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p-adic distribution of CM points and Hecke orbits

I: Convergence towards the Gauss point

Sebastián Herrero, Ricardo Menares and Juan Rivera-Letelier

We study the asymptotic distribution of CM points on the moduli space of elliptic curves over Cp, as the
discriminant of the underlying endomorphism ring varies. In contrast with the complex case, we show
that there is no uniform distribution. In this paper we characterize all the sequences of discriminants for
which the corresponding CM points converge towards the Gauss point of the Berkovich affine line. We
also give an analogous characterization for Hecke orbits. In the companion paper we characterize all the
remaining limit measures of CM points and Hecke orbits.
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1. Introduction

Given an algebraically closed field K, denote by Y (K) the moduli space of elliptic curves over K. It is the

space of all isomorphism classes of elliptic curves over K, for isomorphisms defined over K. For a class E

in Y (K), the j -invariant j (E) of E is an element of K determining E completely. The map j : Y (K)→ K

so defined is a bijection. See for example [Silverman 2009] and [Lang 1973] for background on elliptic

curves.

If K is of characteristic 0, then the endomorphism ring of an elliptic curve defined over K is isomorphic

to Z or to an order in a quadratic imaginary extension of Q. In the latter case, the order only depends on

the class E in Y (K) of the elliptic curve and E is said to have complex multiplication or to be a CM point.

In this paper, the discriminant of a CM point is the discriminant of the corresponding order.∗ Moreover, a

MSC2010: primary 11G15; secondary 11F32, 11S82.
Keywords: equidistribution, elliptic curves, Hecke correspondences.

∗This notion of discriminant is not to be confused with the discriminant of a Weierstrass model of an elliptic curve [Silverman
2009, Chapter III, Section 1].
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discriminant is the discriminant of an order in a quadratic imaginary extension of Q. An integer D is a

discriminant if and only if D < 0 and D ≡ 0, 1 mod 4.

For every discriminant D, the set

3D := {E ∈ Y (K) : CM point of discriminant D} (1-1)

is finite and nonempty. So, we can define the probability measure δD on Y (K), by

δD := 1

#3D

∑

E∈3D

δE ,

where δx denotes the Dirac measure on Y (K) at x .

Throughout the rest of this paper we fix a prime number p and a completion (Cp, |·|p) of an algebraic clo-

sure of the field of p-adic numbers Qp. Our first goal is to study, for K = Cp, the asymptotic distribution of

3D as the discriminant D tends to −∞. This is motivated by the following result in the case where K is the

field of complex numbers C. Recall that, if we consider the usual action of SL2(Z) on the upper half-plane

H by Möbius transformations, then Y (C) can be naturally identified with the quotient space SL2(Z)\H.

An appropriate multiple of the hyperbolic measure on H descends to a probability measure µhyp on Y (C).

Theorem 1. For every continuous and bounded function ϕ : Y (C)→ R, we have

1

#3D

∑

E∈3D

ϕ(E)→
∫

ϕ dµhyp,

as the discriminant D tends to −∞. Equivalently, we have the weak convergence of measures

δD → µhyp,

as the discriminant D tends to −∞.

The asymptotic distribution of CM points on Y (C) was part of a family of problems studied by Linnik;

see [Linnik 1968] and also [Michel and Venkatesh 2006]. By applying a certain “ergodic method”,

Linnik proved the result above for sequences of discriminants satisfying some congruence restrictions.

In a breakthrough, Duke [1988] removed the congruence restrictions assumed by Linnik and proved

Theorem 1 for fundamental discriminants. Duke’s proof uses the theory of nonholomorphic modular

forms of half-integral weight and bounds for their Fourier coefficients, building on work of Iwaniec

[1987]. Finally, Clozel and Ullmo [2004] obtained Theorem 1 for arbitrary discriminants, by studying the

action of Hecke correspondences on CM points and combining Duke’s result together with the uniform

distribution of Hecke orbits.

1A. Convergence of CM points towards the Gauss point. Our first goal is to describe the asymptotic

distribution of CM points for the ground field K = Cp. However, it is easy to find sequences of

discriminants (Dn)
∞
n=1 for which the sequence of measures (δDn )

∞
n=1 on Y (Cp) has no accumulation

measure. A natural solution to this issue is to consider Y (Cp) as a subspace of the Berkovich affine line
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A1
Berk over Cp, using the j-invariant to identify Y (Cp) with the subspace Cp of A1

Berk. In fact, every

sequence of measures (δDn )
∞
n=1 as above accumulates on at least one probability measure with respect to

the weak topology on the space of Borel measures on A1
Berk. See Section 2D for a brief review of the

space A1
Berk and the weak topology on the space of measures on A1

Berk.

In contrast with Theorem 1, for K = Cp the measures δD on A1
Berk do not converge to a limit as

the discriminant D tends to −∞. Our first main result is a characterization of all those sequences of

discriminants (Dn)
∞
n=1 tending to −∞, such that the sequence of measures (δDn )

∞
n=1 in A1

Berk converges

to the Dirac measure at the “canonical” or “Gauss point” xcan of A1
Berk. In the companion paper [Herrero

et al. 2019] we show that in all the remaining cases the sequence (δDn )
∞
n=1 accumulates on at least one

probability measure supported on a compact subset of the supersingular locus of Y (Cp) and characterize

all possible accumulation measures.

To state our first main result, we introduce some notation and terminology. Identify the residue field of

Cp with an algebraic closure Fp of the field with p elements Fp. Recall that the endomorphism ring of

an elliptic curve over Fp is isomorphic to an order in either a quadratic imaginary extension of Q or a

quaternion algebra over Q. In the former case the corresponding elliptic curve class is ordinary and it is

supersingular in the latter.

Denote by Op the ring of integers of Cp and by π : Op → Fp the reduction map. An elliptic curve

class E has good reduction if there is a representative Weierstrass equation with coefficients in Op whose

reduction is a smooth curve. Such reduction determines an elliptic curve defined over Fp, whose class Ẽ

only depends on E and is the reduction of E . Moreover, E has ordinary (resp. supersingular) reduction

if Ẽ is ordinary (resp. supersingular). An elliptic curve has good reduction precisely when j (E) is in Op

and when this is not the case E has bad reduction. The moduli space Y (Cp) is thus partitioned into three

pairwise disjoint sets: The bad, ordinary and supersingular reduction loci, denoted by Ybad(Cp), Yord(Cp)

and Ysups(Cp), respectively. Using j : Y (Cp)→ Cp to identify Y (Cp) and Cp, we thus have the partition

Op = Yord(Cp)⊔ Ysups(Cp).

Moreover, if we denote by Ysups(Fp) the finite subset of Y (Fp) of supersingular classes, then Ysups(Cp)=
π−1(Ysups(Fp)) is a finite union of residue discs of Op. Note that Yord(Cp) is a union of infinitely many

residue discs of Op.

Every CM point E has good reduction and the reduction type only depends on the discriminant D of

E , as follows:

(i) If p splits in Q(
√

D), then E has ordinary reduction.

(ii) If p ramifies or is inert in Q(
√

D), then E has supersingular reduction.

See [Deuring 1941] or [Lang 1973, Chapter 13, Section 4, Theorem 12]. We call a discriminant D

p-ordinary in the first case and p-supersingular in the second. Moreover, we define

|D|p - sups :=
{

0 if D is p-ordinary;
|D|p if D is p-supersingular.
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Theorem A. Let (Dn)
∞
n=1 be a sequence of discriminants tending to −∞. Then we have the weak

convergence of measures

δDn → δxcan as n → ∞ if and only if |Dn|p - sups → 0 as n → ∞.

For readers unfamiliar with the Berkovich affine line, we give a concrete formulation of the convergence

of measures in Theorem A in terms of Cp only, see Lemma 2.3(ii) in Section 2D.

We obtain Theorem A as a direct consequence of quantitative estimates in the cases where all the

discriminants in (Dn)
∞
n=1 are p-ordinary (Theorem 3.5 in Section 3B) or p-supersingular (Theorem 4.1

in Section 4). Note that in the former case Theorem A asserts that δDn → δxcan weakly as n → ∞. The

following stronger statement is a direct consequence of our quantitative estimate in this case.

Corollary B (ordinary CM points are isolated). Every disc of radius strictly less than one contained in

Yord(Cp) contains at most a finite number of CM points. In particular, the set of CM points in Yord(Cp) is

discrete.

Corollary B seems to be well-known by the experts in the field, although we have not found this result

explicitly stated in the literature. See Section 1C for comments and references.

1B. Convergence of Hecke orbits towards the Gauss point. To state our next main result, we first

introduce Hecke correspondences. See Section 2B for background.

Given an algebraically closed field K of characteristic 0, a divisor on Y (K) is an element of

Div(Y (K)) :=
⊕

E∈Y (K)

ZE,

the free abelian group spanned by the points of Y (K). The degree and support of a divisor D =
∑

E∈Y (K) nE E in Div(Y (K)) are defined by

deg(D) :=
∑

E∈Y (K)

nE and supp(D) := {E ∈ Y (K) : nE 6= 0},

respectively. If in addition deg(D)≥ 1 and for every E in Y (K) we have nE ≥ 0, then

δD := 1

deg(D)

∑

E∈Y (K)

nEδE

is a probability measure on Y (K).

For n in N := {1, 2, . . .} the n-th Hecke correspondence is the linear map

Tn : Div(Y (K))→ Div(Y (K))

defined for E in Y (K), by

Tn(E) :=
∑

C≤E of order n

E/C,
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where the sum runs over all subgroups C of E of order n. Note that supp(Tn(E)) is the set of all E ′ in

Y (K) for which there is an isogeny E → E ′ of degree n. Moreover,

deg(Tn(E))=
∑

d | n,d>0

d ≥ n,

so deg(Tn(E))→ ∞ as n → ∞.

In the case K = Cp, it is easy to see that for each E in Ybad(Cp) (resp. Yord(Cp), Ysups(Cp)), we have

that for every n in N the divisor Tn(E) is supported on Ybad(Cp) (resp. Yord(Cp), Ysups(Cp)).

Theorem C. For every E in Ybad(Cp)∪ Yord(Cp), we have the weak convergence of measures

δTn(E) → δxcan as n → ∞.

Moreover, for E in Ysups(Cp) and a sequence (n j )
∞
j=1 in N tending to ∞, we have the weak convergence

of measures

δTn j (E)
→ δxcan as j → ∞ if and only if |n j |p → 0 as j → ∞.

When restricted to the case where E is in Ybad(Cp), the above theorem is [Richard 2018, Théorème 1.2].

To the best of our knowledge, Theorem C gives the first example where equidistribution of orbits fails

for correspondences of degree bigger than one, see Section 2B for a description of Hecke correspondences

as algebraic correspondences. In the complex case, pluripotential theory has been used successfully to

prove equidistribution for correspondences satisfying a mild “nonmodularity” condition, see for example

[Dinh et al. 2020].

The uniform distribution of Hecke orbits on Y (C) is a well-known result from the spectral theory of

automorphic forms; see [Clozel and Ullmo 2004, Théorème 2.1], and also [Clozel et al. 2001; Eskin and

Oh 2006] for extensions and [Linnik and Skubenko 1964] for related work.

Remark 1.1. In [Clozel et al. 2001; Eskin and Oh 2006], the starting point is an algebraic group

G over Q and a congruence subgroup Ŵ of G(Q), and the ambient space is X = Ŵ\G(R). In this

context, there is a natural notion of Hecke correspondences on X . The aforementioned works establish

the uniform distribution of every orbit of such Hecke correspondences under general hypotheses. In

particular, the Q-structure of G allows for p-adic variants of such results, see, e.g., [Clozel et al. 2001,

Remark (1) in page 332]. In the particular case G = SL2 and Ŵ = SL2(Z), there is a natural isomorphism

Y (C) ≃ SL2(Z)\ SL2(R)/SO2(R) and the natural projection from X to Y (C) takes Hecke orbits as in

[Clozel et al. 2001; Eskin and Oh 2006] to Hecke orbits on Y (C) as defined in this paper. The uniform

distribution of Hecke orbits on Y (C) is thus a special case of [Clozel et al. 2001, Theorem 1.6], see also

[Eskin and Oh 2006, Theorem 1.2]. However, this strategy breaks down for Hecke orbits on Y (Cp),

because there is no analogous uniformization of Y (Cp) as a double quotient. Moreover, Theorem C

shows that there is no uniform distribution of Hecke orbits on Y (Cp). Indeed, Theorem C and our results

in the companion paper [Herrero et al. 2019] show that, in contrast with [Clozel et al. 2001; Clozel and
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Ullmo 2004; Eskin and Oh 2006], the asymptotic distribution of (Tn j (E))
∞
j=1 on Y (Cp) depends on both

the starting point E and the sequence of integers (n j )
∞
j=1.

1C. Notes and references. After the first version of this paper was written, we learned about the related

work of Goren and Kassaei [2017]. For a prime number ℓ different from p, Goren and Kassaei [2017]

studied the dynamics of the Hecke correspondence Tℓ acting on the moduli space of elliptic curves with

a marked torsion point of exact order N coprime to pℓ. So, on one hand [Goren and Kassaei 2017] is

more general than this paper in that it considers modular curves with level structure. On the other hand,

[loc. cit.] is more restrictive in that it only considers the dynamics of a single Hecke correspondence of

prime index different from p, as opposed to the dynamics of the whole algebra of Hecke correspondences

considered here. Note also that we use Cp as a ground field, which is natural to study equidistribution

problems, whereas [loc. cit.] is restricted to algebraic extensions of Qp. In spite of the fact that both papers

study the dynamics of similar maps, there is no significant intersection between the results of [loc. cit.]

and those of this paper. See also [Herrero et al. 2019] for our additional results in the supersingular locus

and the corresponding comparison with the results of [Goren and Kassaei 2017]. Finally, our results on

the dynamics of the canonical branch t of Tp (defined on Yord(Cp) in Section 3A) on ordinary CM points

show that this map gives rise to a “(p+1)-volcano” in the sense of [loc. cit., Section 2.1], see Remark 3.6.

Corollary B seems well-known among experts in the field, although we have not found this result

explicitly stated in the literature. Even for higher-dimensional abelian varieties it can be deduced from

the explicit characterization of the Serre–Tate local coordinates of CM points as torsion points of the

multiplicative group, see, e.g., [de Jong and Noot 1991, Proposition 3.5]. Our approach makes no use of

these local coordinates, and is based on rigid analytic properties of the canonical branch t of Tp. For CM

elliptic curves with ordinary reduction, the connection between these two approaches is well-known, see,

e.g., [Dwork 1969, Section 7d)].

Since every CM point of Y (Cp) is in the bounded set Op, Theorem A yields the following stronger

statement: For every continuous function ϕ : Y (Cp)→ R and every sequence of discriminants (Dn)
∞
n=1

tending to −∞ and satisfying |Dn|p - sups → 0 as n → ∞, we have

1

# deg(3Dn )

∑

E∈3Dn

ϕ(E)→
∫

ϕ dδxcan as n → ∞.

Although our formulation of Theorem 1 seems stronger than the one in [Clozel and Ullmo 2004,

Théorème 2.4], it is easy to see that it is equivalent, see for example [Bilu 1997, Lemma 2.2].

1D. Strategy and organization. We now explain the strategy of the proof of Theorems A and C and

simultaneously describe the organization of the paper.

After some preliminaries in Section 2, we proceed to the proof of Theorem A in Sections 3 and 4.

Theorem A is a direct consequence of stronger quantitative estimates in two separate cases: The case

where all the discriminants in (Dn)
∞
n=1 are p-ordinary and the case where they are all p-supersingular.
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The p-ordinary case is treated in Section 3. There are two main ingredients, both of which are related

to the “canonical branch t” of Tp that is defined in terms of the “canonical subgroup” in Section 3A; see

also Appendix B. The first main tool is a simple formula, for every integer m ≥ 1, of Tpm on Yord(Cp) in

terms of t (Proposition 3.4 in Section 3A). To establish this formula we use results of Tate and Deligne

to show that t is rigid analytic. The second main tool is the interpretation of p-ordinary CM points as

preperiodic points of t on Yord(Cp) (Theorem 3.5(i)), which is based on Deuring’s work on the canonical

subgroup. Our quantitative estimate in the p-ordinary case is stated as Theorem 3.5(ii) in Section 3B and

its proof is given at the end of this section.

The p-supersingular case is technically more difficult. We use Katz–Lubin’s extension of the theory

of canonical subgroups to “not too supersingular” elliptic curves and “Katz’ valuation”. We recall

these in Section 4A, where we also give an explicit formula relating Katz’ valuation to the j-invariant

(Proposition 4.3). We use Katz’ valuation to give a concrete description of the action of Hecke cor-

respondences on the supersingular locus in terms of a sequence of correspondences (τm)
∞
m=1 acting

on the interval [0, p/(p + 1)] (Proposition 4.5 in Section 4B). To do this, we rely on results in [Katz

1973, Section 3] and, for p = 2 and 3, on certain congruences satisfied by certain Eisenstein series, see

Proposition A.1 in Appendix A. Our quantitative estimate in the p-ordinary case is stated as Theorem 4.1

at the beginning of Section 4 and its proof is given at the end of this section.

In Appendix B we formulate some of our results on the canonical branch t of Tp, as a lift of the

classical Eichler–Shimura congruence relation (Theorem B.1).

