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Abstract—Super-resolution imaging is a family of techniques
in which multiple lower-resolution images can be merged to
produce a single image at higher resolution. While super-
resolution is often applied to optical systems, it can also be
used with other imaging modalities. Here we demonstrate a
512 x 256 CMOS sensor array for micro-scale super-resolution
electrochemical impedance spectroscopy (SR-EIS) imaging. The
system is implemented in standard 180nm CMOS technology
with a 10 um x 10 um pixel size. The sensor array is designed
to measure the mutual capacitance between programmable sets
of pixel pairs. Multiple spatially-resolved impedance images
can then be computationally combined to generate a super-
resolution impedance image. We use finite-element electrostatic
simulations to support the proposed measurement approach and
discuss straightforward algorithms for super-resolution image
reconstruction. We present experimental measurements of sub-
cellular permittivity distribution within single green algae cells,
showing the sensor’s capability to produce microscale impedance
images with sub-pixel resolution.

Keywords— Biosensor, impedance spectroscopy, super-
resolution, electrochemical, image sensor, CMOS, dielectric
spectroscopy, impedance tomography, computational imag-
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I. INTRODUCTION

Electrochemical impedance spectroscopy (EIS) is an estab-
lished technique to study processes occurring at an electrode
surface, with numerous applications in cell culture monitoring
[1]-[5] and bio-molecular diagnostics [6], [7], in addition
to its established applications in electrochemistry. In many
traditional EIS instruments, a potentiostat [8] is implemented
with discrete electronics, and it is used to record the impedance
at a working electrode (WE), corresponding to a single point
in space. Compared to single-electrode EIS, spatially-resolved
EIS can yield images with much richer information about a
biological sample. Prior demonstrations of spatially-resolved
EIS include examples using scanning probes [9] or small ar-
rays of macro-scale electrodes [10] for impedance tomography.

More recently, high-density CMOS integrated electrode
arrays [2], [11], [13] have become a popular EIS platform
that can simultaneously offer high throughput, large field-of-
view, fast acquisition rate, multimodal sensing capabilities,
and low cost. However, since impedance imaging does not
have the benefit of magnifying lenses, the ultimate imaging
resolution of a CMOS sensor array is often determined by its
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pixel spacing. In a given CMOS process node, the minimum
dimensions of surface electrodes are generally larger than
minimum transistor sizes. Adopting advanced process nodes
and incorporating custom post-CMOS fabrication steps can
improve the pixel resolution [11], [14], though this will in-
evitably increase the cost. Regardless of the sensor dimensions,
it would be valuable to have techniques that can improve
spatial resolution beyond the physical electrode spacing.

To address this challenge, we introduce a 512 x 256 super-
resolution electrochemical impedance spectroscopy (SR-EIS)
CMOS sensor array which leverages concepts from widely-
used approaches to construct a high-resolution image from
multiple lower-resolution video frames [15]. A simplified con-
ceptual diagram is shown in Fig. 1. Traditional EIS measures
one working electrode at a time, but the proposed method
measures the mutual capacitance between pairs of nearby
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Fig. 1: (a) An illustrated cross-section of algae cells in a buffer solution above
the sensor. The sensor is designed to measure the mutual capacitance between
pairs of electrodes, and it produces spatially-resolved information about the
dielectric permittivity and conductance of the sample. (b) Conceptual diagram
of multiple mutual EIS image frames which are then assembled into one super-
resolution EIS (SR-EIS) image.



pixels, allowing it to produce multiple frames which have
subtle differences due to selecting different pixel pairs. For
example, we can record an image that measures the mutual
capacitance between each pixel and the pixel that is one
position to its right; we can then generate another image that
measures the mutual capacitance between each pixel and the
pixel that is two positions to its right. The sensor array can
be configured to measure between any arbitrary pair of pixels
where the ultimate limit is set by the sensing depth. Each
impedance image with different pairwise offsets possesses
different information of the same scene as demonstrated in a
finite-element-method (FEM) numerical simulation. Then we
can use these multiple frames to computationally assemble a
high-resolution composite image. This new scheme uses an
area-efficient two-phase sensing scheme that fits into a 10 um
pixel grid pitch. Compared to previous CMOS capacitance
imaging arrays [2], [11], the new operating mode only requires
two more switches per pixel. Similar to previous work, it can
be configured to operate at radio frequency to overcome Debye
screening and sense objects farther from the electrode surface.
Mutual capacitance measurements have been previously used
in Electrical Capacitance Tomography (ECT) with applications
in flow imaging such as gas-solid flows [16] and trickle bed
reactors [17]. However, earlier ECT systems have tended to
have only a few macroscale electrodes and limited spatial
resolution.

This is an extension of earlier work [18], which introduced
SR-EIS using a 100 x 100 CMOS sensor array. Here we have
expanded the array size to 512 x 256, added new theoretical
details and new experimental results, and introduced a new
reconstruction algorithm. This paper is organized as follows.
Section II explains the two-phase model and its measurement
principle. Section III describes the detailed system architecture
and the circuit design of a prototype SR-EIS implementa-
tion. Section IV shows the packaging and hardware setup
of the measurement system. Section V compares FEM sim-
ulations with the EIS measurements on polystyrene micro-
beads. Section VI discusses the super-resolution reconstruction
algorithm. Experimental measurements of single micro-algae
are presented in Section VI, and Section VII concludes the

paper.

