Relative Error Streaming Quantiles

[Extended Abstract]

Graham Cormode
University of Warwick
Coventry, UK
G.Cormode@warwick.ac.uk

Justin Thaler
Georgetown University
Washington, D.C., USA

justin.thaler@georgetown.edu

ABSTRACT

Estimating ranks, quantiles, and distributions over stream-
ing data is a central task in data analysis and monitoring.
Given a stream of n items from a data universe equipped
with a total order, the task is to compute a sketch (data
structure) of size polylogarithmic in n. Given the sketch and
a query item y, one should be able to approximate its rank
in the stream, i.e., the number of stream elements smaller
than or equal to y.

Most works to date focused on additive en error approx-
imation, culminating in the KLL sketch that achieved op-
timal asymptotic behavior. This paper investigates multi-
plicative (14 €)-error approximations to the rank. Practical
motivation for multiplicative error stems from demands to
understand the tails of distributions, and hence for sketches
to be more accurate near extreme values.

The most space-efficient algorithms due to prior work store
either O(log(¢2n)/e?) or O(log®(en)/e) universe items. We
present a randomized sketch storing O(log'®(en)/e) items,
which is within an O(y/log(en)) factor of optimal. Our algo-
rithm does not require prior knowledge of the stream length
and is fully mergeable, rendering it suitable for parallel and
distributed computing environments.

1. INTRODUCTION

Understanding the distribution of data is a fundamental
task in data monitoring and analysis. In many settings,
we want to understand the cumulative distribution function
(CDF) of a large number of observations, for instance, to
identify anomalies. In other words, we would like to track
the median, percentiles, and more generally quantiles of a
massive input in a small space, without storing all the ob-
servations. Although memory constraints make an exact

This is a minor revision of the paper entitled Relative
Error Streaming Quantiles, published in PODS ’21, ISBN
978-1-4503-8381-3/21/06, June 20-25, 2021, Virtual Event,
China. DOI: https://dl.acm.org/doi/10.1145/3452021.
3458323.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2022 ACM 0001-0782/08/0X00 ...$5.00.

SIGMOD Record, March 2022 (Vol. 51, No. 1)

Zohar Karnin
Amazon, USA
zkarnin@gmail.com

Edo Liberty
Pinecone
San Mateo, CA, USA
edo@edoliberty.com

Pavel Vesely
Charles University
Prague, Czech Republic
vesely@iuuk.mff.cuni.cz

computation of such order statistics impossible [22], most
applications can be satisfied with approximating the quan-
tiles, which also yields a compact function with a bounded
distance from the true CDF.

The problem of streaming quantile approximation cap-
tures this task in the context of massive or distributed data-
sets. Let ¢ = (z1,...,2,) be a stream of items, all drawn
from a data universe U equipped with a total order. For
any y € U, let R(y;0) = [{i € {1,...,n} | @ < y}| be the
rank of y in the stream. When o is clear from context, we
write R(y). The objective is to process the stream in one
pass while storing a small number of items, and then use
those to approximate R(y) for any y € U. A guarantee for
an approximation R(y) is additive if |R(y) — R(y)| < en,
and multiplicative or relative if |R(y) — R(y)| < e R(y). Es-
timating ranks immediately yields approximate quantiles,
and vice versa, with a similar error guarantee (recall that
a ¢-quantile for ¢ € [0,1] is the [¢n]’th smallest item in
o). We stress that we do not assume any particular data
distribution or that the stream is randomly-ordered.

A long line of work has focused on achieving additive error
guarantees [23, 2, 19, 24, 13, 3, 12, 1, 11, 16]. However, addi-
tive error is not appropriate for many applications. Indeed,
often the primary purpose of computing quantiles is to un-
derstand the tails of the data distribution. When R(y) < n,
a multiplicative guarantee is much more accurate and thus
harder to obtain. As pointed out by Cormode et al. [5], a so-
lution to this problem would also yield high accuracy when
n — R(y) < m, by running the same algorithm with the
reversed total ordering (simply negating the comparator).

A quintessential application that demands relative error is
monitoring network latencies. In practice, one often tracks
response time percentiles 50, 90, 99, 99.9, etc. This is be-
cause latencies are heavily long-tailed. For example, Mas-
son et al. [21] report that for web response times, the 98.5th
percentile can be as small as 2 seconds while the 99.5th per-
centile can be as large as 20 seconds. These unusually long
response times affect network dynamics [5] and are problem-
atic for users. Furthermore, as argued by Tene in his talk
about measuring latency [27], one needs to look at extreme
percentiles such as 99.995 to determine the latency such that
only about 1% of users experience a larger latency during a
web session with several page loads. Hence, highly accurate
rank approximations are required for items y whose rank is

69

very large (n — R(y) < n); this is precisely the requirement
captured by the multiplicative error guarantee.

Achieving multiplicative guarantees is known to be strictly
harder than additive ones. There are comparison-based ad-
ditive error algorithms that store just ©(¢ ') items for con-
stant failure probability [16], which is optimal. In particular,
to achieve additive error, the number of items stored may
be independent of the stream length n. In contrast, any
algorithm achieving multiplicative error must store Q(s_1 .
log(en)) items (see [5, Theorem 2]).

REMARK 1. Intuitively, the reason additive-error sketches
can achieve space independent of the stream length is because
they can take a subsample of the stream of size about ©(e™?)
and then sketch the subsample. For any fized item, the ad-
ditive error to its rank introduced by sampling is at most en
with high probability. When multiplicative error is required,
one cannot subsample the input: for low-ranked items, the
multiplicative error introduced by sampling will, with high
probability, not be bounded by any constant.

