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p-adic distribution of CM points and Hecke orbits
I: Convergence towards the Gauss point

Sebastian Herrero, Ricardo Menares and Juan Rivera-Letelier

We study the asymptotic distribution of CM points on the moduli space of elliptic curves over C,, as the
discriminant of the underlying endomorphism ring varies. In contrast with the complex case, we show
that there is no uniform distribution. In this paper we characterize all the sequences of discriminants for
which the corresponding CM points converge towards the Gauss point of the Berkovich affine line. We
also give an analogous characterization for Hecke orbits. In the companion paper we characterize all the
remaining limit measures of CM points and Hecke orbits.
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1. Introduction

Given an algebraically closed field [, denote by Y (K) the moduli space of elliptic curves over K. It is the
space of all isomorphism classes of elliptic curves over [, for isomorphisms defined over K. For a class E
in Y (), the j-invariant j(E) of E is an element of I determining E completely. The map j: Y (K) - K
so defined is a bijection. See for example [Silverman 2009] and [Lang 1973] for background on elliptic
curves.

If K is of characteristic 0, then the endomorphism ring of an elliptic curve defined over [ is isomorphic
to Z or to an order in a quadratic imaginary extension of Q. In the latter case, the order only depends on
the class E in Y (IK) of the elliptic curve and E is said to have complex multiplication or to be a CM point.
In this paper, the discriminant of a CM point is the discriminant of the corresponding order.* Moreover, a

MSC2010: primary 11G15; secondary 11F32, 11S82.
Keywords: equidistribution, elliptic curves, Hecke correspondences.

*This notion of discriminant is not to be confused with the discriminant of a Weierstrass model of an elliptic curve [Silverman
2009, Chapter III, Section 1].

1239



1240 Sebastian Herrero, Ricardo Menares and Juan Rivera-Letelier

discriminant is the discriminant of an order in a quadratic imaginary extension of Q. An integer D is a
discriminant if and only if D <0 and D =0, 1 mod 4.
For every discriminant D, the set

Ap :={FE € Y(K) : CM point of discriminant D} (1-1)

is finite and nonempty. So, we can define the probability measure 8, on Y (IK), by

where §, denotes the Dirac measure on Y () at x.

Throughout the rest of this paper we fix a prime number p and a completion (C,,, |-|,) of an algebraic clo-
sure of the field of p-adic numbers Q,. Our first goal is to study, for I =C,, the asymptotic distribution of
A p as the discriminant D tends to —oo. This is motivated by the following result in the case where KK is the
field of complex numbers C. Recall that, if we consider the usual action of SL;(Z) on the upper half-plane
H by Mobius transformations, then Y (C) can be naturally identified with the quotient space SL,(Z)\H.
An appropriate multiple of the hyperbolic measure on H descends to a probability measure jipy, on Y (C).

Theorem 1. For every continuous and bounded function ¢ : Y (C) — R, we have
QO(E) - / % thyp,

#Ap EeAp

as the discriminant D tends to —oo. Equivalently, we have the weak convergence of measures
as the discriminant D tends to —o0.

The asymptotic distribution of CM points on Y (C) was part of a family of problems studied by Linnik;
see [Linnik 1968] and also [Michel and Venkatesh 2006]. By applying a certain “ergodic method”,
Linnik proved the result above for sequences of discriminants satisfying some congruence restrictions.
In a breakthrough, Duke [1988] removed the congruence restrictions assumed by Linnik and proved
Theorem 1 for fundamental discriminants. Duke’s proof uses the theory of nonholomorphic modular
forms of half-integral weight and bounds for their Fourier coefficients, building on work of Iwaniec
[1987]. Finally, Clozel and Ullmo [2004] obtained Theorem 1 for arbitrary discriminants, by studying the
action of Hecke correspondences on CM points and combining Duke’s result together with the uniform
distribution of Hecke orbits.

1A. Convergence of CM points towards the Gauss point. Our first goal is to describe the asymptotic
distribution of CM points for the ground field K = C,. However, it is easy to find sequences of
discriminants (D,);°, for which the sequence of measures 6 D)y on Y(C,) has no accumulation
measure. A natural solution to this issue is to consider Y (C,) as a subspace of the Berkovich affine line



p-adic distribution of CM points and Hecke orbits | 1241

A}Serk over C,, using the j-invariant to identify Y (C,) with the subspace C, of All?)erk' In fact, every

[e9)

sequence of measures (8 D,),—; as above accumulates on at least one probability measure with respect to

the weak topology on the space of Borel measures on Aéerk. See Section 2D for a brief review of the
space AIIBerk and the weak topology on the space of measures on All?.erk'

In contrast with Theorem 1, for X = C, the measures 8p on Aéerk do not converge to a limit as
the discriminant D tends to —oo. Our first main result is a characterization of all those sequences of

o0

discriminants (D)), ; tending to —oo, such that the sequence of measures S D,)pe; in Aé erk Converges

to the Dirac measure at the “canonical” or “Gauss point” x¢a, of AIISerk' In the companion paper [Herrero
et al. 2019] we show that in all the remaining cases the sequence €] D,)ne.; accumulates on at least one
probability measure supported on a compact subset of the supersingular locus of ¥ (C,) and characterize
all possible accumulation measures.

To state our first main result, we introduce some notation and terminology. Identify the residue field of
C, with an algebraic closure I]_:p of the field with p elements [,. Recall that the endomorphism ring of
an elliptic curve over [_Fp is isomorphic to an order in either a quadratic imaginary extension of Q or a
quaternion algebra over Q. In the former case the corresponding elliptic curve class is ordinary and it is
supersingular in the latter.

Denote by O, the ring of integers of C, and by n: O, — [_Fp the reduction map. An elliptic curve
class E has good reduction if there is a representative Weierstrass equation with coefficients in O, whose
reduction is a smooth curve. Such reduction determines an elliptic curve defined over [_Fp, whose class E
only depends on E and is the reduction of E. Moreover, E has ordinary (resp. supersingular) reduction
if £ is ordinary (resp. supersingular). An elliptic curve has good reduction precisely when j(E) isin O,
and when this is not the case E has bad reduction. The moduli space Y (C)) is thus partitioned into three
pairwise disjoint sets: The bad, ordinary and supersingular reduction loci, denoted by Y,a(C)), Yora(Cp)

and Ygups(Cp), respectively. Using j: Y(C,) — C,, to identify Y (C,) and C,, we thus have the partition
Op = Yord(Cp) u Ysups ((Dp)

Moreover, if we denote by Ysups([_Fp) the finite subset of Y ([l_:p) of supersingular classes, then Yups(C,) =
7! (Ysups(ﬁ,)) is a finite union of residue discs of O,. Note that Yyq(C,) is a union of infinitely many
residue discs of O,,.

Every CM point E has good reduction and the reduction type only depends on the discriminant D of
E, as follows:

(i) If p splits in @(\/5), then E has ordinary reduction.
(i1) If p ramifies or is inert in @(\/5), then E has supersingular reduction.

See [Deuring 1941] or [Lang 1973, Chapter 13, Section 4, Theorem 12]. We call a discriminant D
p-ordinary in the first case and p-supersingular in the second. Moreover, we define

0 if D is p-ordinary;

D|,. =
| |p sups {|D|p if D is p_supersingulal‘.
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Theorem A. Let (D,);2 | be a sequence of discriminants tending to —oo. Then we have the weak

convergence Of measures

SDn—>5 asn— oo ifandonly if |Dylp-sups = 0 asn — oo.

Xcan

For readers unfamiliar with the Berkovich affine line, we give a concrete formulation of the convergence
of measures in Theorem A in terms of C,, only, see Lemma 2.3(ii) in Section 2D.

We obtain Theorem A as a direct consequence of quantitative estimates in the cases where all the
discriminants in (D,);2 | are p-ordinary (Theorem 3.5 in Section 3B) or p-supersingular (Theorem 4.1
in Section 4). Note that in the former case Theorem A asserts that § — 8, weakly as n — oo. The
following stronger statement is a direct consequence of our quantitative estimate in this case.

Corollary B (ordinary CM points are isolated). Every disc of radius strictly less than one contained in
Yord(C,) contains at most a finite number of CM points. In particular, the set of CM points in Yoa(C,) is
discrete.

Corollary B seems to be well-known by the experts in the field, although we have not found this result
explicitly stated in the literature. See Section 1C for comments and references.

1B. Convergence of Hecke orbits towards the Gauss point. To state our next main result, we first
introduce Hecke correspondences. See Section 2B for background.
Given an algebraically closed field I of characteristic 0, a divisor on Y (KK) is an element of

Div(Y(K)):= P ZE,
EeY(K)
the free abelian group spanned by the points of Y (). The degree and support of a divisor ® =
ZEGY(K) ngE in Div(Y (IK)) are defined by
deg(®) := Z ng and supp(®):={E € Y(K):ng #0},

EcY(K)

respectively. If in addition deg(®) > 1 and for every E in Y () we have ng > 0, then

- 1
3@ = l/lEaE
deg(®) EG;K)

is a probability measure on Y (K).
Fornin N:= {1, 2, ...} the n-th Hecke correspondence is the linear map

T,: Div(Y (K)) — Div(Y (K))

defined for E in Y (K), by
T.(E):= Y  E/C,

C<E of order n
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where the sum runs over all subgroups C of E of order n. Note that supp(7,,(E)) is the set of all E” in
Y (KK) for which there is an isogeny E — E’ of degree n. Moreover,

deg(T,(E))= )Y  d=n,
d|n,d>0
so deg(7T,(E)) — oo as n — oo.
In the case K = C,, it is easy to see that for each E in Ypaq(C)) (resp. Yora(Cp), Ysups(Cp)), we have
that for every n in N the divisor 7}, (E) is supported on Ypaq(C,) (resp. Yora(Cp), Ysups(Cp)).

Theorem C. For every E in Yp,a(Cp) U Yo (Cp), we have the weak convergence of measures

87,(E) = 8 asn— oo.

Xcan

Moreover, for E in Ysps(Cp) and a sequence (n j)j?’;l in N tending to oo, we have the weak convergence
of measures
STnj(E) — 8y, @S j —> 00 ifandonlyif |nj|, — O0as j— oo.

Xcan

When restricted to the case where E is in Y;,q(C),), the above theorem is [Richard 2018, Théoreme 1.2].

To the best of our knowledge, Theorem C gives the first example where equidistribution of orbits fails
for correspondences of degree bigger than one, see Section 2B for a description of Hecke correspondences
as algebraic correspondences. In the complex case, pluripotential theory has been used successfully to
prove equidistribution for correspondences satisfying a mild “nonmodularity” condition, see for example
[Dinh et al. 2020].

The uniform distribution of Hecke orbits on Y (C) is a well-known result from the spectral theory of
automorphic forms; see [Clozel and Ullmo 2004, Théoreme 2.1], and also [Clozel et al. 2001; Eskin and
Oh 2006] for extensions and [Linnik and Skubenko 1964] for related work.

Remark 1.1. In [Clozel et al. 2001; Eskin and Oh 2006], the starting point is an algebraic group
G over Q and a congruence subgroup I' of G(Q), and the ambient space is X = I'\G(R). In this
context, there is a natural notion of Hecke correspondences on X. The aforementioned works establish
the uniform distribution of every orbit of such Hecke correspondences under general hypotheses. In
particular, the Q-structure of G allows for p-adic variants of such results, see, e.g., [Clozel et al. 2001,
Remark (1) in page 332]. In the particular case G = SL; and I' = SL,(Z), there is a natural isomorphism
Y (C) ~ SL,(Z)\ SL2(R)/ SO,(R) and the natural projection from X to Y (C) takes Hecke orbits as in
[Clozel et al. 2001; Eskin and Oh 2006] to Hecke orbits on Y (C) as defined in this paper. The uniform
distribution of Hecke orbits on Y (C) is thus a special case of [Clozel et al. 2001, Theorem 1.6], see also
[Eskin and Oh 2006, Theorem 1.2]. However, this strategy breaks down for Hecke orbits on Y (C,),
because there is no analogous uniformization of Y(C,) as a double quotient. Moreover, Theorem C
shows that there is no uniform distribution of Hecke orbits on Y (C,). Indeed, Theorem C and our results
in the companion paper [Herrero et al. 2019] show that, in contrast with [Clozel et al. 2001; Clozel and
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Ullmo 2004; Eskin and Oh 2006], the asymptotic distribution of (7}, (E ))?‘;1 on Y (C,) depends on both
the starting point E and the sequence of integers (n j)?il‘

1C. Notes and references. After the first version of this paper was written, we learned about the related
work of Goren and Kassaei [2017]. For a prime number £ different from p, Goren and Kassaei [2017]
studied the dynamics of the Hecke correspondence 7y acting on the moduli space of elliptic curves with
a marked torsion point of exact order N coprime to pf. So, on one hand [Goren and Kassaei 2017] is
more general than this paper in that it considers modular curves with level structure. On the other hand,
[loc. cit.] is more restrictive in that it only considers the dynamics of a single Hecke correspondence of
prime index different from p, as opposed to the dynamics of the whole algebra of Hecke correspondences
considered here. Note also that we use C, as a ground field, which is natural to study equidistribution
problems, whereas [loc. cit.] is restricted to algebraic extensions of Q. In spite of the fact that both papers
study the dynamics of similar maps, there is no significant intersection between the results of [loc. cit.]
and those of this paper. See also [Herrero et al. 2019] for our additional results in the supersingular locus
and the corresponding comparison with the results of [Goren and Kassaei 2017]. Finally, our results on
the dynamics of the canonical branch ¢ of T}, (defined on Y44(C,) in Section 3A) on ordinary CM points
show that this map gives rise to a “(p—+1)-volcano” in the sense of [loc. cit., Section 2.1], see Remark 3.6.

Corollary B seems well-known among experts in the field, although we have not found this result
explicitly stated in the literature. Even for higher-dimensional abelian varieties it can be deduced from
the explicit characterization of the Serre—Tate local coordinates of CM points as torsion points of the
multiplicative group, see, e.g., [de Jong and Noot 1991, Proposition 3.5]. Our approach makes no use of
these local coordinates, and is based on rigid analytic properties of the canonical branch ¢ of T,,. For CM
elliptic curves with ordinary reduction, the connection between these two approaches is well-known, see,
e.g., [Dwork 1969, Section 7d)].

Since every CM point of Y (C,) is in the bounded set O,, Theorem A yields the following stronger
statement: For every continuous function ¢: Y (C,) — R and every sequence of discriminants (D,)°
tending to —oo and satisfying | D, |, -sups — 0 as n — oo, we have

Z o(E) — f(p déy.,, asn— oo.

#deg(Ap,) Feny

Although our formulation of Theorem 1 seems stronger than the one in [Clozel and Ullmo 2004,
Théoreme 2.4], it is easy to see that it is equivalent, see for example [Bilu 1997, Lemma 2.2].

1D. Strategy and organization. We now explain the strategy of the proof of Theorems A and C and
simultaneously describe the organization of the paper.

After some preliminaries in Section 2, we proceed to the proof of Theorem A in Sections 3 and 4.
Theorem A is a direct consequence of stronger quantitative estimates in two separate cases: The case
where all the discriminants in (D,);2, are p-ordinary and the case where they are all p-supersingular.
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The p-ordinary case is treated in Section 3. There are two main ingredients, both of which are related
to the “canonical branch ¢” of T), that is defined in terms of the “canonical subgroup” in Section 3A; see
also Appendix B. The first main tool is a simple formula, for every integer m > 1, of T, on Y,,4(C,) in
terms of ¢ (Proposition 3.4 in Section 3A). To establish this formula we use results of Tate and Deligne
to show that ¢ is rigid analytic. The second main tool is the interpretation of p-ordinary CM points as
preperiodic points of £ on Y4q(C,) (Theorem 3.5(i)), which is based on Deuring’s work on the canonical
subgroup. Our quantitative estimate in the p-ordinary case is stated as Theorem 3.5(ii) in Section 3B and
its proof is given at the end of this section.