II. TWO-PHASE MUTUAL CAPACITANCE SENSING

To illustrate the two-phase sensing scheme, we start with the
single-pixel sensing model shown in Fig. 2(a) which presents
one electrode capacitively coupled to a buffer solution. C; is
the capacitance seen by pixel #1, and two non-overlapping
clocks 6; and 6y (Fig. 2(c)) rapidly charge and discharge
Cy such that we can measure the sensing current with an
integrating transimpedance amplifier (Fig. 2(d)). The value of
(1 is expressed as:

o = (Ver — VBras) fsw 0

IsensE

where f,,, denotes the switching frequency. This method only
requires a few minimum-sized switches inside each pixel,
and can scale easily with a small pixel pitch. In addition,
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Fig. 2: Illustration of the single-pixel capacitance sensing versus the two-phase
mutual capacitance sensing. (a) Single electrode with a simplified capacitance
model. (b) Two adjacent electrodes with a simplified capacitance model. (c)
The pixel switches are driven by two sets of non-overlapping clocks 67 and
62. (d) Switched capacitor circuit to measure C1. (e) If Vpras = Vo and
we swap the order of 61 and 62 in pixel #2, the circuit becomes equivalent
to a parasitic-insensitive switched capacitor integrator, which measures C'ps.

this circuit can operate at radio frequencies [2], [11], [12]
to overcome Debye screening for farther detection depth.
However, it only measures the capacitance between the pixel
and the reference electrode. The mutual capacitance between
adjacent pixels can be considered as a parasitic capacitance,
which either adds to C; or is intentionally shielded out,
depending on how neighboring pixels are configured.

Since pixels can be capacitively coupled through fringe
fields passing through the liquid media, the mutual capacitance
may also contain rich information about the measured sample.
We thus propose the two-phase mutual capacitance sensing
shown in Fig. 2(b). C; describes the capacitance that is
only seen by electrode #1, and C5 is the capacitance that
is only seen by electrode #2. C); is the mutual capacitance
between these two electrodes, which may include distributed
electric fields extending into the sample as well as parasitic
capacitance within the sensor chip. Since the electrodes are
polarizable and the switching frequency (> 6.25 MHz) is faster
than the typical 107 sec relaxation time of electrical double
layers in water [19], we assume that the response is primarily
capacitive and we neglect distributed resistances in our anal-
ysis.

To support this sensing mode, there are a few modifications
compared to single-pixel sensing. First, we exchange the roles
of 6; and 6, that control the switches in pixel #2. Second,
the second bias voltage of pixel #2 is connected to a global
Vsrrnvu voltage reference. Finally, we set Veras = Voar. In-
terestingly, this circuit is equivalent to a classical non-inverting
switched capacitor integrator as shown in Fig. 2(e). C'; and Cs



do not contribute to the net output current (Isgnsg), and the
mutual capacitance C'; can be expressed as:

Cus = (Vem ; Vsrimu) fsw )
SENSE

which has an almost identical format as equation (1). This
method inherits all the advantages from the single-pixel
scheme, and the sensor can easily revert back to single-pixel
sensing if pixel #2 is disabled and Vg is set to a different
voltage than V(. In the mutual capacitance mode, a reference
electrode is not strictly required to bias the solution. By
enabling the clocks and bias voltages appropriately, the mutual
capacitance can be measured between any two pixels, whether
or not they are immediately adjacent in the array.

Fig. 3 illustrates the process of scanning the sensor array
to form one impedance image. In this simplified example, we
use a 3 x3 kernel, where the grid indices of Pixel #1 and Pixel
#2 from Fig. 2(b) are related by (i, j2)=(i1 + i, 71 + 0;),
with §; = d; = 1. This kernel is scanned over the entire
array to generate an image. To produce a collection of images
with slightly different dependence on the sample’s spatially
varying impedance, as described in Fig. 1, we can repeat the
same process for different offset vectors (J;,;), and then
vary the scanned pattern to create multiple different impedance
perspectives.

The kernel size is ultimately limited by the fact that the
mutual capacitance decreases with the distance between pixel
pairs. To acquire all pairwise N xN kernels requires measuring
N2-1 images, and the control logic to scan the appropriate
address through the array can be implemented easily with a
few shift registers, supporting a fast frame rate as shown in
the next section.

Although here we focus on the mutual capacitance between
exactly two pixels, the two-phase capacitance sensing can
also be applied to more than two pixels at a time, creating
more complex fringe fields [20]. Multi-pixel switching patterns
could enable enhanced sensing modes or in-pixel computa-
tions, or perhaps find more efficient image sets with fewer
than N2-1 frames.