The proof of Theorem C splits in three complementary cases, according to the reduction type of E .

In each case we obtain a stronger quantitative estimate. For the bad reduction case we use Tate’s

uniformization theory (Proposition 5.1 in Section 5A). Thanks to the multiplicative properties of Hecke

correspondences (2-6), the ordinary reduction case (Proposition 5.2 in Section 5B) is reduced to two

special cases: The asymptotic distribution of (Tpm (E))∞m=1 (Proposition 5.3) and, for a sequence (n j )
∞
j=1

of integers in N that are not divisible by p, the asymptotic distribution of (Tn j (E))
∞
j=1 (Proposition 5.4).

The former case is obtained using the tools developed in Theorem 3.5 and the latter is reduced to the

study of the action of Hecke correspondences on ordinary elliptic curves in Y (Fp) and is elementary.

Finally, the supersingular case (Proposition 5.6 in Section 5C) is obtained from the description of the

action of Hecke correspondences on the supersingular locus in Section 4B and an explicit formula for the

correspondences (τm)
∞
m=1 (Lemma 5.7).

2. Preliminaries

Recall that N = {1, 2, . . .}. Given n in N, denote by

d(n) :=
∑

d>0,d | n

1 and σ1(n) :=
∑

d>0,d | n

d

the number and the sum of the positive divisors of n, respectively. We use several times the inequality

σ1(n)≥ n, (2-1)
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and the fact that for every ε > 0 we have

d(n)= o(nε); (2-2)

see for example [Apostol 1976, page 296].

For a set X and a subset A of X , we use 1A : X → {0, 1} to denote the indicator function of A.

For a topological space X , denote by δx the Dirac mass on X supported at x . It is the Borel probability

measure characterized by the property that for every Borel subset Y of X we have δx(Y )= 1 if x ∈ Y and

δx(Y )= 0 otherwise.

Normalize the norm |·|p of Cp so that |p|p = 1/p and denote by ordp : Cp → R∪{+∞} the valuation

defined by ordp(0)= +∞ and for z in C×
p by ordp(z)= − log|z|p/log p. Denote by Mp the maximal

ideal of Op and recall that we identify Op/Mp with Fp and that π : Op → Fp denotes the reduction

morphism. For ζ in Fp, denote by D(ζ ) := π−1(ζ ) the residue disc corresponding to ζ .

2A. Divisors. A divisor on a set X† is a formal finite sum
∑

x∈X nx x in
⊕

x∈X Zx . In the special case

where for some x0 in X we have nx0 = 1 and nx = 0 for every x 6= x0, we use [x0] to denote this divisor.

When there is no danger of confusion, sometimes we use x0 to denote [x0].
Let D =

∑

x∈X nx [x] be a divisor on X . The degree and the support of D are defined by

deg(D) :=
∑

x∈X

nx and supp(D) := {x ∈ X : nx 6= 0},

respectively. The divisor D is effective, if for every x in X we have nx ≥ 0. For A ⊆ X , the restriction of

D to A is the divisor on X defined by

D|A :=
∑

x∈A

nx [x].

For a set X ′ and a map f : X → X ′, the push-forward action of f on divisors f∗ : Div(X)→ Div(X ′) is

the linear extension of the action of f on points. In the particular case in which X ′ = G is a commutative

group, also define f : Div(X)→ G by

f (D) :=
∑

x∈X

nx f (x) ∈ G.

If X is a topological space and D is an effective divisor satisfying deg(D)≥1, then δD := 1
deg(D)

∑

x∈X nxδx

is a Borel measure on X . Note that in the case G = R and f is measurable, we have
∫

f dδD = f (D)

deg(D)
.

Since we are identifying Y (Cp) with Cp via j , we identify divisors on Y (Cp) and on Cp accordingly.

†We only use this definition in the case X is one of several types of one-dimensional objects. For such X , the notion of divisor
introduced here can be seen as a natural extension of the usual notion of Weil divisor.
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2B. Hecke correspondences. In this section we recall the construction and main properties of the Hecke

correspondences. For details we refer the reader to [Shimura 1971, Sections 7.2 and 7.3] for the general

theory, or to the survey [Diamond and Im 1995, Part II].

Let K be an algebraically closed field of characteristic 0. First, note that for every integer n ≥ 1 and

divisor D in Div(Y (K)), we have

deg(Tn(D))= σ1(n) deg(D).

Moreover, for n = 1 the correspondence T1 is by definition the identity on Div(Y (K)).

We also consider the linear extension of Hecke correspondences to Div(Y (K))⊗ Q.

For an integer N ≥ 1, denote by Y0(N ) the modular curve of level N . It is a quasiprojective variety

defined over Q. The points of Y0(N ) over K parametrize the moduli space of equivalence classes of pairs

(E,C), where E is an elliptic curve over K and C is a cyclic subgroup of E of order N . Here, two such

pairs (E,C) and (E ′,C ′) are equivalent if there exists an isomorphism φ : E → E ′ over K taking C to C ′.

In particular, when N = 1, for every algebraically closed field K we can parametrize Y (K) by Y0(1)(K),

and Y0(1) is isomorphic to the affine line A1
Q

.

For N > 1, denote by 8N (X, Y ) the modular polynomial of level N , which is a symmetric polynomial

in Z[X, Y ] that is monic in both X and Y , see, e.g., [Lang 1973, Chapter 5, Sections 2 and 3]. This

polynomial is characterized by the equality

8N ( j (E), Y )=
∏

C≤E cyclic of order N

(Y − j (E/C)) for every E in Y (K). (2-3)

This implies that a birational model for Y0(N ) is provided by the plane algebraic curve

8N (X, Y )= 0. (2-4)

For each prime q, let αq , βq : Y0(q)→ Y0(1) be the rational maps over Q given in terms of moduli

spaces by

αq(E,C) := E and βq(E,C) := E/C.

In terms of the model (2-4) with N = q , the rational maps αq and βq correspond to the projections on the

X and Y coordinate, respectively. Denote by (αq)∗ and (βq)∗ the push-forward action of αq and βq on

divisors, respectively, as in Section 2A. Denote also by α∗
q the pull-back action of αq on divisors, defined

at x in Y0(1)(K) by

α∗
q(x) :=

∑

y∈Y0(q)(K)
αq (y)=x

degαq
(y)[y],

where degαq
(y) is the local degree of αq at y. This definition is extended by linearity to arbitrary

divisors. The pull-back action β∗
q of βq is defined in a similar way. Then the Hecke correspondence

Tq : Div(Y (K))→ Div(Y (K)) is recovered as

Tq = (αq)∗ ◦β∗
q = (βq)∗ ◦α∗

q ,

where the second equality follows from the first and from the symmetry of Tq .
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For an arbitrary integer n ≥ 2, the correspondence Tn can be recovered from different Tq , for q running

over prime divisors of n, by using the identities

Tqr = Tq ◦ Tqr−1 − q · Tqr−2 for q prime and r ≥ 2; (2-5)

Tℓ ◦ Tm = Tℓm for ℓ,m ≥ 1 coprime. (2-6)

We conclude this section with the following lemma used in Sections 3A and 5B.

Lemma 2.1. Let n ≥ 1 be an integer. For E in Y (Cp), the divisor Tn(E) varies continuously with respect

to E in the following sense: For every commutative topological group G and every continuous function

f : Y (Cp)→ G, the function Tn f : Y (Cp)→ G given by

Tn f (E) := f (Tn(E))

is continuous. In particular, for every open and closed subset A ⊆ Y (Cp), the integer valued map

E 7→ deg(Tn(E)|A)

is locally constant.

Proof. We first treat the case where n equals a prime number q . Let P0(X), . . . , Pq(X) be the polynomials

in Z[X ] such that

8q(X, Y )= P0(X)+ P1(X)Y + · · · + Pq(X)Y
q + Y q+1.

Let (Em)
∞
m=1 be a sequence and E0 be a point in Y (Cp), such that j (Em) → j (E0) when m tends to

infinity. Then for every k in {0, 1, . . . , q}, we have Pk( j (Em))→ Pk( j (E0)) when m tends to infinity.

It follows that the roots of the polynomial 8q( j (Em), Y ) converge to the roots of 8q( j (E0), Y ), in the

following sense: For every m in {0, 1, 2, . . .} we can find zm,0, . . . , zm,q in Cp, so that

8q( j (Em), Y )=
q

∏

k=0

(Y − zm,k),

and so that for every k in {0, 1, . . . , q} we have zm,k → z0,k when m tends to infinity, see for example

[Brink 2006, Theorem 2]. For each m in {0, 1, 2, . . .} and k in {0, 1, . . . , q}, let Em,k be the curve in

Y (Cp) with j (Em,k)= zm,k . By the definition of Tq and (2-3), we have for every m ≥ 0

Tq(Em)=
q

∑

k=0

[Em,k].

Since for every k in {0, 1, . . . , q} we have j (Em,k)→ j (E0,k) when m tends to infinity, we conclude that

for every continuous function f : Y (Cp)→ G we have

Tq f (Em)=
q

∑

k=0

f (Ek,m)→
q

∑

k=0

f (Ek,0)= Tq f (E0).

This proves that Tq f is continuous.
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We now treat the general case by using multiplicative induction, the relations (2-5) and (2-6), and the

fact that for every pair of linear maps L , L̃ : Div(Y (Cp))→ Div(Y (Cp)), every pair of integers m, m̃,

and every function F : Y (Cp)→ G, one has

(L ◦ L̃)(F)= L̃(L(F)) and (mL + m̃ L̃)(F)= mL(F)+ m̃ L̃(F). (2-7)

Denote by I the set of those integers n ≥ 1 such that for every continuous function f : Y (Cp)→ G, the

function Tn( f ) is also continuous. Clearly I contains 1, since for every function f we have T1( f )= f .

By the proof given above, I contains all prime numbers. Let n ≥ 1 be a given integer having each divisor

in I , and let q be a prime number. Let s ≥ 0 and n0 ≥ 1 be the integers such that n = qsn0, and such that

q does not divide n0. Then by the relations (2-5) and (2-6), and by (2-7), we have

Tqn( f )= Tqs+1n0
( f )= Tn0(Tqs+1( f )),

and for s ≥ 1

Tqs+1( f )= Tqs (Tq( f ))− qTqs−1( f ).

Since n0, q , qs , and qs−1 if s ≥ 1, are all in I , we conclude that Tqn( f ) is continuous, and that qn is in I .

This completes the proof of the multiplicative induction step, and of the first part of the lemma.

The second part of the lemma is an easy consequence of the first. Indeed, let A ⊆ Y (Cp) be an open

and closed subset. Then the function 1A is continuous and the first part implies that

E 7→ Tn1A(E)= 1A(Tn(E))= deg(Tn(E)|A)

is also continuous. But Tn1A has integer values, hence it must be locally constant. This completes the

proof of the lemma. �

2C. Hecke orbits of CM points and an estimate on class numbers. In this section we first recall a special

case of a formula of Zhang describing the effect of Hecke correspondences on CM points (Lemma 2.2),

which is used in Sections 3, 4 and 5B. To do this, and for the rest of the paper, for every discriminant D

we consider 3D as a divisor. We also use Siegel’s classical lower bound on class numbers of quadratic

imaginary extensions of Q, to give the following estimate used in the proof of Theorem A: For every

ε > 0 there is a constant C > 0 such that for every negative discriminant D, we have

h(D) := deg(3D)≥ C |D|1/2−ε. (2-8)

In this section we follow [Clozel and Ullmo 2004, Section 2.3], adding some details for the benefit of the

reader.

We use d to denote a negative fundamental discriminant. For each discriminant D there is a unique

negative fundamental discriminant d and integer f ≥ 1 such that D = d f 2. These are the fundamental

discriminant and conductor of D, respectively. We denote by Od, f the unique order of discriminant D in

the quadratic imaginary extension Q(
√

d) of Q and put

wd, f := #(O×
d, f /Z

×)= (#O×
d, f )/2.



1250 Sebastián Herrero, Ricardo Menares and Juan Rivera-Letelier

The integer f is the index of Od, f inside the ring of integers of Q(
√

d). Note that w−3,1 = 3, w−4,1 = 2,

and that in all the remaining cases wd, f = 1.

Recall that the Dirichlet convolution of two functions g, g̃ : N → C, is defined by

(g ∗ g̃)(n) :=
∑

d∈N,d | n

g(d)g̃

(

n

d

)

.

Given a fundamental discriminant d , denote by Rd : N → N ∪{0} the function that to each n in N assigns

the number of integral ideals of norm n in the ring of integers of Q(
√

d). Moreover, denote by R−1
d the

inverse of Rd with respect to the Dirichlet convolution.

Lemma 2.2. For every fundamental discriminant d < 0 and any pair of coprime integers f ≥ 1 and

f̃ ≥ 1, we have the relations

T f

(

3d f̃ 2

wd, f̃

)

=
∑

f0∈N, f0 | f

Rd

(

f

f0

)

3d( f0 f̃ )2

wd, f0 f̃

; (2-9)

3d( f f̃ )2

wd, f f̃

=
∑

f0∈N, f0 | f

R−1
d

(

f

f0

)

T f0

(

3d f̃ 2

wd, f̃

)

. (2-10)

If in addition f is not divisible by p, then we have

3d(p f )2 =















Tp
(3d f 2

wd, f

)

− 2
3d f 2

wd, f
if p splits in Q(

√
d);

Tp
(3d f 2

wd, f

)

− 3d f 2

wd, f
if p ramifies in Q(

√
d);

Tp
(3d f 2

wd, f

)

if p is inert in Q(
√

d),

(2-11)

and for every integer m ≥ 2 we have

3d(pm f )2 =















Tpm
(3d f 2

wd, f

)

− 2Tpm−1

(3d f 2

wd, f

)

+ Tpm−2

(3d f 2

wd, f

)

if p splits in Q(
√

d);
Tpm

(3d f 2

wd, f

)

− Tpm−1

(3d f 2

wd, f

)

if p ramifies in Q(
√

d);
Tpm

(3d f 2

wd, f

)

− Tpm−2

(3d f 2

wd, f

)

if p is inert in Q(
√

d).

(2-12)

To prove this lemma, we first record the following identity, which is also used in the proof (2-8) below

and of Lemma 5.5 in Section 5B. Let ψd be the quadratic character associated to K = Q(
√

d), which is

given by the Kronecker symbol
(

d
·
)

, and denote by 1 : N → C the constant function equal to 1. Then we

have the equality of functions

Rd = ψd ∗ 1. (2-13)

In fact, if we denote by ζ(s) the Riemann zeta function, by ζK (s) the Dedekind zeta function associated

to K , and by L(ψd , s) the Dedekind L-function associated to ψd , then the formula above is equivalent

to the factorization ζK (s) = ζ(s)L(ψd , s), whose proof can be found for example in [Cohen 2007,

Proposition 10.5.5 on page 219], or [Lang 1994, Chapter XII, Section 1, Theorem 1].
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Proof of Lemma 2.2. From the Möbius inversion formula we deduce that (2-9) and (2-10) are equivalent.

Hence, it is enough to prove (2-10). We have the following formula of Zhang

T f

(

3d

wd,1

)

=
∑

f0∈N, f0 | f

Rd

(

f

f0

)

3d f 2
0

wd, f0

, (2-14)

see for example [Clozel and Ullmo 2004, Lemme 2.6] or [Zhang 2001, Proposition 4.2.1]. Applying the

Möbius inversion formula, one obtains

3d f 2

wd, f
=

∑

f0∈N, f0 | f

R−1
d

(

f

f0

)

T f0

(

3d

wd,1

)

. (2-15)

On the other hand, note that if f and f̃ in N are coprime, then by (2-6) and (2-15), we obtain (2-10).

Finally, (2-11) and (2-12) are a direct consequence of (2-9), (2-13) and the fact that ψd(p)= 1 (resp.

0, −1) if p splits (resp. ramifies, is inert) in Q(
√

d). �

To prove (2-8), recall from the theory of complex multiplication that for a fundamental discriminant d

the number h(d) equals the class number of the quadratic extension Q(
√

d) of Q, see for example [Cox

2013, Corollary 10.20]. A celebrated result by Siegel states that for every ε > 0 there exists a constant

C > 0 such that for every fundamental discriminant d < 0 we have

h(d)≥ C |d|1/2−ε, (2-16)

see for example [Siegel 1935], or [Lang 1994, Chapter XVI, Section 4, Theorem 4]. On the other hand,

by [Lang 1973, Chapter 8, Section 1, Theorem 7] for every integer f ≥ 2 we have

h(d f 2)= wd, f

wd
h(d) f

∏

q | f, prime

(

q −ψd(q)

q

)

. (2-17)

Given ε > 0, there are C ′ in ]0, 1[ and N in N such that (q − 1)/q ≥ q−ε for every q > N and

(q − 1)/q ≥ C ′q−ε for every 2 ≤ q ≤ N . Hence, for every integer f ≥ 2 we have

∏

q | f, prime

(

q −ψd(q)

q

)

≥
∏

q | f, prime

(

q − 1

q

)

≥ (C ′)N
∏

q | f, prime

q−ε ≥ (C ′)N f −ε.

Combined with (2-16) and (2-17), this completes the proof of (2-8).