The p-supersingular case is technically more difficult. We use Katz—Lubin’s extension of the theory
of canonical subgroups to “not too supersingular” elliptic curves and “Katz’ valuation”. We recall
these in Section 4A, where we also give an explicit formula relating Katz’ valuation to the j-invariant
(Proposition 4.3). We use Katz’ valuation to give a concrete description of the action of Hecke cor-
respondences on the supersingular locus in terms of a sequence of correspondences (T,);,"_, acting
on the interval [0, p/(p + 1)] (Proposition 4.5 in Section 4B). To do this, we rely on results in [Katz
1973, Section 3] and, for p = 2 and 3, on certain congruences satisfied by certain Eisenstein series, see
Proposition A.1 in Appendix A. Our quantitative estimate in the p-ordinary case is stated as Theorem 4.1
at the beginning of Section 4 and its proof is given at the end of this section.

In Appendix B we formulate some of our results on the canonical branch ¢ of T}, as a lift of the
classical Eichler—Shimura congruence relation (Theorem B.1).

The proof of Theorem C splits in three complementary cases, according to the reduction type of E.
In each case we obtain a stronger quantitative estimate. For the bad reduction case we use Tate’s
uniformization theory (Proposition 5.1 in Section 5A). Thanks to the multiplicative properties of Hecke
correspondences (2-6), the ordinary reduction case (Proposition 5.2 in Section 5B) is reduced to two
special cases: The asymptotic distribution of (7= (E)),_, (Proposition 5.3) and, for a sequence (n j)?i |
of integers in N that are not divisible by p, the asymptotic distribution of (7}, (E ))?‘;1 (Proposition 5.4).
The former case is obtained using the tools developed in Theorem 3.5 and the latter is reduced to the
study of the action of Hecke correspondences on ordinary elliptic curves in Y ([_F,,) and is elementary.
Finally, the supersingular case (Proposition 5.6 in Section 5C) is obtained from the description of the
action of Hecke correspondences on the supersingular locus in Section 4B and an explicit formula for the
correspondences (T,,);,_; (Lemma 5.7).

2. Preliminaries

Recall that N = {1, 2, ...}. Given n in N, denote by

d(n) = Z 1 and o1(n):= Z d

d>0,d|n d>0,d|n

the number and the sum of the positive divisors of n, respectively. We use several times the inequality

o1(n) = n, 2-1)
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and the fact that for every ¢ > 0 we have
d(n) =o(n®); (2-2)

see for example [Apostol 1976, page 296].

For a set X and a subset A of X, we use 14: X — {0, 1} to denote the indicator function of A.

For a topological space X, denote by §, the Dirac mass on X supported at x. It is the Borel probability
measure characterized by the property that for every Borel subset ¥ of X we have 6,(Y)=1ifx € Y and
8, (Y) = 0 otherwise.

Normalize the norm ||, of C,, so that |p|, =1/p and denote by ord,: C, — RU {400} the valuation
defined by ord, (0) = 400 and for z in C} by ord,(z) = —log|z|,/log p. Denote by M, the maximal
ideal of O, and recall that we identify O,/M, with [, and that 7: O, — [, denotes the reduction
morphism. For ¢ in [_F,,, denote by D(¢) := m~!(¢) the residue disc corresponding to .

2A. Divisors. A divisor on a set X' is a formal finite sum Y _y nx in €@,y Zx. In the special case
where for some xo in X we have ny, =1 and n, = 0 for every x # xo, we use [xp] to denote this divisor.
When there is no danger of confusion, sometimes we use xg to denote [xg].

Let © =) _, n.[x] be a divisor on X. The degree and the support of © are defined by

xeX
deg(®) := an and supp(®):={x € X :n, #0},
xeX

respectively. The divisor D is effective, if for every x in X we have n, > 0. For A C X, the restriction of
D to A is the divisor on X defined by
Dla=Y nilxl.

xX€A

For a set X" and amap f: X — X/, the push-forward action of f on divisors f,: Div(X) — Div(X’) is
the linear extension of the action of f on points. In the particular case in which X’ = G is a commutative
group, also define f: Div(X) — G by

f@) =) nf(x)eG.
xeX
If X is a topological space and ® is an effective divisor satisfying deg(®) > 1, then 8 := deglw D rex Nxdy
is a Borel measure on X. Note that in the case G = R and f is measurable, we have

)
/ 7400 = 4@y

Since we are identifying Y (C,) with C, via j, we identify divisors on Y (C,) and on C, accordingly.

TWe only use this definition in the case X is one of several types of one-dimensional objects. For such X, the notion of divisor
introduced here can be seen as a natural extension of the usual notion of Weil divisor.
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2B. Hecke correspondences. In this section we recall the construction and main properties of the Hecke
correspondences. For details we refer the reader to [Shimura 1971, Sections 7.2 and 7.3] for the general
theory, or to the survey [Diamond and Im 1995, Part II].

Let K be an algebraically closed field of characteristic 0. First, note that for every integer n > 1 and
divisor ® in Div(Y (X)), we have

deg(7, (D)) = o1 (n) deg(D).

Moreover, for n = 1 the correspondence T is by definition the identity on Div(Y (K)).

We also consider the linear extension of Hecke correspondences to Div(Y (IK)) ® Q.

For an integer N > 1, denote by Yy(N) the modular curve of level N. It is a quasiprojective variety
defined over Q. The points of Yo(N) over I parametrize the moduli space of equivalence classes of pairs
(E, C), where E is an elliptic curve over K and C is a cyclic subgroup of E of order N. Here, two such
pairs (E, C) and (E’, C") are equivalent if there exists an isomorphism ¢: E — E’ over K taking C to C’.
In particular, when N = 1, for every algebraically closed field IK we can parametrize Y (IK) by Yo (1)(K),
and Yy (1) is isomorphic to the affine line A&D.

For N > 1, denote by ® (X, Y) the modular polynomial of level N, which is a symmetric polynomial
in Z[X, Y] that is monic in both X and Y, see, e.g., [Lang 1973, Chapter 5, Sections 2 and 3]. This
polynomial is characterized by the equality

Oy((E),Y)= 1_[ (Y —j(E/C)) forevery E in Y (K). (2-3)
C<E cyclic of order N
This implies that a birational model for Yy(N) is provided by the plane algebraic curve

dy(X,Y)=0. (2-4)

For each prime ¢, let g, B, : Yo(q) — Yo(1) be the rational maps over Q given in terms of moduli
spaces by
a(E,C):=E and B,(E,C):=E/C.

In terms of the model (2-4) with N = g, the rational maps o, and B, correspond to the projections on the
X and Y coordinate, respectively. Denote by (o)« and (B,)+ the push-forward action of o, and B, on
divisors, respectively, as in Section 2A. Denote also by « the pull-back action of oy on divisors, defined
at x in Yp(1)(K) by

ar)i= Y deg, M,

y€¥o(q)(K)
og (y)=x

where degaq (y) is the local degree of a, at y. This definition is extended by linearity to arbitrary
divisors. The pull-back action B; of B, is defined in a similar way. Then the Hecke correspondence
T, : Div(Y(K)) — Div(Y (K)) is recovered as

Tq = (aq)* o ,8;; = (,Bq)* oa;,

where the second equality follows from the first and from the symmetry of 7.
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For an arbitrary integer n > 2, the correspondence 7, can be recovered from different 7;, for ¢ running
over prime divisors of n, by using the identities

Tyr=T40T,1—q- T, forgq primeandr >2; (2-5)
Tyo Ty, =Ty for £, m > 1 coprime. (2-6)

We conclude this section with the following lemma used in Sections 3A and 5B.

Lemma 2.1. Let n > 1 be an integer. For E in Y (C,), the divisor T,(E) varies continuously with respect
to E in the following sense: For every commutative topological group G and every continuous function
f:Y(Cp) — G, the function T, f : Y(Cp) — G given by

T, f(E) := f(Tu(E))
is continuous. In particular, for every open and closed subset A C 'Y (C)), the integer valued map
E — deg(T,(E)|a)

is locally constant.

Proof. We first treat the case where n equals a prime number g. Let Py(X), ..., P;(X) be the polynomials
in Z[X] such that
D, (X,Y) = Po(X)+ Pi(X)Y +---+ P(X)Y9+ Yt

Let (E,,);_, be a sequence and Eq be a point in Y (C,), such that j(E,) — j(Ey) when m tends to
infinity. Then for every k in {0, 1, ..., g}, we have P,(j(E.)) = Pr(j(Ep)) when m tends to infinity.
It follows that the roots of the polynomial ®,(j(E;,), Y) converge to the roots of ®,(j(Eop), Y), in the
following sense: For every m in {0, 1, 2, ...} we can find z,,, 0, ..., Zm,q in C,, so that

q
Dy (En), V) =[](¥ = zmn),
k=0

and so that for every k in {0, 1, ..., g} we have z,, x — zox when m tends to infinity, see for example
[Brink 2006, Theorem 2]. For each m in {0, 1,2,...} and k in {0, 1, ..., g}, let E,, x be the curve in
Y (C,) with j(E, i) = Zm k. By the definition of 7, and (2-3), we have for every m > 0

q
Ty(Em) =Y [Emxl.

k=0
Since for every kin {0, 1, ..., g} we have j(E,, ) = j(Eox) when m tends to infinity, we conclude that
for every continuous function f: Y(C,) — G we have

q q
Tyf(Em) =) f(Exm) = Y f(Ero) =T, f(Eo).

k=0 k=0

This proves that T, f is continuous.
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We now treat the general case by using multiplicative induction, the relations (2-5) and (2-6), and the
fact that for every pair of linear maps L, L: Div(Y (C,)) — Div(Y(C,)), every pair of integers m, m,
and every function F': Y (C,) — G, one has

(LoL)(F)=L(L(F)) and (mL+mL)(F)=mL(F)+mL(F). (2-7)

Denote by I the set of those integers n > 1 such that for every continuous function f: Y (C,) — G, the
function T, (f) is also continuous. Clearly I contains 1, since for every function f we have T7(f) = f.
By the proof given above, I contains all prime numbers. Let n > 1 be a given integer having each divisor
in /, and let ¢ be a prime number. Let s > 0 and no > 1 be the integers such that n = g*ng, and such that
q does not divide ng. Then by the relations (2-5) and (2-6), and by (2-7), we have

Tyn(f) = Tyst1ny (f) = T (Tys1 (),

and for s > 1

Ty () = Ty (Ty(f) = g Ty1 ().

Since ng, ¢, ¢*, and ¢*~! if s > 1, are all in I, we conclude that T, (f) is continuous, and that gn isin /.
This completes the proof of the multiplicative induction step, and of the first part of the lemma.

The second part of the lemma is an easy consequence of the first. Indeed, let A C Y (C,,) be an open
and closed subset. Then the function 14 is continuous and the first part implies that

E — T,14(E) = 14(T,(E)) = deg(T,(E)|4)

is also continuous. But 7,14 has integer values, hence it must be locally constant. This completes the
proof of the lemma. U

2C. Hecke orbits of CM points and an estimate on class numbers. In this section we first recall a special
case of a formula of Zhang describing the effect of Hecke correspondences on CM points (Lemma 2.2),
which is used in Sections 3, 4 and 5B. To do this, and for the rest of the paper, for every discriminant D
we consider Ap as a divisor. We also use Siegel’s classical lower bound on class numbers of quadratic
imaginary extensions of (), to give the following estimate used in the proof of Theorem A: For every
¢ > 0 there is a constant C > 0 such that for every negative discriminant D, we have

h(D) := deg(Ap) = C|D|'/*~*. (2-8)

In this section we follow [Clozel and Ullmo 2004, Section 2.3], adding some details for the benefit of the
reader.

We use d to denote a negative fundamental discriminant. For each discriminant D there is a unique
negative fundamental discriminant d and integer f > 1 such that D = df2. These are the fundamental
discriminant and conductor of D, respectively. We denote by Oy, ¢ the unique order of discriminant D in
the quadratic imaginary extension @(+/d) of @ and put

wa, g = #O 1 /2%) = (HO) )/2.
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The integer f is the index of Oy, f inside the ring of integers of @(\/3). Note that w_3 | =3, w_4| =2,
and that in all the remaining cases wy, r = 1.
Recall that the Dirichlet convolution of two functions g, g: N — C, is defined by

(gD = Y g(d)gr(g).

deN,d |n

Given a fundamental discriminant d, denote by R;: N — N U {0} the function that to each n in N assigns
the number of integral ideals of norm 7 in the ring of integers of Q(+/d). Moreover, denote by R;l the

inverse of R; with respect to the Dirichlet convolution.

Lemma 2.2. For every fundamental discriminant d < 0 and any pair of coprime integers f > 1 and
f > 1, we have the relations

A ) A N2
Tf< = )= > Rd<fi>—d(f0f)§ (2-9)
0

a7/ peNpol s Y. fof

A,z A=
aiff? _ Z R i T; df? ‘ (2-10)
Wy r7 T\ fo) "\w, ¢
41f foeNfol f d.f

If in addition f is not divisible by p, then we have

TP(Ade) ol if p splits in Q(/d);

Wq, f Wy, f
A A,
Agprr =1 T( wff:) - #: if p ramifies in Q(+/d); (2-11)
w. .
Tp( wjf;) if p is inert in Q(+/d),

and for every integer m > 2 we have

A A A . . .
Ty ( wjfj) — 2T 1 ( wjffz) + T2 (%) if p splits in Q(v/d);
A, A, . . .
Agpm gy =1 Tpm( wff;) = Ty (ﬁf;) if p ramifies in Q(v/d); (2-12)
A A
Ty (525 = Ty (55) if p is inert in Q(+/d).

To prove this lemma, we first record the following identity, which is also used in the proof (2-8) below
and of Lemma 5.5 in Section 5B. Let ¢/, be the quadratic character associated to K = @(\/3 ), which is
given by the Kronecker symbol (4) and denote by 1: N — C the constant function equal to 1. Then we
have the equality of functions

Rd:wd*l- (2—13)

In fact, if we denote by ¢ (s) the Riemann zeta function, by ¢k (s) the Dedekind zeta function associated
to K, and by L(v4, s) the Dedekind L-function associated to 4, then the formula above is equivalent
to the factorization ¢x(s) = ¢(s)L(¥4, s), whose proof can be found for example in [Cohen 2007,
Proposition 10.5.5 on page 219], or [Lang 1994, Chapter XII, Section 1, Theorem 1].
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Proof of Lemma 2.2. From the Mobius inversion formula we deduce that (2-9) and (2-10) are equivalent.
Hence, it is enough to prove (2-10). We have the following formula of Zhang

A Ayp
T, (_d> S Rd(i>ﬂ, (2-14)
Wit/ pengory NSO/ Wy

see for example [Clozel and Ullmo 2004, Lemme 2.6] or [Zhang 2001, Proposition 4.2.1]. Applying the
Mobius inversion formula, one obtains

)
o r )

w, . w,
4 feNfol f a.1

On the other hand, note that if f and f in N are coprime, then by (2-6) and (2-15), we obtain (2-10).
Finally, (2-11) and (2-12) are a direct consequence of (2-9), (2-13) and the fact that ¥4(p) =1 (resp.
0, —1) if p splits (resp. ramifies, is inert) in @(\/3). O

To prove (2-8), recall from the theory of complex multiplication that for a fundamental discriminant d
the number /(d) equals the class number of the quadratic extension Q(+/d) of @, see for example [Cox
2013, Corollary 10.20]. A celebrated result by Siegel states that for every ¢ > 0 there exists a constant
C > 0 such that for every fundamental discriminant d < 0 we have

h(d) > C|d|"/*~*, (2-16)

see for example [Siegel 1935], or [Lang 1994, Chapter X VI, Section 4, Theorem 4]. On the other hand,
by [Lang 1973, Chapter 8, Section 1, Theorem 7] for every integer f > 2 we have

q— Wd(Q))
— )

ndrh==tha ] ( 2-17)

q | f, prime
Given ¢ > 0, there are C’ in ]0, 1[ and N in N such that (¢ — 1)/q > g~° for every ¢ > N and
(g—1)/qg = C'q~¢ for every 2 < g < N. Hence, for every integer f > 2 we have

1—[ (CI - 1/fd(q)) > 1—[ (u) > (C/)N l_[ g > (C/)Nf_s.

q | f, prime 1 q | f, prime q| f, prime

Combined with (2-16) and (2-17), this completes the proof of (2-8).