The best known algorithms achieving multiplicative error
guarantees are as follows. Zhang et al. [29] give a ran-
domized algorithm storing O(¢ 72 - log(%n)) universe items.
This is essentially a ¢~ factor away from the aforemen-
tioned lower bound. There is also an algorithm of Cormode
et al. [6] that stores O(e~"-log(en)-log |U]) items. However,
this algorithm requires prior knowledge of the data universe
U (since it builds a binary tree over U), and is inapplica-
ble when U is huge or even unbounded (e.g., if the data can
take arbitrary real values). Finally, Zhang and Wang [28] de-
signed a deterministic algorithm requiring O(e " - log®(en))
space. Recent work of Cormode and Vesely [8] proves an
Q(e™! -log?(en)) lower bound for deterministic comparison-
based algorithms, which is within a log(en) factor of Zhang
and Wang’s upper bound.

Despite both the practical and theoretical importance of
multiplicative error (which is arguably an even more natural
goal than additive error), there has been no progress on
upper bounds, i.e., no new algorithms, since 2007.

In this work, we give a randomized algorithm that main-
tains the optimal linear dependence on 1/e achieved by Zhang
and Wang, with a significantly improved dependence on
the stream length. Namely, we design a one-pass stream-
ing algorithm that given € > 0, computes a sketch consist-
ing of O (7" -log"®(en)) universe items, from which one
can derive rank or quantile estimates satisfying the relative
error guarantee with constant probability (see Theorem 1
for a more precise statement). Ours is the first algorithm
to be strictly more space efficient than any deterministic
comparison-based algorithm (owing to the Q(e™*log?(en))
lower bound in [8]) and is within an O(y/log(en)) factor of
the known lower bound for randomized algorithms achiev-
ing multiplicative error. Furthermore, it only accesses items
through comparisons, i.e., is comparison-based, rendering it
suitable, e.g., for floating-point numbers or strings ordered
lexicographically. Finally, our algorithm processes the input
stream efficiently, namely, its amortized update time is a log-
arithm of the space bound, i.e., O (log(e™") + loglog(n)).

Mergeability. The ability to merge sketches of different streams

to get an accurate sketch for the concatenation of the streams
is highly significant both in theory [1] and in practice [25].
Such mergeable summaries enable trivial, automatic paral-
lelization and distribution of processing massive data sets,

70

by splitting the data up into pieces, summarizing each piece
separately, and then merging the results in an arbitrary way.
We say that a sketch is fully mergeable if building it using
any sequence of merge operations (executed on singleton
items) leads to the same guarantees as if the entire data
set had been processed as a single stream.

The following theorem is the main result of this paper.
We stress that our algorithm, which we call ReqSketch, does
not require any advance knowledge about n, the total size
of the input, which indeed may not be available in many
applications.

THEOREM 1. Given parameters 0 < 6 < 0.5 and 0 < e <
1, there is a randomized, comparison-based, one-pass stream-
ing algorithm that, when processing a data stream consist-
ing of n items from a totally-ordered universe U, produces a
summary S satisfying the following property. Given S, for
any y € U one can get an estimate R(y) of R(y) such that

Pr [|R<y) “R@)| > eR<y>] <5,

where the probability is over the internal randomness of the

streaming algorithm. If € < y/In 3 /log,(en), then the size

of S in memory words is

o) (51 “log"?(en) - 4 [log (9) ;

otherwise, storing S takes O (logQ(an)) memory words. More-
over, the summary produced is fully mergeable.

The space bound for the case € < 4/In $/log,(en) cer-

tainly applies for values of € and n encountered in practice
(e.g., for n < 2% and § < 1/e, this latter requirement is im-
plied by € < 1/8). A straightforward corollary of Theorem 1
is a space-efficient algorithm whose estimates are simultane-
ously accurate for all y € U with high probability, while the
space complexity increases by a small factor only. This fol-
lows from a standard use of the union bound with an epsilon-
net argument (using failure probability §’ = 6/ log(en)).

There is also an alternative analysis of our algorithm (build-
ing on an idea from [16]), that shows a space bound of
O (7" -log?(en) - loglog(1/6)); note the exponentially bet-
ter dependence on 1/, compared to Theorem 1, which,
however, comes at the expense of the exponent of log(en)
increasing from 1.5 to 2. This analysis also implies a de-
terministic space bound of O(e™" - log*(en)), matching the
state-of-the-art result in [28].

A proof-of-concept Python implementation of ReqSketch
is available at GitHub [17] and a production-quality imple-
mentation is available in the DataSketches library [25].

1.1 Technical Overview

A starting point of the design of our algorithm is the KLL
sketch [16] that achieves optimal accuracy-space trade-off
for the additive error guarantee. The basic building block of
the algorithm is a buffer, called a compactor, that receives
an input stream of n items and outputs a stream of at most
n/2 items, meant to “approximate” the input stream. The
buffer simply stores items and once it is full, we sort the
buffer, output all items stored at either odd or even indexes
(with odd vs. even selected via an unbiased coin flip), and

SIGMOD Record, March 2022 (Vol. 51, No. 1)

clear the contents of the buffer—this is called the compaction
operation. Note that a randomly chosen half of items in the
buffer is simply discarded, whereas the other half of items
in the buffer is “output” by the compaction operation.

The overall KLL sketch is built as a sequence of at most
log,(n) such compactors, such that the output stream of a
compactor is treated as the input stream of the next com-
pactor. We thus think of the compactors as arranged into
levels, with the first one at level 0. Similar compactors were
already used, e.g., in [19, 20, 1, 18], and additional ideas are
needed to get the optimal space bound for additive error, of
O(1/e) items stored across all compactors [16].

The compactor building block is not directly applicable
to our setting for the following reasons. A first observation
is that to achieve the relative error guarantee, we need to
always store the 1/e smallest items. This is because the
relative error guarantee demands that estimated ranks for
the 1/e lowest-ranked items in the data stream are ezact. If
even a single one of these items is deleted from the summary,
then these estimates will not be exact. Similarly, among the
next 2/e smallest items, the summary must store essentially
every other item to achieve multiplicative error. Among the
next 4/e smallest items in the order, the sketch must store
roughly every fourth item, and so on.