2D. The Berkovich affine line over C p and the Gauss point. We refer the reader to [Berkovich 1990]

for the general theory of Berkovich spaces, and to [Baker and Rumely 2010, Chapter 1] for the special

case of the Berkovich affine line over Cp, which is the only Berkovich space of relevance in this paper.

The Berkovich affine line over Cp, which we denote by A1
Berk, is a topological space defined as follows:

As a set, A1
Berk is the collection of all multiplicative seminorms on the polynomial ring Cp[X ] that take

values in R
+
0 and that extend the p-adic norm |·|p on Cp. Hence, a point x ∈ A1

Berk is given by a map
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x : Cp[X ] → R
+
0 satisfying for every a in Cp and for all f and g in Cp[X ],

x(a)= |a|p, x( f + g)≤ x( f )+ x(g) and x( f g)= x( f )x(g).

The topology of A1
Berk is the weakest topology such that for every f ∈ Cp[X ], the function A1

Berk → Cp

given by x 7→ x( f ) is continuous. The topological space A1
Berk is Hausdorff, locally compact, metrizable

and path-connected. It contains Cp as a dense subspace via the map ι : Cp → A1
Berk given, for z ∈ Cp and

f ∈ Cp[X ], by ι(z)( f ) := | f (z)|p. We identify divisors on Cp and on ι(Cp) accordingly.

The canonical point or Gauss point xcan of A1
Berk is the Gauss norm

N
∑

n=0

an Xn 7→ sup

{
∣

∣

∣

∣

N
∑

n=0

anzn

∣

∣

∣

∣

p
: z ∈ Op

}

= max{|an|p : n ∈ {0, . . . , N }}.

Given a ∈ Cp and r > 0, define

D(a, r) := {x ∈ Cp : |x − a|p < r};
D∞(a, r) := {x ∈ Cp : |x − a|p > r};
D(a, r) := {x ∈ A

1
Berk : x(X − a) < r};

D
∞(a, r) := {x ∈ A

1
Berk : x(X − a) > r}.

A basis of neighborhoods of xcan in A1
Berk is given by the collection of sets

A(A; R) := D(0, R)∩
⋂

a∈A

D
∞(a, R−1), (2-18)

where R > 1 and A is a finite subset of Op.

We conclude this section with the following result. Recall that a sequence of Borel probability measures

(µn)n∈N on a topological space X converges weakly to a Borel measure µ on X , if for every continuous

and bounded function f : X → R we have

lim
n→∞

∫

f dµn =
∫

f dµ;

see, e.g., [Billingsley 1968, Section 1.1].

Lemma 2.3. Let (Dn)n∈N be a sequence of effective divisors on Cp such that for every n we have

deg(Dn)≥ 1. Then, the following are equivalent:

(i) δι(Dn) → δxcan weakly as n → ∞.

(ii) For every R > 1 and every a in Op, we have for D = D(a, R−1) and D = D∞(a, R),

lim
n→∞

deg(Dn|D)

deg(Dn)
= lim

n→∞
δDn (D)= 0.

For the reader’s convenience we provide a self-contained proof of this lemma, which applies to the

Berkovich affine line over an arbitrary complete and algebraically closed field. Using that A1
Berk is
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metrizable, the lemma can also be obtained as a direct consequence of the following observations: (i) is

equivalent to the assertion that for every neighborhood U of xcan in A1
Berk we have

lim
n→∞

δDn (U)= 1.

This last statement is equivalent to the contrapositive of (ii).

Proof of Lemma 2.3. Assume that (i) holds and let R > 1 and a in Op be given. Note that the first equality

in (ii) is a direct consequence of the definitions. To prove the second equality, take a continuous function

φ : R
+
0 → [0, 1] satisfying φ(1)= 0 and φ(t)= 1 for 0 ≤ t ≤ R−1 and for t ≥ R. Let α : A1

Berk → R be

the continuous function given by α(x)= x(X − a) and put F := φ ◦α. By construction we have

F(xcan)= φ(1)= 0 and F(x)= 1 for all x ∈ D(a, R−1)∪D
∞(a, R).

Using that for z ∈ Cp we have

z ∈ D(a, R−1)⇔ ι(z) ∈ D(a, R−1) and z ∈ D∞(a, R)⇔ ι(z) ∈ D
∞(a, R), (2-19)

we get

0 ≤ δDn (D(a, R−1)∪ D∞(a, R))= δι(Dn)(D(a, R−1)∪D
∞(a, R))≤

∫

F dδι(Dn).

Since F is continuous and bounded, our hypothesis (i) implies that

δDn (D(a, R−1))→ 0 and δDn (D
∞(a, R))→ 0 as n → ∞.

This completes the proof of the implication (i)⇒ (ii).

Now, assume that (ii) holds, let F : A1
Berk → R be a continuous and bounded function and let ε > 0 be

given. Since the sets (2-18) form a basis of neighborhoods of xcan, there are R > 1 and a finite subset A

of Op such that

|F(x)− F(xcan)|< ε for all x ∈ A(A; R). (2-20)

Let R′ in ]1, R[ be fixed. From the definition of A := A(A; R), we have

A
′ := A

1
Berk \A ⊆ D

∞(0, R′)∪
⋃

a∈A

D(a, (R′)−1).

Using (2-19) and (ii) with R replaced by R′ and with a in A ∪ {0}, we obtain

deg(ι(Dn)|A′)≤ deg(ι(Dn)|D∞(0,R′))+
∑

a∈A

deg(ι(Dn)|D(a,(R′)−1))

= deg(Dn|D∞(0,R′))+
∑

a∈A

deg(Dn|D(a,(R′)−1))

= o(deg(ι(Dn))).
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Together with our choice of A(A; R), this implies

∣

∣

∣

∣

∫

F dδι(Dn) − F(xcan)

∣

∣

∣

∣

≤
∣

∣

∣

∣

F(ι(Dn)|A)− F(xcan) deg(ι(Dn)|A)
deg(Dn)

∣

∣

∣

∣

+
∣

∣

∣

∣

F(ι(Dn)|A′)− F(xcan) deg(ι(Dn)|A′)

deg(Dn)

∣

∣

∣

∣

≤ ε+ 2( sup
x∈A1

Berk

|F(x)|)deg(ι(Dn)|A′)

deg(ι(Dn)
,

and therefore

lim sup
n→∞

∣

∣

∣

∣

∫

F dδι(Dn) − F(xcan)

∣

∣

∣

∣

≤ ε.

Since ε > 0 is arbitrary, this completes the proof of the implication (ii)⇒ (i) and of the lemma. �

3. CM points in the ordinary reduction locus

The purpose of this section is to give a strengthened version of Theorem A in the case where all the

discriminants in the sequence (Dn)
∞
n=1 are p-ordinary (Theorem 3.5(ii) in Section 3B). An important

tool is “the canonical branch t” of Tp on Yord(Cp), which is defined using the canonical subgroup in

Section 3A. We use it to give, for every integer m ≥ 1, a simple formula of Tpm (Proposition 3.4 in

Section 3A). Moreover, we show that p-ordinary CM points correspond precisely to the preperiodic points

of t on Yord(Cp) (Theorem 3.5(i)). Once these are established, Theorem 3.5(ii) follows from dynamical

properties of t on Yord(Cp) (Lemma 3.7). In Appendix B we extend and further study the canonical

branch t of Tp.

We use properties of reduction morphisms that are stated in most of the classical literature only for

elliptic curves over discrete valued fields. To extend the application of these results to elliptic curves over

Cp we use the continuity of the Hecke correspondences (Lemma 2.1 in Section 2B). To this purpose, we

introduce the following notation: Qunr
p is the maximal unramified extension of Qp inside Qp, and Cunr

p is

its completion. Then, Cunr
p is an infinite degree extension of Qp with the same valuation group and with

residue field Fp. The algebraic closure Cunr
p of Cunr

p inside Cp is dense in Cp. Since Cunr
p can be written

as the union of finite extensions of Cunr
p , it follows that every elliptic curve in Y (Cunr

p ) can be defined over

a complete discrete valued field with residue field Fp. The same holds for finite subgroups and isogenies

between elliptic curves over Cunr
p .

In what follows, we use Yord(Cunr
p ) := Yord(Cp)∩ Y (Cunr

p ).

3A. The canonical branch of Tp on Yord(Cp). In this section we define a branch of the Hecke corre-

spondence Tp on Yord(Cp) that we use to give a simple description, for every integer m ≥ 1, of Tpm that

is crucial in what follows (Proposition 3.4). See also Appendix B. We start recalling the following result

describing the endomorphism ring of the reduction of a CM point in the ordinary locus.
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Proposition 3.1 [Lang 1973, Chapter 13, Section 4, Theorem 12]. Let d<0 be a fundamental discriminant

and let f ≥ 1 and m ≥ 0 be integers such that f is not divisible by p. Then, for an elliptic curve E

defined over a discrete valued subfield of Cp having ordinary reduction, End(E)≃Od,pm f implies that the

reduction Ẽ of E satisfies End(Ẽ)≃ Od, f . In particular, if End(E) is an order in a quadratic imaginary

extension of Q whose conductor is not divisible by p, then the reduction map End(E)→ End(Ẽ) is an

isomorphism.

To define the canonical branch of Tp on Yord(Cp), we use the canonical subgroup of an elliptic curve

E in Yord(Cunr
p ), which is defined as the unique subgroup of order p of E in the kernel of the reduction

morphism E → Ẽ . Equivalently, H(E) is the kernel of the reduction morphism E[p] → Ẽ[p]. For an

elliptic curve e ∈ Y (Fp) denote by Frob : e → e(p) the Frobenius morphism, which is the isogeny given in

affine coordinates by (x, y) 7→ (x p, y p).

Theorem 3.2. (i) For E in Yord(Cunr
p ) the reduction of E/H(E) equals Ẽ (p) and every isogeny ϕ : E →

E/H(E) whose kernel is equal to H(E) reduces to the Frobenius morphism

Frob : Ẽ → Ẽ (p).

Moreover, the kernel of the isogeny dual to ϕ is different from the canonical subgroup of E/H(E).

(ii) For each ordinary elliptic curve e ∈ Y (Fp) there exists a unique elliptic curve e↑ ∈ Y (Cunr
p ) reducing

to e for which the reduction map induces a ring isomorphism

End(e↑)≃ End(e).

(iii) Given two ordinary elliptic curves e1, e2 ∈ Y (Fp), the reduction map induces a group isomorphism

Hom(e↑
1 , e↑

2 )≃ Hom(e1, e2).

In particular, the Frobenius morphism Frob : e → e(p) lifts to an isogeny e↑ → (e(p))↑ with kernel

H(e↑), and e↑/H(e↑)= (e(p))↑.

Proof. Item (i) follows from the definition of canonical subgroup and properties of reduction morphisms;

see, e.g., [Diamond and Shurman 2005, Proof of Lemma 8.7.1]. Item (ii) is usually known as “Deuring’s

lifting theorem”, see for example [Deuring 1941] or [Lang 1973, Chapter 13, Section 5, Theorem 14].

Item (iii) is another known consequence of Deuring’s work. To prove surjectivity, first note that every

isogeny in Hom(e1, e2) can be written as a composition of Frobenius morphisms, of duals of Frobenius

morphisms, and of an isogeny whose degree is not divisible by p. In view of items (i) and (ii), and of

Proposition 3.1, we can restrict to the case of an isogeny of degree n not divisible by p. This case is a

direct consequence of item (ii), and the fact that the reduction morphism E → Ẽ induces a bijective map

E[n] → Ẽ[n], see for example [Silverman 2009, Chapter VII, Proposition 3.1(b)]. �
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The following result is due to Tate in the case p = 2 and to Deligne in the general case. To state

it, define

t : Yord(Cunr
p )→ Yord(Cunr

p )

E 7→ t(E) := E/H(E),
(3-1)

and for e in Ysups(Fp) put

δe :=



























1 if p ≥ 5, j (e) 6= 0, 1728;
3 if p ≥ 5, j (e)= 0;
2 if p ≥ 5, j (e)= 1728;
6 if p = 3, j (e)= 0 = 1728;
12 if p = 2, j (e)= 0 = 1728.

(3-2)

Note that in all the cases δe = (# Aut(e))/2; see, e.g., [Silverman 1994, Chapter III, Theorem 10.1].

Theorem 3.3. For each e in Ysups(Fp) choose βe in D( j (e))∩Qunr
p , so that π(βe)= j (e), and put δ′e := δe

if βe = 0 and p 6= 3 or if βe = 1728 and p 6= 2, and δ′e := 1 otherwise. Then, the map t admits an expansion

of the form

t(z)= z p + pk(z)+
∑

e∈Ysups(Fp)

∞
∑

n=1

A(e)n

(z −βe)n
, (3-3)

where k(z) is a polynomial of degree p − 1 in z with coefficients in Z, and for each n ≥ 1 the coefficient

A(e)n belongs to Qp({βe : e ∈ Ysups(Fp)}) and

ordp(A
(e)
n )≥ δ′e

(

1

p + 1
+ n

p

p + 1

)

. (3-4)

In particular, t(z) extends to a rigid analytic function Yord(Cp)→ Yord(Cp) of degree p that we also

denote by t .

For p ≥ 5, this result is proved in [Dwork 1969, Chapter 7]. In the case δ′e > 1, (3-4) can be obtained

from the method of proof described in [loc. cit.], or from the estimate in [loc. cit., page 80] combined

with the fact that ordp(A
(e)
n ) is an integer and that βe = 0 implies p ≡ 2 mod 3. For p = 2 and 3, this

result is stated in [loc. cit., page 89] with a weaker version of (3-4). We provide the details of the proof

when p = 2 and 3; see Proposition B.2 in Appendix B.

The theorem above implies that t extends to a rigid analytic map from Yord(Cp) to itself. We denote

this extension also by t and call it the canonical branch of Tp on Yord(Cp).

For z ∈ Yord(Cp), let t∗(z) be the divisor on Yord(Cp) given by

t∗(z) :=
∑

w∈Yord(Cp)

t(w)=z

degt(w)[w],
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where degt(w) is the local degree of t atw. Note that by Theorem 3.3 the rigid analytic map t : Yord(Cp)→
Yord(Cp) is of degree p, so for z in Yord(Cp) we have

deg(t∗(z))= p and t∗(t
∗(z))= p[z].

As usual, for an integer i ≥ 1 we denote by t i the i-th fold composition of t with itself. We also use t0 to

denote the identity on Yord(Cp).

Proposition 3.4. For every E in Yord(Cp) and every integer m ≥ 1, we have

Tpm (E)=
m

∑

i=0

(t∗)m−i ([t i (E)]). (3-5)

When m = 1, the relation (3-5) reads

Tp(E)= t∗(E)+ [t(E)]. (3-6)

See Theorem B.1 in Appendix B for an extension.

Proof. The relation (3-5) for m ≥ 2 follows from (3-6) by induction using the recursive formula (2-5).

To prove (3-6), first note that for E in Yord(Cp) satisfying degt(E) ≥ 2 we have t ′(E) = 0. Therefore

there are at most a finite number of such E in the affinoid Yord(Cp); see for example [Fresnel and van der

Put 2004, Proposition 3.3.6]. It follows that for every E in Yord(Cp) outside a finite set of exceptions,

we have # supp(t∗(E)) = p. Thus, the set D of all those E in Yord(Cunr
p ) with this property is dense in

Yord(Cp). To prove (3-6) for E in D, use the definition of Tp(E) and t(E), and Theorem 3.2(i), to obtain

Tp(E)= [t(E)] +
∑

C≤E,#C=p
C 6=H(E)

[E/C] = [t(E)] + t∗(E).

To prove (3-6) for an arbitrary E in Yord(Cp), first note that by Lemma 2.1 for every open and closed

subset A of Yord(Cp) the function

E 7→ 1A(Tn(E)− t∗(E)− [t(E)])= deg((Tn(E)− t∗(E)− [t(E)])|A)

is continuous. Since it is equal to 0 on the dense subset D of Yord(Cp), we conclude that it is constant equal

to 0. Since this holds for every open and closed subset A of Yord(Cp), this proves (3-6) and completes the

proof of the lemma. �

3B. CM points as preperiodic points. The purpose of this section is to prove the following result. In

the case where all the discriminants in the sequence (Dn)
∞
n=1 are p-ordinary, Theorem A is a direct

consequence of item (ii) of this result together with (2-8) and Lemma 2.3.

Given a set X and a map T : X → X , a point x in X is periodic if for some integer r ≥ 1 we have

T r (x)= x . Then the integer r is a period of x and the smallest such integer is the minimal period of x .

Moreover, a point y is preperiodic if it is not periodic and if for some integer m ≥ 1 the point T m(y) is

periodic. We call the least such integer m the preperiod of y.
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Theorem 3.5. Let ζ in Fp be the j-invariant of an ordinary elliptic curve and denote by r the minimal

period of ζ under the Frobenius map z 7→ z p. Then there is a unique periodic point E0 of t in D(ζ ). The

minimal period of E0 is r . Moreover, E0 is a CM point and, if we denote by D0 the discriminant of the

endomorphism ring of E0, then the conductor of D0 is not divisible by p and the following properties

hold:

(i) Given a discriminant D, the set supp(3D|D(ζ )) is nonempty if and only if for some integer m ≥ 0 we

have D = D0 p2m . Moreover,

supp(3D0 |D(ζ ))= {E0}

and for each integer m ≥ 1 the set supp(3D0 p2m |D(ζ )) is equal to the set of all the preperiodic points

of t in D(ζ ) of preperiod m, and is contained in t−m(tm(E0)). In particular, CM points in Yord(Cp)

correspond precisely to the periodic and preperiodic points of t in Yord(Cp).