2D. The Berkovich affine line over C, and the Gauss point. We refer the reader to [Berkovich 1990]
for the general theory of Berkovich spaces, and to [Baker and Rumely 2010, Chapter 1] for the special
case of the Berkovich affine line over C,,, which is the only Berkovich space of relevance in this paper.

The Berkovich affine line over C,, which we denote by A}Serk, is a topological space defined as follows:
As a set, A}aerk is the collection of all multiplicative seminorms on the polynomial ring C,[X] that take
values in [R{ar and that extend the p-adic norm |-, on C,. Hence, a point x € Aflierk is given by a map
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x: CplX]— I]RjiaL satisfying for every a in C, and for all f and g in C,[X],

x(a)=lalp, x(f+g) =x(f)+x(g) and x(fg)=x(f)x(g).

The topology of All?.erk is the weakest topology such that for every f € C,[X], the function Allg ok — Cp

given by x — x(f) is continuous. The topological space Aéerk is Hausdorff, locally compact, metrizable
and path-connected. It contains C,, as a dense subspace via the map ¢: C, — Aé ork given, for z € C,, and
feC,[X], by t()(f) :=1f(2)],. We identify divisors on C, and on ¢(C,) accordingly.

The canonical point or Gauss point x¢a, of A}Serk is the Gauss norm

N N
ZanX” > sup{ Zanz”
n=0

n=0

:Ze(’)p} =max{|a,|, :ne€{0,..., N}}.
p

Givena € Cj, and r > 0, define

D@,r)={xeC,:|x—al,<r};
D%¥(a,r):={xeCp,:|x—al,>r};
D(a,r):={x € Aéerk x(X —a) <r};

D>®(a,r):={x € Aéerk x(X —a) >r).
A basis of neighborhoods of x.,, in All_,)erk is given by the collection of sets

A(A; R) :=D0, R)N ﬂ D*®(a, R7Y), (2-18)
acA
where R > 1 and A is a finite subset of O,,.
We conclude this section with the following result. Recall that a sequence of Borel probability measures
(n)nen on a topological space X converges weakly to a Borel measure  on X, if for every continuous
and bounded function f: X — R we have

tim [ die, = [ £ dus
n—oo
see, e.g., [Billingsley 1968, Section 1.1].

Lemma 2.3. Let (9D,),en be a sequence of effective divisors on C, such that for every n we have
deg(®,) > 1. Then, the following are equivalent:

@) S[(@n) — 8y, weakly as n — oo.

Xcan

(i1) For every R > 1 and every a in O,, we have for D = D(a, R~ and D = D®(a, R),

deg(®, -
im 98@ulp) _p 5 by =0,
n—00 deg(@n) n—00

For the reader’s convenience we provide a self-contained proof of this lemma, which applies to the
Berkovich affine line over an arbitrary complete and algebraically closed field. Using that Aflierk is
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metrizable, the lemma can also be obtained as a direct consequence of the following observations: (i) is
equivalent to the assertion that for every neighborhood U of xcy, in Aé ok We have

lim 8o, U) = 1.
n—oo
This last statement is equivalent to the contrapositive of (ii).

Proof of Lemma 2.3. Assume that (i) holds and let R > 1 and a in O, be given. Note that the first equality
in (ii) is a direct consequence of the definitions. To prove the second equality, take a continuous function
¢ IRSr — [0, 1] satisfying ¢ (1) =0and ¢(t) =1 for0 <r < R~ 'andfors > R. Let o: All?»erk — R be
the continuous function given by «(x) = x(X — a) and put F := ¢ o «. By construction we have

F(xean) =¢(1) =0 and F(x)=1forall x € D(a, R"")UD®(a, R).
Using that for z € C, we have
zeD(@ R Y& uz)eD@, R and zeD™(a,R) & i(z) € D¥(a, R), (2-19)
we get
0<389,(D(a, R""YUD™(a, R)) =8,,)(D(a, R"HUD®(@a, R)) < / F dd,0,)-
Since F is continuous and bounded, our hypothesis (i) implies that
o, (D(a, R™H) >0 and 89,(D*®(a, R)) — 0 as n — o0o.

This completes the proof of the implication (i) = (ii).

Now, assume that (ii) holds, let F': Aé ork — R be a continuous and bounded function and let € > 0 be
given. Since the sets (2-18) form a basis of neighborhoods of x.,, there are R > 1 and a finite subset A
of O, such that

|F(x) — F(xcan)| <& forall x € A(A; R). (2-20)
Let R’ in ]1, R[ be fixed. From the definition of A := A(A; R), we have

A= Ag \AS D™, R)U | D, (R) ™).

acA

Using (2-19) and (ii) with R replaced by R’ and with a in A U {0}, we obtain

deg(t(Dp)|a) < deg((Dy)lp=0.87) + Y _ deg(t(Dn) |, r)-1))

acA

= deg(D,lp=(,r)) + Z deg(®nlp@.(ry-1))

acA

= 0(deg(t(Dn))).
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Together with our choice of \A(A; R), this implies

‘/ F dSL(BD,,) — F(xcan)

- ’F(L(Qn)IA) — F(xcan) deg(t(Dn)[.4) n ‘ F(®@n)la) — F(xcan) deg(t(Dn)|a)
- deg(®,) deg(®D,)
d Dn)la
< e +2( sup |F(n)) SO
X EAI13erk deg(t (Qn)
and therefore
lim sup / F dSt(gn) — F(xcan)| < e.
n—oo

Since ¢ > 0 is arbitrary, this completes the proof of the implication (ii) = (i) and of the lemma. U

3. CM points in the ordinary reduction locus

The purpose of this section is to give a strengthened version of Theorem A in the case where all the

o]

discriminants in the sequence (D), , are p-ordinary (Theorem 3.5(ii) in Section 3B). An important

tool is “the canonical branch ¢ of T, on Y4q(C,), which is defined using the canonical subgroup in
Section 3A. We use it to give, for every integer m > 1, a simple formula of 7,» (Proposition 3.4 in
Section 3A). Moreover, we show that p-ordinary CM points correspond precisely to the preperiodic points
of ¢ on Yoq(C,) (Theorem 3.5(i)). Once these are established, Theorem 3.5(ii) follows from dynamical
properties of ¢ on Yq(C,) (Lemma 3.7). In Appendix B we extend and further study the canonical
branch ¢ of T),.

We use properties of reduction morphisms that are stated in most of the classical literature only for
elliptic curves over discrete valued fields. To extend the application of these results to elliptic curves over
C, we use the continuity of the Hecke correspondences (Lemma 2.1 in Section 2B). To this purpose, we
introduce the following notation: Q" is the maximal unramified extension of @, inside Q,, and Cy'is
its completion. Then, C}" is an infinite degree extension of Q,, with the same valuation group and with
residue field [F,. The algebraic closure Ci* of C7™ inside C,, is dense in C,,. Since CY™" can be written
as the union of finite extensions of CJ'", it follows that every elliptic curve in ¥ (C}™) can be defined over
a complete discrete valued field with residue field [,. The same holds for finite subgroups and isogenies
between elliptic curves over @ .

In what follows, we use Yord(@;,“r) =You(Cp))NY (O;,“r).

3A. The canonical branch of T, on Y,q(Cp). In this section we define a branch of the Hecke corre-
spondence T, on Y,4(C,) that we use to give a simple description, for every integer m > 1, of T, that
is crucial in what follows (Proposition 3.4). See also Appendix B. We start recalling the following result
describing the endomorphism ring of the reduction of a CM point in the ordinary locus.
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Proposition 3.1 [Lang 1973, Chapter 13, Section 4, Theorem 12]. Let d <0 be a fundamental discriminant
and let f > 1 and m > 0 be integers such that f is not divisible by p. Then, for an elliptic curve E
defined over a discrete valued subfield of C, having ordinary reduction, End(E) 2~ Oy, ,m y implies that the
reduction E of E satisfies End(E) ~ Oy, r. In particular, if End(E) is an order in a quadratic imaginary
extension of Q whose conductor is not divisible by p, then the reduction map End(E) — End(E) is an

isomorphism.

To define the canonical branch of T}, on Y,q(C,), we use the canonical subgroup of an elliptic curve
E in Yord(djnr), which is defined as the unique subgroup of order p of E in the kernel of the reduction
morphism £ — E. Equivalently, H(E) is the kernel of the reduction morphism E[p] — E[p]. For an
elliptic curve e € Y([_Fp) denote by Frob: e — ¢P) the Frobenius morphism, which is the isogeny given in
affine coordinates by (x, y) — (x?, y?).

Theorem 3.2. (i) For E in Yord(([j‘1r ) the reduction of E/H (E) equals EP and every isogeny ¢ . E —
E/H(E) whose kernel is equal to H(E) reduces to the Frobenius morphism

Frob: E — EP.

Moreover, the kernel of the isogeny dual to ¢ is different from the canonical subgroup of E/H (E).

(ii) For each ordinary elliptic curve e € Y([_Fp) there exists a unique elliptic curve e! € Y(G:?nf) reducing

to e for which the reduction map induces a ring isomorphism
End(e") ~ End(e).
(iii)) Given two ordinary elliptic curves e1, ey € Y ([_Fp), the reduction map induces a group isomorphism
Hom(elT, eZT) ~ Hom(eq, e3).

In particular, the Frobenius morphism Frob: e — P lifts to an isogeny e’ — (e!P)" with kernel
H(eM), and et JH(eh) = (eP)1.

Proof. Ttem (i) follows from the definition of canonical subgroup and properties of reduction morphisms;
see, e.g., [Diamond and Shurman 2005, Proof of Lemma 8.7.1]. Item (ii) is usually known as “Deuring’s
lifting theorem”, see for example [Deuring 1941] or [Lang 1973, Chapter 13, Section 5, Theorem 14].
Item (iii) is another known consequence of Deuring’s work. To prove surjectivity, first note that every
isogeny in Hom(ey, €;) can be written as a composition of Frobenius morphisms, of duals of Frobenius
morphisms, and of an isogeny whose degree is not divisible by p. In view of items (i) and (ii), and of
Proposition 3.1, we can restrict to the case of an isogeny of degree n not divisible by p. This case is a
direct consequence of item (ii), and the fact that the reduction morphism E — E induces a bijective map
E[n] — E [1], see for example [Silverman 2009, Chapter VII, Proposition 3.1(b)]. |



1256 Sebastian Herrero, Ricardo Menares and Juan Rivera-Letelier

The following result is due to Tate in the case p = 2 and to Deligne in the general case. To state
it, define

t: Yord(@) - Yord(qj?nr)
Ew t(E):=E/H(E),

(3-D

and for e in Ysups(ﬂ_:p) put

if p=>5,j(e) #£0,1728;

if p>5,je)=0;

if p>5,j(e) = 1728; (3-2)
if p=3, j(e) =0=1728;

12 if p=2, j(e)=0=1728.

(=]
Y
Il
o N SIS

Note that in all the cases §, = (# Aut(e))/2; see, e.g., [Silverman 1994, Chapter III, Theorem 10.1].

Theorem 3.3. For each e in Ysups(I]—:p) choose B, in D(j(e))NQY™, so that w(B,) = j(e), and put §, := 5,
if Be=0and p £3orif B, =1728 and p #2, and &, := 1 otherwise. Then, the map t admits an expansion
of the form

00 Agle)
1) =" +pk@+ ) Zm, (3-3)

eeysups(lip) n=1

where k(z) is a polynomial of degree p — 1 in z with coefficients in Z, and for each n > 1 the coefficient
Aff) belongs to @p({,Be ‘ee Ysups(u_:p)}) and

1 p
d,(A9) > 8 —— +n——r . 3-4
ord,(A,”) > e<p+1+np+l> (3-4)

In particular, t(z) extends to a rigid analytic function Yorq(C,) — Yord(Cp) of degree p that we also
denote by t.

For p > 5, this result is proved in [Dwork 1969, Chapter 7]. In the case §, > 1, (3-4) can be obtained
from the method of proof described in [loc. cit.], or from the estimate in [loc. cit., page 80] combined
with the fact that ord, (A9) is an integer and that 8, = 0 implies p =2 mod 3. For p = 2 and 3, this
result is stated in [loc. cit., page 89] with a weaker version of (3-4). We provide the details of the proof
when p = 2 and 3; see Proposition B.2 in Appendix B.

The theorem above implies that # extends to a rigid analytic map from Y,q(C,) to itself. We denote
this extension also by ¢ and call it the canonical branch of T, on Y (C,).

For z € Y4ra(C)), let £*(z) be the divisor on Yq(C,) given by

t*(z) == E deg, (w)[w],
weyord(cp)
t(w)=z
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where deg, (w) is the local degree of ¢ at w. Note that by Theorem 3.3 the rigid analytic map #: Y,q(C,) —
Yora(C,) is of degree p, so for z in Y,:q(C,) we have

deg(t*(z)) = p and £.(¢"(2)) = plzl.

As usual, for an integer i > 1 we denote by ¢’ the i-th fold composition of ¢ with itself. We also use ¢° to
denote the identity on Yoq(Cp).

Proposition 3.4. For every E in Yoq(C,) and every integer m > 1, we have

Tpn(E) =) ()" ([£'(E))). (3-5)

i=0
When m = 1, the relation (3-5) reads

T,(E) =t*(E) +[t(E)]. (3-6)
See Theorem B.1 in Appendix B for an extension.

Proof. The relation (3-5) for m > 2 follows from (3-6) by induction using the recursive formula (2-5).
To prove (3-6), first note that for E in Yoq(C,) satisfying deg,(E) > 2 we have ¢'(E) = 0. Therefore
there are at most a finite number of such E in the affinoid Y,;q(C,); see for example [Fresnel and van der
Put 2004, Proposition 3.3.6]. It follows that for every E in Yq(C,) outside a finite set of exceptions,
we have #supp(t*(E)) = p. Thus, the set D of all those E in Yord(@ ) with this property is dense in
Yora(Cp). To prove (3-6) for E in D, use the definition of T),(E) and #(E), and Theorem 3.2(i), to obtain

T,(E)=[t(E)]+ Z [E/Cl=[t(E)] +t*(E).

C<E#C=p
C#H(E)

To prove (3-6) for an arbitrary E in Y,,4(C,), first note that by Lemma 2.1 for every open and closed
subset A of Y,4(C,) the function

E — 14(T,(E) — t*(E) — [t(E)]) = deg((T,(E) — t*(E) — [t(E)D]a)

is continuous. Since it is equal to 0 on the dense subset D of Y,:q(C,), we conclude that it is constant equal
to 0. Since this holds for every open and closed subset A of Y,q(C,), this proves (3-6) and completes the
proof of the lemma. O

3B. CM points as preperiodic points. The purpose of this section is to prove the following result. In
the case where all the discriminants in the sequence (D,);- , are p-ordinary, Theorem A is a direct
consequence of item (ii) of this result together with (2-8) and Lemma 2.3.