The following simple modification of the compactor from
the KLL sketch indeed achieves the above. Each buffer of
size B “protects” the B/2 smallest items stored inside, mean-
ing that these items are not involved in any compaction
(i.e., the compaction operation only removes the B/2 largest
items from the buffer). Unfortunately, it turns out that
this simple approach requires space © (2 - log(¢%n)), which
merely matches the space bound achieved in [29], and in
particular has a suboptimal dependence on 1/e.

The key technical contribution of our work is to enhance
this simple approach with a more sophisticated rule for se-
lecting the number of protected items in each compaction. In
this abstract, we describe a solution choosing this number in
each compaction at random from an appropriate geometric
distribution. In the full version [4], to get a cleaner analysis,
we derandomize this distribution.

While the resulting algorithm is relatively simple, ana-
lyzing the error behavior brings new challenges that do not
arise in the additive error setting. Roughly speaking, when
analyzing the accuracy of the estimate for R(y) for any fixed
item y, all error can be “attributed” to compaction opera-
tions. In the additive error setting, one may suppose that
every compaction operation contributes to the error and still
obtain a tight error analysis [16]. Unfortunately, this is not
at all the case for relative error: as already indicated, to
obtain our accuracy bounds it is essential to show that the
estimate for any low-ranked item y is affected by very few
compaction operations. Thus, the first step of our analysis
is to carefully bound the number of compactions on each
level that affect the error for y, using the definition of the
geometric distribution in the compaction operation.

Organization of the abstract. We describe our sketch in Sec-
tion 2; as mentioned above, the algorithm outlined in this
abstract is slightly different to the one in the full version [4].
In Section 3, we sketch an analysis of this algorithm in the
streaming setting, assuming a foreknowledge of (a polyno-
mial upper bound on) the stream length. Finally, in Sec-
tion 4 we briefly outline how to analyze the algorithm under
merge operations and without any advance knowledge about

SIGMOD Record, March 2022 (Vol. 51, No. 1)

the stream length as well as adjustments from [7] to make
it more efficient in practice. The details can be found in the
full version [4].

1.2 Detailed Comparison to Prior Work

Some prior works on streaming quantiles consider queries
to be ranks r € {1,...,n}, and the algorithm must identify
an item y € U such that R(y) is close to r; this is called the
quantile query. In this work, we focus on the dual problem of
rank queries, where we consider queries to be universe items
y € U and the algorithm must yield an accurate estimate
for R(y). Unless specified otherwise, algorithms described
in this section directly solve both formulations (this holds
for our algorithm as well). Algorithms are randomized un-
less stated otherwise. For simplicity, randomized algorithms
are assumed to have constant failure probability d. All re-
ported space costs refer to the number of universe items
stored. (Apart from storing universe items, the algorithms
may store, for example, bounds on ranks of stored items or
some counters, but the number of such variables is propor-
tional to the number of items stored or even smaller. Thus,
the space bounds are in memory words, which can store any
item or an integer with O(log(n + |U|)) bits.)

Additive error. Manku, Rajagopalan, and Lindsay [19, 20]
built on the work of Munro and Paterson [22] and gave a de-
terministic solution storing at most O(e™" - log?(en)) items,
assuming prior knowledge of n. Greenwald and Khanna [13]
created an intricate deterministic streaming algorithm that
stores O(e ™! -log(en)) items. This is the best known deter-
ministic algorithm for this problem, with a matching lower
bound for comparison-based streaming algorithms [8]. Agar-
wal et al. [1] provided a mergeable sketch of size O(e™! -
log!®(1/¢)). This paper contains many ideas and observa-
tions that were used in later work. Felber and Ostrovsky [11]
managed to reduce the space complexity to O(e ™! -log(1/¢))
items by combining sampling with the Greenwald-Khanna
sketches in non-trivial ways. Finally, Karnin, Lang, and Lib-
erty [16] resolved the problem by providing an O(1/¢)-space
solution, which is optimal. For general (non-constant) fail-
ure probabilities §, the space upper bound becomes 0(571 .
loglog(1/4)), and they also prove a matching lower bound
for comparison-based randomized algorithms, assuming ¢ <
1/n! (i.e., § is exponentially small in n).

Multiplicative error. A large number of works sought to
provide more accurate quantile estimates for low or high
ranks. Only a handful offer solutions to the relative er-
ror quantiles problem considered in this work (sometimes
also called the biased quantiles problem). Gupta and Zane
[14] gave an algorithm for relative error quantiles that stores
O(¢7%.1og?(en)) items, and used this to approximately count
the number of inversions in a list; their algorithm requires
prior knowledge of the stream length n. As previously men-
tioned, Zhang et al. [29] presented an algorithm storing
O(e72-log(¢%n)) universe items. Cormode et al. [6] designed
a deterministic sketch storing O(e ™" -log(en) -log |U|) items,
which requires prior knowledge of the data universe U. Their
algorithm is inspired by the work of Shrivastava et al. [26]
in the additive error setting and it is also mergeable (see
[1, Section 3]). Zhang and Wang [28] gave a deterministic
merge-and-prune algorithm storing O(s ™! - log®(en)) items,
which can handle arbitrary merges with an upper bound on
n, and streaming updates for unknown n. However, it does
not tackle the most general case of merging without a prior

71

bound on n. Cormode and Vesely [8] recently showed a space
lower bound of Q(e™* -log?(en)) items for any deterministic
comparison-based algorithm.