(ii) For every disc B of radius strictly less than 1 contained in D(ζ ) there is a constant C > 0 such that

for every discriminant D < 0, we have

deg(3D|B)≤ C.

Remark 3.6. The natural directed graph associated to the dynamics of t on the set of ordinary CM

points is a “(p+1)-volcano” in the sense of [Goren and Kassaei 2017, Section 2.1]. This follows from

Theorem 3.5(i) and the fact that t is of degree p on Yord(Cp) by Theorem 3.3. Note in particular that the

“rim” is the directed subgraph associated to the dynamics of t on the set of its periodic points in Yord(Cp).

Moreover, on the set of preperiodic points of t in Yord(Cp), the preperiod corresponds to the function “b”

of [Goren and Kassaei 2017].

To prove Theorem 3.5, we describe the dynamics of t on Yord(Cp) in Lemma 3.7 below. This description

is mostly based on the fact that

t(z)≡ z p mod pOp, (3-7)

see Theorem 3.3. We deduce from general considerations that each residue disc D ⊆ Yord(Cp) contains a

unique periodic point z0 of t , that this point satisfies |t ′(z0)|< 1, and that every point in D is asymptotic

to z0.‡ The fact that no periodic point of t in Yord(Cp) is a ramification point is used in a crucial way in

the proof of the estimate (5-5) of Proposition 5.3 in Section 5B.

Lemma 3.7 (dynamics of t on Yord(Cp)). Let e be an ordinary elliptic curve defined over Fp and let r ≥ 1

be the minimal period of j (e) under the Frobenius map. Then, e↑ is the unique elliptic curve in D( j (e))

that is periodic for t . The minimal period of e↑ for t is r and e↑ is also characterized as the unique elliptic

curve in D( j (e))∩ Cunr
p whose endomorphism ring is an order in an quadratic imaginary extension of Q

of conductor not divisible by p. Moreover, if for every integer i ≥ 0 we put zi := t i (e↑), then the following

properties hold:

‡This is somewhat similar to the case of a rational map having good reduction equal to the Frobenius map, see for example
[Rivera-Letelier 2003, Sections 3.1 and 4.5].
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(i) For each integer i ≥ 0 we have 0< |t ′(zi )|p < 1.

(ii) There is ρ in ]0, 1[ such that for every integer i ≥ 0 and all z and z′ in D(zi , ρ), we have

degt(z)= 1 and |t(z)− t(z′)|p = |t ′(zi )|p · |z − z′|p.

In particular, t is injective on D(zi , ρ).

(iii) For every c ∈ ]0, 1[ there exists κc in ]0, 1[ such that for every integer i ≥ 0, every z in D(zi , 1)

satisfying |z − zi |p ≤ c and every integer m ≥ 1, we have

|tm(z)− zi+m |p ≤ κm
c |z − zi |p.

(iv) For all i ≥ 0 and z in D(zi , 1), the sequence

(|tm(z)− zi+m)|p)
∞
m=0

is nonincreasing and converges to 0.

Proof. We start by proving (i). Suppose for a contradiction that zi is a ramification point of t . Without

loss of generality, assume that i = 0 and put E := e↑ and E p := (e(p))↑. By Proposition 3.4 with m = 1

there are distinct subgroups C and C ′ of E p of order p such that

E p/C = E p/C ′ = E,C 6= H(E p) and C ′ 6= H(E p).

Let ψ (resp. ψ ′) be an isogeny E p → E with kernel C (resp. C ′) and denote by ψ̂ (resp. ψ̂ ′) its dual

isogeny. Then the kernel of ψ̂ and of ψ̂ ′ are both equal to H(E). It follows that there is σ in Aut(E p)

such that σ ◦ ψ̂ = ψ̂ ′; see, e.g., [Silverman 2009, Chapter III, Corollary 4.11]. Since σ 6= ±1, we have

j (E p) ∈ {0, 1728} and therefore r = 1, t(z0)= z0 and E p = E . In particular, C and C ′ are subgroups of

E and ψ,ψ ′ ∈ End(E). The kernel of each of the reduced isogenies ψ̃ and ψ̃ ′ is equal to e[p](Fp), so

there is α̃ in Aut(e) such that α̃ ◦ ψ̃ = ψ̃ ′. Since the reduction map End(E)→ End(e) is an isomorphism

by Theorem 3.2(ii), we can find an automorphism α ∈ Aut(E) satisfying α ◦ψ = ψ ′. This implies that

the kernel C of ψ is equal to the kernel C ′ of ψ ′, and we obtain a contradiction. This completes the proof

that zi is not a ramification point of t and therefore that t ′(zi ) 6= 0.

To prove that |t ′(zi )|< 1 note that by Theorem 3.3, we can write

t(w+ zi )− zi+1 = t(w+ zi )− t(zi )=
∞

∑

n=1

B(i)n wn, (3-8)

where the coefficients B(i)n belong to Op and satisfy |B(i)n |p ≤ 1
p for n 6= p. Since t ′(zi ) = B(i)1 , this

completes the proof of (i).

To prove the assertions at the beginning of the lemma, for each integer i ≥ 0 denote by e(p
i ) the image

of e by the i-th iterate of the Frobenius morphism. Then by Theorem 3.2(iii) we have

zi = t i (e↑)= (e(p
i ))↑ ∈ π−1( j (e)pi

).
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It follows that z0 is periodic of minimal period r for t . To prove uniqueness, note that by (3-8) for every

integer i ≥ 0 and distinct z and z′ in D(zi , 1) we have

|t(z)− t(z′)|p < |z − z′|p. (3-9)

Thus, there can be at most one periodic point of t in D(z0, 1). Finally, combining Theorem 3.2(ii) and

Proposition 3.1 we obtain that e↑ is the unique elliptic curve reducing to e and whose endomorphism ring

is an order of conductor not divisible by p. This completes the proof of the assertions at the beginning of

the proposition, so it only remains to prove (ii), (iii) and (iv).

To prove (ii), note that by (i) there is ρ in ]0, 1[ so that for every i in {0, . . . , r − 1}, we have

max{|B(i)n |pρ
n−1 : n ≥ 2} ≤ |B(i)1 |p.

Then by the ultrametric inequality for every integer i ≥ 0 and z ∈ D(zi , ρ) we have |t ′(z)|p = |B(i)1 |p,

which is different from 0 by (i). In particular, degt(zi )= 1. Moreover, for z′ in D(zi , ρ) we have by the

ultrametric inequality

|t(z)− t(z′)|p = |B(i)1 |p|z − z′|p.

This completes the proof of (ii).

Item (iii) is a direct consequence of (3-8) with

κc := max{|B(i)n |cn−1 : n ≥ 1, i ∈ {0, . . . , r − 1}},

noting that for every integer n ≥ 1 and all integers i, i ′ ≥ 0 such that i − i ′ is divisible by r , we have

B(i
′)

n = B(i)n .

To prove item (iv), note that the fact that the sequence is nonincreasing follows from (3-9) and the fact

that it converges to 0 form (iii) with c = |z − zi |. This completes the proof the lemma. �

Proof of Theorem 3.5. The first assertions are given by Lemma 3.7.

To prove (i), note that Proposition 3.1 implies that if a discriminant D < 0 is such that supp(3D|D(ζ ))

is nonempty, then there is an integer m ≥ 0 such that D = D0 p2m . On the other hand, Lemma 3.7 implies

supp(3D0 |D(ζ )) = {E0}. Fix an integer m ≥ 1 and note that by Lemma 3.7 for every integer j ≥ 1 the

point E j := t j (E0) is the unique periodic point of t in D(ζ p j
). So, if E is a preperiodic point of t in

D(ζ ) of preperiod m, then tm(E)= Em . This implies that the set of all preperiodic points of t in D(ζ )

of preperiod m is contained in t−m(Em) and is equal to

t−m(Em) \ t−(m−1)(Em−1)= t−(m−1)(t−1(Em) \ {Em−1}).

Since the degree of t is p and by Lemma 3.7(i) we have t ′(Em−1) 6= 0, the set t−1(Em) \ {Em−1} is

nonempty and equal to supp(t∗([Em])− [Em−1]). We thus conclude that the set of preperiodic points

of t in D(ζ ) of preperiod m is equal to t−(m−1)(supp(t∗([Em])− [Em−1])) and it is nonempty. Thus, to

complete the proof of (i) it is sufficient to show that the set of preperiodic points of t in D(ζ ) of preperiod
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m is equal to supp(3D0 p2m |D(ζ )). Note that by (2-11) and Proposition 3.4 we have

supp(t∗(3D0))⊆ supp(Tp(3D0))= supp(3D0)∪ supp(3D0 p2).

By Lemma 3.7 the set supp(3D0), hence supp(t∗(3D0)), is formed by periodic points of t while points

in supp(3D0 p2) are not periodic. This implies

t∗(3D0)=3D0 . (3-10)

Let d and f0 be the fundamental discriminant and conductor of D0, respectively. Since p splits in Q(
√

d)

we deduce that for every integer k ≥ 0 we have Rd(pk)= k + 1. By (2-9), Proposition 3.4 and (3-10) we

get

supp((t∗)m(3D0))=
m
⋃

k=0

supp(3D0 p2k ).

This implies the equality

supp((t∗)m(3D0)) \ supp((t∗)m−1(3D0))= supp(3D0 p2m ). (3-11)

By Lemma 3.7 and (3-10) the set supp(3D0)∩(D(ζ )∪ D(ζ p)∪· · ·∪ D(ζ pr−1
)) equals the set of periodic

points of t in D(ζ )∪ D(ζ p)∪ · · · ∪ D(ζ pr−1
). By (3-11) we conclude that the set supp(3D0 p2m |D(ζ ))

equals the set of preperiodic points of t in D(ζ ) of preperiod m. This completes the proof of (i).

To prove (ii), let c in ]0, 1[ be such that B ⊆ D(z0, c), let ρ and κc be given by Lemma 3.7 and let

M ≥ 1 be an integer such that cκr M
c < ρ. Let D < 0 be a discriminant and z in supp(3D)∩ B be given.

By (i) there is an integer m ≥ 0 such that trm(z)= E0. Assume by contradiction that the least integer m

with this property satisfies m > M . Then by Lemma 3.7 and our choice of M we have

|tr M(z)− E0|p ≤ cκr M
c < ρ.

On the other hand, tr(m−M) is injective on D(z0, ρ) by Lemma 3.7(ii) and it maps tr M(z) and E0 to E0,

so tr M(z)= E0. This contradicts the minimality of m and proves that for every z in supp(3D)∩ B we

have tr M(z)= E0. Equivalently,

supp(3D|B)⊆
M
⋃

i=1

t−ir (E0).

Since this last set is finite and independent of D, this proves (ii) and completes the proof of the theorem. �

4. CM points in the supersingular reduction locus

The goal of this section is to prove the following result on the asymptotic distribution of CM points in the

supersingular reduction locus. From this result and Theorem 3.5(ii), we deduce Theorem A at the end of

this section.
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Theorem 4.1. For every e in Ysups(Fp) fix an arbitrary γe in D( j (e)) and for r in ]0, 1[, put

B(r) :=
⋃

e∈Ysups(Fp)

D(γe, r).

Then the following properties hold:

(i) For every r in ]0, 1[ there exists m> 0 such that for every discriminant D< 0 satisfying ordp(D)≥ m,

we have deg(3D|B(r))= 0.

(ii) For every m > 0 there exists r in ]0, 1[ such that for every p-supersingular discriminant D < 0

satisfying ordp(D)≤ m, we have supp(3D)⊆ B(r).

We present the proof of Theorem 4.1 in Section 4C below. In Section 4A we recall the definition of

Katz’ valuation. For that purpose, we briefly review Katz’ theory of algebraic modular forms and the

interpretation of the Eisenstein series Ep−1 as an algebraic modular form over Q ∩ Zp. In Section 4B we

use Katz–Lubin’s extension of the theory of canonical subgroups to not too supersingular elliptic curves

to give a description of the action of Hecke correspondences on the supersingular locus (Section 4B). For

p = 2 and 3, we also rely on certain congruences satisfied by certain Eisenstein series (Proposition A.1

in Appendix A). This description is used in the proof of Theorem 4.1 and also in Section 5C on Hecke

orbits in the supersingular locus.

4A. Katz’ valuation. In this section we define Katz’ valuation, which is based on Katz’ theory of

algebraic modular forms, and give an explicit formula relating it to the j-invariant (Proposition 4.3).

For the reader’s convenience we start with a short review of Katz’ theory of algebraic modular forms.

For details see [Katz 1973, Chapter 1]. Let k ∈ Z be an integer and let R0 be a ring (commutative and with

identity). Denote by R0-Alg the category of R0-algebras. Given an R0-algebra R, define an elliptic curve

E over R as a proper, smooth morphism of schemes E → Spec(R), whose geometric fibers are connected

curves of genus one, together with a section Spec(R)→ E , and denote by �1
E/R the invertible sheaf of

differential forms of degree 1 of E over R. By replacing Spec(R) by an appropriate affine subset we can

assume that �1
E/R admits a nowhere vanishing global section. In this paper we assume, for simplicity,

that this is always the case and denote by �1
E/R(E)

′ the (nonempty) set of nowhere vanishing global

sections of �1
E/R . An algebraic modular form F of weight k and level one over R0 is a family of maps

FR : {(E, ω) : E elliptic curve over R, ω ∈�1
E/R(E)

′} → R (R ∈ R0-Alg),

satisfying the following properties:

(i) FR(E, ω) depends only on the isomorphism class of the pair (E, ω). More precisely, for every

isomorphism of elliptic curves ϕ : E → E ′ over R, we have FR(E ′, ϕ∗ω)= FR(E, ω). Here, ϕ∗ω

denotes the push-forward of ω by ϕ.

(ii) FR(E, λω)= λ−k FR(E, ω) for every λ ∈ R×.
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(iii) FR is compatible with base change. Namely, for every R0-algebra morphism g : R → R′, for the

base change (E, ω)R′ of (E, ω) to R′ by g we have FR′((E, ω)R′)= g(FR(E, ω)).

Taking into account property (iii), from now on we simply write F instead of FR . Moreover, let R1 be an

R0-algebra. Then, property (iii) ensures that F induces an algebraic modular form F1 over R1. We say

that F1 is the base change of F to R1. We also say that F is a lifting of F1 to R.

Let q be a formal variable and denote by Tate(q) the Tate curve, which is an elliptic curve over the

field of fractions Z((q)) of the ring of formal power series Z[[q]]; see [Katz 1973, Appendix 1]. The

j-invariant of Tate(q) has the form

j (Tate(q))= 1
q + 744 +

∞
∑

n=1

cnqn, cn ∈ Z. (4-1)

The q-expansion of an algebraic modular form F over R0 as above is defined as the element F(q) ∈
Z((q))⊗Z R0 obtained by evaluating F at the pair (Tate(q), ωcan) consisting of the Tate curve together with

its canonical differential ωcan, both considered over Z((q))⊗Z R0. Moreover, F is said to be holomorphic

at infinity if F(q) ∈ Z[[q]] ⊗Z R0.

Now, we state a version of the q-expansion principle, which is a particular case of [Katz 1973,

Corollary 1.9.1].

Theorem 4.2. Let R0 be a ring and let K ⊇ R0 be a R0-algebra. Let k ∈ Z be an integer and let F

be an algebraic modular form over K of weight k, level one and holomorphic at infinity. Assume that

F(q) ∈ Z((q))⊗Z R0. Then, F is the base change of a unique algebraic modular form over R0 of weight k.

There is a natural link between the previous theory and the classical theory of modular forms. We

refer to [Katz 1973, Section A1.1] for details. For each classical holomorphic modular form of weight k

and level one f : H → C, there exists a unique algebraic modular form F over C associated to f that is

holomorphic at infinity. The Fourier expansion at infinity of f and the q-expansion of F are related by

f (τ )=
∞

∑

n=0

ane2π inτ if and only if F(q)=
∞

∑

n=0

anqn.

For an even integer k ≥ 4, let Ek be the normalized Eisenstein series

Ek(τ )= 1 − 2k

Bk

∞
∑

n=1

σk−1(n)e
2π inτ , τ ∈ H.

Here, the symbol Bk denotes the k-th Bernoulli number and σk−1(n) :=
∑

d | n,d>0 dk−1. The complex

function Ek is a classical holomorphic modular form of weight k and level one. Then, this function

induces an algebraic modular form over C, which we also denote by Ek , having the q-expansion with

rational coefficients

Ek(q)= 1 − 2k

Bk

∞
∑

n=1

σk−1(n)q
n. (4-2)
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When p ≥ 5 and k = p − 1, the von Staudt–Clausen theorem ensures that ordp
(

(2k)B−1
k

)

= 1. In

particular, the coefficients of the Fourier expansion of Ep−1 lie in Z(p) := Q∩Zp. Hence, by Theorem 4.2,

we can consider Ep−1 as an algebraic modular form of weight p − 1 over Z(p). On the other hand, the

same reasoning and a direct examination of the Fourier expansions of E4 and E6 allow us to consider

these Eisenstein series as algebraic modular forms of weight four and six over Z.