Given a set X and amap 7: X — X, a point x in X is periodic if for some integer » > 1 we have
T7 (x) = x. Then the integer r is a period of x and the smallest such integer is the minimal period of x.
Moreover, a point y is preperiodic if it is not periodic and if for some integer m > 1 the point 77 (y) is
periodic. We call the least such integer m the preperiod of y.
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Theorem 3.5. Let ¢ in [_Fp be the j-invariant of an ordinary elliptic curve and denote by r the minimal
period of ¢ under the Frobenius map z — z”. Then there is a unique periodic point Ey of t in D(¢). The
minimal period of Eg is r. Moreover, Ey is a CM point and, if we denote by Dy the discriminant of the
endomorphism ring of Eq, then the conductor of Dy is not divisible by p and the following properties
hold:

(i) Given a discriminant D, the set supp(Aplp()) is nonempty if and only if for some integer m > 0 we
have D = Dyp*". Moreover,
supp(Ap,|p(s)) = {Eo}

and for each integer m > 1 the set supp(A p, ,2n | p(¢)) is equal to the set of all the preperiodic points
of t in D(¢) of preperiod m, and is contained in t ™" (t" (Ey)). In particular, CM points in Yoqa(Cp)
correspond precisely to the periodic and preperiodic points of t in Yoa(Cp).

(ii) For every disc B of radius strictly less than 1 contained in D(¢) there is a constant C > 0 such that

for every discriminant D < 0, we have
deg(Aplp) =C.

Remark 3.6. The natural directed graph associated to the dynamics of ¢ on the set of ordinary CM
points is a “(p+1)-volcano” in the sense of [Goren and Kassaei 2017, Section 2.1]. This follows from
Theorem 3.5(i) and the fact that ¢ is of degree p on Y,4(C,) by Theorem 3.3. Note in particular that the
“rim” is the directed subgraph associated to the dynamics of ¢ on the set of its periodic points in Yq(Cp).
Moreover, on the set of preperiodic points of  in Y,:q(C,), the preperiod corresponds to the function “b”
of [Goren and Kassaei 2017].

To prove Theorem 3.5, we describe the dynamics of £ on Y4(C,) in Lemma 3.7 below. This description
is mostly based on the fact that
t(z) =z” mod pO,, (3-7)

see Theorem 3.3. We deduce from general considerations that each residue disc D C Y,q(C,) contains a
unique periodic point zg of £, that this point satisfies |#'(z0)| < 1, and that every point in D is asymptotic
to zo.* The fact that no periodic point of £ in Yyq(C),) is a ramification point is used in a crucial way in
the proof of the estimate (5-5) of Proposition 5.3 in Section 5B.

Lemma 3.7 (dynamics of ¢ on Y:q(C,)). Let e be an ordinary elliptic curve defined over [_Fp and letr > 1
be the minimal period of j(e) under the Frobenius map. Then, e' is the unique elliptic curve in D(j(e))
that is periodic for t. The minimal period of €' for t is r and ' is also characterized as the unique elliptic
curve in D(j(e)) N (IT‘“ whose endomorphism ring is an order in an quadratic imaginary extension of Q
of conductor not divisible by p. Moreover, if for every integer i > 0 we put z; :=t' (e"), then the following
properties hold:

This is somewhat similar to the case of a rational map having good reduction equal to the Frobenius map, see for example
[Rivera-Letelier 2003, Sections 3.1 and 4.5].
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(i) For each integer i > 0 we have 0 < |t'(z;)], < 1.

(ii) There is p in 10, 1[ such that for every integer i > 0 and all 7 and 7' in D(z;, p), we have
deg,(z) =1 and |t(z) —t(@)l,=1t'@)p 12— lp.

In particular, t is injective on D(z;, p).

(iii) For every c € 10, 1] there exists k. in 10, 1[ such that for every integer i > 0, every z in D(z;, 1)
satisfying |z — zi|, < c and every integer m > 1, we have

1t"(2) = Zigm|p < k12— Zilp.
(iv) Foralli > 0 and z in D(z;, 1), the sequence

(18" (2) = Zitm) | p) o
is nonincreasing and converges to 0.

Proof. We start by proving (i). Suppose for a contradiction that z; is a ramification point of . Without
loss of generality, assume that i =0 and put E := e and E? := (¢”)?. By Proposition 3.4 with m = 1
there are distinct subgroups C and C’ of E? of order p such that

EP/C=EP/C'=E,C # H(E’) and C'#H(EP).

Let ¥ (resp. ¥') be an isogeny E? — E with kernel C (resp. C’) and denote by ¥ (resp. /') its dual
isogeny. Then the kernel of lﬁ and of lﬁ’ are both equal to H (E). It follows that there is ¢ in Aut(E?)
such that o o ¥ = ¥'; see, e.g., [Silverman 2009, Chapter III, Corollary 4.11]. Since o # +1, we have
J(EP) € {0, 1728} and therefore r = 1, t(z0) = zp and E” = E. In particular, C and C’ are subgroups of
E and ¥, ' € End(E). The kernel of each of the reduced isogenies ¥ and ¥ is equal to e[p1(F,), so
there is & in Aut(e) such that @ o 1} = 1/7/ . Since the reduction map End(E) — End(e) is an isomorphism
by Theorem 3.2(ii), we can find an automorphism « € Aut(E) satisfying o o = ¢’. This implies that
the kernel C of v is equal to the kernel C’ of ¥’, and we obtain a contradiction. This completes the proof
that z; is not a ramification point of ¢ and therefore that #'(z;) # 0.
To prove that |t'(z;)| < 1 note that by Theorem 3.3, we can write
0.¢]
tw+z) —zn =tw+z) —t@z) =y BPw", (3-8)
n=1
where the coefficients B,(li) belong to O, and satisfy |B,(,i)| p = % for n # p. Since t'(z;) = Bl(i), this
completes the proof of (i).
To prove the assertions at the beginning of the lemma, for each integer i > 0 denote by (") the image
of e by the i-th iterate of the Frobenius morphism. Then by Theorem 3.2(iii) we have

z=teh =) en (@)
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It follows that zg is periodic of minimal period r for ¢. To prove uniqueness, note that by (3-8) for every
integer i > 0 and distinct z and z’ in D(z;, 1) we have

t(z) —t(@)]p <lz—2lp. (3-9)

Thus, there can be at most one periodic point of ¢ in D(zo, 1). Finally, combining Theorem 3.2(ii) and
Proposition 3.1 we obtain that e? is the unique elliptic curve reducing to e and whose endomorphism ring
is an order of conductor not divisible by p. This completes the proof of the assertions at the beginning of
the proposition, so it only remains to prove (ii), (iii) and (iv).

To prove (ii), note that by (i) there is p in ]0, 1[ so that for every i in {0, ..., r — 1}, we have

max{|B{"|,0" " :n =2} <|B"|,.

Then by the ultrametric inequality for every integer i > 0 and z € D(z;, p) we have |t'(2)|, = |Bl(i)| P
which is different from 0 by (i). In particular, deg,(z;) = 1. Moreover, for z’ in D(z;, p) we have by the
ultrametric inequality

6@) — ()], =B} [plz—2'|,.

This completes the proof of (ii).
Item (iii) is a direct consequence of (3-8) with

Ko = max{lB,(l")|c"_1 n>1,ie€{0,...,r—1}},

noting that for every integer n > 1 and all integers i, i’ > 0 such that i — i’ is divisible by r, we have
B\’ = B\".

To prove item (iv), note that the fact that the sequence is nonincreasing follows from (3-9) and the fact
that it converges to 0 form (iii) with ¢ = |z — z;|. This completes the proof the lemma. (Il

Proof of Theorem 3.5. The first assertions are given by Lemma 3.7.

To prove (i), note that Proposition 3.1 implies that if a discriminant D < 0 is such that supp(Ap|p())
is nonempty, then there is an integer m > 0 such that D = Dyp>". On the other hand, Lemma 3.7 implies
supp(Ap, b)) = {Eo}. Fix an integer m > 1 and note that by Lemma 3.7 for every integer j > 1 the
point E; := t/(Ey) is the unique periodic point of ¢ in D({pj). So, if E is a preperiodic point of ¢ in
D(¢) of preperiod m, then ¢"(E) = E,,. This implies that the set of all preperiodic points of ¢ in D(¢)
of preperiod m is contained in ¢ ™ (E,,) and is equal to

T ENN\ "N E ) =tV ER) \(En—1)).

Since the degree of ¢ is p and by Lemma 3.7(i) we have t'(E,,_1) # 0, the set t~Y(E,) \{En—_1}is
nonempty and equal to supp(¢*([E,]) — [Em—1]). We thus conclude that the set of preperiodic points
of t in D(¢) of preperiod m is equal to t*(mfl)(supp(t*([Em]) —[E;n—1])) and it is nonempty. Thus, to
complete the proof of (i) it is sufficient to show that the set of preperiodic points of ¢ in D(¢) of preperiod
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m is equal to supp(A p; ,2n|p(s)). Note that by (2-11) and Proposition 3.4 we have

supp(t(Ap,)) < supp(7T(Ap,)) = supp(Ap,) Usupp(Ap,,2).

By Lemma 3.7 the set supp(A p,), hence supp(#:(Ap,)), is formed by periodic points of ¢ while points
in supp(A p, ,2) are not periodic. This implies

t*(AD()) = AD()- (3-10)

Let d and f; be the fundamental discriminant and conductor of Dy, respectively. Since p splits in Q(+/d)
we deduce that for every integer k > 0 we have Ry(p*) =k + 1. By (2-9), Proposition 3.4 and (3-10) we
get

supp((£*)" (A p,)) = ) supp(A p, ).
k=0

This implies the equality
supp((£*)" (A py)) \ supp((£*)" ' (A py)) = supp(A p, y2n). (3-11)

By Lemma 3.7 and (3-10) the set supp(A p,) N(D()UD(P)U---U D(gl’”l)) equals the set of periodic
points of ¢ in D(¢) U D(P)U---U D(g“”H). By (3-11) we conclude that the set supp(A p, 2 |p(z))
equals the set of preperiodic points of ¢ in D(¢) of preperiod m. This completes the proof of (i).

To prove (ii), let ¢ in ]0, 1[ be such that B € D(zg, c¢), let p and «. be given by Lemma 3.7 and let
M > 1 be an integer such that ck’” < p. Let D < 0 be a discriminant and z in supp(A p) N B be given.
By (i) there is an integer m > 0 such that £ (z) = Ey. Assume by contradiction that the least integer m
with this property satisfies m > M. Then by Lemma 3.7 and our choice of M we have

1t"™(2) — Eolp <k < p.

On the other hand, ¢""—M) ig injective on D(zo, p) by Lemma 3.7(ii) and it maps " (z) and E to E,
so t"M(z) = Ey. This contradicts the minimality of m and proves that for every z in supp(Ap) N B we

have t"¥ (z) = Ey. Equivalently,
M

supp(Ap|p) < )t (Eo).

i=1

Since this last set is finite and independent of D, this proves (ii) and completes the proof of the theorem. [

4. CM points in the supersingular reduction locus

The goal of this section is to prove the following result on the asymptotic distribution of CM points in the
supersingular reduction locus. From this result and Theorem 3.5(ii), we deduce Theorem A at the end of
this section.
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Theorem 4.1. For every e in Ysups(l]_:p)ﬁx an arbitrary vy, in D(j(e)) and for r in 10, 1[, put

Br:= |J D@.r.

€€ Ysups (Fp)

Then the following properties hold:

(i) Foreveryr in |0, 1] there exists m > 0 such that for every discriminant D < 0 satisfying ord, (D) > m,
we have deg(Ap|p()) =0.

(ii) For every m > 0 there exists r in 10, 1[ such that for every p-supersingular discriminant D < 0
satisfying ord,(D) < m, we have supp(Ap) C B(r).

We present the proof of Theorem 4.1 in Section 4C below. In Section 4A we recall the definition of
Katz’ valuation. For that purpose, we briefly review Katz’ theory of algebraic modular forms and the
interpretation of the Eisenstein series E,_1 as an algebraic modular form over @ N Z,,. In Section 4B we
use Katz—Lubin’s extension of the theory of canonical subgroups to not too supersingular elliptic curves
to give a description of the action of Hecke correspondences on the supersingular locus (Section 4B). For
p =2 and 3, we also rely on certain congruences satisfied by certain Eisenstein series (Proposition A.1
in Appendix A). This description is used in the proof of Theorem 4.1 and also in Section 5C on Hecke
orbits in the supersingular locus.

4A. Katz’ valuation. In this section we define Katz’ valuation, which is based on Katz’ theory of
algebraic modular forms, and give an explicit formula relating it to the j-invariant (Proposition 4.3).
For the reader’s convenience we start with a short review of Katz’ theory of algebraic modular forms.
For details see [Katz 1973, Chapter 1]. Let k € Z be an integer and let R be a ring (commutative and with
identity). Denote by Rp-Alg the category of Ry-algebras. Given an Rp-algebra R, define an elliptic curve
E over R as a proper, smooth morphism of schemes E — Spec(R), whose geometric fibers are connected
curves of genus one, together with a section Spec(R) — E, and denote by Q}z /R the invertible sheaf of
differential forms of degree 1 of E over R. By replacing Spec(R) by an appropriate affine subset we can
assume that Q Lj /R admits a nowhere vanishing global section. In this paper we assume, for simplicity,
that this is always the case and denote by Q}E JR(E ) the (nonempty) set of nowhere vanishing global
sections of 9}5 /g~ An algebraic modular form F of weight k and level one over Ry is a family of maps

Fr: {(E, w) : E elliptic curve over R, w € Q}E/R(E)/} — R (R € Ry-Alg),
satisfying the following properties:

(i) Fr(E, w) depends only on the isomorphism class of the pair (E, w). More precisely, for every
isomorphism of elliptic curves ¢: E — E’ over R, we have Fr(E', p,w) = Fr(E, ). Here, g,
denotes the push-forward of w by ¢.

(i) Fr(E, rw) = A"*Fg(E, w) for every A € R*.
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(iii) Fg is compatible with base change. Namely, for every Ry-algebra morphism g: R — R’, for the
base change (E, w)g of (E, ) to R’ by g we have Fg ((E, w)g) = g(Fr(E, w)).

Taking into account property (iii), from now on we simply write F instead of Fr. Moreover, let R; be an
Rp-algebra. Then, property (iii) ensures that F induces an algebraic modular form F; over R;. We say
that F) is the base change of F to Ry. We also say that F is a lifting of Fj to R.

Let g be a formal variable and denote by Tate(q) the Tate curve, which is an elliptic curve over the
field of fractions Z((g)) of the ring of formal power series Z[[¢]; see [Katz 1973, Appendix 1]. The
Jj-invariant of Tate(q) has the form

0.¢]
j(Tate(q)) =+ + 744+ "cuq", caeZ (-1
n=1
The g-expansion of an algebraic modular form F over R as above is defined as the element F(gq) €
Z((q)) ®z Ry obtained by evaluating F at the pair (Tate(q), wcan) consisting of the Tate curve together with
its canonical differential wc,y,, both considered over Z((q)) ®z Ro. Moreover, F is said to be holomorphic
at infinity if F(q) € Z[q] ®z Ro.
Now, we state a version of the g-expansion principle, which is a particular case of [Katz 1973,
Corollary 1.9.1].

Theorem 4.2. Let Ry be a ring and let K O Ry be a Ry-algebra. Let k € Z be an integer and let F
be an algebraic modular form over K of weight k, level one and holomorphic at infinity. Assume that
F(q) € Z((g)) ®z Ro. Then, F is the base change of a unique algebraic modular form over Ry of weight k.