Other related works that do not fully solve the relative er-
ror quantiles problem are as follows. Manku, Rajagopalan,
and Lindsay [20] designed an algorithm that, for a speci-
fied number ¢ € [0,1], stores O(s™* - log(1/§)) items and
can return an item y with R(y)/n € [(1 — €)¢, (1 + €)¢]
(their algorithm requires prior knowledge of n). Cormode
et al. [5] gave a deterministic algorithm that is meant to
achieve error properties “in between” additive and relative
error guarantees. That is, their algorithm aims to provide
multiplicative guarantees only up to some minimum rank k;
for items of rank below k, their solution only provides addi-
tive guarantees. Their algorithm does not solve the relative
error quantiles problem: [29] observed that for adversarial
item ordering, the algorithm of [5] requires linear space to
achieve relative error for all ranks.

Dunning and Ertl [10, 9] describe a heuristic algorithm
called t-digest that is intended to achieve relative error, but
they provide no formal accuracy analysis. Indeed, Cormode
et al. [7] show that the error of ¢-digest may be arbitrarily
large on adversarially generated inputs. This latter paper
also compares t-digest and ReqSketch (i.e., the algorithm
of Theorem 1) on randomly generated inputs and proposes
implementation improvements for ReqSketch that make it
process an input stream faster than t-digest; see Section 4.

Most recently, Masson, Rim, and Lee [21] introduced a
new notion of error for quantile sketches (they also refer
to their notion as “relative error”, but it is quite distinct
from the notion considered in this work). They require that
for a query percentile ¢ € [0,1], if y denotes the item in
the data stream satisfying R(y) = ¢n, then the algorithm
should return an item ¢ € U such that |y — g| < e-|y|. This
definition only makes sense for data universes with a notion
of magnitude and distance (e.g., numerical data), and the
definition is not invariant to natural data transformations,
such as incrementing every data item y by a large constant.
It is also trivially achieved by maintaining a (mergeable)
histogram with buckets ((1 + €)%, (1 + €)**']. In contrast,
the standard notion of relative error considered in this work
does not refer to the data items themselves, only to their
ranks, and is arguably of more general applicability.

2. DESCRIPTION OF THE ALGORITHM
2.1 The Relative-Compactor Object

The crux of our algorithm is a building block that we call
the relative-compactor. Roughly speaking, this object pro-
cesses a stream of n items and outputs a stream of at most
n/2 items (each “up-weighted” by a factor of 2), meant to
“approximate” the input stream. It does so by maintaining
a buffer of limited capacity.

Our complete sketch, described in Section 2.2 below, is
composed of a sequence of relative-compactors, where the
input of the (h + 1)’th relative-compactor is the output of
the h’th. With at most log,(en) such relative-compactors,
n being the length of the input stream, the output of the
last relative-compactor is of size O(1/¢), and hence can be
stored in memory.

Compaction operations. The basic subroutine used by our
relative-compactor is a compaction operation. The input
to a compaction operation is a list X of 2m items z; <

72

N v v v v

B — L smallest items in the buffer L largest items sorted

S S S
LT LT LT T LT T =]

Output every other item and discard the rest

LT T T T T T e eyl T[]]
i

Insert new item z; in the next open slot

Figure 1: Illustration of the execution of a relative-compactor
when inserting a new item x; into a buffer that is full at time
t. See lines 5-13 of Algorithm 1.

z2 < ... < Zam, and the output is a sequence Z of m items.
This output is chosen to be one of the following two se-
quences, uniformly at random: Either Z = {x9;—1}j~; or
Z = {x2;}i~,. That is, the output sequence Z equals either
the even or odd indexed items in the sorted order of X, with
both outcomes equally probable.

Consider an item y € U and recall that R(y; X) = [{z €
X |z < y}| is the number of items = € X satisfying z < y
(we remark that both X and {x € X |z < y} are multisets
of universe items). The following is a trivial observation
regarding the error of the rank estimate of y with respect
to the input X of a compaction operation when using Z.
We view the output Z of a compaction operation (with all
items up-weighted by a factor of 2) as an approximation
to the input X; for any y, its weighted rank in Z should be
close to its rank in X. Observation 2.1 below states that this
approximation incurs zero error on items that have an even
rank in X. Moreover, for items y that have an odd rank
in X, the error for y € U introduced by the compaction
operation is +1 or —1 with equal probability.

OBSERVATION 2.1. A universe item y € U is said to be
even (odd) w.r.t a compaction operation if R(y; X) is even
(odd), where X is the input sequence to the operation. If y
is even w.r.t the compaction, then R(y; X) —2R(y; Z) = 0.
Otherwise, R(y; X) — 2R(y; Z) is a variable taking a value
from {—1,1} uniformly at random.

The observation that items of even rank (and in particular
items of rank zero) suffer no error from a compaction opera-
tion plays an especially important role in the error analysis
of our full sketch.

Full description of the relative-compactor. The complete de-
scription of the relative-compactor object is given in Algo-
rithm 1. The high-level idea is as follows. The relative-
compactor maintains a buffer of size B =2 -k - [log,(n/k)]
where k is an even integer parameter controlling the error
and n is the upper bound on the stream length. (In this
abstract, we assume that such an upper bound is available;
we discuss removing this assumption in Section 4.) The in-
coming items are stored in the buffer until it is full, and then
we perform a compaction operation, as described above.
The input to the compaction operation is not all items in
the buffer, but rather the largest L items in the buffer for
a parameter L < B/2 such that L is even. These L largest
items are then removed from the buffer, and the output of
the compaction operation is sent to the output stream of
the buffer. This intuitively lets low-ranked items stay in
the buffer longer than high-ranked ones. Indeed, the lowest-

SIGMOD Record, March 2022 (Vol. 51, No. 1)

| [o [1]21]s [4]

B/2 slots (never compacted) 5 sections of k slots

[logy(n/k)]

Figure 2: Illustration of a relative-compactor and its sections,
together with the indexes of the sections.