III. CMOS SENSOR ARRAY DESIGN
A. Pixel and Array

Simplified schematics of the sensor array are shown in
Fig. 4. The active sensing area has 131,072 pixels arranged in a
256 x 512 array. Note that in our earlier SR-EIS demonstration
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Fig. 3: One EIS image is constructed from a collection of pairwise mutual
capacitance measurements. Illustrated above is the construction of the image
which measures C; between each pixel and one of its diagonal neighbors,
which we describe as a kernel offset of (d;,d;)=(+1,+1). Different kernels
can be used to produce different EIS images, as illustrated in Fig. 1b.
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Fig. 4: (a) Simplified SR-EIS pixel and array schematic. The pixels are
controlled by row-wise and column-wise control signals, with shift register
logic to support scanning through the array. (b) Architecture of the 256 x 512
pixel sensor array, including the column readout signal paths.

[18], we used a smaller 100 x 100 array. This new larger
sensor has multiple sensing and stimulation modes, but here
we only focus on SR-EIS using the chip’s mutual-capacitance
measurement mode. More details on the other features of the
sensor can be found in [21].

Each pixel shown in Fig. 4(a) can be driven by a pair of
on-chip non-overlapping clocks ¢; and 5, with the option to
swap the positions of the two clocks, as described earlier. A
reference clock is provided from an external FPGA, and the
array includes an on-chip two-phase clock generator with 4-
bit trimming of the non-overlap time. A set of shift registers
are used to control the row clock gating and row-wise control
signals, thereby controlling the clock polarity and the output
routing of each pixel. Different pairwise measurement offset
kernels can be configured by initializing the corresponding
shift registers. To acquire each impedance image, we scan
the entire array in a column-first, row-last addressing order
starting from the initial shift register values. All switches are
implemented with minimum-sized NMOS transistors for area
efficiency. 61 and 65 are held low for a brief period of time
before each pixel measurement to fully discharge the NMOS
switch gates to prevent any stored charge in the pass-gate
controlled clock paths from interfering with the next pixel
scan.

B. Readout Circuit

The readout circuit shown in Fig. 4(b) is composed of
eight parallel channels to improve the frame rate, with each
channel multiplexed between 32 columns. Each readout path
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Fig. 5: (a) Die photo of the 256 X 512 pixel sensor array. (b) SEM image
of electrodes. (c) Cross-section of an electrode before aluminum etching. (d)
Cross-section of an electrode after etching the aluminum, and exposing a TiN
layer as the sensing surface.

includes a pair of integrators followed by buffers to drive eight
external 500 kS/s 18-bit ADCs. Correlated double sampling
and chopping are applied to suppress offsets and 1/f noise.

IV. HARDWARE IMPLEMENTATION
A. Layout and Packaging

The circuit is implemented in a 180 nm 1P6M CMOS
process, occupying 25 mm?, including 13.1 mm? active sens-
ing area. (Fig. 5(a)). We adopted a one-step post-processing
procedure as previously described [2], [22]. After encapsu-
lating the wirebonds in epoxy, a simple open-top fluidic cell
is assembled around the sensor and the aluminum top metal
is chemically removed to expose a titanium nitride (TiN)
electrode surface (Fig. 6(c)), because aluminum can be easily
corroded while TiN is chemically stable. The cross-section
view of the electrode is shown in Fig. 5(c)(d). A scanning
electrode microscope image of several electrodes after post-
processing is shown in Fig. 5(b).

B. Hardware Setup

The sensor array chip is wire-bonded to a small printed
circuit board module, which is connected to a larger PCB
hosting an FPGA module (Opal Kelly XEM7310), eight
analog-to-digital converters (ADS8881), a multi-channel DAC
for setting bias voltages (LTC2636), and power regulation. The
entire system is powered by a single 5V power supply and it
is controlled over USB 3.0 by a computer within a Python
environment. (Fig. 6(b)). The sensor chip consumes 58.8 mW,
and the data acquisition board plus FPGA module together
draw 1.2 W.

V. EXPERIMENTS AND SIMULATIONS WITH
MICROSPHERES

To better understand the mutual capacitance imaging modes,
we performed experiments with polystyrene microspheres,
as well as corresponding electrostatic simulation using the

pyEIT framework [23]. The experimental and simulated results
showed good correspondence, as shown in Fig. 7.

In the measurement, 20 um polystyrene beads are dispersed
in 1x phosphate buffered saline (PBS) and allowed to settle
onto the sensor array. Using the inspection microscope, we
identified two beads, one of which was directly over a pixel
while the other landed halfway between two pixels (Fig. 7(a)).
The switching frequency was set to 6.25 MHz which is high
enough to overcome Debye shielding while staying within
the bandwidth of the readout circuits. We aimed to maximize
the signal while not saturating the readout signal paths, and
selected AV = 300 mV. We measured slices of mutual
capacitance images within a linear array of 11 pixels beneath
the beads, using offsets ranging from 1 through 5 (§; = 0,
1 < §; <5). The measured results for each offset kernel are
shown in Fig. 7(c). We also performed electrostatic simulations
using pyEIT, using a similar electrode geometry and the same
two types of bead locations. The background permittivity was
set to ¢, = 80, the bead permittivity was set to €, = 2.5, and
the simulation used a triangular mesh with 2986 nodes and
5748 elements (Fig. 7(b)(d)). The simulations focus on bulk
properties, and do not include surface charges or double layers
on the beads or electrodes. We believe these simplifications
are acceptable for these geometries at the MHz switching
frequencies of the sensor.