There is a natural link between the previous theory and the classical theory of modular forms. We
refer to [Katz 1973, Section A1.1] for details. For each classical holomorphic modular form of weight &
and level one f: H — C, there exists a unique algebraic modular form F over C associated to f that is
holomorphic at infinity. The Fourier expansion at infinity of f and the g-expansion of F are related by

00 o
f@ =Y ae®™" ifandonlyif F(q)=) a.q".
n=0 n=0

For an even integer k > 4, let E; be the normalized Eisenstein series
Ek(r)zl—%io'k L(m)eFT T eH
Bk n=1 B ’ ‘

Here, the symbol By denotes the k-th Bernoulli number and oy (n) :=)_, | n.d>0 d*=1. The complex
function Ey is a classical holomorphic modular form of weight k& and level one. Then, this function
induces an algebraic modular form over C, which we also denote by E;, having the g-expansion with
rational coefficients

2k —
Bulg)=1-F- Y o 1mg”. (4-2)
n=1
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When p > 5 and k = p — 1, the von Staudt-Clausen theorem ensures that ord, ((2k) B, 1) =1. In
particular, the coefficients of the Fourier expansion of E,_; lie in Z,), := QNZ,. Hence, by Theorem 4.2,
we can consider E,_; as an algebraic modular form of weight p — 1 over Z(,). On the other hand, the
same reasoning and a direct examination of the Fourier expansions of E4 and E¢ allow us to consider
these Eisenstein series as algebraic modular forms of weight four and six over Z.

For E in Ygps(Cp), which we regard as an elliptic curve over O, choose w in Q}E /O,,(E )" and define
Katz’ valuation
ord,(E,_1(E,w)) if p>5;
L. ord;(B¢(E, w)) if p=3;

UP(E) = 3
1oty (B4(E, ) if p=2.

Since for every A in O;j we have Ei(E, Aw) = A ¥ E;(E, w), this definition does not depend on the
particular choice of w. The above definition is motivated by the following considerations. The Hasse
invariant A, is the unique algebraic modular form of weight p—1 over [, with g-expansion A, _1(q) =1;
see [Katz 1973, Chapter 2]. When p > 5, the base change to [, of the form E,_; equals A,_;. On the
other hand, when p equals 2 or 3 it is not possible to lift A, to an algebraic modular form of level one,
holomorphic at infinity, over Z,). However, the base change of E4 (resp. Eg) to > (resp. to [3) is A‘f
(resp. Ag). See Appendix A for details.

Since the Hasse invariant vanishes at supersingular elliptic curves, for every E in Yg,s(C,) we have
that 0 < v, (E) < oo. An elliptic curve E in Ysp5(C,) is not too supersingular if v,(E) < p/(p + 1),
and it is roo supersingular otherwise.

The following result gives an explicit relation between v, (E) and j(E). For e in Ysups([_Fp), we use the
number &, defined by (3-2) in Section 3A.

Proposition 4.3. For each e in Ysups([l_:p), denote by j. the j-invariant of the unique zero of E,_1 (resp.
E4,Eg) in D(e) if p > 5 (resp. p =2, 3). Then, for every E in Yg,(C,) we have

1
pE) = Y, ordy((E) =),

eeYsups(ﬂEp)

Moreover, if p > 5 and j, = 0 (resp. j. = 1728) mod M, thenj, =0 (resp. j. = 1728). In the case
p =2 (resp. p=3), Ysups(ﬂ_:p) has a unique element e and j, = 0 (resp. j, = 1728).

It follows from the proof of this proposition that for every e in Ysups([_Fp) the number j, is algebraic over
Q and is in the quadratic unramified extension of Q,. We note that in the case j, # 0, 1728 mod M,
the elliptic curve class whose j-invariant is j, is not CM,? but it is “fake CM” in the sense of [Coleman
and McMurdy 2006]; see Remark 4.4 below.

$1n fact, je need not be an algebraic integer: For p =13 (resp. 17, 19, 23) there is a unique e in Ysups([?p) whose j-invariant is
different from 0 and 1728, and we have jo =27-3%.53 /691 (resp. 210.33.53 /3617, 28.33.53.11/43867, 28.33.53.41/(131-593)).
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Proof of Proposition 4.3. Assume p >5,s0 p—1%#£2,8 mod 12. We can thus write p — 1 uniquely in
the form p — 1 = 12m + 46 + 6¢ with m > 0 integer and &, ¢ € {0, 1}. The modular discriminant

o
A(T) :e27l’i‘[ 1_[(1 _eZHin‘[)24, T E IH],
n=1

is a classical holomorphic modular form of weight 12 and level one; see, e.g., [Diamond and Shurman
2005, Sections 1.1 and 1.2]. The infinite product above shows that the Fourier coefficients of A are
rational integers. Hence, Theorem 4.2 ensures that A can be considered as an algebraic modular form
over Z. At the level of classical modular forms, we have the identity

E, 1 = A"E}E; P()),

where P(X) is a monic polynomial over Z ;) of degree m such that Pgps(X) := X%(X — 1728)° P(X)
reduces modulo p to the supersingular polynomial, i.e., the monic separable polynomial over [, whose
roots are the j-invariants of the supersingular elliptic curves over F,; see, e.g., [Kaneko and Zagier 1998,
Theorem 1]. Using the classical identities E} = Aj and E2 = A(j — 1728) we get

)y =ArjP( —1728)* P()".
Theorem 4.2 ensures that the above identity also holds at the level of algebraic modular forms over Z ).
Write
Paps(X) =[] xX—jo),
eeysups(lip)

where j, € D( j (e)) for each e € Ysups(l]_:p). Now, for every pair (E, w) over O, having good reduction
we have A(E, w) € O, hence

By 1 (E, o)) = (E)PI(E)—1728% T 1i(E)=jly”

ec Ysups([?p)
Je#£0,1728

Since p > 5, we have that j = 0 (resp. j = 1728) is supersingular at p if and only if p =2 mod 3 (resp.
p =3 mod 4) [Silverman 2009, Chapter V, Examples 4.4 and 4.5]. This implies the result when p > 5.
The cases p =2 and 3 follow similarly from the formulas

[Es(E, )3 =j(E)l2 and [Bs(E. w)[3=1j — 1728]3,
respectively. This completes the proof of the proposition. U

Remark 4.4. Let e in Yu,5(C,) be such that j, #0, 1728 mod M, and let E, be the elliptic curve class
in Y(C,) such that j(E,) =j.. Then E, is not CM, but it is “fake CM” in the sense of [Coleman and
McMurdy 2006]. In particular, j is not a singular modulus over C,,. To show that E, is not CM, choose
a field isomorphism C, ~ C and 7, in H such that E.(C) ~ C/(Z + t.Z). It is sufficient to show that z,
is transcendental over Q; see, e.g., [Lang 1973, Chapter 1, Section 5]. The complex number 7, must be a
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zero of the holomorphic function T — E,_ (7). Since j(z.) = j. is different from 0 and 1728, it follows
that 7, is not equivalent to p = %(1 ++/=3) ori = +/—1 under the action of the modular group SL,(Z) by
Mobius transformations on H. Then [Kohnen 2003, Theorem 1] implies that z, is transcendental over Q.

To see that E, is fake CM, note first that, since the reduction modulo p of Pyps(X) is separable and
splits completely over [F >, by Hensel’s lemma all roots of Pgps(X) are in the ring of integers O of the
unramified quadratic extension of Q. As j, is a root of Pgyps(X), this implies that E, represents an elliptic
curve over O. Let [p]. and ¢ be the multiplication by p and the p*>-power Frobenius endomorphism
on the supersingular curve e, respectively. Then there exists o in Aut(e) satisfying o o [p]. = ¢; see
[Silverman 2009, Chapter II, Corollary 2.12]. Since j(e) = m(j.) is different from O and 1728, we have
o = =1 and %[p]. = ¢. Choose my = £p as a uniformizer of O. The multiplication by 7y map on the
formal group Fg, of E, defines an endomorphism f(X) of F,, satisfying

f(X)=mX mod X* and f(X)EXf”2 mod 7.

It follows that Fg, is a Lubin-Tate formal group over O; see [Hazewinkel 1978, Section 8], and compare
with [Coleman and McMurdy 2006, Remark 3.4]. In particular End(FE,) >~ O and therefore E, is fake
CM; see [Hazewinkel 1978, Theorem 8.1.5 and Proposition 23.2.6].

4B. Katz’ kite. The goal of this section is to give the following description of the action of Hecke
correspondences on the supersingular locus.

Proposition 4.5. Let 0, : Ysups(C,) — [0, p/(p + 1)] be the map defined by

U, := min { v, —2 }
IS eyt
Moreover, denote by 1 the identity on Div([0, p/(p + 1)]), let T| be the piecewise-affine correspondence

on [0, p/(p + 1)] defined by

[px]+ plx/p] ifxel0,1/(p+ DI
[1—-x]+plx/pl ifxell/(p+1D),p/(p+ D],

and for each integer m > 2 define the correspondence T, on [0, p/(p + 1)] recursively, by

Tl(x) = {

Tm ‘= T10Tn—1— PTn—2.
Then for every integer m > 0 and every integer ng > 1 not divisible by p, we have

(ﬁp)* o Tp’”ng|Ysups(Cp) =o01(ng) - Tm © (ﬁp)*

See Figure 1 for the graph of the correspondence T; and Lemma 5.7 in Section 5C for a formula of T,
for every m > 0.

The proof of Proposition 4.5 is given after a couple of lemmas. The following is a reformulation, in our
setting, of a theorem of Katz—Lubin on the existence of canonical subgroups for elliptic curves that are
not too supersingular; see [Katz 1973, Theorems 3.1 and 3.10.7] and also [Buzzard 2003, Theorem 3.3].
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multiplicity 1

L} multiplicity p
e

Figure 1. Graph of the correspondence T representing the action of 7}, in terms of the
projection .

Lemma 4.6. For every elliptic curve E in Yg,s(C,) that is not too supersingular there is a unique
subgroup H(E) of E of order p satisfying

pvp(E)  ifvp(E) €10, 1/(p+ DI
1—v,(E) ifv,(E)ell/(p+ 1), p/(p+DIL
Furthermore, H(E) is also uniquely characterized by the property that for every subgroup C of E of
order p that is different from H(E), we have

0,(E/H(E)) = { (4-3)

vp(E/C) = p~ vy (E). (4-4)
In addition, the map
t: {E € Yaps(Cp) 1 vp(E) < #} — Yaups(Cp)
Ew— t(E):=E/H(E)
satisfies the following properties:

(i) Let E be in Yyps(Cp) and let C be a subgroup of E of order p. In the case v,(E) < p/(p+ 1),
assume in addition that C # H(E). Then

v,(E/C)=p 'D,(E) and t(E/C)=E.
(i1) For E in Ysups(Cp) satisfying 1/(p+1) < v,(E) < p/(p+1), we have t>2(E) = E.

Proof. For E in Yu,5(C,) that is not too supersingular, note that the uniqueness statements about H (E)
follow from the fact that (4-3) and (4-4) imply that H(E) is the unique subgroup C of E of order p

satisfying v, (E/C) # p‘lvp(E).
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Assume p > 5 and let E be an elliptic curve in Yg,s(C,) that is not too supersingular, so that
v,(E) < p/(p+1). Let w be a differential form in QE/OP(E)/ and put rg :=E,_1(E, w) € O,. Since
@ and C), have the same valuation group we can find r € C}™ satistying ord, (r) = ord,(rg). Then r

lies in the ring of integers Ry of some finite extension of C%", and Ry is a complete discrete valuation ring
of residue characteristic p and generic characteristic zero. The triple (E, w, rrh?l) defines a r-situation in
the sense of [Katz 1973, Theorem 3.1] (see also [loc. cit., Section 2.2]) and therefore there is a canonical
subgroup H(E) of E of order p. Then [loc. cit., Theorem 3.10.7(2, 3)] implies (4-3) and (ii), see also the
proof of [Buzzard 2003, Theorem 3.3(iii)], and (4-4) and (i) are given by [Katz 1973, Theorem 3.10.7(5)].
Finally, note that for E in Yu,s(C,) satisfying v,(E) > p/(p + 1), the assertion (i) follows from [loc. cit.,
Theorem 3.10.7(4)]. This completes the proof of the proposition in the case p > 5.

It remains to prove the proposition in the cases p =2 and p = 3. We only give the proof in the case
p = 2, the case p = 3 being analogous. Let E; be an algebraic modular form of weight one and level n1,
with 3 <n; <11 odd, holomorphic at infinity and defined over Z[1/n] whose reduction modulo 2 is
Ay; see Appendix A for details on level structures. Let E in Yups(C5) be an elliptic curve that is not too
supersingular, let @ be a differential form in Q}E /02(E )" and «,, a level n; structure on E over O,. By
Proposition A.1 and our hypothesis vy (E) < %, we have

ordy (By(E, @, o)) = v2(E) < 3

Then, [Katz 1973, Theorem 3.1] gives the existence of H (E) which might depend on the choice of o, .
The fact that H(E) depends only on E follows from the characterization in [loc. cit., Theorem 3.10.7(1)]
of the canonical subgroup as the subgroup of order 2 containing the unique point corresponding to the
solution with valuation 1 — v, (E) of the equation [2](X) = 0 in the formal group of E (here [2] denotes
the multiplication by 2 map and X is a certain normalized parameter for the formal group). Then (4-3),
(4-4), (1) and (ii) follow from [loc. cit., Theorem 3.10.7] as in the case p > 5 above. This completes the
proof of the lemma. O

Lemma 4.7. Let E in Ys,s(C,) be such that

1 if p>95;

vAE)<{ vp=

Cp-1/C2p) fp=2or3.
Then for every subgroup C of E of order not divisible by p, we have v,(E/C) = v,(E).
Proof. For Eyin Y (C)) and ¢ in Z,, denote by [¢ ], the multiplication by ¢ map in the formal group of Ej.

Put £’ := E/C and denote by ¢: E — E’ an isogeny with kernel C. Let X (resp. Y) be a parameter of

the formal group of E (resp. E’), such that for any (p—1)-th root of unity ¢ € Z,, we have [¢]g(X) =¢X

(resp. [¢]e(Y) = ¢Y); see [Katz 1973, Lemma 3.6.2(2)]. Let w be a differential form in Q}E/o,, (E)
whose expansion in the parameter X is of the form

[e.e]
w= (1 + ZanX")dX,

n=1
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where a, € O, for all n > 1. Then, by [loc. cit., Proposition 3.6.6] we have

[Ple(X) = pX +aXP + ) cuX"P7DH,

m>2

where ¢,, € O, for all m > 2 and a € O, satisfies
a=A,1((E,w)0,/p0,) mod pO,, (4-5)
where (E, w)o,/po, denotes the base change of (E, w) to Op/pO,,. Similarly,

[Pl (Y)=pY +a'¥Y" + Z ¢, ymp=hHl

m>2

where ¢, € O, for all m > 2 and a’ € O, satisfies, for some differential form " of Q}E, /O,,(E Y,
d' = A, 1(E,)o,/p0,) mod pO,. (4-6)

Since the order of Ker(¢) = C is not divisible by p, the isogeny ¢ induces an isomorphism of formal
groups of the form

X)) =) 1, X",
n=1

where 7, € O, for all n > 1. Since ¢(X) is invertible, we must have 7, € O;. By the identity
[Plerod =@ olple we get
PX+0X*+6X 4+ ) +d X +nXP+6BX+ )P+
=h(pX+aXP+--)+n(pX+aXP 4+ )+
Comparing the coefficients of X”, we get
pty+d't] =ta+i,p”.