Algorithm 1 Relative-Compactor

Input: Parameters k € 2N and n € N, and a stream of
items x1, x2, ... of length at most n
Set m = [log,(n/k)] > Number of sections
Set B=2-k-m > Buffer size
Initialize an empty buffer B of size B, indexed from 1
fort=1...do

if B is full then > Compaction operation

Randomly pick section I € {0,...,m — 1} with

Pr[l =i =p; :=2'/(2™ - 1)

7 Set L=i-kand S=B—-L+1

8: Pivot B s.t. the largest L items occupy B[S : B

9: > B[S : B] are the last L slots of B
10: Sort B[S : B] in non-descending order

11: Output either even or odd indexed items in the

range B[S : B] with equal probability
12: Mark slots B[S : B] in the buffer as clear
13: Store z; into the next available slot in the buffer B.

ranked half of items in the buffer are never removed. We
show later that this facilitates the relative error guarantee.

The crucial part in the design of Algorithm 1 is to select
the parameter L in a right way, as L controls the number of
items compacted each time the buffer is full. If we were to set
L = B/2 for all compaction operations, then analyzing the
worst-case behavior reveals that we need B ~ 1/¢?, resulting
in a sketch with a quadratic dependency on 1/e. To achieve
the linear dependency on 1/e, we choose the parameter L via
a suitable geometric distribution subject to the constraint
that L < B/2.

In more detail, during each compaction operation, the
second half of the buffer (with B/2 largest items) is split
into m := [log,(n/k)] sections, each of size k and indexed
0,...,m — 1 from the left; see Figure 2. The first sec-
tion involved in the compaction is selected with probabil-
ity exponentially increasing with its index, namely, section
i € {0,...,m — 1} is chosen with probability p; := 2° - ~,
where v = 1/(2™ — 1) is chosen so that the probabilities p;
sum to 1. Furthermore, the chosen geometric distribution
has the following property:

i—1
pi= pi+7. (1)
j=0

That is, the probability of starting the compaction in section
¢ is essentially equal to the probability of also compacting
section ¢ — 1. Since B = 2 - k- m and since at most m - k
largest items are involved in the compaction, the smallest
B/2 items in the buffer are never removed.

REMARK 2. In the original version of the paper, we de-
scribe the algorithm with a derandomized geometric distri-
bution. Thus, that version of the algorithm uses randomness
only to select which items to place in the oulput stream, not
how many items to compact. This leads to a cleaner analysis
and isolates the one component of the algorithm for which

SIGMOD Record, March 2022 (Vol. 51, No. 1)

Algorithm 2 ReqSketch (Relative-Error Quantiles sketch)

Input: Parameters k € 2N* and n € N*, and a stream of
items x1,x2, ... of length at most n
Output: A sketch answering rank (and quantile) queries
1: Let RelCompactors be a list of relative-compactors
2: Set H = 0 and initialize relative-compactor with param-
eters k and n at RelCompactors|0]

3:fort=1...do

4: INSERT (¢, 0)

5: function INSERT(z,h)

6: if H < h then

7 Set H = h and initialize relative-compactor with
parameters k and n at RelCompactors|h]

8: Insert item x into RelCompactors|h]

9: for z in output stream of RelCompactors[h] do

10: INSERT(z,h + 1) > Items output by the

compaction (if any)
11: function ESTIMATE-RANK(y)
12: Set R(y) =0
13: for h =0 to H do
14: for each item 3’ < y in RelCompactors[h] do
15: Increment R(y) by 2"
return R(y)

randommness is essential. In this abstract, we have chosen not
to derandomize the geometric distribution for simplicity.

2.2 The Full Sketch

Following prior work [19, 1, 16], the full sketch uses a
sequence of relative-compactors. At the very start of the
stream, it consists of a single relative-compactor (at level 0)
and opens a new one (at level 1) once items are fed to the
output stream of the first relative-compactor (i.e., after the
first compaction operation, which occurs on the first stream
update during which the buffer is full). In general, when the
newest relative-compactor is at level h, the first time the
buffer at level h performs a compaction operation (feeding
items into its output stream for the first time), we open a
new relative-compactor at level h+1 and feed it these items.
Algorithm 2 describes the logic of this sketch.

To answer rank queries, we use the items in the buffers
of the relative-compactors as a weighted coreset. That is,
the union of these items is a weighted set C of items, where
the weight of items in relative-compactor at level h is 2"
(recall that h starts from 0), and the approximate rank of
y, denoted f{(y), is the sum of weights of items in C smaller
than or equal to y. Similarly, ReqSketch can answer quantile
queries, i.e., for a given rank r € {1,...,n}, return an item
y € U with R(y) close to r; the algorithm just returns an
item y stored in one of the relative-compactors with f{(y)
closest to the query rank r among all items in the sketch.

The construction of layered exponentially-weighted com-
pactors and the subsequent rank estimation is virtually iden-
tical to that explained in prior works [19, 1, 16]. Our essen-
tial departure from prior work is in the definition of the
compaction operation, not in how compactors are plumbed
together to form a complete sketch.

Merge operation. The merge operation takes as input two
sketches S” and S”" which have processed two separate streams

73

o’ and ¢ and outputs a sketch S summarizing the concate-
nated stream o = ¢’ o ¢ (the order of ¢’ and ¢”" does not
matter here). For the simplified sketch presented in this
abstract, merging two sketches is straightforward: At each
level, concatenate the buffers and if that causes the capac-
ity of the compactor to be reached or exceeded, perform the
compaction operation, as in Algorithm 1. There are addi-
tional complications when an upper bound n on the com-
bined input size is not available in advance; for instance,
the number of sections m (and the section size k) may need
to be adjusted during a merge operation. These details are
described in the full version [4].