We can see that the measurement agrees reasonably well
with the simulation. In both the measurements and simulation,
the mutual capacitance shows significant differences between
the two scenarios, despite the sub-pixel movement of the
bead. The changes in mutual capacitance also appear to
be qualitatively different for each pixel spacing, suggesting
that distinct information is contained in each measurement
configuration. Some of the difference is due to the fact that
the electrode spacing is under-sampling the permittivity space,

(o]

Fig. 6: (a) The sensor chip is packaged on a small module (red), and connected
to a larger data acquisition board (green). (b) Experiments are performed under
a simple inspection microscope, for simultaneous optical observation. (c) The
sensor is assembled with a simple fluid chamber and a silver/silver-chloride
pseudo reference electrode.



and we expect that if there were finer electrode spacing for the
same 20 pm microspheres, then the red curve (bead centered
on a pixel) would be a shifted version of the black curve (bead
between two pixels).

Bead at pixel center

Bead off-center by ~5pm

Bead at pixel center Bead off-center by 5um

Za0) bead Sa0 bead

230 . 230 .

g2 elemodes\‘ : TZ 20| electrodes \4: TZ
E £

10| 10

TTII TS 6T ETI TTZI TS ETESm

(b)

Capacitance Measurement Between Pairs of Electrodes

A.
5

[ e
/

W center
M- off.center

B center
- off-center

Capacitance [A.U]

. |
[0,1] [1,2] [2,3] [3.4] [4,5] [5,6] [6,7] [7.8] [8,9](9,10]
Pixel Pairs

[0,1] [1,2] [2,3] [3,4] [4.,5] [5,6] [6,7] [7.8] [8,9]1(9,10]
Pixel Pairs

3 | o = = |
5‘7.5 .

T6.0{ -m- center
25| -8 offcenter

-
[0.2] [1,3] [2,4] [3.,5] [4.,6] [5.7] [6,8] [7,9][8,10]
Pixel Pairs

vovwos

Capacitance [F]

w s oo

B center
- off.cents

Capacitance [fF]

oo oo e
S 0o

w
03] (1,41 [2.5] [3.6] [47] [58] [6,9] [7.10]
Pixel Pairs

-m- center
fcente

0 s

-m- center
- offcenter

[04] 15 [26] (37] [48] [59] [610]
Pixel Pairs

Capacitance [AU]  Capacitance [A.U]

Capacitance [fF
R ww A
SAAUGGL
Somonna

[26] (37] (48] [59] [610]
Pixel Pairs

Bl
246
g2s %0
£20 2 E
215 , L 3 - center N g42 - center
810l ™ -m- offcenter . Feol_u -m- offcenter ‘w
0,51 1,6] 2,71 (3,8] (491  [510] [0,5] 1,61 2,71 (3,81 4,91 [510]
Pixel Pairs Pixel Pairs
(© (d)

Fig. 7: (a) Two 20 um diameter polystyrene beads immersed in 1x PBS
buffer on the sensor array, with one bead placed right on top of an electrode,
and the other positioned with 5 um offset halfway between two electrodes.
(b) Simulation to mimic the scenarios in (a), using pyEIT [23]. (c) Mutual
capacitance measurements between pairs of electrodes in a linear 11-element
array, with pixel spacing ranging from 1-5 for the bead at the pixel center.
(d) Simulated results with the bead halfway between pixels.

Another level of understanding can come from looking at
the electric field distribution during these mutual capacitance
measurements. In Fig. 8(a) we simulate the electric field
during the [0,1] measurement from Fig. 7(c). The nonlinear
decay of field intensity with distance means that the presence
of the bead has relatively little influence on the measured
capacitance. In contrast, Fig. 8(b) shows the measurement
[5,6], in which the electric field is much stronger within
the bead, and its lower local permittivity results in a lower
measured capacitance than if there had been no bead. When
there is larger spacing between pixel pairs, the lateral size of
the observed decrease becomes wider because the electric field
intensity extends farther into the sample. When the pixel pairs
are even farther apart (e.g. 6; = 4), the electric field is stronger
near the two pixels but weaker at their midpoint, producing
the observed bimodal capacitance profile.

VI. SUPER-RESOLUTION IMPEDANCE IMAGING
A. Imaging Unicellular Algae

Algae cells are interesting creatures with a diversity of
shapes and sizes, which make them useful for impedance
imaging [24]. Here we use a mix of Cosmarium and Pe-
diastrum (Carolina Biological, NC, USA) to demonstrate
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Fig. 8: Finite element simulation (using pyEIT [23]) to compare the bead’s
effect on the electric field distribution between pixels [0,1](a) and between
pixels [5,6](b).
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the effectiveness of the proposed super-resolution impedance
imaging. Both of these green microalgae have intermediate cell
size (approximately 10 pm - 50 ym diameter). Cosmarium has
a bi-lobal shape, while Pediastrum is mostly observed in small
clusters of several dozen cells (Fig. 9).

