a good distance function for chemical compositions,48,49

changing the L1 loss function in eqn (3) to EMD of modied
Pettifor scale48 does not improve results.

Augmented CycleGAN captures information from unpaired
data to generate realistic samples. Fig. 6 shows the cross-
validated results Augmented CycleGAN trained either with or
without unpaired data. The X-axis indicates the proportion of
can-pair B used in training as the total number of can-pair B is
a xed number (see Fig. 2A caption for the denition of can-pair).
When trained with only unpaired data (i.e., no can-pair B in
training), the mean value of Dsample is 0.0206 (already smaller
than the identity baseline of 0.0338). It can be further lowered by
adding paired data to training. Without unpaired data, the mean
value of Dsample becomes larger and more dependent on the
amount of paired data. It also exhibits greater variation in cross-
validation than models trained with unpaired data. This may
come from the narrower distribution of B samples when
unpaired data are excluded. These results indicate that our
model is particularly useful when paired data is absent or rare.

In addition to the quantitative analyses based on DðC0
B;CBÞ,

we qualitatively assess the validity of generated compositions by
comparing features of generated compositions to that of real
samples. One approach is to compare compositions in a low-
dimensional space. With UMAP dimensionality reduction,
both real and generated compositions are mapped to a 2D
space, as shown in Fig. 7. Augmented CycleGAN compositions
generated from sampling a prior with Nsample ¼ 5 cover most
real compositions, while the identity baseline method covers
much fewer real compositions. This demonstrates that our
model generates diverse compositions spanning the observed
diversity. A second approach is to determine if the distribution
of element ratios in generated compositions is similar to the
Fig. 6 Mean Dsample as a function of the amount of paired data in
training. Error bars indicate standard deviation over 10 trained models
from randomly selected can-pair B samples.
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real observations. Fig. 8A shows the distribution of C/N element
fraction ratios in generated compositions, which reects the
ratios found in real compositions (Fig. 8B). The distribution
centers at 1.0. This is expected as for most (85.1%) of NCCN
templated structures, C and N only come from amine templates.
Values other than 1.0 come from inclusion of non-amine
building units containing C/N, such as nitrate or carboxylate
ions. This demonstrates that our model generates reasonable
compositions by learning the characteristics of CB.

As amine identity plays a role in the structure formation of
ATMOs, a new Augmented CycleGAN should be trained if
a different amine pair is selected. A more general solution for
generating ATMO compositions would be a generative model
Fig. 7 Visualization of CA (blue star, identity baseline), CB (black cross,
real samples), and C

0
B (purple circle, generated samples) using UMAP

with Minkowski distance function (p ¼ 1),50 where C
0
B were generated

by sampling a prior with Nsample ¼ 5 (i.e. from every CA, five C
0
B were

generated).

Fig. 8 (A) Distribution of C/N ration in generated compositions using
Augmented CycleGAN with a Gaussian prior on ZB. (B) Bar chart
illustrating the distribution of C/N ratio in real compositions.

Digital Discovery
conditioned on both amine identity and chemical system (in
contrast to the current model, which is conditioned by the
chemical system of input compositions). One challenge is the
highly imbalanced ATMO dataset: while there are 349 different
amines in our dataset, the 5 amines that appear most frequently
account for around 35% of all reported structures, 243 amines
(nearly 70% of all amines in the dataset) appear in fewer than 5
structures each, and 159 amines (around 46% of all amines)
have only one reported structure. Furthermore, the underrep-
resented amines (e.g., porphyrin, found in only 8 structures) can
be chemically very different from the popular ones (the 5 most
frequent amines are short, aliphatic amines). This raises the
possible concern that such a general generator model, trained
on this severely imbalanced dataset, may not learn from the
minority classes, and for this reason we have not studied this
more general problem in the current paper.
5. Dimensionality prediction with
generated compositions

Recent studies have demonstrated promising results for
composition-based model in property prediction.32–34 As an
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Predicted dimensionality of real and generated compositions.
Dimensionality reduction follows the method used in Fig. 7.
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example application for the composition generation models, we
use the outputs generated by Augmented CycleGAN as inputs to
a composition-based inorganic framework dimensionality
classier. This allows us to explore potential structural
outcomes of swapping amine templates. This is particularly
useful for studying structural diversity of a specic chemical
system (set of elements). We note that inorganic framework
dimensionality is just one of many properties can be predicted
through compositional information.