Using that #; € O; we obtain

ord,(a") = ordp(a'tlp_l) =ord,(a + tl_ltp(pp - p)). 4-7

In the case p > 5, (4-5) implies ord,(a —E,_1(E, w)) > 1, so by our hypothesis v,(E) < 1 we have
ord,(a) = v,(E) < 1. Combined with (4-7), this implies ord,(a’) = ord,(a) = v,(E) < 1. Finally, by
(4-6) we have ord,(a’ —E,_{(E’, ")) > 1, s0 v,(E") = ord,(a’) = v,(E). This proves the lemma in
the case p > 5. For the case p =2 or 3, (4-5), (4-6), (4-7), our hypothesis v,(E) < (2p —1)/(2p) and
Proposition A.1 imply in a similar way

2p—1
ord,(a) = v,(E) < 192 , ordy(@)=ordy(a) and v,(E")=ord,(a).
p

This completes the proof of the lemma. U
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Proof of Proposition 4.5. By the multiplicative property of Hecke correspondences (2-6) and Lemma 4.7,
it is sufficient to consider the case ng = 1. Moreover, in view of (2-5) and the recursive definition of T,
for m > 2, it is sufficient to consider the case m = 1. For E in Yy,ps(C,) satisfying v,(E) < p/(p + 1),
this is given by (4-3) and (4-4) in Lemma 4.6, together with the fact that deg(7T,(E)) = p + 1. Finally,
for E in Ygps(C,) satisfying 0,(E) = p/(p + 1) the desired statement follows from Lemma 4.6(i). This
completes the proof of the proposition. U

4C. Proof of Theorem 4.1. The proof of Theorem 4.1 is below, after a couple of lemmas.

Lemma 4.8. Let D < 0 be a discriminant and let E and E’ be in supp(Ap). Then, for every integer

m > 1 there exists an isogeny E — E' of degree coprime to m.

Proof. Denote by d and f the fundamental discriminant and conductor of D, respectively, and fix a field
isomorphism C, >~ C. Since E and E’ are CM with ring of endomorphisms isomorphic to Oy, ¢, we can
find proper fractional Oy, r-ideals a and a’ in Q(+/D) for which we have the complex uniformizations
E(C)~C/aand E’'(C) ~ C/d’. Then there is a natural identification

i Hom(E,E') > da'={reC:raCd}.

Without loss of generality, assume o’ C a, and choose Z-generators « and S of the ideal a’'a™! of O, f-
Then

f@,y) = (ax —By)(ax —By)/[04 s :d'a”"]

is a positive definite primitive binary quadratic form with integer coefficients and discriminant d [Cox
2013, Theorem 7.7 and Exercise 7.17]. Moreover, there are integers xo and yg such that f(xg, yo)
is coprime to m [loc. cit., Lemma 2.25]. If we denote by ¢ the isogeny in Hom(E, E’) satisfying
Ao :=t(¢o) = axg — Byo, then

deg(¢o) = #Ker(¢o)
=[a": Aoa]
=[da: 2004 ]
=104, 1 : 2004,£1/[O0u,r : a'a ']
= horo/[O4, 1 da™ 1]
= f(xo0, Y0)-

This proves that deg(¢o) is coprime to m, and completes the proof of the lemma. (I

The following lemma is analogous to [Coleman and McMurdy 2006, Lemma 4.8], which concerns p >3
in the context of certain modular curves of level bigger than 1. See also [Gross 1986, Proposition 5.3].
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Lemma 4.9. Let D be a p-supersingular discriminant and m > 0 the largest integer such that p™ divides
the conductor of D. Then for every E in supp(Ap) we have

% -p™ if p ramifies in Q(~/D);
p/(p+1)-p~™ if pisinertin Q(~/D).J
Proof. Let d be the fundamental discriminant of D and f > 1 the integer such that the conductor of D is
equal to p™ f, so D =d(fp™)? and f is not divisible by p. By Lemmas 4.7 and 4.8 with m = p, we
deduce that for E in supp(A p) the number 9, (D) := 1, (E) is independent of E. By Zhang’s formula (2-9)
with f = p™ it follows that there exists an isogeny of degree f from some elliptic curve in supp(A gp2m)

ﬁp(E) = {

to an elliptic curve in supp(Ap). We conclude from Lemma 4.7 that v,(D) = v, (dp*™). Thus, it is
enough to prove the lemma in the case where f = 1.

We start with m =0 and m = 1. By (2-11) with f =1 and Proposition 4.5 with m =1 and ng = 1, we
have
{0,(d), 0,(dp?)} if p ramifies in Q(/d);
{0,(dp?) if p is inert in Q(V/d).

From the definition of T; we have that p/(p + 1) is the only value of x in ]0, p/(p + 1)] such that T (x)

supp(T1(0p(d))) = {

is supported on a single point. We conclude that if p is inert in @(\/3), then ¥,(d) = p/(p+1) and
therefore v, (dp*) = 1/(p+1). On the other hand, % is the only value of x in ]0, p/(p + 1)] satisfying
x € supp(Ti(x)). So, if p ramifies in @(+/d), then 9,(d) = % and therefore 9,(dp?) = 3p~'. This
completes the proof of the lemma when m =0 and m = 1. Assume m > 2 and note that by (2-12) with
f =1 and by Proposition 4.5 with ng =1,

supp((Tm — Tm—1)(3)) if p ramifies in Q(V/d);

~ 2my\y __
opdp™) = {supp((’tm —Tu ) (p/(p+ 1) if pis inertin Q(WA),

From the definition of T,,, we see that the right-hand side contains % - p~™ if p ramifies in Q(/d)
and p/(p+1)- p~™ if p is inert in Q(v/d). This proves ﬁp(dpz’") = % - p~"™ in the former case and

Up,(d p¥™) = p/(p+1)- p~™ in the latter, and completes the proof of the lemma. (Il

Proof of Theorem 4.1. To prove (i), note that by Proposition 4.3 there is m > 0 so that 0,(B(r)) C
Ip/(p+1)-p™™, p/(p+1)]. Then by Lemma 4.9 for every p-supersingular discriminant D < 0 satisfying
ord,(D) > 2m + 3 we have supp((0,)«(Ap)) N,(B(r)) = &, and therefore deg(Ap|p()) = 0. On
the other hand, if D is a p-ordinary discriminant, then supp(A p) C Y4a(C,) is disjoint from B(r), and
therefore deg(Ap|g(-)) = 0. This completes the proof of ().

To prove (ii), note that by Proposition 4.3 there is r in ]0, 1[ so that

o, ([z P F]) < BOO.

IWhen D = -3 (resp. D = —4) is p-supersingular we have j(E) = 1728 (resp. 0) and v, (E) = 00, so in this formula we
cannot replace the projection 9, by the valuation vj,. Compare with [Coleman and McMurdy 2006, Lemma 4.8].
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Then by Lemma 4.9 for every p-supersingular discriminant D < 0 satisfying ord, (D) < m we have
supp((0,)«(Ap)) S [% -p~ ™, p/(p+ 1)] and therefore supp(Ap) € B(r). This completes the proof of
(ii) and of the theorem. U

Proof of Theorem A. In the case where all the discriminants in the sequence (D,)}2 , are p-ordinary (resp.
p-supersingular), Theorem A is a direct consequence of Theorem 3.5(ii) (resp. Theorem 4.1), together
with (2-8) and Lemma 2.3. The general case follows from these two special cases. O

5. Hecke orbits

The goal of this section is to prove Theorem C on the asymptotic distribution of Hecke orbits. The proof
is divided into three complementary cases, according to whether the starting elliptic curve class has bad,
ordinary or supersingular reduction. These are stated as Propositions 5.1, 5.2 and 5.6 in Sections 5A, 5B
and 5C, respectively. In each case we prove a stronger quantitative statement.

SA. Hecke orbits in the bad reduction locus. In this section we prove a stronger version of the part of
Theorem C concerning the bad reduction locus, which is stated as Proposition 5.1 below. We start by
recalling some well-known results on the uniformization of p-adic elliptic curves with multiplicative
reduction. See [Tate 1995] for the case of elliptic curves over complete discrete valued field, and [Roquette
1970] for the case of complete valued fields (see also [Silverman 1994, Chapter V, Theorem 3.1 and
Remark 3.1.2]).

Let z be in D(0, 1)* :={z' € C, : 0 < |Z’|, < 1}. We obtain, by the specialization ¢ = z in the Tate
curve, an elliptic curve Tate(z) over C, whose j-invariant satisfies

|j (Tate(z))|p = lz[;" > 1, (5-1)

see (4-1). This defines a bijective map

D(0, 1)* — Ypaa(Cp)

z > Tate(z).

Moreover, for each z € D(0, 1)* there exists an explicit uniformization by C7 of the set of C,-points
of Tate(z). This uniformization induces an isomorphism of analytic groups ¢;: C;/ 7% — Tate(z)(C )
see [Tate 1995, Theorem 1] for details. This allows us to give, for each integer n > 1, the following
description of T, (Tate(z)). Note that for each positive divisor k of n and each £ € D(0, 1)* satisfying
0k = 72k the set

Che:={aeCy:a"*et?)/’ (5-2)
is a subgroup of order n of C7/ zZ. Tt is the kernel of the morphism of analytic groups C,/ - C, Y

induced by the map a — a/*. Precomposing this morphism with @ ! and then composing with ¢;, we
obtain an isogeny Tate(z) — Tate({) of degree n whose kernel is ¢,(C, ¢). Since every subgroup of order
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n of C; /7% is of the form (5-2), we deduce that

T,(Tate(z)) = Y Tate(t). (5-3)

k>0,k|n
pk—gn/k

In the case where E is in Y3,4(C,), Theorem C is a direct consequence of the following result together
with (2-1), (2-2) and Lemma 2.3.

Proposition 5.1. Let z in D(0, 1)* and R > 1 be given. Then, for every ¢ > 0 there exists C > 0 such

that for every integer n > 1 we have

deg(T,,(Tate(z))| p=(o.x)) < Cn'/?d(n).

Proof. Set C := \/— log(|z|,)/log(R) and let n > 1 be an integer. By (5-1), for a positive divisor k of n
and £ € D(0, 1)* with £¢ = /¥ we have

_ _ 2
[Tate(0)], = [e],," = |zl,"/*".
Noting that |Z|;n/k2 > R is equivalent to k < Cn'/?, from (5-3) we deduce

deg(T,(Tate(x)p=o.r) = D k<Cn'd(n).
k>0,k |n
0<k<C/n

This completes the proof of the proposition. (I

5B. Hecke orbits in the ordinary reduction locus. The goal of this section is to prove the following
result describing, for an elliptic curve E in Y,q(C,), the asymptotic distribution of the Hecke orbit
(T,(E))o2 . In the case where E is in Y4q(Cp), Theorem C with n = p™ny is a direct consequence of
this result together with (2-1) and Lemma 2.3.

Proposition 5.2. Let D be a residue disc contained in Yq(Cp,) and let B be a disc of radius strictly less
than 1 contained in Yora(Cp). Then for every & > 0 there is a constant C > 0 such that for every E in D
and all integers m > 0 and ng > 1 such that ny is not divisible by p, we have

deg(Tpmny(E)|B) < C(m + ng,.

To prove Proposition 5.2 we use the multiplicative property of the Hecke correspondences, see (2-6)
in Section 2B. We first treat the case ng = 1 (Propositions 5.3) and the case m = 0 (Propositions 5.4)
separately. The proof of Proposition 5.2 is given at the end of this section.

Proposition 5.3. Let ¢ in [_Fp be the j-invariant of an ordinary elliptic curve, denote by r the minimal
period of ¢ under the Frobenius map z — z” and put O := Ulr;(; D(P"). Then for every E in D(¢) and
every integer m > 1, we have

supp(Tpn (E)) < O. (5-4)
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Moreover, for every disc B of radius strictly less than 1 contained in O there is a constant C| > 0 such

that for every E in O and every integer m > 1, we have
deg(Tpm(E)|p) < Cim. (5-5)

Proof. The inclusion (5-4) is a direct consequence of Proposition 3.4 and (3-7). To prove (5-5), let e be
an ordinary elliptic curve with j-invariant ¢, for every integer i > 0 put z; :=t' (e1) and for every integer
i <—1leti’ be the unique integer in {0, ..., r — 1} such that i —i’ is divisible by r and put z; := z;/. Note
that for all nonnegative integers a, b, every integer i and every point z in D(z;, 1), the set t=4(t2(2)) is
contained in D(z;4p—4, 1). Let ¢ in O, 1[ be such that B is contained in B(c) := Uf;é D(z;,c), let p
and k. be given by Lemma 3.7 and let i; > 0 be a sufficiently large integer so that ck!! < p.

Fix E in Uf;é D(z;,1) and let m > 1 be a given integer. Without loss of generality we assume
E € D(zp, 1). We treat the cases m < i| and m > i} separately. If m < iy, then we have

deg(Tpn (E)|B(c)) < deg(Tpn(E)) =

Now, assume m > iy. If for every i in {0, ..., m} the set t~"~D (¢! (E)) is disjoint from D(z2i_n, ¢), then

deg(Tym (E) (o)) = Y _ deg((t*) "~ (£ (E)D|D(zyy_p.cr) =0
i=0

So we assume this is not the case and denote by ig the least integer i in {0, . .., m} such that t~ =D (E))
contains a point Eq in D(z2i_n, ¢). Note that by Lemma 3.7(iii) the point E; := t'1 (E) satisfies

i
|E1 — Z2ig—m+ir | p S ekt < p,

s0 it is in D(22iy—m+i;» P)-
If m <iy+1i;, then we have

m—ip+1
p o+l _

m o " . 1 .
deg(Tym (E)| (o) = Y _ deg(t)" ([ (E))) < Y p" ' = o1 =P+,

i=ip i=ip
Suppose m > iy + i1, and let i be an integer satisfying io <i < m — i;. Noting that for every E’ in
t~m=D (¢ (E)) we have
degn-i (E') = deggm-i-i (¢ (E")) deg,i, (E'),
we obtain

)" ([ (E)]) = > degn-i-i (E") (") ([E")). (5-6)

Euet—(m—i—il)(ti (E))

On the other hand, for every z in ¢t~ (¢!(E)) contained in D(z2i_n, ¢), we have by Lemma 3.7(iii)
and our choice of iy,

[t'1(2) — 22i—miy | p < kb < p,
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sot''(z) € D(z2i—m+i,, p). Since for such z we have
tmfifl'] (til (Z)) — tl(E) — tmfifil (t2i72i0(E1))

and by Lemma 3.7(ii) the map ¢"~'~"1 is injective on D(22; _mi,» p), We conclude that ¢! (z) = > =20 (E).
Since we also have
degm-i—i, (7 720(E)) =1

by Lemma 3.7(ii), when we restrict (5-6) to D(z2;—,, c) we obtain

" E) DDy o) = E)UEHED DD i)
and therefore
deg(t*)" " ([t (E)])| D(zyy_p.c)) < deg((¢*) 1 ([t 20 (ED)])) = p™t.

Together with Proposition 3.4 and our definition of iy, this implies

m—ij—1 m
deg(Tyn (E)|B(o) < Y, deg(t")" ™ ([ (E)DIp(y_p0)+ Y, deg(@)" (I (E)])

m
<p'(m—ip—i)+ Z P

i=m—i
< p"(m+1).
This completes the proof of Proposition 5.3 with C; = 2p''. U

Proposition 5.4. Let D and D’ be residue discs contained in Yord(C,). Then for every € > 0 there is a
constant Cy > 0 such that for every E in D and every integer n > 1 that is not divisible by p, we have

deg(T,(E)|p) < Con®.
To prove this proposition we first establish an intermediate estimate.