=10 pm

@ ®

Fig. 9: Images of two types of green algae. (a) A reference image of
Cosmarium. (Atriplex82, CC BY-SA 4.0, via Wikimedia Commons.) (b) An
optical microscope image of one cosmarium cell on the sensor array. (c) A
single impedance image of the cosmarium cell from b. (d) A reference optical
image of a cluster of pediastrum cells. (Dr. Ralf Wagner, CC BY-SA 3.0, via
Wikimedia Commons) (e) An optical image of a cluster of pediastrum cells
on the sensor array. (f) A single impedance image of the pediastrum cluster.
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Fig. 10: Algae cells dispersed on the sensor array. (a) Optical image (b) Single
frame EIS image with (+1,+1) offset. Ten rows and columns at the edge are
cropped due to the 11 x 11 kernel size.

An optical image of the mixed algae sample dispersed on
the sensor is shown in Fig. 10(a), alongside a single frame
EIS image of the same sample (Fig. 10(b)). For the EIS
imaging, Vo = Vpras = 500 mV, Verrayp = 300 mV, and



the switching frequency is 3.125 MHz. It is relatively simple
to differentiate these two types of algae from their colors in
the optical image, but at first glance, they appear to be very
similar in the EIS image.

In Fig. 11 and Fig. 12, we zoom in on one Cosmarium cell
and one Pediastrum cell. These experiments were optimized
for resolution rather than frame rate, and we set the integration
time to 50 us, which meant we could acquire one 512 x 256
image every 7 seconds. Each offset leads to a different
perspective of the same target cell, providing signal diversity
and sub-pixel information which we can exploit for super-
resolution reconstruction.

In practice, the fact that the mutual capacitance decreases
super-linearly with distance [18] creates diminishing returns
to using very large kernel sizes. For example, in Fig.7(c)
we can observe that the mutual capacitance at 50 um pixel
separation is ten times smaller than at 10 um separation. As a
compromise between signal strength and the total acquisition
time, we selected an 11 x 11 kernel size. With this kernel size,
measuring a full stack of 120 mutual capacitance images took
a total of 17 minutes.

B. Reconstruction Algorithm

Many techniques have been developed for assembling a
high-resolution optical image from lower-resolution images of
the same scene. For example, multiple video frames can be
aligned and computationally merged, taking advantage of the
fact that camera motion produces spatial shifts in the scene
relative to the image sensor which can yield a higher resolution
composite image than the individual frames [15]. The primary
technical challenge lies in predicting the subpixel motion to
realign images. In our application, the collection of EIS images
additionally appears to include other subtle distortions beyond
a simple shift.

We produced a composite super-resolution impedance im-
age using a procedure that involves (1) upsampling the original
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Fig. 11: Cosmarium impedance images. A collection of 120 impedance
images of one Cosmarium cell were acquired with offset kernels (d;,d;)
varied between —5 < §; < +5 and —5 < d; < +5. While these are all
images of the same cell, each offset kernel produces a different perspective.
Note the spatial distortion of the algae based on the offset kernel.
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Fig. 12: Pediastrum impedance images. A collection of 120 impedance images
of one Pediastrum cell cluster were acquired with offset kernels (d;, d;) varied
between —5 < d; < +5 and —5 < d; < +5. While these are all images
of the same cluster, each offset kernel produces a different perspective. Note
the spatial distortion of the algae based on the offset kernel.

EIS images, (2) computing a linear filter to align each image
to a common reference EIS image, (3) summing the re-aligned
EIS images, and (4) applying a high-pass filter to compensate
for interpolation on the original low-resolution EIS images.

Simply summing the multiple raw EIS images would result
in smearing due to the spatial distortion produced from the
different offset kernel mutual impedance images. To address
this distortion and improve the alignment, we performed
a linear deconvolution to approximate a filter that would
undo the distortion of each image. We note that convolution
operations performed in the spatial domain are equivalent to
multiplication in the spatial frequency domain. Therefore, if
we let a(z,y) and r(z,y) represent our input and output
signals, respectively, and A(u,v) and R(u,v) represent their
frequency domain representations, the linear filter, H, can be
expressed as:

R(u,v)
A(u,v)

The common reference image is selected as one with a
small offset vector (e.g. (+1,+1), and it approximates the
expected output signal with minimal spatial distortion. If
a;(x,y) represents our input upsampled high-passed image,
r(x,y) represents our upsampled high-passed signal reference,
and w(x,y) represents a zero-padded Hanning window to
reduce spectral leakage, our algorithm for /N images can be
expressed as:

N
| Flr(z,y) ]
= ailz,y)* Fl[ ‘w(a,y) | @)
;()< Flaa.y)) Y

where b(z,y) is the computed SR-EIS image. The spatial
alignment filter simultaneously solves for both lateral shifts
and some types of image distortion between different offset
kernels.