3. ANALYSIS

We provide a sketch of the analysis in the streaming set-
ting, assuming a foreknowledge of (an upper bound on) the
stream length n. To analyze the error of the full sketch, we
focus on the error in the estimated rank of an arbitrary fixed
item y € U. Let R(y) be the rank of item y in the input
stream, and let Err(y) = R(y) — R(y) be the error of the
estimated rank for y.

Analysis of the relatively-compactor. We first restrict our
attention to any single relative-compactor at level h (Al-
gorithm 1) maintained by our sketching algorithm (Algo-
rithm 2), and we use “time t” to refer to the ¢’th insertion
operation to this particular relative-compactor. We analyze
the error introduced by the relative-compactor for item y.
Specifically, at time ¢, let X* = (x1,...,:) be the prefix of
the input stream to the relative-compactor, Z* be the out-
put stream, and B* be the items in the buffer after inserting
item x¢. The rank error made by the relative-compactor at
time ¢ with respect to item y is defined as

Erry,(y) = R(y; X') — 2R(y; Z°) = R(y; BY). (2)

Conceptually, Errﬁl(y) tracks the difference between y’s
rank in the input stream X° at time t versus its rank as
estimated by the combination of the output stream and the
remaining items in the buffer at time ¢ (output items are
upweighted by a factor of 2 while items remaining in the
buffer are not). We denote the overall error of the relative-
compactor by Errp(y) and the total number of items z < y
inserted to the level-h buffer by Rx(y). Then Erry(y) =
Ri(y) — 2Ra+1(y) —R(y; Br), where By, is the level-h buffer
after Algorithm 2 has processed the input stream (note that
Rh+1(y) is the number of items = < y in the output stream of
the level-h relative-compactor). To bound Erry(y), we keep
track of the error associated with y over time, and define
the increment or decrement of it as

Al (y) = Errj,(y) — Err}, ' (y),

where Err)(y) = 0.

Clearly, if the algorithm performs no compaction opera-
tion in a time step ¢, then Al (y) = 0. (Recall that a com-
paction is an execution of lines 6-12 of Algorithm 1.) Let us
consider what happens in a step ¢ in which a compaction op-
eration occurs. Observation 2.1 shows that if y is even with
respect to the compaction, then y suffers no error, meaning
that Af (y) = 0. Otherwise, Af(y) is uniform in {—1,1}.

It follows that E[Erry(y)] = 0, which implies that the es-
timator R(y) is unbiased. To bound the variance of Erry, (y),
we analyze Var[Af (y)] for any step ¢ with a compaction op-
eration. We suppose that R(y; B") > B/2 as otherwise, no

74

item z < y is removed from the buffer and Al(y) = 0.
Below, we only focus on steps ¢ with a compaction oper-
ation such that R(y;B*) > B/2. Let i, € {0,...,m — 1}
be the largest index of a section of B with an item z < y,
i.e., i is the smallest integer i > 0 such that R(y;B?) <
B/2+ (i + 1) - k. Note that if Algorithm 1 draws I < i
in line 6 during the compaction in step ¢, at least k items
x < y are removed from the buffer, which implies that the
number of steps ¢ with I < 4; is at most Rx(y)/k. Using
this observation, our aim is to bound Var[Erry(y)] in terms
of Ru(y)/k.

The probability of A% (y) # 0 is at most the probability
of removing an item x < y, which by the definition of 7; and
Algorithm 1 equals

ir—1 ir—1

it
Dpi=D pitpri=2> P+, 3)
i=o =0 3=0

where we use (1); this is where we rely on using the geometric
distribution to choose the number of sections involved in the
compaction (recall that v = 1/(2™ — 1) is small). Using (3)
and that Af(y) € {—1,0,1}, we get that Var[Al(y)] =
E[(A4(1))*] = PriAL(y) # 0] < 2305 pi 4.

Since the variables Al (y) are independent,

VarlBrr, (y)] = 3 Var[Ah ()] = 3 <2 S pit 7) .

=0

As observed above, the number of steps ¢ with I < i; in
line 6 is at most Ry (y)/k, which implies that 3=, 31" pi <
Ri(y)/k (we omit a formal proof of this observation).

As a compaction is performed at most once in every k
steps, we have that >, v <vy-n/k <n/(n—k) < 2, using
the definition of v = 1/(2™ — 1) and m = [log,(n/k)]; the
last step uses n > 2k as otherwise the whole input to the
relative-compactor would be stored in the buffer which has
size at least 2k and there would be no compaction operation.

Summarizing, we have obtained the following bound on
the variance of the error at level h:

2R (y)
k

re

Var[Errp (y)] <
where the second inequality uses Rp(y) > k as otherwise
there would be no level-h compaction operation affecting
the error for y, i.e., Errp(y) =0 if Ra(y) < k

Analysis of the full sketch in the streaming setting. To make
the variance bound for a single level in (4) useful, we show
that Ry (y) roughly halves with every level. This is easy to
see in expectation, and it holds with high probability up to
a certain crucial level H(y). Here, we define H(y) to be the
minimal & for which 27" R(y) < B/2. For h = H(y) — 1
(assuming H(y) > 0), we particularly have 22~ #® R(y) >
B/2, or equivalently, 27®) < 2% . R(y)/B.

LEMMA 3.1. With probability at least 1 — & it holds that
Ri(y) <27 "' R(y) for any h < H(y).

We omit the proof by induction, using Chernoff bounds
(which also requires choosing k as described below). In what
follows, we condition on the bound on Ry (y) in Lemma 3.1
for any h < H(y). For h = H(y), we thus have that
Rugy)(y) < 277WHR(y) < B/2 and that Ru(y) = 0
for any h > H(y). Thus, Observation 2.1 implies that
Erry,(y) = 0 for any h > H(y).

SIGMOD Record, March 2022 (Vol. 51, No. 1)

We are now ready to bound the overall error of the sketch
for item y, i.e., Err(y) = R(y) — R(y) where R(y) is the
estimated rank of y. By the observations above, we get

H(y)—1

Err(y Z 2" Errp, (y) .