For E in Ysups(Cp), which we regard as an elliptic curve over Op, choose ω in �1
E/Op

(E)′ and define

Katz’ valuation

vp(E) :=







ordp(Ep−1(E, ω)) if p ≥ 5;
1
3 · ord3(E6(E, ω)) if p = 3;
1
4 · ord2(E4(E, ω)) if p = 2.

Since for every λ in O×
p we have Ek(E, λω) = λ−k Ek(E, ω), this definition does not depend on the

particular choice of ω. The above definition is motivated by the following considerations. The Hasse

invariant Ap−1 is the unique algebraic modular form of weight p−1 over Fp with q-expansion Ap−1(q)=1;

see [Katz 1973, Chapter 2]. When p ≥ 5, the base change to Fp of the form Ep−1 equals Ap−1. On the

other hand, when p equals 2 or 3 it is not possible to lift Ap−1 to an algebraic modular form of level one,

holomorphic at infinity, over Z(p). However, the base change of E4 (resp. E6) to F2 (resp. to F3) is A4
1

(resp. A3
2). See Appendix A for details.

Since the Hasse invariant vanishes at supersingular elliptic curves, for every E in Ysups(Cp) we have

that 0 < vp(E) ≤ ∞. An elliptic curve E in Ysups(Cp) is not too supersingular if vp(E) < p/(p + 1),

and it is too supersingular otherwise.

The following result gives an explicit relation between vp(E) and j (E). For e in Ysups(Fp), we use the

number δe defined by (3-2) in Section 3A.

Proposition 4.3. For each e in Ysups(Fp), denote by je the j-invariant of the unique zero of Ep−1 (resp.

E4,E6) in D(e) if p ≥ 5 (resp. p = 2, 3). Then, for every E in Ysups(Cp) we have

vp(E)=
∑

e∈Ysups(Fp)

1

δe
ordp( j (E)− je).

Moreover, if p ≥ 5 and je ≡ 0 (resp. je ≡ 1728) mod Mp, then je = 0 (resp. je = 1728). In the case

p = 2 (resp. p = 3), Ysups(Fp) has a unique element e and je = 0 (resp. je = 1728).

It follows from the proof of this proposition that for every e in Ysups(Fp) the number je is algebraic over

Q and is in the quadratic unramified extension of Qp. We note that in the case je 6≡ 0, 1728 mod Mp,

the elliptic curve class whose j-invariant is je is not CM,§ but it is “fake CM” in the sense of [Coleman

and McMurdy 2006]; see Remark 4.4 below.

§In fact, je need not be an algebraic integer: For p = 13 (resp. 17, 19, 23) there is a unique e in Ysups(Fp) whose j-invariant is
different from 0 and 1728, and we have je =27 ·33 ·53/691 (resp. 210 ·33 ·53/3617, 28 ·33 ·53 ·11/43867, 28 ·33 ·53 ·41/(131·593)).
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Proof of Proposition 4.3. Assume p ≥ 5, so p − 1 6≡ 2, 8 mod 12. We can thus write p − 1 uniquely in

the form p − 1 = 12m + 4δ+ 6ε with m ≥ 0 integer and δ, ε ∈ {0, 1}. The modular discriminant

1(τ)= e2π iτ
∞
∏

n=1

(1 − e2π inτ )24, τ ∈ H,

is a classical holomorphic modular form of weight 12 and level one; see, e.g., [Diamond and Shurman

2005, Sections 1.1 and 1.2]. The infinite product above shows that the Fourier coefficients of 1 are

rational integers. Hence, Theorem 4.2 ensures that 1 can be considered as an algebraic modular form

over Z. At the level of classical modular forms, we have the identity

Ep−1 =1m Eδ4 Eε6 P( j),

where P(X) is a monic polynomial over Z(p) of degree m such that Psups(X) := X δ(X − 1728)εP(X)

reduces modulo p to the supersingular polynomial, i.e., the monic separable polynomial over Fp whose

roots are the j-invariants of the supersingular elliptic curves over Fp; see, e.g., [Kaneko and Zagier 1998,

Theorem 1]. Using the classical identities E3
4 =1 j and E2

6 =1( j − 1728) we get

E12
p−1 =1p−1 j4δ( j − 1728)6εP( j)12.

Theorem 4.2 ensures that the above identity also holds at the level of algebraic modular forms over Z(p).

Write

Psups(X)=
∏

e∈Ysups(Fp)

(X − je),

where je ∈ D
(

j (e)
)

for each e ∈ Ysups(Fp). Now, for every pair (E, ω) over Op having good reduction

we have 1(E, ω) ∈ O×
p , hence

|Ep−1(E, ω)|12
p = | j (E)|4δp | j (E)− 1728|6εp

∏

e∈Ysups(Fp)

je 6≡0,1728

| j (E)− je|12
p .

Since p ≥ 5, we have that j = 0 (resp. j = 1728) is supersingular at p if and only if p ≡ 2 mod 3 (resp.

p ≡ 3 mod 4) [Silverman 2009, Chapter V, Examples 4.4 and 4.5]. This implies the result when p ≥ 5.

The cases p = 2 and 3 follow similarly from the formulas

|E4(E, ω)|32 = | j (E)|2 and |E6(E, ω)|23 = | j − 1728|3,

respectively. This completes the proof of the proposition. �

Remark 4.4. Let e in Ysups(Cp) be such that je 6≡ 0, 1728 mod Mp, and let Ee be the elliptic curve class

in Y (Cp) such that j (Ee) = je. Then Ee is not CM, but it is “fake CM” in the sense of [Coleman and

McMurdy 2006]. In particular, je is not a singular modulus over Cp. To show that Ee is not CM, choose

a field isomorphism Cp ≃ C and τe in H such that Ee(C)≃ C/(Z + τeZ). It is sufficient to show that τe

is transcendental over Q; see, e.g., [Lang 1973, Chapter 1, Section 5]. The complex number τe must be a
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zero of the holomorphic function τ 7→ Ep−1(τ ). Since j (τe)= je is different from 0 and 1728, it follows

that τe is not equivalent to ρ = 1
2(1+

√
−3) or i =

√
−1 under the action of the modular group SL2(Z) by

Möbius transformations on H. Then [Kohnen 2003, Theorem 1] implies that τe is transcendental over Q.

To see that Ee is fake CM, note first that, since the reduction modulo p of Psups(X) is separable and

splits completely over Fp2 , by Hensel’s lemma all roots of Psups(X) are in the ring of integers O of the

unramified quadratic extension of Qp. As je is a root of Psups(X), this implies that Ee represents an elliptic

curve over O. Let [p]e and φ be the multiplication by p and the p2-power Frobenius endomorphism

on the supersingular curve e, respectively. Then there exists σ in Aut(e) satisfying σ ◦ [p]e = φ; see

[Silverman 2009, Chapter II, Corollary 2.12]. Since j (e)= π(je) is different from 0 and 1728, we have

σ = ±1 and ±[p]e = φ. Choose π0 = ±p as a uniformizer of O. The multiplication by π0 map on the

formal group FEe of Ee defines an endomorphism f (X) of FEe , satisfying

f (X)≡ π0 X mod X2 and f (X)≡ X p2
mod π0.

It follows that FEe is a Lubin–Tate formal group over O; see [Hazewinkel 1978, Section 8], and compare

with [Coleman and McMurdy 2006, Remark 3.4]. In particular End(FEe)≃ O and therefore Ee is fake

CM; see [Hazewinkel 1978, Theorem 8.1.5 and Proposition 23.2.6].

4B. Katz’ kite. The goal of this section is to give the following description of the action of Hecke

correspondences on the supersingular locus.

Proposition 4.5. Let v̂p : Ysups(Cp)→ [0, p/(p + 1)] be the map defined by

v̂p := min

{

vp,
p

p + 1

}

.

Moreover, denote by τ0 the identity on Div([0, p/(p + 1)]), let τ1 be the piecewise-affine correspondence

on [0, p/(p + 1)] defined by

τ1(x) :=
{[px] + p[x/p] if x ∈ [0, 1/(p + 1)];
[1 − x] + p[x/p] if x ∈ ]1/(p + 1), p/(p + 1)],

and for each integer m ≥ 2 define the correspondence τm on [0, p/(p + 1)] recursively, by

τm := τ1 ◦ τm−1 − pτm−2.

Then for every integer m ≥ 0 and every integer n0 ≥ 1 not divisible by p, we have

(v̂p)∗ ◦ Tpmn0 |Ysups(Cp) = σ1(n0) · τm ◦ (v̂p)∗.

See Figure 1 for the graph of the correspondence τ1 and Lemma 5.7 in Section 5C for a formula of τm

for every m ≥ 0.

The proof of Proposition 4.5 is given after a couple of lemmas. The following is a reformulation, in our

setting, of a theorem of Katz–Lubin on the existence of canonical subgroups for elliptic curves that are

not too supersingular; see [Katz 1973, Theorems 3.1 and 3.10.7] and also [Buzzard 2003, Theorem 3.3].
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p
p+1
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p+1
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p+1

multiplicity 1

multiplicity p

Figure 1. Graph of the correspondence τ1 representing the action of Tp in terms of the
projection v̂p.

Lemma 4.6. For every elliptic curve E in Ysups(Cp) that is not too supersingular there is a unique

subgroup H(E) of E of order p satisfying

v̂p(E/H(E))=
{

pvp(E) if vp(E) ∈ ]0, 1/(p + 1)];
1 − vp(E) if vp(E) ∈ ]1/(p + 1), p/(p + 1)[. (4-3)

Furthermore, H(E) is also uniquely characterized by the property that for every subgroup C of E of

order p that is different from H(E), we have

vp(E/C)= p−1vp(E). (4-4)

In addition, the map

t :
{

E ∈ Ysups(Cp) : vp(E) <
p

p+1

}

→ Ysups(Cp)

E 7→ t(E) := E/H(E)

satisfies the following properties:

(i) Let E be in Ysups(Cp) and let C be a subgroup of E of order p. In the case vp(E) < p/(p + 1),

assume in addition that C 6= H(E). Then

vp(E/C)= p−1v̂p(E) and t(E/C)= E .

(ii) For E in Ysups(Cp) satisfying 1/(p + 1) < vp(E) < p/(p + 1), we have t2(E)= E.

Proof. For E in Ysups(Cp) that is not too supersingular, note that the uniqueness statements about H(E)

follow from the fact that (4-3) and (4-4) imply that H(E) is the unique subgroup C of E of order p

satisfying vp(E/C) 6= p−1vp(E).



1268 Sebastián Herrero, Ricardo Menares and Juan Rivera-Letelier

Assume p ≥ 5 and let E be an elliptic curve in Ysups(Cp) that is not too supersingular, so that

vp(E) < p/(p + 1). Let ω be a differential form in �1
E/Op

(E)′ and put rE := Ep−1(E, ω) ∈ Op. Since

Cunr
p and Cp have the same valuation group we can find r ∈ Cunr

p satisfying ordp(r)= ordp(rE). Then r

lies in the ring of integers R0 of some finite extension of Cunr
p , and R0 is a complete discrete valuation ring

of residue characteristic p and generic characteristic zero. The triple (E, ω, rr−1
E ) defines a r -situation in

the sense of [Katz 1973, Theorem 3.1] (see also [loc. cit., Section 2.2]) and therefore there is a canonical

subgroup H(E) of E of order p. Then [loc. cit., Theorem 3.10.7(2, 3)] implies (4-3) and (ii), see also the

proof of [Buzzard 2003, Theorem 3.3(iii)], and (4-4) and (i) are given by [Katz 1973, Theorem 3.10.7(5)].

Finally, note that for E in Ysups(Cp) satisfying vp(E)≥ p/(p +1), the assertion (i) follows from [loc. cit.,

Theorem 3.10.7(4)]. This completes the proof of the proposition in the case p ≥ 5.

It remains to prove the proposition in the cases p = 2 and p = 3. We only give the proof in the case

p = 2, the case p = 3 being analogous. Let E1 be an algebraic modular form of weight one and level n1,

with 3 ≤ n1 ≤ 11 odd, holomorphic at infinity and defined over Z[1/n1] whose reduction modulo 2 is

A1; see Appendix A for details on level structures. Let E in Ysups(C2) be an elliptic curve that is not too

supersingular, let ω be a differential form in �1
E/O2

(E)′ and αn1 a level n1 structure on E over O2. By

Proposition A.1 and our hypothesis v2(E) <
2
3 , we have

ord2(E1(E, ω, αn1))= v2(E) <
2
3 .

Then, [Katz 1973, Theorem 3.1] gives the existence of H(E) which might depend on the choice of αn1 .

The fact that H(E) depends only on E follows from the characterization in [loc. cit., Theorem 3.10.7(1)]

of the canonical subgroup as the subgroup of order 2 containing the unique point corresponding to the

solution with valuation 1 − v2(E) of the equation [2](X)= 0 in the formal group of E (here [2] denotes

the multiplication by 2 map and X is a certain normalized parameter for the formal group). Then (4-3),

(4-4), (i) and (ii) follow from [loc. cit., Theorem 3.10.7] as in the case p ≥ 5 above. This completes the

proof of the lemma. �

Lemma 4.7. Let E in Ysups(Cp) be such that

vp(E) <

{

1 if p ≥ 5;
(2p − 1)/(2p) if p = 2 or 3.

Then for every subgroup C of E of order not divisible by p, we have vp(E/C)= vp(E).

Proof. For E0 in Y (Cp) and ζ in Zp, denote by [ζ ]E0 the multiplication by ζ map in the formal group of E0.

Put E ′ := E/C and denote by φ : E → E ′ an isogeny with kernel C . Let X (resp. Y ) be a parameter of

the formal group of E (resp. E ′), such that for any (p−1)-th root of unity ζ ∈ Zp we have [ζ ]E(X)= ζ X

(resp. [ζ ]E ′(Y ) = ζY ); see [Katz 1973, Lemma 3.6.2(2)]. Let ω be a differential form in �1
E/Op

(E)′

whose expansion in the parameter X is of the form

ω =
(

1 +
∞

∑

n=1

an Xn

)

d X,
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where an ∈ Op for all n ≥ 1. Then, by [loc. cit., Proposition 3.6.6] we have

[p]E(X)= pX + a X p +
∑

m≥2

cm Xm(p−1)+1,

where cm ∈ Op for all m ≥ 2 and a ∈ Op satisfies

a ≡ Ap−1((E, ω)Op/pOp) mod pOp, (4-5)

where (E, ω)Op/pOp denotes the base change of (E, ω) to Op/pOp. Similarly,

[p]E ′(Y )= pY + a′Y p +
∑

m≥2

c′
mY m(p−1)+1,

where c′
m ∈ Op for all m ≥ 2 and a′ ∈ Op satisfies, for some differential form ω′ of �1

E ′/Op
(E)′,

a′ ≡ Ap−1((E
′, ω′)Op/pOp) mod pOp. (4-6)

Since the order of Ker(φ) = C is not divisible by p, the isogeny φ induces an isomorphism of formal

groups of the form

φ(X)=
∞

∑

n=1

tn Xn,

where tn ∈ Op for all n ≥ 1. Since φ(X) is invertible, we must have t1 ∈ O×
p . By the identity

[p]E ′ ◦φ = φ ◦ [p]E we get

p(t1 X + t2 X2 + t3 X3 + · · · )+ a′(t1 X + t2 X2 + t3 X3 + · · · )p + · · ·
= t1(pX + a X p + · · · )+ t2(pX + a X p + · · · )2 + · · ·

Comparing the coefficients of X p, we get

ptp + a′t p
1 = t1a + tp p p.

Using that t1 ∈ O×
p we obtain

ordp(a
′)= ordp(a

′t p−1
1 )= ordp(a + t−1

1 tp(p
p − p)). (4-7)

In the case p ≥ 5, (4-5) implies ordp(a − Ep−1(E, ω))≥ 1, so by our hypothesis vp(E) < 1 we have

ordp(a)= vp(E) < 1. Combined with (4-7), this implies ordp(a′)= ordp(a)= vp(E) < 1. Finally, by

(4-6) we have ordp(a′ − Ep−1(E ′, ω′)) ≥ 1, so vp(E ′) = ordp(a′) = vp(E). This proves the lemma in

the case p ≥ 5. For the case p = 2 or 3, (4-5), (4-6), (4-7), our hypothesis vp(E) < (2p − 1)/(2p) and

Proposition A.1 imply in a similar way

ordp(a)= vp(E) <
2p − 1

2p
, ordp(a

′)= ordp(a) and vp(E
′)= ordp(a

′).

This completes the proof of the lemma. �
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Proof of Proposition 4.5. By the multiplicative property of Hecke correspondences (2-6) and Lemma 4.7,

it is sufficient to consider the case n0 = 1. Moreover, in view of (2-5) and the recursive definition of τm

for m ≥ 2, it is sufficient to consider the case m = 1. For E in Ysups(Cp) satisfying v̂p(E) < p/(p + 1),

this is given by (4-3) and (4-4) in Lemma 4.6, together with the fact that deg(Tp(E))= p + 1. Finally,

for E in Ysups(Cp) satisfying v̂p(E)= p/(p + 1) the desired statement follows from Lemma 4.6(i). This

completes the proof of the proposition. �

4C. Proof of Theorem 4.1. The proof of Theorem 4.1 is below, after a couple of lemmas.