In Fig. 13 and Fig. 14, we apply this super-resolution
algorithm to three instances of each of the two algae species,

H(u,v) = 3)



with N = 120. Although not all of the single raw images
of Cosmarium reveal their two hemispheres, these were three
of the examples where the bi-lobal structure was the most
apparent in the raw images. Their respective SR-EIS images
further enhance the bi-lobal structure while rounding the
overall shape of the cell, consistent with microscopy images.
For Pediastrum, single raw EIS images were unable to resolve
individual cells within clusters. In the computed SR-EIS
images, we were able to resolve more detail in the shape
of the cluster, with irregular boundary shapes which likely
correspond to ‘missing’ single cells from the edges of the
cluster (similar to Fig. 9(d)). We notice that cells may appear
darker (lower impedance) for short offset vectors, but lighter
(higher impedance) for larger offset vectors. This observation
may relate to the cells’ 3-D shapes, as longer offset vectors
have fringe fields that penetrate deeper into the sample [18].
This difference in polarity also leads to the dark outlines of
the algae in the SR-EIS Pediastrum images. The composite
images contain significantly more spatial information than
the single Pediastrum images, although a precise physical
interpretation of the spatial impedance profiles is complicated
by the intensity and polarity changes with different offsets.
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Fig. 13: Super-resolution impedance (SR-EIS) reconstruction of three Cos-
marium cells with their respective raw impedance reference. (a) Impedance
image with offset kernel (d;,d;) = (—2,0) (b) Impedance image with
offset kernel (;,0;) = (—2,—1) (c) Impedance image with offset kernel
(85,65) = (—3,—1) (d, e, f) Linear deconvolution algorithm applied on 120
impedance images with reference image defined in (a,b,c).

Investigating the SR-EIS image features further, we took
linear slices through the composite and reference EIS images
for Cosmarium and Pediastrum (Fig. 15). The Cosmarium
composite image slice shows improved resolution with a simi-
lar profile as the single-frame EIS image and confirms that the
one-pixel features in the lower-resolution image are in fact the
two hemispheres of the Cosmarium. For Pediastrum, the line
profile once again highlights that the composite image includes
finer spatial features within one cluster of cells. However, as
mentioned previously, providing a physical explanation for the
lower-impedance outline around the cell cluster remains an
open challenge.

While these preliminary results are promising, we anticipate
that further improvements could be achieved with improved
reconstruction algorithms. For example, there ought to be

) o] 0
2 24 2

% 41 44 44

=

2 6 6 6

2
84 84 81
10 —10um | 101 —10um | 101 —10 um

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

() Column [px] (b) Column [px] (©) Column [px]

1
1

Upsampled Row [px]

100

0 50 100 150
Upsampled Column [px] ®

Upsampled Column [px]

0 50 0
(d)  Upsampled Column [px] (®

Fig. 14: Super-resolution reconstruction of three pediastrum cells with their
respective raw impedance reference. Offset kernel is chosen to show algae well
in raw images. (a) Impedance image with offset kernel (d;,d;) = (+1,+1).
(b) Impedance image with offset kernel (J;,8;) = (+1,0). (c) Impedance
image with offset kernel (0;,6;) = (+1,0). (d, e, f) Linear deconvolution
algorithm applied on 120 impedance images with reference image defined in
(a,b,c).
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radial symmetries and scaling trends across the multiple EIS
images which are not currently enforced in the deconvolution
filter solutions. It may also be worthwhile to pursue alternative
super-resolution reconstruction techniques that could allow for
nonlinear alignment filters, such as those built on deep learning
models [30].



TABLE I: Survey of Super-Resolution Imaging Sensor Arrays

[25] [26] [27] [28] [29] this work
Application Microfluidic Contgct Time-of-Flight Near-Eield Satellite . Electrochemical
PP Cytometer Scanning 3-D Camera Imaging Remote Sensing Imaging
Opera_ting Single—Fram; Staggfired Pixel Background'Light Conﬁned_ E-field Interlaced Pixel MuFual
Principle Machine-Learning | Multi-line Scanner Suppression of Oscillator Capacitance
Measurement Mode Optical Optical Optical Terahertz Optical EIS
Sample Type Blood Cell Bubbles 3-D Object Nickel Mesh 3-D Object Algae Cells
Sensor Process 65nm BSI 0.35 um CMOS 0.11 pm CIS 0.13 um SiGe 0.18 um CIS 0.18 um CMOS
Pxel Size 1.1x1.1 pm 8x 11 pum 5.9%5.9 pm 25%25 pm 6X6 pm 10x10 pm
Array Size 1600x2056 256x214 336%256 2x64 128x8x2 512x256
Fill Factor 0.15 0.21 0.24 0.48 0.27 0.52
Power 182.8 mW 60 uW per column 680 mW 37-104 mW 4114 pW 58.8 mW
per column

VII. CONCLUSION

In this paper, we have presented a new approach for
spatially-resolved electrochemical impedance imaging with
a 512 x256 CMOS EIS sensor array. A survey of several
other types of super-resolution sensors is listed in Table-
I. To support the SR-EIS imaging mode, we introduced an
area-efficient pixel design supporting arbitrary programmable
mutual capacitance measurements. We used FEM simulation
and experiments with polystyrene microspheres to validate
the sensor’s ability to extract sub-pixel information. As a
demonstration, we presented state-of-the-art non-optical mea-
surements of unicellular algae Cosmarium and Pediastrum,
producing super-resolution impedance images with linear re-
construction algorithms that resolve spatial features smaller
than the sensor array’s pixel pitch, including some sub-cellular
structures. Future work will include exploring more advanced
algorithms for super-resolution image reconstruction, and 3D
shape reconstruction. A wide range of biomedical applications
may stand to benefit from spatially resolved super-resolution
EIS imaging.