Recall that a zero-mean random variable X with variance
o? is sub-Gaussian if E[exp(sX)] < exp(—1 - s* - 0°) for any
s € R; note that a weighted sum of independent zero-mean
sub-Gaussian variables is a zero-mean sub-Gaussian random
variable as well. By the analysis of level h, Erry (y) is a zero-
mean sub-Gaussian variable with Var[Erry,(y)] < 4Rn(y)/k.
It follows that Err(y) is a zero-mean sub-Gaussian random
variable with variance

H(y)—1 H(y)
Z 92 Var[Errp, (y Z 2h 4Rh(y)
h=0 h=0
H(y)—
< 2h+3) R(y)
= 2 %
< 9H®+3 R(y) <95, R(y)*

k-B’

where the second inequality is due to Lemma 3.1 and the
last inequality follows from the definition of H(y).

Given the desired accuracy € and the desired upper bound
§ on failure probability, we choose k so that Var[Err(y)] <
e?R(y)?/In(1/6), or equivalently that k- B = k-2 -k -
[logy(n/k)] > © (e7%-1n(1/6)); this holds for k satisfy-
ing k=0 <a*1 -y/In }/log, (n/k)) Then using standard
(Chernoff) tail bounds for sub-Gaussian variables concludes

the calculation of the failure probability.

Finally, for the space bound, by the choice of k above we
have that B = O (571 - y/log(en) - log (1/(5))7 and it thus
remains to observe that the number of relative-compactors
ever created by Algorithm 2 is at most O(log(en)). Indeed,
each item on level h has weight 2", so there are at most
n/2" items inserted to the buffer at that level. For h =
[log,(n/B)], we get that on this level, there are fewer than B
items inserted to the buffer, which is consequently not com-
pacted, so the highest level has index at most [log,(n/B)].

(In the case € > {/In §/log,(en), we have that k = O(1)
and B = O(log(en).)

4. ANALYSIS EXTENSIONS

We discuss how to extend the analysis presented above to
more general settings. We also outline important practical
optimizations that are included in the ReqSketch implemen-
tation in the Apache DataSketches library [25].

Handling unknown stream lengths. In previous sections, we
outlined a proof of Theorem 1 in the streaming setting as-
suming that (an upper bound on) n is known, where n is
the true stream length. The space usage of the algorithm
grows polynomially with the logarithm of this upper bound,
so if this upper bound is at most n° for some constant ¢ > 1,
then the space usage of the algorithm will remain as stated
in Theorem 1, up to a constant factor.

In the case that such a polynomial upper bound on n is
not known, we modify the algorithm slightly, and start with
an initial estimate Ny of n, namely, Ny = @(5_1). That is,

SIGMOD Record, March 2022 (Vol. 51, No. 1)

we begin by running Algorithm 2 with parameters k and No.
As soon as the stream length hits the current estimate IV,
the algorithm “closes out” the current data structure and
continues to store it in “read only” mode, while initializing
a new summary based on the estimated stream length of
Nit1 = N? (i.e., we execute Algorithm 2 with parameters k
and Njy1). This process occurs at most log, log, (en) many
times, before the guess is at least the true stream length
n. At the end of the stream, the rank of any item y is
estimated by summing the estimates returned by each of the
at most log, log,(en) summaries stored by the algorithm.
A simple extension of the analysis presented above shows
that the accuracy-space tradeoff from Theorem 1 holds for
this algorithm. Nevertheless, in a practical implementation,
we suggest not to close out the current summary and only
recompute the parameters of each buffer as described below.

Full mergeability. There are substantial additional techni-
cal difficulties to analyze the algorithm under an arbitrary
sequence of merge operations, especially with no foreknowl-
edge of the total size of the input. Most notably, when
the input size is not known in advance, the parameters of
k and B of each relative-compactor must change as more
inputs are processed. This makes obtaining a tight bound
on the variance of the resulting estimates highly involved.
In particular, as a sketch processes more and more inputs,
it protects more and more items, which means that items
appearing early in the stream may not be protected by the
sketch, even though they would have been protected if they
appeared later in the stream (this is because the buffer size
increases as the summarized input size grows). As men-
tioned above, addressing this issue is reasonably simple in
the streaming setting. However, that simple approach does
not work for a general sequence of merge operations, and
the full version [4] contains a much more intricate analysis
to give a fully mergeable summary.

Practical adjustments of ReqSketch. The description of our
algorithm in Section 2.2 is suitable for a mathematical anal-
ysis, however, there are several ways how to improve its
efficiency, which are described in [7]. First, we observe that
the adjustments of the KLL sketch proposed by Ivkin et
al. [15] are applicable to ReqSketch as well, for example, we
can allow the buffer to exceed its capacity provided that the
overall capacity of the sketch is satisfied; this can be viewed
as laziness in performing compaction operations.

The main difference between the KLL sketch and ReqS-
ketch is the use of the geometric distribution to choose the
number of compacted items, and this requires the buffer
size to depend on the input size n. Instead of setting the
buffer size based on an upper bound on n, it is sufficient
to count the number C}, of compaction operations at each
level h and set the level-h buffer size to O(e_1 - y/log Ch),
recomputing the buffer size only when log, C} increases by
a factor of 2; then we also decrease the section size k by
a factor of v/2. With this adjustment, the buffer size will
be mon-increasing in the level h. More importantly, Cor-
mode et al. [7] observed that the aforementioned laziness
proposed in [15] should be restricted to level 0 only (which
has the largest size). In other words, when we compact level
0, we perform the compaction operation at any other level
in which the buffer exceeds its capacity. Somewhat sur-
prisingly, this “partial laziness” significantly decreases the
observed update time (averaged over processing the whole
stream), compared to the original proposal from [15].