Lemma 5.5. Let e and ¢’ be ordinary elliptic curves over [_Fp, and for each integer n > 1 denote by
Hom,, (e, ') the set of isogenies from e to €' of degree n. Then, for every ¢ > 0 we have

#Hom, (e, ') = o(n®). (5-7)

Proof. Assume there is a nonzero element ¢y in Hom(e’, e), for otherwise there is nothing to prove. Then,
the map ¢: Hom(e, ¢’) — End(e) given by t(¢) = ¢pg o ¢ is an injection, and deg(¢(¢)) = deg(¢o) deg(¢p).
It is thus enough to prove (5-7) when ¢’ =e.

Since e is ordinary, the ring End(e) is isomorphic to an order inside a quadratic imaginary extension
K of Q. Moreover, the isomorphism can be taken such that the degree of an isogeny is the same as the
field norm of the corresponding element in K; see, e.g., [Silverman 2009, Chapter V, Theorem 3.1]. Let
d be the discriminant of K. Then Oy is the ring of integers of K, and hence it is enough to show

#{x € Oy : xx =n} =o0n®).
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Since the group of units (’);’1 is finite, this estimate follows from (2-2) and (2-13). [l

Proof of Proposition 5.4. Let e be the ordinary elliptic curve over [_Fp so that D' = D(j(e)). In view of
Lemma 5.5, it is sufficient to show that for every E in D and every integer n > 1 that is not divisible by
p we have

deg(T, (E)|p) < #Hom,(E, e). (5-8)

Since the function E +— deg(7,(E)|p’) is locally constant by Lemma 2.1, it is sufficient to establish this
inequality in the case where E is in Yq (@ ).

To prove (5-8), recall that the reduction morphism E — E induces a bijective map E[n] — E[n]; see
for example [Silverman 2009, Chapter VII, Proposition 3.1(b)]. In addition, note that for a subgroup C of
E of order n such that j(E/C) is in D', there is an isogeny E — e whose kernel is equal to the reduction
of C. This defines an injective map

{(C<E:#C=n, j(E/C) € D'} - Hom,(E, ¢),
proving (5-8) and completing the proof of the proposition. U

Proof of Proposition 5.2. Let ¢ in F,, be such that B € D(¢), let r > 1 be the minimal period of ¢ under
the Frobenius map and put O := Uf;é D(¢""). Let C; be given by Proposition 5.3 and let C; be the

r—1

maximum value of the constants given by Proposition 5.4 with D =D(¢), ..., D(? ).
Let E in D be given. By (5-4), for every E’ in supp(7,,(E)) that is not in O we have

deg(Tpn (E")|p) < deg(Tym(E)|0) = 0.
On the other hand, for every E’ in supp(7,,(E)) that is in O, we have by Proposition 5.3
deg(Tpn(E')|p) < Cim +1.
Together with (2-6) and Proposition 5.4 with D' = D(¢), ..., D(;P"_'), this implies
deg(Tpnn, (E)|p) < (Cim +1) deg(T(E)|0) < rCa(Cr+ 1)(m + Dng,.
This proves the theorem with C =rC,(C; + 1). O

5C. Hecke orbits in the supersingular reduction locus. The purpose of this section is to prove the
following result on Hecke orbits inside the supersingular reduction locus. In the case where E is in
Y5ups(Cp), Theorem C with n = p™ny is a direct consequence of this result together with (2-1) and
Lemma 2.3.

Proposition 5.6. For every e in Y, Sups(I]_:p) fix an arbitrary vy, in D(j(e)) and for every r > 0, put
Bir:= J D@.n.
eeysups(ﬁp)

Then the following properties hold:
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(i) Foreveryr in 0, 1] there is a constant C > 0 such that for every E in Yss(C,), every integer m > 0
and every integer ng > 1 that is not divisible by p, we have

deg(Tynn, (E)|B(r) < Cop(no).

(i) Foreveryryin )0, 1[ and every integer mo > 0, there is r in |0, 1[ such that for everym in {0, . .., mg}
and integer nog > 1 not divisible by p, we have for every E in B(r)

supp(Tpmn, (E)) S B(r).

The proof of this result is based on the following lemma, giving for each integer m > 0 a formula for
the correspondence T, defined in Proposition 4.5. To state this lemma, for each integer k > 0 put

p _
Xpi=——-p k and I = [Xk+1, xil,

p+1
and note that U,fio I =10, p/(p + 1)]. Moreover, for all integers k, k' > 0 denote by

A](:;{l,) Ik — Ik/ and A](c ¥ Ik —> Ik/

the unique affine bijection preserving or reversing the orientation, respectively. Note that for every k > 0

we have 1 — A,(fol) = A,((_Ol) and that for every k' > 1 we have

(D (D
PA Y = A1 (5-9)

Lemma 5.7. For each integer m > 0 denote by t,, the correspondence acting on [0, p/(p + 1)] defined

in Proposition 4.5. Then for all integers k, m > 0, we have

_[Xier i(Al(jzlz) (m—k))* ifm <k,
T I P A Dl AR e iz ke
i=m— 2i—(m— = .

Proof. Fix k > 0. We proceed by induction on m. The case m = 0 is trivial and the case m =1 is a direct
consequence of the definition given in Proposition 4.5. Let m > 2 be given and suppose that the lemma
holds with m replaced by m — 1 and by m — 2. If m < k, then by (5-9)

m— m— m
Z 4 (1 Z i1, 4 (+1 Z 4 (+1

T (Tim—1 |Ik) = Pl (A](c,Zi)—(m—k))* + Pl+ (A]((’2l‘)_(m_k)+2)* = me—lek + pl(A](cvgi)_(m_k))*,
= = i=0

which proves the induction step in the case m < k. In the case m =k + 1, using 1 — A,(fol) A,(( 0 we

have

k k+1
T (Tl 1) = (AL )+ Z P D+ Y PHALY D= prici i + (AL)s +Z PG D
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This proves the induction step in the case m =k + 1. If m =k + 2, then

k+1 k+1

1 1 1 1
T (Tettlr) = (AL s + PAL D+ Y P AL D« + ) P AG).
i=1 i=1

k+2
= (A + PAT e+ Pl + Y pPAT ).
i=2

This proves the induction step in the case m = k 4 2. Finally, if m > k + 3, then 71 (7,,—1];,) is equal to

m—k—2 m—k—2 m—1
-1 m—k 1)yn— —k—j—1 i1l —1 m—k—j—1 . +1
(A](((Y() ) ))*+ Z p (A](((J )1 ))*+ Z pj+ (A](((yj_;_)] ))*+ Z pl(A/(C,Q,')_(m_k))*
; j=0 i=m—k—1
m—
i+1 +1
+ Z Pt (Al(c,Zi)—(m—k—Z))*
i=m—k—1
m—k—1 it m—k—3 Chen m
‘l m—, 1 m— §— . +1
= > PG T e D @Y T e+ > P )
£=0 s=0 i=m—k
m—2
+1)
+p Z P(Akzz (m—k—2))
m—k—1 i=m—k—2
1Hym— k—¢ +1
= PTn— 2|11<+ Z p (A(( ) )) + Z p (A](( 2i)—(m—k))*'
£=0 i=m—k
This completes the proof of the induction step and of the lemma. |

Proof of Proposition 5.6. Let v, and (T,,)}_, be as in Proposition 4.5.

To prove (i), let r in ]0, 1[ be given. By Proposition 4.3 there is an integer £ > O such that 0, (B(r)) C
[x¢, xo]. Then the desired assertion follows from Proposition 4.5 and by the observation that by Lemma 5.7
for every x in ]0, xo] we have

deg(T ()|ixyco) <14+ p+-- -+ pb.

To prove (ii), let rg in ]O, 1[ and an integer mo > 0 be given. By Proposition 4.3 there is an integer
£ > 0 such that ,,(B(ro)) < [x¢, xo] and r in ]O, 1[ such that ﬁ;l([xg+mo, xo]) € B(r). Then the desired
inclusion follows from Proposition 4.5 by noting that by Lemma 5.7 for every x in [x;, xo] and every m
in {0, ..., mo}, we have supp(T;, (x)) S [X¢4mg» Xo]- O

Appendix A: Lifting the Hasse invariant in characteristic 2 and 3

When p equals 2 or 3 it is not possible to lift the Hasse invariant A,_; to a modular form of level one,
holomorphic at infinity, over Z(,). There are two approaches to solve this issue. On the one hand, there
are liftings of AAI' and A% in the desired space (namely, the Eisenstein series E4 and Eg). On the other
hand, considering level structures, liftings can be constructed as algebraic modular forms over Z ) of
the expected weight but higher level. In this appendix we recall both approaches, following [Katz 1973,
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Section 2.1], and give a quantitative comparison between them, embodied in Proposition A.1 below. Such
comparison is needed in Section 4B.

We start by recalling level structures. Let R be a ring and let n > 1 be an integer which is assumed to
be invertible in R. Let E be an elliptic curve over R in the sense of Section 4A. A level n structure on E
over R is an isomorphism «,, : E[n] — (Z/ nZ)? of group schemes over R.

Given an integer n > 1 and an arbitrary ring Ry where n is invertible, an algebraic modular form of
level n > 1 over Ry is a family of maps F = (Fg)ger,-alg such that for any R € Ro-Alg, the R-valued
map Fp is defined on the set of triples (E, w, ), where E is an elliptic curve over R € Ry-Alg, together
with a differential form in Q}E / R(E)’ and a level n structure. The element Fr(E, w, a,) € R must define
an assignment satisfying properties analogous to (i), (ii) and (iii) stated in Section 4A. See [Katz 1973,
Section 1.2] for further details.

When Ry contains 1/n and a primitive n-th root of unity, the g-expansions of an algebraic modular
form F of level n over Ry are defined as the elements of Z((q)) ®z R obtained by evaluating F at the
triples (Tate(q"), wcan, &4) R, consisting of the Tate curve Tate(g") (see Section SA) with its canonical
differential wcyy, regarded over Z((q)) ®z Rp, with «, varying over all level n structures of Tate(g") over
Z((q)) ®z Ry. If all of the g-expansions of F lie in Z[[g]l ®z Ro then F is called holomorphic at infinity.
For algebraic modular forms F of level one there is only one g-expansion, which coincides with the
previously defined F(q).

According to [Katz 1973, page 98], for any level 3 <n < 11 odd, there exists a lifting of A; to a
modular form of level n, weight one, holomorphic at infinity, over Z[1/n]. We define E; as any such
lifting and set n(E;) := n. Similarly, when m > 4 and 3{m, there exists a lifting of A, to a modular form
of level m, weight two, holomorphic at infinity, over Z[1/m]. We define E, as any such lifting and set
n(Ey) :=m.

The following statement is a comparison between both approaches.

Proposition A.1. Let E € Ys,s(C,) and let w be a differential form in Q}E /(91,(E )
(1) For any level n(Ey) structure o on E we have
ordy(E4(E, w)) < 3 & ordy(E}(E, w, @) < 3,

in which case ordy (E4(E, w)) = ordz(E‘l‘(E, w,a)).

(i1) For any level n(E,) structure a on E we have
ord3 (B¢(E, ) < 3 & ord3(B3(E, », @) < 3,
in which case ord3(E4(E, w)) = ord3(B3(E, 0, )).

Proof. In order to prove (i), we start by recalling the g-expansion

o.¢]
Ea(g) =14240) o3(n)q",

n=1
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obtained by setting k =4 in (4-2). Since ord,(240) =4, we have E4(¢) =1 mod 24, Now, putny :=n(E),

let £,, be a primitive n;-th roof of unity and define R := Z[1/n;, {,,]. By the definition of E; we have
E|(Tate(g""), @can, &n,) = A1(¢"") =1 mod 2Ry,

hence

E{(Tate(g""), wean, otn,) = 1 = E4(¢"") mod 2°Ry,

for any level n| structure «,, on Tate(¢"!). We conclude that the form f obtained by reducing modulo
23711 /n1] the form E4 — E‘l‘ is an algebraic modular form of weight 4, level n; over Z/23Z, whose
g-expansions over (Z/ 23Z)[§n1] vanish identically. By [Katz 1973, Theorem 1.6.1] we deduce that f = 0.
By compatibility with base change we conclude that for any Z[1/n]-algebra R and any triple (E, w, a;,)
over R we have

E4(E, 0) —E{(E, 0, 0n)) = f(E, ®, o) gy23g) =0 mod 2°R.
In particular, choosing R = O, we get
ordy(B4(E, ) —E}(E, 0, ) = 3, (A-1)

for every E € Yyps(C)), every basis w of Q}E /0, and every level n; structure o, on E. Then, (i) is a
direct consequence of (A-1) and the ultrametric inequality.

The proof of (ii) is unfortunately less straightforward. This is because the same argument used to prove
(A-1) only yields the inequality

ord3(E¢(E, w) — E3(E, 0, ap,)) > 2,

valid for any level n, := n(E,) structure a,, on E, but such inequality does not imply the desired result.
On the other hand, the above argument allows us to infer

ord3(E4(E, w) —E3(E, w, ap,)) = 1. (A-2)

In order to prove (ii) we introduce the series

Gr(t)=1+24 Z(ol(n) — 201 (g))ezm’”, T eH, (A-3)

n=1

where o} (%) is defined as zero when 7 is odd. It is known that G is a classical holomorphic modular form
of weight two for the group ['¢(2) = {g eSly,(Z):g= (3 :) mod 2}.” By [Katz 1973, Corollary 1.9.1],
G defines an algebraic modular over Z[%] of weight two and level two. This form satisfies the identity

4G3 = E¢+3E4 Ga. (A-4)

Indeed, the space of modular forms over C of weight six for 'g(2) has dimension 2, see the dimension
formulas in [Diamond and Shurman 2005, Chapter 3]. By comparing Fourier expansions, it is easy

”Up to an explicit multiplicative factor, this is denoted by G, 7 in [Diamond and Shurman 2005, Section 1.2].
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to check that Eq and E4 G, are linearly independent over C, hence they form a basis of such space.
This implies that there exist a, b € C with G% = aE¢+bE4 G,. Then, (A-4) follows at the level of
classical modular forms by computing the values of @ and b, which can be done by comparing Fourier
expansions. Finally, the fact that (A-4) holds as an identity between algebraic modular forms over Z[%]
is a consequence of [Katz 1973, Corollary 1.9.1].

We also recall the identity

EZ —E] = 1728A.

At the level of classical modular forms, see for example [Diamond and Shurman 2005, Sections 1.1
and 1.2]. Then, this identity holds at the level of algebraic modular forms by the same reasoning as before.
Given E € Yup5(C,) and a differential form o in Q}E /0, (E)', we have A(E, w) € O; since E has good
reduction. This implies

ord3(EZ(E, w) — E}(E, w)) = 3. (A-5)

By using (A-4) and (A-5), we will now prove (ii). Let o be a level n, structure on E. First, assume that
ord;(Ex(E, w, o)) < %. From (A-4) we see that the reduction modulo 3 of G, equals A,. Since the same
holds for E,, we conclude that

ord3(Ex(E, w, ) — G2(E, 0, B)) = 1, (A-6)
for any level two structure §. In particular
ord3(G2(E, , p)) = ord3 (E2(E, w, @)) < 3.

By (A-4) we have
E¢(E, w) = G2 (E, w, ,3)(4G§(E, w, B) —3E4(E, w)).

But by (A-2) and (A-6) we also have
ord; 3E4(E, ®)) = 1 +ord3(E4(E, »)) > 1 +min{1, ord3(G3(E, », B))} > ord3(G3(E, w, B)),

hence
ord3(E¢(E, w)) = ord3(G3(E, w, B)) = ord3 (B3 (E, w, @)).