We rst trained the classier using observed structures in
the CSD. K-nearest neighbor, logistic regression, and random
forest were tested for dimensionality classication using
chemical compositions as input (represented as 75-element 1D
vectors for each of the 75 unique elements found in ATMOs). All
results are cross-validated through 5-fold train-test splitting
(Fig. 9), and the baseline accuracy is 37.4% (predicting the
majority class, 0D). The best classier is the random forest
model with an accuracy of 77.6 � 1.3%. Surprisingly, a high
accuracy of (73.9 � 1.6%) can be reached with a simple 1-
nearest neighbor model (1NN) using Manhattan distance. The
high performance of 1NN model suggests the dataset may be
tted through memorization.51 Different distance functions
(Euclidean and Chebyshev distances) do not have signicant
impact on classication accuracy.

The dimensionality predictor can be used to explore the
outcomes of amine swap for a specic chemical system. Using
Al–C–H–N–O–P system as an example, from the chemical
compositions of CNC-templated structures (CA), compositions
of NCCN-templated structures (C

0
B) are generated through

Augmented CycleGAN. The generated compositions, aer
dimensionality reduction, are shown as transparent circles in
Fig. 10, while real compositions as solid rectangles (used in
training Augmented CycleGAN) or triangles (not used in
Augmented CycleGAN). These compositions are colored by their
dimensionalities, as predicted by the random forest
Fig. 9 Classification accuracy for dimensionality prediction. Hori-
zontal dotted line indicates the baseline prediction of predicting the
majority class (0D).

© 2022 The Author(s). Published by the Royal Society of Chemistry
dimensionality classier. Fig. 10 illustrates that the generated
compositions provide a dense sampling over the realistic
chemical space that can be exploited to reach desired proper-
ties. The overall dimensionality trend is correlated to contin-
uous changes of Al : O ratio in compositions (Fig. S3†), and,
from a xed CA, generated C

0
B can have various Al : O values that

cover the values in CB (Fig. S4†). For the twelve NCCN-
containing structures reported in the CSD, the proportions of
0D, 1D, 2D and 3D structures are 8.3% (1/12), 8.3% (1/12),
58.3% (7/12) and 25% (3/12), respectively. From generated
compositions, the proportions are 0%, 17.7%, 33%, and 49%,
indicating there could be more 3D compounds accessible by
changing reaction parameters. These results suggest that our
model can generate diverse, realistic compositions that can be
used to explore structural properties of ATMOs.
6. Perspective: unpaired data in
materials chemistry

A strength of the Augmented CycleGAN approach is its ability to
generate predictions about hypothetical pairs when trained
with few (or no) observed pairs. Many datasets have a popularity
imbalance—in our case some amines and chemical systems are
reported disproportionately oen, as illustrated in the concen-
trated connections in a bipartite graph (Fig. 3)—which leads to
the prevalence of unpaired data over paired data. This is
a general problem that arises in chemistry and materials
systems that involve a pairing of items from two disjoint sets,
such as binary molecular cocrystals. For donor–acceptor coc-
rystals in organic electronics, while in theory a specic molecule
can be electron donor or acceptor, in practice the sets of
molecular donors and acceptors barely overlap.52–54 Some
donors/acceptors are much more popular than others, e.g.
a search in CSD returns 215 binary cocrystal structures of tet-
rathiafulvalene (TTF), while many donors like dithienophena-
zine (DTPhz) have been only used once.55 Pharmaceutical
Digital Discovery
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cocrystals are oen made by crystalizing one molecule from the
set of active pharmaceutical ingredients (APIs) and one mole-
cule from the (disjoint) set of pharmaceutically accepted
coformers that improve the solubility/stability of the resulting
cocrystals. Again, some APIs/coformers are more popular than
others.56,57 With appropriate representations, Augmented
CycleGAN can be used to transform cocrystals of, for example,
TTF-TCNQ to that of DTPhz-TCNQ.