Lemma 4.8. Let D < 0 be a discriminant and let E and E ′ be in supp(3D). Then, for every integer

m ≥ 1 there exists an isogeny E → E ′ of degree coprime to m.

Proof. Denote by d and f the fundamental discriminant and conductor of D, respectively, and fix a field

isomorphism Cp ≃ C. Since E and E ′ are CM with ring of endomorphisms isomorphic to Od, f , we can

find proper fractional Od, f -ideals a and a′ in Q(
√

D) for which we have the complex uniformizations

E(C)≃ C/a and E ′(C)≃ C/a′. Then there is a natural identification

ι : Hom(E, E ′)→ a′a−1 = {λ ∈ C : λa ⊆ a′}.

Without loss of generality, assume a′ ⊂ a, and choose Z-generators α and β of the ideal a′a−1 of Od, f .

Then

f (x, y) := (αx −βy)(αx −βy)/[Od, f : a′a−1]

is a positive definite primitive binary quadratic form with integer coefficients and discriminant d [Cox

2013, Theorem 7.7 and Exercise 7.17]. Moreover, there are integers x0 and y0 such that f (x0, y0)

is coprime to m [loc. cit., Lemma 2.25]. If we denote by φ0 the isogeny in Hom(E, E ′) satisfying

λ0 := ι(φ0)= αx0 −βy0, then

deg(φ0)= # Ker(φ0)

= [a′ : λ0a]
= [a′a−1 : λ0Od, f ]
= [Od, f : λ0Od, f ]/[Od, f : a′a−1]
= λ0λ0/[Od, f : a′a−1]
= f (x0, y0).

This proves that deg(φ0) is coprime to m, and completes the proof of the lemma. �

The following lemma is analogous to [Coleman and McMurdy 2006, Lemma 4.8], which concerns p ≥3

in the context of certain modular curves of level bigger than 1. See also [Gross 1986, Proposition 5.3].
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Lemma 4.9. Let D be a p-supersingular discriminant and m ≥ 0 the largest integer such that pm divides

the conductor of D. Then for every E in supp(3D) we have

v̂p(E)=
{1

2 · p−m if p ramifies in Q(
√

D);
p/(p + 1) · p−m if p is inert in Q(

√
D).¶

Proof. Let d be the fundamental discriminant of D and f ≥ 1 the integer such that the conductor of D is

equal to pm f , so D = d( f pm)2 and f is not divisible by p. By Lemmas 4.7 and 4.8 with m = p, we

deduce that for E in supp(3D) the number v̂p(D) := v̂p(E) is independent of E . By Zhang’s formula (2-9)

with f̃ = pm it follows that there exists an isogeny of degree f from some elliptic curve in supp(3dp2m )

to an elliptic curve in supp(3D). We conclude from Lemma 4.7 that v̂p(D) = v̂p(dp2m). Thus, it is

enough to prove the lemma in the case where f = 1.

We start with m = 0 and m = 1. By (2-11) with f = 1 and Proposition 4.5 with m = 1 and n0 = 1, we

have

supp(τ1(v̂p(d)))=
{{v̂p(d), v̂p(dp2)} if p ramifies in Q(

√
d);

{v̂p(dp2)} if p is inert in Q(
√

d).

From the definition of τ1 we have that p/(p + 1) is the only value of x in ]0, p/(p + 1)] such that τ1(x)

is supported on a single point. We conclude that if p is inert in Q(
√

d), then v̂p(d) = p/(p + 1) and

therefore v̂p(dp2)= 1/(p + 1). On the other hand, 1
2 is the only value of x in ]0, p/(p + 1)] satisfying

x ∈ supp(τ1(x)). So, if p ramifies in Q(
√

d), then v̂p(d) = 1
2 and therefore v̂p(dp2) = 1

2 p−1. This

completes the proof of the lemma when m = 0 and m = 1. Assume m ≥ 2 and note that by (2-12) with

f = 1 and by Proposition 4.5 with n0 = 1,

{v̂p(dp2m)} =
{

supp
(

(τm − τm−1)
( 1

2

))

if p ramifies in Q(
√

d);
supp((τm − τm−2)(p/(p + 1))) if p is inert in Q(

√
d).

From the definition of τm , we see that the right-hand side contains 1
2 · p−m if p ramifies in Q(

√
d)

and p/(p + 1) · p−m if p is inert in Q(
√

d). This proves v̂p(dp2m) = 1
2 · p−m in the former case and

v̂p(dp2m)= p/(p + 1) · p−m in the latter, and completes the proof of the lemma. �

Proof of Theorem 4.1. To prove (i), note that by Proposition 4.3 there is m > 0 so that v̂p(B(r)) ⊆
]p/(p+1)· p−m, p/(p+1)]. Then by Lemma 4.9 for every p-supersingular discriminant D< 0 satisfying

ordp(D) ≥ 2m + 3 we have supp((v̂p)∗(3D)) ∩ v̂p(B(r)) = ∅, and therefore deg(3D|B(r)) = 0. On

the other hand, if D is a p-ordinary discriminant, then supp(3D)⊂ Yord(Cp) is disjoint from B(r), and

therefore deg(3D|B(r))= 0. This completes the proof of (i).

To prove (ii), note that by Proposition 4.3 there is r in ]0, 1[ so that

v̂−1
p

([1
2 · p−m,

p
p+1

])

⊆ B(r).

¶When D = −3 (resp. D = −4) is p-supersingular we have j (E)= 1728 (resp. 0) and vp(E)= ∞, so in this formula we
cannot replace the projection v̂p by the valuation vp . Compare with [Coleman and McMurdy 2006, Lemma 4.8].
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Then by Lemma 4.9 for every p-supersingular discriminant D < 0 satisfying ordp(D) ≤ m we have

supp((v̂p)∗(3D))⊆
[ 1

2 · p−m, p/(p + 1)
]

and therefore supp(3D)⊆ B(r). This completes the proof of

(ii) and of the theorem. �

Proof of Theorem A. In the case where all the discriminants in the sequence (Dn)
∞
n=1 are p-ordinary (resp.

p-supersingular), Theorem A is a direct consequence of Theorem 3.5(ii) (resp. Theorem 4.1), together

with (2-8) and Lemma 2.3. The general case follows from these two special cases. �

5. Hecke orbits

The goal of this section is to prove Theorem C on the asymptotic distribution of Hecke orbits. The proof

is divided into three complementary cases, according to whether the starting elliptic curve class has bad,

ordinary or supersingular reduction. These are stated as Propositions 5.1, 5.2 and 5.6 in Sections 5A, 5B

and 5C, respectively. In each case we prove a stronger quantitative statement.

5A. Hecke orbits in the bad reduction locus. In this section we prove a stronger version of the part of

Theorem C concerning the bad reduction locus, which is stated as Proposition 5.1 below. We start by

recalling some well-known results on the uniformization of p-adic elliptic curves with multiplicative

reduction. See [Tate 1995] for the case of elliptic curves over complete discrete valued field, and [Roquette

1970] for the case of complete valued fields (see also [Silverman 1994, Chapter V, Theorem 3.1 and

Remark 3.1.2]).

Let z be in D(0, 1)∗ := {z′ ∈ Cp : 0 < |z′|p < 1}. We obtain, by the specialization q = z in the Tate

curve, an elliptic curve Tate(z) over Cp whose j-invariant satisfies

| j (Tate(z))|p = |z|−1
p > 1, (5-1)

see (4-1). This defines a bijective map

D(0, 1)∗ → Ybad(Cp)

z 7→ Tate(z).

Moreover, for each z ∈ D(0, 1)∗ there exists an explicit uniformization by C×
p of the set of Cp-points

of Tate(z). This uniformization induces an isomorphism of analytic groups ϕz : C×
p /z

Z → Tate(z)(Cp),

see [Tate 1995, Theorem 1] for details. This allows us to give, for each integer n ≥ 1, the following

description of Tn(Tate(z)). Note that for each positive divisor k of n and each ℓ ∈ D(0, 1)∗ satisfying

ℓk = zn/k , the set

Cn,ℓ := {a ∈ C
×
p : an/k ∈ ℓZ}/zZ (5-2)

is a subgroup of order n of C×
p /z

Z. It is the kernel of the morphism of analytic groups C×
p /z

Z → C×
p /ℓ

Z

induced by the map a 7→ an/k . Precomposing this morphism with ϕ−1
z and then composing with ϕℓ, we

obtain an isogeny Tate(z)→ Tate(ℓ) of degree n whose kernel is ϕz(Cn,ℓ). Since every subgroup of order
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n of C×
p /z

Z is of the form (5-2), we deduce that

Tn(Tate(z))=
∑

k>0, k | n
ℓk=zn/k

Tate(ℓ). (5-3)

In the case where E is in Ybad(Cp), Theorem C is a direct consequence of the following result together

with (2-1), (2-2) and Lemma 2.3.

Proposition 5.1. Let z in D(0, 1)∗ and R > 1 be given. Then, for every ε > 0 there exists C > 0 such

that for every integer n ≥ 1 we have

deg(Tn(Tate(z))|D∞(0,R))≤ Cn1/2d(n).

Proof. Set C :=
√

− log(|z|p)/log(R) and let n ≥ 1 be an integer. By (5-1), for a positive divisor k of n

and ℓ ∈ D(0, 1)∗ with ℓk = zn/k , we have

|Tate(ℓ)|p = |ℓ|−1
p = |z|−n/k2

p .

Noting that |z|−n/k2

p > R is equivalent to k < Cn1/2, from (5-3) we deduce

deg(Tn(Tate(z))|D∞(0,R))=
∑

k>0,k | n
0<k<C

√
n

k < Cn1/2d(n).

This completes the proof of the proposition. �

5B. Hecke orbits in the ordinary reduction locus. The goal of this section is to prove the following

result describing, for an elliptic curve E in Yord(Cp), the asymptotic distribution of the Hecke orbit

(Tn(E))∞n=1. In the case where E is in Yord(Cp), Theorem C with n = pmn0 is a direct consequence of

this result together with (2-1) and Lemma 2.3.

Proposition 5.2. Let D be a residue disc contained in Yord(Cp) and let B be a disc of radius strictly less

than 1 contained in Yord(Cp). Then for every ε > 0 there is a constant C > 0 such that for every E in D

and all integers m ≥ 0 and n0 ≥ 1 such that n0 is not divisible by p, we have

deg(Tpmn0(E)|B)≤ C(m + 1)nε0.

To prove Proposition 5.2 we use the multiplicative property of the Hecke correspondences, see (2-6)

in Section 2B. We first treat the case n0 = 1 (Propositions 5.3) and the case m = 0 (Propositions 5.4)

separately. The proof of Proposition 5.2 is given at the end of this section.

Proposition 5.3. Let ζ in Fp be the j-invariant of an ordinary elliptic curve, denote by r the minimal

period of ζ under the Frobenius map z 7→ z p and put O :=
⋃r−1

i=0 D(ζ pi
). Then for every E in D(ζ ) and

every integer m ≥ 1, we have

supp(Tpm (E))⊆ O. (5-4)
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Moreover, for every disc B of radius strictly less than 1 contained in O there is a constant C1 > 0 such

that for every E in O and every integer m ≥ 1, we have

deg(Tpm (E)|B)≤ C1m. (5-5)

Proof. The inclusion (5-4) is a direct consequence of Proposition 3.4 and (3-7). To prove (5-5), let e be

an ordinary elliptic curve with j -invariant ζ , for every integer i ≥ 0 put zi := t i (e↑) and for every integer

i ≤ −1 let i ′ be the unique integer in {0, . . . , r −1} such that i − i ′ is divisible by r and put zi := zi ′ . Note

that for all nonnegative integers a, b, every integer i and every point z in D(zi , 1), the set t−a(tb(z)) is

contained in D(zi+b−a, 1). Let c in ]0, 1[ be such that B is contained in B(c) :=
⋃r−1

i=0 D(zi , c), let ρ

and κc be given by Lemma 3.7 and let i1 ≥ 0 be a sufficiently large integer so that cκ i1
c < ρ.

Fix E in
⋃r−1

i=0 D(zi , 1) and let m ≥ 1 be a given integer. Without loss of generality we assume

E ∈ D(z0, 1). We treat the cases m < i1 and m ≥ i1 separately. If m < i1, then we have

deg(Tpm (E)|B(c))≤ deg(Tpm (E))= pm+1 − 1

p − 1
≤ pi1m.

Now, assume m ≥ i1. If for every i in {0, . . . ,m} the set t−(m−i)(t i (E)) is disjoint from D(z2i−m, c), then

deg(Tpm (E)|B(c))=
m

∑

i=0

deg((t∗)(m−i)([t i (E)])|D(z2i−m ,c))= 0.

So we assume this is not the case and denote by i0 the least integer i in {0, . . . ,m} such that t−(m−i)(t i (E))

contains a point E0 in D(z2i−m, c). Note that by Lemma 3.7(iii) the point E1 := t i1(E0) satisfies

|E1 − z2i0−m+i1 |p ≤ cκ i1
c < ρ,

so it is in D(z2i0−m+i1, ρ).

If m ≤ i0 + i1, then we have

deg(Tpm (E)|B(c))=
m

∑

i=i0

deg((t∗)m−i ([t i (E)]))≤
m

∑

i=i0

pm−i = pm−i0+1 − 1

p − 1
≤ pi1(m + 1).

Suppose m > i0 + i1, and let i be an integer satisfying i0 ≤ i ≤ m − i1. Noting that for every E ′ in

t−(m−i)(t i (E)) we have

degtm−i (E ′)= degtm−i−i1 (t
i1(E ′)) degt i1 (E

′),

we obtain

(t∗)m−i ([t i (E)])=
∑

E ′′∈t−(m−i−i1)(t i (E))

degtm−i−i1 (E
′′)(t∗)i1([E ′′]). (5-6)

On the other hand, for every z in t−(m−i)(t i (E)) contained in D(z2i−m, c), we have by Lemma 3.7(iii)

and our choice of i1,

|t i1(z)− z2i−m+i1 |p ≤ cκ i1
c < ρ,
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so t i1(z) ∈ D(z2i−m+i1, ρ). Since for such z we have

tm−i−i1(t i1(z))= t i (E)= tm−i−i1(t2i−2i0(E1))

and by Lemma 3.7(ii) the map tm−i−i1 is injective on D(z2i−m+i1, ρ), we conclude that t i1(z)= t2i−2i0(E1).

Since we also have

degtm−i−i1 (t
2i−2i0(E1))= 1

by Lemma 3.7(ii), when we restrict (5-6) to D(z2i−m, c) we obtain

(t∗)m−i ([t i (E)])|D(z2i−m ,c) = (t∗)i1([t2i−2i0(E1)])|D(z2i−m ,c),

and therefore

deg((t∗)m−i ([t i (E)])|D(z2i−m ,c))≤ deg((t∗)i1([t2i−2i0(E1)]))= pi1 .

Together with Proposition 3.4 and our definition of i0, this implies

deg(Tpm (E)|B(c))≤
m−i1−1
∑

i=i0

deg((t∗)m−i ([t i (E)])|D(z2i−m ,c))+
m

∑

i=m−i1

deg((t∗)m−i ([t i (E)]))

≤ pi1(m − i0 − i1)+
m

∑

i=m−i1

pm−i

≤ pi1(m + 1).

This completes the proof of Proposition 5.3 with C1 = 2pi1 . �

Proposition 5.4. Let D and D′ be residue discs contained in Yord(Cp). Then for every ε > 0 there is a

constant C2 > 0 such that for every E in D and every integer n ≥ 1 that is not divisible by p, we have

deg(Tn(E)|D′)≤ C2nε.

To prove this proposition we first establish an intermediate estimate.

Lemma 5.5. Let e and e′ be ordinary elliptic curves over Fp, and for each integer n ≥ 1 denote by

Homn(e, e′) the set of isogenies from e to e′ of degree n. Then, for every ε > 0 we have

# Homn(e, e′)= o(nε). (5-7)

Proof. Assume there is a nonzero element φ0 in Hom(e′, e), for otherwise there is nothing to prove. Then,

the map ι : Hom(e, e′)→ End(e) given by ι(φ)= φ0 ◦φ is an injection, and deg(ι(φ))= deg(φ0) deg(φ).

It is thus enough to prove (5-7) when e′ = e.

Since e is ordinary, the ring End(e) is isomorphic to an order inside a quadratic imaginary extension

K of Q. Moreover, the isomorphism can be taken such that the degree of an isogeny is the same as the

field norm of the corresponding element in K ; see, e.g., [Silverman 2009, Chapter V, Theorem 3.1]. Let

d be the discriminant of K . Then Od,1 is the ring of integers of K , and hence it is enough to show

#{x ∈ Od,1 : xx = n} = o(nε).
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Since the group of units O
×
d,1 is finite, this estimate follows from (2-2) and (2-13). �

Proof of Proposition 5.4. Let e be the ordinary elliptic curve over Fp so that D′ = D( j (e)). In view of

Lemma 5.5, it is sufficient to show that for every E in D and every integer n ≥ 1 that is not divisible by

p we have

deg(Tn(E)|D′)≤ # Homn(Ẽ, e). (5-8)

Since the function E 7→ deg(Tn(E)|D′) is locally constant by Lemma 2.1, it is sufficient to establish this

inequality in the case where E is in Yord(Cunr
p ).