VIII. ACKNOWLEDGEMENT

The authors thank Pushkaraj Joshi for electron microscopy,
and Christopher Arcadia, Joseph Larkin, and Sherief Reda for
technical discussions.

REFERENCES

[1] O. A. K’Owino, I. O.; Sadik, “Impedance spectroscopy: a powerful tool
for rapid biomolecular screening and cell culture monitoring,” Electroanal-
ysis, vol. 17, pp. 2101-2113, 2005.

[2] K. Hu, C. E. Arcadia, and J. K. Rosenstein, “A large-scale multimodal-
CMOS biosensor array with 131,072 pixels and code-division multi- plexed
readout,” IEEE Solid-State Circuits Letters, vol. 4, pp. 48-51, 2021.

[3] J. S. Park, M. K. Aziz, S. Li, T. Chi, S. I. Grijalva, J. H. Sung, H.
C. Cho, and H. Wang, “1024-pixel CMOS multimodality joint cellular
sensor/stimulator array for real-time holistic cellular characterization and
cell-based drug screening,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 12, no. 1, pp. 80-94, 2018.

[4] B. P. Senevirathna, S. Lu, M. P. Dandin, J. Basile, E. Smela, and P.
A. Abshire, “Real-time measurements of cell proliferation using a lab- on-
cmos capacitance sensor array,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 12, no. 3, pp. 510-520, 2018.

[5] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, M. A.
Jongsma, and F. P. Widdershoven, “Real-time imaging of microparticles
and living cells with CMOS nanocapacitor arrays,” Nature Nanotechnol-
ogy, vol. 10, p. 791, aug 2015.

[6] S. B. Prakash and P. Abshire, “Tracking cancer cell proliferation on a
CMOS capacitance sensor chip,” Biosensors and Bioelectronics, vol. 23,
no. 10, pp. 1449-1457, 2008.

[71 A. Romani, N. Manaresi, L. Marzocchi, G. Medoro, A. Leonardi, L.
Altomare, M. Tartagni, and R. Guerrieri, “Capacitive Sensor Array for
Localization of Bioparticles in CMOS Lab-on-a-Chip,” ISSCC, 2004.

[8] R. Turner, D. Harrison, and H. Baltes, “A CMOS potentiostat for
amperometric chemical sensors,” IEEE Journal of Solid-State Circuits, vol.
22, no. 3, pp. 473-478, 1987.

[9] D. T. Anthony Layson, Shailesh Gadad, ‘“Resistance measurements at
the nanoscale: scanning probe ac impedance spectroscopy,” Electrochimica
Acta, vol. 48, pp. 2207-2213, 2003.

[10] J. Ye, H. Wang, and W. Yang, “Image reconstruction for electrical ca-
pacitance tomography based on sparse representation,” IEEE Transactions
on Instrumentation and Measurement, vol. 64, no. 1, pp. 89— 102, 2015.

[11] E. Widdershoven, A. Cossettini, C. Laborde, A. Bandiziol, P. P. van
Swinderen, S. G. Lemay, and L. Selmi, “A CMOS pixelated nanocapac-
itor biosensor platform for high-frequency impedance spectroscopy and
imaging,” IEEE transactions on biomedical circuits and systems, vol. 12,
no. 6, pp. 1369-1382, 2018.

[12] K. Hu, E. Kennedy, and J. K. Rosenstein, “High frequency dielectric
spectroscopy array with code division multiplexing for biological imaging,”
in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS).
IEEE, 2019, pp. 1-4.

[13] J. Abbott, A. Mukherjee, W. Wu, T. Ye, H. S. Jung, K. M. Cheung, R. S.
Gertner, M. Basan, D. Ham, and H. Park, “Multi-parametric functional
imaging of cell cultures and tissues with a CMOS microelectrode array,”
Lab on a Chip, vol. 22, no. 7, pp. 1286-1296, 2022.

[14] K. Niitsu, S. Ota, K. Gamo, H. Kondo, M. Hori, and K. Nakazato, “De-
velopment of microelectrode arrays using electroless plating for CMOS-
based direct counting of bacterial and hela cells,” IEEE transactions on
biomedical circuits and systems, vol. 9, no. 5, pp. 607-619, 2015.

[15] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: a technical overview,” IEEE Signal Processing Magazine,
vol. 20, no. 3, pp. 21-36, 2003.

[16] T. Dyakowski, R. Edwards, C. Xie, and R. A. Williams, “Application
of capacitance tomography to gas-solid flows,” Chemical Engineering
Science, vol. 52, no. 13, pp. 2099-2110, 1997.

[17] N. Reinecke and D. Mewes, “Investigation of the two-phase flow in
trickle-bed reactors using capacitance tomography,” Chemical engineering
science, vol. 52, no. 13, pp. 2111-2127, 1997.

[18] K. Hu, C. E. Arcadia, and J. K. Rosenstein, “Super-resolution electro-
chemical impedance imaging with a 100 x 100 CMOS sensor array,” in
2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2021,
pp. 1-4.