75

S. CONCLUSIONS

For constant failure probability §, we show an O(e~! -
log"®(en)) space upper bound for relative error quantile
approximation over data streams. Our algorithm is prov-
ably more space-efficient than any deterministic comparison-
based algorithm, and is within an O(y/log(en)) factor of the
known lower bound for randomized algorithms (even non-
streaming algorithms). The sketch output by our algorithm
is fully mergeable, with the same accuracy-space trade-off as
in the streaming setting, rendering it suitable for a parallel
or distributed environment. The main open question is to

close the aforementioned O(4/log(en))-factor gap.

6. ACKNOWLEDGMENTS

The research is performed in close collaboration with Data-
Sketches [25], the Apache open source project for stream-
ing data analytics. G. Cormode and P. Vesely were sup-
ported by European Research Council grant ERC-2014-CoG
647557. P. Vesely was also partially supported by the project
19-27871X of GA CR and by Charles University project
UNCE/SCI/004. J. Thaler was supported by NSF SPX

award CCF-1918989 and NSF CAREER award CCF-1845125.

7. REFERENCES
[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips,

Z. Wei, and K. Yi. Mergeable summaries. ACM
Transactions on Database Systems, 38(4):26, 2013.

[2] R. Agrawal and A. Swami. A one-pass space-efficient
algorithm for finding quantiles. In COMAD-95, Pune,
India, 1995.

[3] A. Arasu and G. S. Manku. Approximate counts and
quantiles over sliding windows. In PODS 04, pages
286-296. ACM, 2004.

[4] G. Cormode, Z. Karnin, E. Liberty, J. Thaler, and
P. Vesely. Relative error streaming quantiles. arXiv
preprint arXiw:2004.01668, 2020.

[5] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Effective computation of biased
quantiles over data streams. In ICDFE ’05, pages 20-31,
Washington, DC, USA, 2005. IEEE Computer Society.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Space- and time-efficient deterministic
algorithms for biased quantiles over data streams. In
PODS 06, pages 263-272. ACM, 2006.

[7] G. Cormode, A. Mishra, J. Ross, and P. Vesely.
Theory meets practice at the median: A worst case
comparison of relative error quantile algorithms. In
KDD ’21, page 2722-2731, New York, NY, USA, 2021.
ACM.

[8] G. Cormode and P. Vesely. A tight lower bound for
comparison-based quantile summaries. In PODS ’20,
pages 81-93, New York, NY, USA, 2020. ACM.

[9] T. Dunning. The t-digest: Efficient estimates of
distributions. Software Impacts, 7:100049, 2021.

[10] T. Dunning and O. Ertl. Computing extremely
accurate quantiles using t-digests. CoRR,
abs/1902.04023, 2019.

[11] D. Felber and R. Ostrovsky. A randomized online
quantile summary in O(1/epsilon * log(1/epsilon))
words. In APPROX/RANDOM ’15, volume 40 of
LIPIcs, pages 775785, Dagstuhl, Germany, 2015.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

76

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

24]

(25]

(26]

27]

(28]

29]

S. Ganguly. A nearly optimal and deterministic
summary structure for update data streams. arXiv
preprint ¢s/0701020, 2007.

M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In ACM SIGMOD
Record, volume 30, pages 58-66. ACM, 2001.

A. Gupta and F. X. Zane. Counting inversions in lists.
In SODA 03, pages 253254, Philadelphia, PA, USA,
2003. STAM.

N. Ivkin, E. Liberty, K. Lang, Z. Karnin, and

V. Braverman. Streaming quantiles algorithms with
small space and update time. arXiv preprint
arXiv:1907.00236, 2019.

Z. Karnin, K. Lang, and E. Liberty. Optimal quantile
approximation in streams. In FOCS ’16, pages 71-78.
IEEE, 2016.

E. Liberty and P. Vesely. relativeErrorSketch.py. In
https:
//github.com/edoliberty/streaming-quantiles/,
2021.

G. Luo, L. Wang, K. Yi, and G. Cormode. Quantiles
over data streams: Experimental comparisons, new
analyses, and further improvements. The VLDB
Journal, 25(4):449-472, Aug. 2016.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. In ACM SIGMOD Record,
volume 27, pages 426-435. ACM, 1998.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. In
ACM SIGMOD Record, volume 28, pages 251-262.
ACM, 1999.

C. Masson, J. E. Rim, and H. K. Lee. Ddsketch: A fast
and fully-mergeable quantile sketch with relative-error
guarantees. PVLDB, 12(12):2195-2205, 2019.

J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. Theoretical computer science,
12(3):315-323, 1980.

I. Pohl. A minimum storage algorithm for computing
the median. IBM TJ Watson Research Center, 1969.
V. Poosala, V. Ganti, and Y. E. Ioannidis.
Approximate query answering using histograms. IEEE
Data Eng. Bull., 22(4):5-14, 1999.

L. Rhodes, K. Lang, J. Malkin, A. Saydakov,

E. Liberty, and J. Thaler. DataSketches: A library of
stochastic streaming algorithms. Open source
software: https://datasketches.apache.org/, 2013.
N. Shrivastava, C. Buragohain, D. Agrawal, and

S. Suri. Medians and beyond: new aggregation
techniques for sensor networks. In SenSys ’04, pages
239-249. ACM, 2004.

G. Tene. How NOT to measure latency.
https://wuw.youtube.com/watch?v=1J8ydIuPFeU,
2015.

Q. Zhang and W. Wang. An efficient algorithm for
approximate biased quantile computation in data
streams. In CIKM ’07, pages 1023-1026, 2007.

Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang.
Space-efficient relative error order sketch over data
streams. In ICDE 06, pages 51-51. IEEE, 2006.

SIGMOD Record, March 2022 (Vol. 51, No. 1)