To prove (5-8), recall that the reduction morphism E → Ẽ induces a bijective map E[n] → Ẽ[n]; see

for example [Silverman 2009, Chapter VII, Proposition 3.1(b)]. In addition, note that for a subgroup C of

E of order n such that j (E/C) is in D′, there is an isogeny Ẽ → e whose kernel is equal to the reduction

of C . This defines an injective map

{C ≤ E : #C = n, j (E/C) ∈ D′} → Homn(Ẽ, e),

proving (5-8) and completing the proof of the proposition. �

Proof of Proposition 5.2. Let ζ in Fp be such that B ⊆ D(ζ ), let r ≥ 1 be the minimal period of ζ under

the Frobenius map and put O :=
⋃r−1

i=0 D(ζ pi
). Let C1 be given by Proposition 5.3 and let C2 be the

maximum value of the constants given by Proposition 5.4 with D = D(ζ ), . . . ,D(ζ pr−1
).

Let E in D be given. By (5-4), for every E ′ in supp(Tn0(E)) that is not in O we have

deg(Tpm (E ′)|B)≤ deg(Tpm (E ′)|O)= 0.

On the other hand, for every E ′ in supp(Tn0(E)) that is in O, we have by Proposition 5.3

deg(Tpm (E ′)|B)≤ C1m + 1.

Together with (2-6) and Proposition 5.4 with D′ = D(ζ ), . . . , D(ζ pr−1
), this implies

deg(Tpmn0(E)|B)≤ (C1m + 1) deg(Tn0(E)|O)≤ rC2(C1 + 1)(m + 1)nε0.

This proves the theorem with C = rC2(C1 + 1). �

5C. Hecke orbits in the supersingular reduction locus. The purpose of this section is to prove the

following result on Hecke orbits inside the supersingular reduction locus. In the case where E is in

Ysups(Cp), Theorem C with n = pmn0 is a direct consequence of this result together with (2-1) and

Lemma 2.3.

Proposition 5.6. For every e in Ysups(Fp) fix an arbitrary γe in D( j (e)) and for every r > 0, put

B(r) :=
⋃

e∈Ysups(Fp)

D(γe, r).

Then the following properties hold:
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(i) For every r in ]0, 1[ there is a constant C > 0 such that for every E in Ysups(Cp), every integer m ≥ 0

and every integer n0 ≥ 1 that is not divisible by p, we have

deg(Tpmn0(E)|B(r))≤ Cσ1(n0).

(ii) For every r0 in ]0, 1[ and every integer m0 ≥ 0, there is r in ]0, 1[ such that for every m in {0, . . . ,m0}
and integer n0 ≥ 1 not divisible by p, we have for every E in B(r0)

supp(Tpmn0(E))⊆ B(r).

The proof of this result is based on the following lemma, giving for each integer m ≥ 0 a formula for

the correspondence τm defined in Proposition 4.5. To state this lemma, for each integer k ≥ 0 put

xk := p

p + 1
· p−k and Ik := [xk+1, xk],

and note that
⋃∞

k=0 Ik = ]0, p/(p + 1)]. Moreover, for all integers k, k ′ ≥ 0 denote by

A(+1)
k,k′ : Ik → Ik′ and A(−1)

k,k′ : Ik → Ik′

the unique affine bijection preserving or reversing the orientation, respectively. Note that for every k ≥ 0

we have 1 − A(+1)
k,0 = A(−1)

k,0 and that for every k ′ ≥ 1 we have

p A(±1)
k,k′ = A(±1)

k,k′−1. (5-9)

Lemma 5.7. For each integer m ≥ 0 denote by τm the correspondence acting on [0, p/(p + 1)] defined

in Proposition 4.5. Then for all integers k,m ≥ 0, we have

τm |Ik =
{
∑m

i=0 pi (A(+1)
k,2i−(m−k))∗ if m ≤ k;

∑m−k−1
i=0 pi (A((−1)m−k−i )

k,i )∗ +
∑m

i=m−k pi (A(+1)
k,2i−(m−k))∗ if m ≥ k + 1.

Proof. Fix k ≥ 0. We proceed by induction on m. The case m = 0 is trivial and the case m = 1 is a direct

consequence of the definition given in Proposition 4.5. Let m ≥ 2 be given and suppose that the lemma

holds with m replaced by m − 1 and by m − 2. If m ≤ k, then by (5-9)

τ1(τm−1|Ik )=
m−1
∑

i=0

pi (A(+1)
k,2i−(m−k))∗ +

m−1
∑

i=0

pi+1(A(+1)
k,2i−(m−k)+2)∗ = pτm−2|Ik +

m
∑

i=0

pi (A(+1)
k,2i−(m−k))∗,

which proves the induction step in the case m ≤ k. In the case m = k + 1, using 1 − A(+1)
k,0 = A(−1)

k,0 we

have

τ1(τk |Ik )= (A(−1)
k,0 )∗ +

k
∑

i=1

pi (A(+1)
k,2i−1)∗ +

k
∑

i=0

pi+1(A(+1)
k,2i+1)∗ = pτk−1|Ik + (A(−1)

k,0 )∗ +
k+1
∑

i=1

pi (A(+1)
k,2i−1)∗.
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This proves the induction step in the case m = k + 1. If m = k + 2, then

τ1(τk+1|Ik )= (A(+1)
k,0 )∗ + p(A(−1)

k,1 )∗ +
k+1
∑

i=1

pi (A(+1)
k,2i−2)∗ +

k+1
∑

i=1

pi+1(A(+1)
k,2i )∗

= (A(+1)
k,0 )∗ + p(A(−1)

k,1 )∗ + pτk |Ik +
k+2
∑

i=2

pi (A(+1)
k,2i−2)∗.

This proves the induction step in the case m = k + 2. Finally, if m ≥ k + 3, then τ1(τm−1|Ik ) is equal to

(A((−1)m−k)

k,0 )∗ +
m−k−2
∑

j=1

p j (A((−1)m−k− j−1)

k, j−1 )∗ +
m−k−2
∑

j=0

p j+1(A((−1)m−k− j−1)

k, j+1 )∗ +
m−1
∑

i=m−k−1

pi (A(+1)
k,2i−(m−k))∗

+
m−1
∑

i=m−k−1

pi+1(A(+1)
k,2i−(m−k−2))∗

=
m−k−1
∑

ℓ=0

pℓ(A((−1)m−k−ℓ)
k,ℓ )∗ + p

m−k−3
∑

s=0

ps(A((−1)m−k−s−2)
k,s )∗ +

m
∑

i=m−k

pi (A(+1)
k,2i−(m−k))∗

+ p
m−2
∑

i=m−k−2

pi (A(+1)
k,2i−(m−k−2))∗

= pτm−2|Ik +
m−k−1
∑

ℓ=0

pℓ(A((−1)m−k−ℓ)
k,ℓ )∗ +

m
∑

i=m−k

pi (A(+1)
k,2i−(m−k))∗.

This completes the proof of the induction step and of the lemma. �

Proof of Proposition 5.6. Let v̂p and (τm)
∞
m=0 be as in Proposition 4.5.

To prove (i), let r in ]0, 1[ be given. By Proposition 4.3 there is an integer ℓ≥ 0 such that v̂p(B(r))⊆
[xℓ, x0]. Then the desired assertion follows from Proposition 4.5 and by the observation that by Lemma 5.7

for every x in ]0, x0] we have

deg(τm(x)|[xℓ,x0])≤ 1 + p + · · · + pℓ.

To prove (ii), let r0 in ]0, 1[ and an integer m0 ≥ 0 be given. By Proposition 4.3 there is an integer

ℓ≥ 0 such that v̂p(B(r0))⊆ [xℓ, x0] and r in ]0, 1[ such that v̂−1
p ([xℓ+m0, x0])⊆ B(r). Then the desired

inclusion follows from Proposition 4.5 by noting that by Lemma 5.7 for every x in [xℓ, x0] and every m

in {0, . . . ,m0}, we have supp(τm(x))⊆ [xℓ+m0, x0]. �

Appendix A: Lifting the Hasse invariant in characteristic 2 and 3

When p equals 2 or 3 it is not possible to lift the Hasse invariant Ap−1 to a modular form of level one,

holomorphic at infinity, over Z(p). There are two approaches to solve this issue. On the one hand, there

are liftings of A4
1 and A3

2 in the desired space (namely, the Eisenstein series E4 and E6). On the other

hand, considering level structures, liftings can be constructed as algebraic modular forms over Z(p) of

the expected weight but higher level. In this appendix we recall both approaches, following [Katz 1973,
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Section 2.1], and give a quantitative comparison between them, embodied in Proposition A.1 below. Such

comparison is needed in Section 4B.

We start by recalling level structures. Let R be a ring and let n ≥ 1 be an integer which is assumed to

be invertible in R. Let E be an elliptic curve over R in the sense of Section 4A. A level n structure on E

over R is an isomorphism αn : E[n] → (Z/nZ)2 of group schemes over R.

Given an integer n ≥ 1 and an arbitrary ring R0 where n is invertible, an algebraic modular form of

level n ≥ 1 over R0 is a family of maps F = (FR)R∈R0-Alg such that for any R ∈ R0-Alg, the R-valued

map FR is defined on the set of triples (E, ω, αn), where E is an elliptic curve over R ∈ R0-Alg, together

with a differential form in �1
E/R(E)

′ and a level n structure. The element FR(E, ω, αn) ∈ R must define

an assignment satisfying properties analogous to (i), (ii) and (iii) stated in Section 4A. See [Katz 1973,

Section 1.2] for further details.

When R0 contains 1/n and a primitive n-th root of unity, the q-expansions of an algebraic modular

form F of level n over R0 are defined as the elements of Z((q))⊗Z R0 obtained by evaluating F at the

triples (Tate(qn), ωcan, αn)R0 consisting of the Tate curve Tate(qn) (see Section 5A) with its canonical

differential ωcan, regarded over Z((q))⊗Z R0, with αn varying over all level n structures of Tate(qn) over

Z((q))⊗Z R0. If all of the q-expansions of F lie in Z[[q]] ⊗Z R0 then F is called holomorphic at infinity.

For algebraic modular forms F of level one there is only one q-expansion, which coincides with the

previously defined F(q).

According to [Katz 1973, page 98], for any level 3 ≤ n ≤ 11 odd, there exists a lifting of A1 to a

modular form of level n, weight one, holomorphic at infinity, over Z[1/n]. We define E1 as any such

lifting and set n(E1) := n. Similarly, when m ≥ 4 and 3 ∤m, there exists a lifting of A2 to a modular form

of level m, weight two, holomorphic at infinity, over Z[1/m]. We define E2 as any such lifting and set

n(E2) := m.

The following statement is a comparison between both approaches.

Proposition A.1. Let E ∈ Ysups(Cp) and let ω be a differential form in �1
E/Op

(E)′:

(i) For any level n(E1) structure α on E we have

ord2(E4(E, ω)) < 3 ⇔ ord2(E
4
1(E, ω, α)) < 3,

in which case ord2(E4(E, ω))= ord2(E4
1(E, ω, α)).

(ii) For any level n(E2) structure α on E we have

ord3(E6(E, ω)) <
5
2 ⇔ ord3(E

3
2(E, ω, α)) <

5
2 ,

in which case ord3(E4(E, ω))= ord3(E3
2(E, ω, α)).

Proof. In order to prove (i), we start by recalling the q-expansion

E4(q)= 1 + 240
∞

∑

n=1

σ3(n)q
n,
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obtained by setting k = 4 in (4-2). Since ord2(240)= 4, we have E4(q)≡ 1 mod 24. Now, put n1 := n(E1),

let ζn1 be a primitive n1-th roof of unity and define R1 := Z[1/n1, ζn1]. By the definition of E1 we have

E1(Tate(qn1), ωcan, αn1)≡ A1(q
n1)≡ 1 mod 2R1,

hence

E4
1(Tate(qn1), ωcan, αn1)≡ 1 ≡ E4(q

n1) mod 23 R1,

for any level n1 structure αn1 on Tate(qn1). We conclude that the form f obtained by reducing modulo

23Z[1/n1] the form E4 − E4
1 is an algebraic modular form of weight 4, level n1 over Z/23Z, whose

q-expansions over (Z/23Z)[ζn1] vanish identically. By [Katz 1973, Theorem 1.6.1] we deduce that f = 0.

By compatibility with base change we conclude that for any Z[1/n1]-algebra R and any triple (E, ω, αn1)

over R we have

E4(E, ω)− E4
1(E, ω, αn1)≡ f ((E, ω, αn1)R/23 R)≡ 0 mod 23 R.

In particular, choosing R = Op, we get

ord2(E4(E, ω)− E4
1(E, ω, αn1))≥ 3, (A-1)

for every E ∈ Ysups(Cp), every basis ω of �1
E/Op

and every level n1 structure αn1 on E . Then, (i) is a

direct consequence of (A-1) and the ultrametric inequality.

The proof of (ii) is unfortunately less straightforward. This is because the same argument used to prove

(A-1) only yields the inequality

ord3(E6(E, ω)− E3
2(E, ω, αn2))≥ 2,

valid for any level n2 := n(E2) structure αn2 on E , but such inequality does not imply the desired result.

On the other hand, the above argument allows us to infer

ord3(E4(E, ω)− E2
2(E, ω, αn2))≥ 1. (A-2)

In order to prove (ii) we introduce the series

G2(τ )= 1 + 24
∞

∑

n=1

(

σ1(n)− 2σ1

(

n

2

))

e2π inτ , τ ∈ H, (A-3)

where σ1
(

n
2

)

is defined as zero when n is odd. It is known that G2 is a classical holomorphic modular form

of weight two for the group Ŵ0(2)=
{

g ∈ SL2(Z) : g ≡
(∗

0
∗
∗
)

mod 2
}

.‖ By [Katz 1973, Corollary 1.9.1],

G2 defines an algebraic modular over Z
[ 1

2

]

of weight two and level two. This form satisfies the identity

4G3
2 = E6 +3 E4 G2. (A-4)

Indeed, the space of modular forms over C of weight six for Ŵ0(2) has dimension 2, see the dimension

formulas in [Diamond and Shurman 2005, Chapter 3]. By comparing Fourier expansions, it is easy

‖Up to an explicit multiplicative factor, this is denoted by G2,2 in [Diamond and Shurman 2005, Section 1.2].
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to check that E6 and E4 G2 are linearly independent over C, hence they form a basis of such space.

This implies that there exist a, b ∈ C with G3
2 = a E6 +b E4 G2. Then, (A-4) follows at the level of

classical modular forms by computing the values of a and b, which can be done by comparing Fourier

expansions. Finally, the fact that (A-4) holds as an identity between algebraic modular forms over Z
[1

2

]

is a consequence of [Katz 1973, Corollary 1.9.1].

We also recall the identity

E2
6 − E3

4 = 17281.

At the level of classical modular forms, see for example [Diamond and Shurman 2005, Sections 1.1

and 1.2]. Then, this identity holds at the level of algebraic modular forms by the same reasoning as before.

Given E ∈ Ysups(Cp) and a differential form ω in �1
E/Op

(E)′, we have 1(E, ω) ∈ O×
p since E has good

reduction. This implies

ord3(E
2
6(E, ω)− E3

4(E, ω))= 3. (A-5)

By using (A-4) and (A-5), we will now prove (ii). Let α be a level n2 structure on E . First, assume that

ord3(E2(E, ω, α)) <
5
6 . From (A-4) we see that the reduction modulo 3 of G2 equals A2. Since the same

holds for E2, we conclude that

ord3(E2(E, ω, α)− G2(E, ω, β))≥ 1, (A-6)

for any level two structure β. In particular

ord3(G2(E, ω, β))= ord3(E2(E, ω, α)) <
5
6 .

By (A-4) we have

E6(E, ω)= G2(E, ω, β)(4G2
2(E, ω, β)− 3 E4(E, ω)).

But by (A-2) and (A-6) we also have

ord3(3 E4(E, ω))= 1 + ord3(E4(E, ω))≥ 1 + min{1, ord3(G
2
2(E, ω, β))}> ord3(G

2
2(E, ω, β)),

hence

ord3(E6(E, ω))= ord3(G
3
2(E, ω, β))= ord3(E

3
2(E, ω, α)).

This proves one implication. Let us now prove the reciprocal. We start by assuming that ord3(E6(E, ω))<
5
2 .

If ord3(E4(E, ω)) < 1, then we can use (A-2), (A-5) and (A-6) to deduce that ord3(E3
4(E, ω)) =

ord3(E2
6(E, ω)) and ord3(G2

2(E, ω, β))= ord3(E4(E, ω)). This implies

ord3(3G2(E, ω, β)E4(E, ω))= 1 + ord3(E6(E, ω)) > ord3(E6(E, ω)).

By (A-4) and (A-6) we conclude

ord3(E
3
2(E, ω, α))= ord3(G

3
2(E, ω, β))= ord3(E6(E, ω)).
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Now, if ord3(E4(E, ω))≥ 1 then (A-2) and (A-6) imply ord3(G2
2(E, ω, β))≥ 1, giving

ord3(3G2(E, ω, β)E4(E, ω))≥ 5
2 > ord3(E6(E, ω)).