[19] J. O. Bockris, E. Gileadi, and K. Miiller, “Dielectric relaxation in the
electric double layer,” The Journal of Chemical Physics, vol. 44, no. 4, pp.
1445-1456, 1966.

[20] K. Hu, C. E. Arcadia, and J. K. Rosenstein, “A fringe field shaping
cmos capacitive imaging array,” in 2021 IEEE Sensors, 2021, pp. 1-4.
[21] K. Hu, J. Incandela, X. Lian, J. W. Larkin, and J. K. Rosenstein, “A
13.1 mm 2 512x 256 multimodal cmos array for spatiochemical imaging of
bacterial biofilms,” in 2022 IEEE Custom Integrated Circuits Conference

(CICC). IEEE, 2022, pp. 1-2.

[22] K. Hu, X. Lian, S. Dai, and J. K. Rosenstein, “Low noise CMOS isfets
using in-pixel chopping,” in 2019 IEEE Biomedical Circuits and Systems
Conference (BioCAS). IEEE, 2019, pp. 1-4.

[23] B. Liu, B. Yang, C. Xu, J. Xia, M. Dai, Z. Ji, F. You, X. Dong, X. Shi,
and F. Fu, “pyeit: A python based framework for electrical impedance
tomography,” SoftwareX, vol. 7, pp. 304-308, 2018.

[24] C. E. Arcadia, K. Hu, S. Epstein, M. Wanunu, A. Adler, and J. K.
Rosenstein, “CMOS electrochemical imaging arrays for the detection and
classification of microorganisms,” in 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), 2021, pp. 1-5.

[25] X. Liu, X. Huang, Y. Jiang, H. Xu, J. Guo, H. W. Hou, M. Yan, and
H. Yu, “A microfluidic cytometer for complete blood count with a 3.2-
megapixel, 1.1- m-pitch super-resolution image sensor in 65-nm bsi cmos,”



IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 4, pp.
794-803, 2017.

[26] C. W. Liu, A. Feizi, N. Sarhangnejad, G. Gulak, and R. Genov,
“Superresolution line scan image sensor for multimodal microscopy,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 12, no. 5, pp.
1165-1176, 2018.

[27] J. Cho, J. Choi, S.-J. Kim, S. Park, J. Shin, J. D. K. Kim, and E. Yoon,
“A 3-d camera with adaptable background light suppression using pixel-
binning and super-resolution,” IEEE Journal of Solid-State Circuits, vol.
49, no. 10, pp. 2319-2332, 2014.

[28] P. Hillger, R. Jain, J. Grzyb, W. Forsterr, B. Heinemann, G. MacGrogan,
P. Mounaix, T. Zimmer, and U. R. Pfeiffer, “A 128-pixel system-on-a- chip
for real-time super-resolution terahertz near-field imaging,” IEEE Journal
of Solid-State Circuits, vol. 53, no. 12, pp. 3599-3612, 2018.

[29] J.-H. Chang, K.-W. Cheng, C.-C. Hsieh, W.-H. Chang, H.-H. Tsai, and
C.-F. Chiu, “Linear cmos image sensor with time-delay integration and
interlaced super-resolution pixel,” in SENSORS, 2012 IEEE, 2012, pp. 1-4.

[30] Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image super-
resolution: A survey,” IEEE transactions on pattern analysis and machine
intelligence, vol. 43, no. 10, pp. 3365-3387, 2020.

Kangping Hu (S’18) received the B.S. degree
(summa cum laude) in electrical engineering and
computer engineering from Boston University, MA,
USA, in 2013, the M.S. degree in electrical engi-
neering from California Institute of Technology, CA,
USA, in 2014, and the M.S. degree in computer
science from Brown University, RI, USA. Currently,
he is pursuing the Ph.D. degree at Brown University,
RI, USA.

From 2015 to 2022, he has worked as an RFIC en-
gineer at Calterah Semiconductor on 77GHz CMOS
Radar, a DRAM design engineer at Micron Technology on LPDDRA4/S, a
research intern at Meta Reality Lab, and a 3-time hardware intern at Apple.

His current research interests include the design and modeling of mixed-
signal integrated circuit and multi-modal sensor array platform for bio-sensing
applications.

Jason Ho (S°21) is pursuing an Sc.B. in computer
engineering at Brown University, RI, USA, set to
graduate in 2022. Afterwards, he will work toward
a Ph.D. in electrical and computer engineering.

In the past, he has worked as an FPGA engineer-
ing intern at Nabsys 2.0 and as a VLSI design intern
at Seagate Technology on signal processing pipeline
microarchitectures.

His current research interests include ultra low
power computing, energy-efficient computing sys-
tems, and organic approaches to computing such as
neuromorphic computing systems.

Jacob K. Rosenstein Jacob K. Rosenstein is an As-
sociate Professor of Engineering at Brown Univer-
sity in Providence, RI. He received Sc.M. and Ph.D.
degrees in electrical engineering from Columbia
University, and an Sc.B in Computer Engineering
from Brown University. He previously worked as a
hardware systems engineer at Analog Devices Inc,
and MediaTek Wireless Inc. His current research in-
terests include biomedical electronics, mixed-signal
circuit design, and chemical information systems.