This proves one implication. Let us now prove the reciprocal. We start by assuming that ord; (E¢(E, w)) < %
If ord;(E4(E, w)) < 1, then we can use (A-2), (A-5) and (A-6) to deduce that ordj (Ei(E ,w)) =
ordg(E%(E, w)) and ordg(G%(E, w, B)) = ord3(E4(E, w)). This implies

ord3(3GL(E, w, B) B4(E, w)) =1+ ord3(Eq(E, ®)) > ord3(E¢(E, w)).
By (A-4) and (A-6) we conclude

ord3(E3(E, , @)) = ord3(G3(E, w, B)) = ord3 (E¢(E, w)).
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Now, if ord3(E4(E, ®)) > 1 then (A-2) and (A-6) imply ordg(G%(E, w, B)) > 1, giving
ord;(3G2(E, o, B) B4(E, w)) > % > ord;(Ee(E, w)).

As before, we conclude ordj (Eg(E ,w, ) =ord3(Eg(E, w)). This proves the reciprocal implication and
completes the proof of the proposition. (Il

Appendix B: Eichler—Shimura analytic relation

In this appendix we further study the canonical branch # of T), that is defined on Y,;4(C,) in Section 3A.
We start extending ¢, as follows. Recall that v, denotes Katz’ valuation, defined in Section 4A. Extend
v, to Y(C)) as v, = 0 outside Yyups(Cp), and put

p
N, =1EcY(C),): E — . B-1
p { €Y(Cp) 1 vp( )<p+1} (B-1)

On N, N Ygups(Cpy), we use the definition of # in Lemma 4.6. To define ¢ at a point E in Yp,qa(C)), let z
in D(0, 1)* and let ¢, : C; /7% — Tate(z)(C p) be the isomorphism of analytic groups as in Section 5A.
Then we define

H(E):=¢.({¢"€Cy :¢P=1,neZ}/z"), and (E):=E/H(E).

Note that in the notation (5-2) of Section 5A, we have H(E) = C, ;». The map t: N, — Y(C,) so
defined is the canonical branch of T),.
The goal of this appendix is to prove the following result.

Theorem B.1 (Eichler-Shimura analytic relation). The canonical branch t of T), is given by a finite sum
of Laurent series, each of which converges on all of N,. Furthermore, for every E in N, \ Yp2a(C),) we

have
ord, (t(j(E)) — j(E)’) > 1—v,(E), (B-2)

and for every E in Y (C,) we have

t“(E)+[t(E)] ifv,(E)<1/(p+1);
t*(E) ifv,(E)>1/(p+1).

In view of (B-2), the relation (B-3) can be seen as refinement and a lift to N, of the classical Eichler—

T,(E) = { (B-3)

Shimura congruence relation; see for example [Shimura 1971, Section 7.4] or [Diamond and Shurman
2005, Section 8.7].

The proof of Theorem B.1 is at the end of this appendix. When restricted to Y:q(C,), it is a direct
consequence of Theorem 3.3 and Proposition 3.4 with m = 1. To prove (B-3) for E in Y,s(Cp), we use
Lemma 4.6. To prove this relation on Y4,q(C,), we use the results on the uniformization of p-adic elliptic
curves with multiplicative reduction, recalled in Section 5A. To prove (B-2) and that # is a finite sum of
Laurent series for p > 5, we use Theorem 3.3 in Section 3A. For p =2 and 3, we use Proposition B.2
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below, whose proof is based on the explicit formulae in [Mestre 1986, Appendice]. This result also
provides a proof of Theorem 3.3 when p =2 and 3

Note that for p = 2 and 3, the set Ysups([_Fp) consists of a single point whose j-invariant is equal to 0
and to 1728; see for example [Silverman 2009, Chapter V, Section 4].

Proposition B.2. Putj; := 0 and j3 := 1728, and consider the polynomials
kr(z) := —93-2%74+627-2% and ks(z) := 3283272 + 85708 - 337 + 1263704 - 3°.

Then for p =2 and 3, the canonical branch t of T, admits a Laurent series expansion of the form

. o0 Aﬁlp)
1) = —jp)’ +ip+kpz—ip+ Y ——0,
=l (z— ]p)

where for every n > 1 the coefficient Aﬁ,p ) isinZ and satisfies

448n ifp=2;

ord, (A > { )
y4 n % + %l’l lfp = 3’
with equality if n = 1.

To prove this proposition, we introduce some notation and recall the explicit formulae in [Mestre 1986,
Appendice]. For K = C or C,, we use j to identify Y () with [ and consider T, as a correspondence
acting on Div (). Let Yo(p), ), and B, be as in Section 2B, so that 7, = (j o)« 0 (j o B,)*. Denote by

wy: Yo(p)(E) = Yo(p)(K)

the Atkin—Lehner or Fricke involution, defined by w,(E, C):=(E/C, E[p]/C) and note that 8, =apow,,.
Identify Yy (p)(C) with the quotient I'g(p) \H and denote by 1 : H — C Dedekind’s eta function, defined by

n(r) = exp(%) 1_[(1 —exp(2rint)).
n=1

Then for p =2 or 3, the function %, : H — C defined by

£p(D) .:< () )2“/“"”
P \n(pr)

descends to a complex analytic isomorphism x,: Yo(p)(C) — C. Moreover, defining
. (z+2%3/z if p=2; 2127 if p=2;
a[)(z) = 3 3 . 6 .
(z+3)(z+3)/z it p=3, 3%/z it p=3,

we have joa, =da,0x, and x, ow, =W, ox,; see [Mestre 1986, pages 238 and 239]. It follows that,

and W, (z) = {

if we put
(z+2%)7/2? if p=2;

Pp(2) i=apow,(z) = {(z+33)(z+35)3/13 if p=3,
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then jo B, = /§ » 0 x, and therefore T), = (&)« 0 ,3; as algebraic correspondences over C. Since T,
@p and B, are all defined over Q, we have that the equality 7), = (&)« o B, also holds as algebraic
correspondences over Div(Y (C))).
The following elementary lemma is used the proof of Proposition B.2. Given r in ]0, 1[, and a Laurent
series Y o % in Z[[1]]. put
2

n=0

== supf{|A,|,r " :n >0}

r

Lemma B.3. Let §(2) in %Z[[%]] be given and put f(z) := z(1 4+ 8(z)). Then there is A(z) in %Z[[%]]
such that F (z) := z(1 + A(2)) satisfies F(f(z)) = z. If in addition for some r in 10, 1[ we have ||§||, < 1,
then | Al < 1.

Proof. We start defining recursively a sequence (A,)72, in %Z[%] such that for every integer n > 0,
"An(R) €Z[z], Ant1(2) = An(z) mod #Z[%]
and the Laurent polynomial F,(z) := z(1 4+ A, (z)) satisfies
Fu(f(2)) =z mod Z[1].

For n =0 put Ag(z) =0, so Fo(f(2)) = f(z) =z mod Z[%] Let n > 0 be an integer so that A,, is already
defined and let A in Z be the coefficient of 1/z" in F,(f(z)). Then for A, (z) := A,(z) — A/7"F!, we
have

(Fusi = F)(/( ))——;——ﬁ(ui(—a( ))")n=—ﬁ tmod — ZH
n+1 n <)) = Z"(1+5(Z))"_ o = < = o ot B ,

and therefore

Fapt(£(2) = 2= Fu(£(2) = 2+ (Fag1 = F) (£(2)) = 0 mod 5 2[ 1.

This completes the definition of the sequence (A,);° . It follows that the unique series A in %Z[[%]]
satisfying for every n > 0 the congruence

A(z) = An(z) mod = Z[[1]],

satisfies F(f(z)) = z.
To prove the last assertion, note that for every r in ]0, 1[,

o= {20+ 8() 8@ € LZ[ 1] gl <1}

is a collection of series in Z[[%]] that is closed under composition. It follows from the above construction
that, if for some r in ]0, 1[ we have ||5]|, < 1, then for every integer n > 0 the series F,, and F, o f are
both in /,. This implies that F is in /., as wanted. |
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The proof of Proposition B.2 is given after the following lemma, which is also used in the proof of
Theorem B.1.

Lemma B.4. For an arbitrary prime number p, the right-hand side of (3-3) converges to t on Yq(Cp) U
Ybad (Cp).

Proof. Let ®,(X, Y) be the modular polynomial of level p, as defined in Section 2B, so that for every z
in Y4(C,) we have ®,(z, #(z)) = 0. By Theorem 3.3, the finite sum of Laurent series on the right-hand
side of (3-3) converges on Yoq(C,) U Ypaq(C) to a function ¢ extending #, and for z in Yp,4(C,) we have
|f(z)|p = |z|§. It follows that for every z in Yp,4(C,) we have @, (z, £(z)) =0, so £(z) is in the support
of T, (z). Combining (5-1) and (5-3), we conclude that t(z) =t(2). O

Proof of Proposition B.2. Note that if we put r, := 278 and r3 := 37%/2, then for p =2 and 3 we have by
Proposition 4.3,

N,={zeCp,:lz—jplp >rp}.

For p =2 and 3, put

Note that for p = 3, we have

(2242327 —3%)? (22 —2-3%7—3%)?2

and  fs(z) = =

a3(z) =

So, for p =2 and 3 the rational map §,(z) := Z_l,ép (z) — 1 is a Laurent polynomial in %Z[%] satisfying
18,17, < 1. In particular, for every z in the set
1\7,, ={z' €C,: 17|, >rp},
we have |;§p (@Dp = 1zlp, so ,ép maps 1\7,, into itself. By Lemma B.3 there is A ,(w) in %Z[[%]] such that
Apll;, <1 and such that the map
Fy,: ]\7p — I\V]p
W Fp(w) :=w(l+ Ay(w))

is an inverse of ,épl N,

We show below that ¢ coincides with the map
(- N »—~C,
2 £(2) 1= (@p o Fp)(z—ip) +ip-
Once this is established, the proposition follows from explicit computations using the estimates,

ar(w) a3(w)

<l1for p=2, and
2—4

”Ap”r,,fL' <1for p=3.

w3 3-3/2
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By definition, for each z in N » the point £(z) is in the support of T, (z) = (ap)« 0 ,3; (z). Moreover, for
every z in Yp,4(C,) we have |f(z)|p = |z|§, so by (5-1) and (5-3) we have £(z) = t(z). Combined with
Lemma B.4, this implies that { and ¢ agree on Yorq(Cp) U Ypaa(Cp). In view of Proposition 4.3 and
Lemma 4.6, to prove that fand t agree on N, N Ysups(C,) it is sufficient to show that for every w in
N, N M, we have (&, o F,)(w)|, # |w|,/”. Note that for every w in N,, we have |F,(w)|, = |w|,. A
direct computation shows that for p =2 we have

=|w|% if 274 < Jwlp < 1;
(&2 0 F)(w)|2 § <278 if jw), =274
:2’12/|w|2 ifr2<|w|2<2’4,

and that for p = 3 we have

= |wf3 if 3732 < |wjz < 1;
(&30 F3)(w)|3 { <3792 if [w|3 =37Y%

=3"%/|lwls ifr; <|wlz3 <3732

In all the cases we have |(¢), o0 F))(w)|, # |w|;,/p. This completes the proof of ¢ = f, and of the
proposition. O

Proof of Theorem B.1. We first prove (B-2), and the assertions about the Laurent series expansion. For
p =2 and 3, these are given by Proposition B.2. Assume p > 5. For each e in Ysups([ﬁp), let j, be given
by Proposition 4.3, and define Pyps(X) =[] € Yups ([pr)(X —j.) as in the proof of this proposition. Since
the reduction modulo p of the polynomial Pgps is separable, for every e in Ygups([F,) we have that j, is in
@;m. Put S, :=j,. Denote by £ the finite sum of Laurent series in the right-hand side of (3-3) for these
choices of (B.), Ko (Fp)* It follows from Theorem 3.3 and Proposition 4.3 that ¢ converges on N, and
by Lemma B.4 that for every z in Y4,4(Cp,) U Yoa(Cp,) we have £(z) = £(z). We proceed to prove that for
every z in I\A/p = Np N Ygups(Cp) we also have t(z) = t(2).

Denote by ®,(X, Y) the modular polynomial of level p defined in Section 2B. Note that for every z
in Ypad(Cp) U Y5ra(C,) we have

®,(£(2),2) = ®,(z, £(z)) =0. (B-4)

Since £ is analytic, (B-4) holds for every z in N,,. In view of Lemma 4.6, this implies that for every E in
Np we have either vp(f(E)) = %vp(E), or

(=B fu(E)el0 1/ (p+ D
vV F(E) 12 pp(E)  ifvp(E)=1/p+1; (B-5)
—1—v,y(E) ifvy(E)€ll/(p+1). p/(p+ DL

We now prove that (B-5) holds for every E in N p- Fix e in Ysups([_Fp), and note that the function

v:10, p/(p+DINQ— Q
re—v) = inf{vp(f(E)) EeD(je)), v,(E)=r},
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extends continuously to ]0, p/(p+1)[. Thus, either (B-5) holds for every E in N, N D(j(e)), or for every
E in this set we have vp(f(E)) = %vp(E). So, to prove that (B-5) holds for every E in N, N D(j(e)) it
is sufficient to prove that it holds for some Ey in N, N D(j(e)). Choose Ep in N, N D(j(e)) such that
z0 := j(Eo) satisfies

1
0 d —j —_
< or P(ZO Je) < p+1

By Theorem 3.3 we have

~ . p

ord, (£(z0) — z§ — pk(z0)) > 1 —ordp(z0 —j.) > PR

Since ord, (z0 —j.) < %, we also have

ord, ({(z0) — i£) = p ord, (20 —je) < —2—.

e p+1
Combined with ordp(jg —jew) = 1 and ord,(pk(zp)) > 1, this implies
ord, (£(z0) — jew) = pord,(z0 — i), (B-6)

and therefore (B-5) with E = E. This completes the proof that (B-5) holds for every E in N p- In view
of (B-4), Proposition 4.3, and Lemma 4.6, it follows that for every z in N p we have 1(2) = t(2). By
Theorem 3.3 we also obtain (B-2).

It remains to prove (B-3) for an arbitrary prime number p. Note that for E in Yyq(C,) this is given
by Proposition 3.4 with m = 1, and that for E in Yp,4(C)) this follows from the combination of (5-1),
and of (5-3) with n = p. It remains to prove (B-3) for E in N »- By the considerations above, and the
proof of Proposition B.2, we have that (B-5) holds for every prime number p and for every E in N p- By
Lemma 4.6 we deduce that:

(1) ¢t maps

1
N; ::{EEY(C,,):O<UP(E)<F}

onto N »» and for every E in N » the divisor (¢] N;))*(E ) has degree p.
(2) t maps

Sp = {EGY(CP):UP(E)zm}

onto B), := Yups(Cp) \ 1\7p, and for every E in B, the divisor (t|5p)*(E) has degree p + 1.
(3) t maps A), := Np \ (N; U §)) onto itself, and for every E in A, we have (t|Ap)*(E) =[t(E)].
The proof of (B-3) is divided in the following cases:

(1) For E in B,, we have t*(E) = (t|5p)*(E) and this divisor has degree p + 1. Together with (B-4)
this implies 7),(E) = t*(E).
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(2) For E in A, we have t*(E) = (t|N1/))*(E) + (¢|4,)*(E) and this divisor has degree p + 1. As in the
previous case we conclude that 7),(E) = t*(E).

(3) For E in N1/7 US,, we have t*(E) = (t|N;,)*(E) and this divisor is of degree p. Combined with (B-4)
this implies that the divisor 7, (E) — ¢*(E) has degree 1. On the other hand, by (B-5) the point ¢(E)
is not in the support of *(E), so by (B-4) we have T (E) —t*(E) = [¢t(E)].

This completes the proof of (B-3), and of the theorem. ]
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