As before, we conclude ord3(E3
2(E, ω, α))= ord3(E6(E, ω)). This proves the reciprocal implication and

completes the proof of the proposition. �

Appendix B: Eichler–Shimura analytic relation

In this appendix we further study the canonical branch t of Tp that is defined on Yord(Cp) in Section 3A.

We start extending t , as follows. Recall that vp denotes Katz’ valuation, defined in Section 4A. Extend

vp to Y (Cp) as vp ≡ 0 outside Ysups(Cp), and put

Np :=
{

E ∈ Y (Cp) : vp(E) <
p

p + 1

}

. (B-1)

On Np ∩ Ysups(Cp), we use the definition of t in Lemma 4.6. To define t at a point E in Ybad(Cp), let z

in D(0, 1)∗ and let ϕz : C×
p /z

Z → Tate(z)(Cp) be the isomorphism of analytic groups as in Section 5A.

Then we define

H(E) := ϕz({ζ zn ∈ C
×
p : ζ p = 1, n ∈ Z}/zZ), and t(E) := E/H(E).

Note that in the notation (5-2) of Section 5A, we have H(E) = C p,z p . The map t : Np → Y (Cp) so

defined is the canonical branch of Tp.

The goal of this appendix is to prove the following result.

Theorem B.1 (Eichler–Shimura analytic relation). The canonical branch t of Tp is given by a finite sum

of Laurent series, each of which converges on all of Np. Furthermore, for every E in Np \ Ybad(Cp) we

have

ordp(t( j (E))− j (E)p)≥ 1 − vp(E), (B-2)

and for every E in Y (Cp) we have

Tp(E)=
{

t∗(E)+ [t(E)] if vp(E)≤ 1/(p + 1);
t∗(E) if vp(E) > 1/(p + 1).

(B-3)

In view of (B-2), the relation (B-3) can be seen as refinement and a lift to Np of the classical Eichler–

Shimura congruence relation; see for example [Shimura 1971, Section 7.4] or [Diamond and Shurman

2005, Section 8.7].

The proof of Theorem B.1 is at the end of this appendix. When restricted to Yord(Cp), it is a direct

consequence of Theorem 3.3 and Proposition 3.4 with m = 1. To prove (B-3) for E in Ysups(Cp), we use

Lemma 4.6. To prove this relation on Ybad(Cp), we use the results on the uniformization of p-adic elliptic

curves with multiplicative reduction, recalled in Section 5A. To prove (B-2) and that t is a finite sum of

Laurent series for p ≥ 5, we use Theorem 3.3 in Section 3A. For p = 2 and 3, we use Proposition B.2
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below, whose proof is based on the explicit formulae in [Mestre 1986, Appendice]. This result also

provides a proof of Theorem 3.3 when p = 2 and 3

Note that for p = 2 and 3, the set Ysups(Fp) consists of a single point whose j-invariant is equal to 0

and to 1728; see for example [Silverman 2009, Chapter V, Section 4].

Proposition B.2. Put j2 := 0 and j3 := 1728, and consider the polynomials

ǩ2(z) := −93 · 24z + 627 · 28 and ǩ3(z) := 328 · 32z2 + 85708 · 33z + 1263704 · 35.

Then for p = 2 and 3, the canonical branch t of Tp admits a Laurent series expansion of the form

t(z)= (z − jp)
p + jp + ǩp(z − jp)+

∞
∑

n=1

A(p)n

(z − jp)n
,

where for every n ≥ 1 the coefficient A(p)n is in Z and satisfies

ordp(A
(p)
n )≥

{

4 + 8n if p = 2;
3
2 + 9

2 n if p = 3,

with equality if n = 1.

To prove this proposition, we introduce some notation and recall the explicit formulae in [Mestre 1986,

Appendice]. For K = C or Cp, we use j to identify Y (K) with K and consider Tp as a correspondence

acting on Div(K). Let Y0(p), αp and βp be as in Section 2B, so that Tp = ( j ◦αp)∗ ◦ ( j ◦βp)
∗. Denote by

wp : Y0(p)(K)→ Y0(p)(K)

the Atkin–Lehner or Fricke involution, defined bywp(E,C) := (E/C, E[p]/C) and note that βp =αp◦wp.

Identify Y0(p)(C)with the quotient Ŵ0(p)\H and denote by η : H→C Dedekind’s eta function, defined by

η(τ) := exp

(

π iτ

12

) ∞
∏

n=1

(1 − exp(2π inτ)).

Then for p = 2 or 3, the function x̂ p : H → C defined by

x̂ p(τ ) :=
(

η(τ)

η(pτ)

)24/(p−1)

descends to a complex analytic isomorphism x p : Y0(p)(C)→ C. Moreover, defining

α̂p(z) :=
{

(z + 24)3/z if p = 2;
(z + 33)(z + 3)3/z if p = 3,

and ŵp(z) :=
{

212/z if p = 2;
36/z if p = 3,

we have j ◦αp = α̂p ◦ x p and x p ◦wp = ŵp ◦ x p; see [Mestre 1986, pages 238 and 239]. It follows that,

if we put

β̂p(z) := α̂p ◦ ŵp(z)=
{

(z + 28)3/z2 if p = 2;
(z + 33)(z + 35)3/z3 if p = 3,
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then j ◦ βp = β̂p ◦ x p and therefore Tp = (α̂p)∗ ◦ β̂∗
p as algebraic correspondences over C. Since Tp,

α̂p and β̂p are all defined over Q, we have that the equality Tp = (α̂p)∗ ◦ β̂∗
p also holds as algebraic

correspondences over Div(Y (Cp)).

The following elementary lemma is used the proof of Proposition B.2. Given r in ]0, 1[, and a Laurent

series
∑∞

n=0
An
zn in Z

[[ 1
z

]]

, put

∥

∥

∥

∥

∞
∑

n=0

An

zn

∥

∥

∥

∥

r
:= sup{|An|pr−n : n ≥ 0}.

Lemma B.3. Let δ(z) in 1
z Z

[[ 1
z

]]

be given and put f (z) := z(1 + δ(z)). Then there is 1(z) in 1
z Z

[[ 1
z

]]

such that F(z) := z(1 +1(z)) satisfies F( f (z))= z. If in addition for some r in ]0, 1[ we have ‖δ‖r ≤ 1,

then ‖1‖r ≤ 1.

Proof. We start defining recursively a sequence (1n)
∞
n=0 in 1

z Z
[ 1

z

]

such that for every integer n ≥ 0,

zn1n(z) ∈ Z[z], 1n+1(z)≡1n(z) mod 1
zn+1 Z

[ 1
z

]

,

and the Laurent polynomial Fn(z) := z(1 +1n(z)) satisfies

Fn( f (z))≡ z mod 1
zn Z

[1
z

]

.

For n = 0 put 10(z)= 0, so F0( f (z))= f (z)≡ z mod Z
[ 1

z

]

. Let n ≥ 0 be an integer so that 1n is already

defined and let A in Z be the coefficient of 1/zn in Fn( f (z)). Then for 1n+1(z) :=1n(z)− A/zn+1, we

have

(Fn+1 − Fn)( f (z))= − A

zn(1 + δ(z))n = − A

zn

(

1 +
∞

∑

k=1

(−δ(z))k
)n

≡ − A

zn
mod

1

zn+1
Z

[

1

z

]

,

and therefore

Fn+1( f (z))− z = Fn( f (z))− z + (Fn+1 − Fn)( f (z))≡ 0 mod 1
zn+1 Z

[ 1
z

]

.

This completes the definition of the sequence (1n)
∞
n=0. It follows that the unique series 1 in 1

z Z
[[ 1

z

]]

satisfying for every n ≥ 0 the congruence

1(z)≡1n(z) mod 1
zn+1 Z

[[ 1
z

]]

,

satisfies F( f (z))= z.

To prove the last assertion, note that for every r in ]0, 1[,

Ir :=
{

z(1 + g(z)) : g(z) ∈ 1
z Z

[[ 1
z

]]

, ‖g‖r ≤ 1
}

is a collection of series in Z
[[ 1

z

]]

that is closed under composition. It follows from the above construction

that, if for some r in ]0, 1[ we have ‖δ‖r ≤ 1, then for every integer n ≥ 0 the series Fn and Fn ◦ f are

both in Ir . This implies that F is in Ir , as wanted. �
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The proof of Proposition B.2 is given after the following lemma, which is also used in the proof of

Theorem B.1.

Lemma B.4. For an arbitrary prime number p, the right-hand side of (3-3) converges to t on Yord(Cp)∪
Ybad(Cp).

Proof. Let 8p(X, Y ) be the modular polynomial of level p, as defined in Section 2B, so that for every z

in Yord(Cp) we have 8p(z, t(z))= 0. By Theorem 3.3, the finite sum of Laurent series on the right-hand

side of (3-3) converges on Yord(Cp)∪Ybad(Cp) to a function t̂ extending t , and for z in Ybad(Cp) we have

| t̂(z)|p = |z|p
p. It follows that for every z in Ybad(Cp) we have 8p(z, t̂(z))= 0, so t̂(z) is in the support

of Tp(z). Combining (5-1) and (5-3), we conclude that t̂(z)= t(z). �

Proof of Proposition B.2. Note that if we put r2 := 2−8 and r3 := 3−9/2, then for p = 2 and 3 we have by

Proposition 4.3,

Np = {z ∈ Cp : |z − jp|p > rp}.

For p = 2 and 3, put

α̌p := α̂p − jp and β̌p := β̂p − jp.

Note that for p = 3, we have

α̌3(z)= (z2 + 2 · 32z − 33)2

z
and β̌3(z)= (z2 − 2 · 35z − 39)2

z3
.

So, for p = 2 and 3 the rational map δp(z) := z−1β̌p(z)− 1 is a Laurent polynomial in 1
z Z

[ 1
z

]

satisfying

‖δp‖rp ≤ 1. In particular, for every z in the set

Ňp := {z′ ∈ Cp : |z′|p > rp},

we have |β̌p(z)|p = |z|p, so β̌p maps Ňp into itself. By Lemma B.3 there is 1p(w) in 1
w

Z
[[ 1
w

]]

such that

‖1p‖rp ≤ 1 and such that the map

Fp : Ňp → Ňp

w 7→ Fp(w) := w(1 +1p(w))

is an inverse of β̌p|Ňp
.

We show below that t coincides with the map

ť : Np → Cp

z 7→ ť(z) := (α̌p ◦ Fp)(z − jp)+ jp.

Once this is established, the proposition follows from explicit computations using the estimates,

‖1p‖rp ≤ 1,

∥

∥

∥

∥

α̌2(w)

w2

∥

∥

∥

∥

2−4

≤ 1 for p = 2, and

∥

∥

∥

∥

α̌3(w)

w3

∥

∥

∥

∥

3−3/2

≤ 1 for p = 3.
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By definition, for each z in N̂p the point ť(z) is in the support of Tp(z)= (αp)∗ ◦β∗
p(z). Moreover, for

every z in Ybad(Cp) we have | ť(z)|p = |z|p
p, so by (5-1) and (5-3) we have ť(z)= t(z). Combined with

Lemma B.4, this implies that ť and t agree on Yord(Cp) ∪ Ybad(Cp). In view of Proposition 4.3 and

Lemma 4.6, to prove that ť and t agree on Np ∩ Ysups(Cp) it is sufficient to show that for every w in

Ňp ∩Mp we have |(α̌p ◦ Fp)(w)|p 6= |w|1/p
p . Note that for every w in Ňp we have |Fp(w)|p = |w|p. A

direct computation shows that for p = 2 we have

|(α̌2 ◦ F2)(w)|2







= |w|22 if 2−4 < |w|2 < 1;
≤ 2−8 if |w|2 = 2−4;
= 2−12/|w|2 if r2 < |w|2 < 2−4,

and that for p = 3 we have

|(α̌3 ◦ F3)(w)|3







= |w|33 if 3−3/2 < |w|3 < 1;
≤ 3−9/2 if |w|3 = 3−3/2;
= 3−6/|w|3 if r3 < |w|3 < 3−3/2.

In all the cases we have |(α̌p ◦ Fp)(w)|p 6= |w|1/p
p . This completes the proof of t = ť , and of the

proposition. �

Proof of Theorem B.1. We first prove (B-2), and the assertions about the Laurent series expansion. For

p = 2 and 3, these are given by Proposition B.2. Assume p ≥ 5. For each e in Ysups(Fp), let je be given

by Proposition 4.3, and define Psups(X)=
∏

e∈Ysups(Fp)
(X − je) as in the proof of this proposition. Since

the reduction modulo p of the polynomial Psups is separable, for every e in Ysups(Fp) we have that je is in

Qunr
p . Put βe := je. Denote by t̂ the finite sum of Laurent series in the right-hand side of (3-3) for these

choices of (βe)e∈Ysups(Fp)
. It follows from Theorem 3.3 and Proposition 4.3 that t̂ converges on Np, and

by Lemma B.4 that for every z in Ybad(Cp)∪ Yord(Cp) we have t̂(z)= t(z). We proceed to prove that for

every z in N̂p := Np ∩ Ysups(Cp) we also have t̂(z)= t(z).

Denote by 8p(X, Y ) the modular polynomial of level p defined in Section 2B. Note that for every z

in Ybad(Cp)∪ Yord(Cp) we have

8p( t̂(z), z)=8p(z, t̂(z))= 0. (B-4)

Since t̂ is analytic, (B-4) holds for every z in Np. In view of Lemma 4.6, this implies that for every E in

N̂p we have either vp( t̂(E))= 1
pvp(E), or

vp( t̂(E))







= pvp(E) if vp(E) ∈ ]0, 1/(p + 1)];
≥ pvp(E) if vp(E)= 1/p + 1;
= 1 − vp(E) if vp(E) ∈ ]1/(p + 1), p/(p + 1)[.

(B-5)

We now prove that (B-5) holds for every E in N̂p. Fix e in Ysups(Fp), and note that the function

ν : ]0, p/(p + 1)[ ∩ Q → Q

r 7→ ν(r) := inf{vp( t̂(E)) : E ∈ D( j (e)), vp(E)= r},
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extends continuously to ]0, p/(p+1)[. Thus, either (B-5) holds for every E in Np ∩ D( j (e)), or for every

E in this set we have vp( t̂(E))= 1
pvp(E). So, to prove that (B-5) holds for every E in Np ∩ D( j (e)) it

is sufficient to prove that it holds for some E0 in Np ∩ D( j (e)). Choose E0 in Np ∩ D( j (e)) such that

z0 := j (E0) satisfies

0< ordp(z0 − je) <
1

p + 1
.

By Theorem 3.3 we have

ordp( t̂(z0)− z p
0 − pk(z0))≥ 1 − ordp(z0 − je) >

p

p + 1
.

Since ordp(z0 − je) <
1
p , we also have

ordp( t̂(z0)− jp
e )= p ordp(z0 − je) <

p

p + 1
.

Combined with ordp(j
p
e − je(p))≥ 1 and ordp(pk(z0))≥ 1, this implies

ordp( t̂(z0)− je(p))= p ordp(z0 − je), (B-6)

and therefore (B-5) with E = E0. This completes the proof that (B-5) holds for every E in N̂p. In view

of (B-4), Proposition 4.3, and Lemma 4.6, it follows that for every z in N̂p we have t̂(z) = t(z). By

Theorem 3.3 we also obtain (B-2).

It remains to prove (B-3) for an arbitrary prime number p. Note that for E in Yord(Cp) this is given

by Proposition 3.4 with m = 1, and that for E in Ybad(Cp) this follows from the combination of (5-1),

and of (5-3) with n = p. It remains to prove (B-3) for E in N̂p. By the considerations above, and the

proof of Proposition B.2, we have that (B-5) holds for every prime number p and for every E in N̂p. By

Lemma 4.6 we deduce that:

(1) t maps

N ′
p :=

{

E ∈ Y (Cp) : 0< vp(E) <
1

p + 1

}

onto N̂p, and for every E in N̂p the divisor (t|N ′
p
)∗(E) has degree p.

(2) t maps

Sp :=
{

E ∈ Y (Cp) : vp(E)= 1

p + 1

}

onto Bp := Ysups(Cp) \ N̂p, and for every E in Bp the divisor (t|Sp)
∗(E) has degree p + 1.

(3) t maps Ap := N̂p \ (N ′
p ∪ Sp) onto itself, and for every E in Ap we have (t|Ap)

∗(E)= [t(E)].

The proof of (B-3) is divided in the following cases:

(1) For E in Bp, we have t∗(E) = (t|Sp)
∗(E) and this divisor has degree p + 1. Together with (B-4)

this implies Tp(E)= t∗(E).
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(2) For E in Ap, we have t∗(E)= (t|N ′
p
)∗(E)+ (t|Ap)

∗(E) and this divisor has degree p + 1. As in the

previous case we conclude that Tp(E)= t∗(E).

(3) For E in N ′
p ∪ Sp, we have t∗(E)= (t|N ′

p
)∗(E) and this divisor is of degree p. Combined with (B-4)

this implies that the divisor Tp(E)− t∗(E) has degree 1. On the other hand, by (B-5) the point t(E)

is not in the support of t∗(E), so by (B-4) we have T (E)− t∗(E)= [t(E)].
This completes the proof of (B-3), and of the theorem. �
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