The disjoint sets to pair need not be at the level of molecules,
but could also be at the level of molecular substructures. For
example, one approach to the design of organic semiconductors,
is to functionalize an electronically active chromophore (e.g.,
acene, thiophene oligomer) with an electronically inert side
groups that direct solid-state packing.58,59 Here too, there is
a disparity in observed pairs, with crystals of functionalized
thiophene oligomers having relatively low side-group diversity
and functionalized acenes having high side-group diversity. By
using a suitable molecular graph representation, an Augmented
CycleGAN approach could be used to generate and explore the
missing links between unpopular components.
7. Conclusion

We studied the composition translation problem of amine swap
in amine-templated metal oxides. Specically, we focused the
task of generating chemical compositions of NCCN-templated
metal oxides from that of CNC-templated oxides. The two key
challenges are the lack of paired data and the many-to-many
relations among chemical compositions. To address these
challenges, an image translation model, Augmented CycleGAN,
was adapted to generated chemical compositions from
composition vectors (element mole fractions) without any data
augmentation. Through a series of qualitative and quantitative
analyses, it is demonstrated that the generative models can
generate realistic, diverse chemical compositions of NCCN-
templated metal oxides from CNC-templated compositions by
utilizing unpaired data. We demonstrated a possible applica-
tion to property exploration by connecting the composition
generation models with a dimensionality classier. Finally,
potential applications of Augmented CycleGAN in other elds of
materials chemistry were discussed.
8. Methods
8.1 Dataset preparation

Crystal structures of amine-templated metal/metalloid oxides
(ATMO) were collected from Cambridge Structure Database
Table 1 Hyperparameters in Augmented CycleGAN

Hyperparameter Comment

g_block Number of RESNET blocks in
lr_divider Learning rate of generators di
lr_slowdown_param The learning rate is changed e
cyc_weight laug�cyc in eqn (1)
lambda_z laug�cyc�z in eqn (4)

Digital Discovery
(CSD, version 5.41) following the procedures described in our
previous study.12 Briey, a structure is considered as an ATMO if
it (1) contains amine cations all of which can be neutralized to
one type of amine (quaternary ammonium cations are therefore
excluded), (2) contains at least one metal/metalloid atom
bonded to three oxygen atoms, and (3) metal/metalloid atoms in
the structure are bonded to oxygen/halogen only. Their chem-
ical compositions were extracted using CSD API (the formula
property of ccdc.crystal.Crystal), and were normalized to
element fractions (sum to 1).

Dimensionalities of inorganic components in ATMO struc-
tures are determined using the implementation in matminer
(version 0.6.4),60 which employs the algorithm by Larsen et al.61

based on predened connectivity. More details regarding
dimensionality determination are available in Methods section
of our previous study.12

8.2 Augmented CycleGAN

The model is implemented following the original study by
Almahairi et al.38 using PyTorch version 1.9.0.62 Major modi-
cations include: (1) a lter is appended to the RESNET generator
to avoid appearance of new elements; (2) 2D convolution layers
are replaced with 1D linear layers; (3) grid search is used to
optimize zB. A high-level overview is shown in Fig. 3B, more
details regarding generators and discriminators can be found in
the model summary le available at https://github.com/qai222/
CompAugCycleGAN/blob/main/scripts/model_summary.txt.
Composition data are encoded as 1D vectors of element frac-
tions. In training, all CA are used as pool A, and pool B consists
of all CB that cannot pair and a proportion pB of CB that can pair
(see Fig. 2 caption regarding pairing). pB is set to be 2/3, and
three-fold cross validation is done by splitting the set of CB that
can pair. One exception case is Fig. 6: (1) pB is varied from 0 to
0.7; and, (2) when the model is trained without unpaired data,
both pool A and pool B contain only samples that can pair.

For a sample in pool A, one sample is randomly selected
from pool B, and these two samples are passed to GAB and GBA,
respectively. For each batch, every sample in pool A is selected
once, but this is not true for samples in pool B due to
randomness. Adam optimizer is used throughout the training
process.63

All hyperparameters are tuned against the mean value of
Dsample with Nsample ¼ 50 (three-fold cross validated) through
gaussian processes implemented in scikit-optimize (version
0.8.1) aer 50 iterations.64 The tuned hyperparameters are
shown in Table 1. The learning rate for all generators is set to be
0.0002.
Tuned

generators 20
vided by learning rate of discriminators 2
very 50 epochs by multiplying this factor 0.9806

1.0
0.1

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Data availability

The source code for data processing and model construction,
along with the amine-templated metal oxide dataset, can be
found at https://github.com/qai222/CompAugCycleGAN. A
release of the source code can also be found at https://doi.org/
10.5281/zenodo.6227643. The pretrained models are available
at https://doi.org/10.5281/zenodo.5721355. A notebook illus-
trating dataset generation and model training is included in the
repository at https://github.com/qai222/CompAugCycleGAN/
blob/main/scripts/tutorial.ipynb. Testing scripts are placed at
https://github.com/qai222/CompAugCycleGAN/tree/main/
scripts.
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